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Abstract

We revisit the rates of neutrino pair emission and absorption from nucleon–nucleon bremsstrahlung in supernova
matter using the T-matrix formalism in the long-wavelength limit. Based on two-body potentials of chiral effective
field theory (χEFT), we solve the Lippmann–Schwinger equation for the T-matrix including non-diagonal
contributions. We consider final-state Pauli blocking and hence our calculations are valid for nucleons with an
arbitrary degree of degeneracy. We also explore the in-medium effects on the T-matrix and find that they are
relatively small for supernova matter. We compare our results with one-pion exchange rates, commonly used in
supernova simulations, and calculations using an effective on-shell diagonal T-matrix from measured phase shifts.
We estimate that multiple-scattering effects and correlations due to the random phase approximation introduce
small corrections on top of the T-matrix results at subsaturation densities. A numerical table of the structure
function is provided that can be used in supernova simulations.
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1. Introduction

Neutrino interaction with nucleons in a proto-neutron star
(Burrows et al. 2006) plays a crucial role in many aspects of
core-collapse supernovae (CCSNe), such as the explosion
mechanism(Janka et al. 2007; Janka 2012; Burrows 2013) as
well as the synthesis of heavy elements in neutrino-driven
winds(Arcones & Thielemann 2013; Martínez-Pinedo et al.
2016) and the long-term cooling of the neutron star (Yakovlev
et al. 2001; Yakovlev & Pethick 2004). Three-dimensional
(3D) simulations with detailed neutrino transport have shown
that explosions are very sensitive to neutrino opacities even at
the level of 10%–20% (Melson et al. 2015; Burrows et al.
2018). Therefore, an accurate description of neutrino interac-
tion in hot and dense nuclear matter related to CCSNe is highly
demanded.

We revisit the neutrino pair emission and absorption from NN
collisions in supernova (SN) matter using T-matrix elements
based on χEFT potentials followingBartl et al. (2014) and
Bartl (2016). Neutrino bremsstrahlung nnNN NN , its inverse

nn NN NN, and the related inelastic scattering NNν → NNν
play key roles in changing the number density and energy for
heavy-flavor SN neutrinos and are thus important in determining
the formation of neutrino spectra (Raffelt 2001; Keil et al. 2003).
The most widely used bremsstrahlung rate in SN simulations
(Hannestad & Raffelt 1998) is based on the one-pion exchange
(OPE) potential in the Born approximation with only interactions
among neutrons considered. As already mentioned by Hannestad
& Raffelt (1998), a proper treatment of NN correlations for general
nuclear matter should be considered for a better description of
neutrino bremsstrahlung (see also Friman & Maxwell 1979;
Sigl 1997; Yakovlev et al. 2001; Bartl et al. 2014; Pastore et al.
2015; Dehghan Niri et al. 2016, 2018; Riz et al. 2018). Modern
nuclear interactions from χEFT have been used to study neutrino
bremsstrahlung based on Landau’s theory of Fermi liquids
(Lykasov et al. 2008; Bacca et al. 2009, 2012; Bartl et al. 2014;
Bartl 2016). The necessity to go beyond the Born approximation
was demonstrated by Bartl et al. (2014) using effective on-shell

T-matrix elements extracted from experimental phase shifts
(see also Sigl 1997; Hanhart et al. 2001; van Dalen et al. 2003).
It should be pointed out(Bartl et al. 2014), however, that the use of
the on-shell T-matrix is only valid in the limit of zero energy
transfer between nucleons and the neutrino pair. For finite energy
transfer, off-shell T-matrix elements are needed. van Dalen et al.
(2003) also explored the in-medium effects on the T-matrix based
on the Bonn C potential for neutrino bremsstrahlung rates, but their
study was limited to neutrino emissivities in conditions relevant to
neutron stars. Bartl et al. (2014) performed the first calculation of
NN bremsstrahlung for arbitrary mixtures of neutrons and protons
in supernova matter.
In this work we aim for an improved description of neutrino

bremsstrahlung that includes both off-shell matrix elements and
Pauli blocking effects. We solve the Lippmann–Schwinger
equation to obtain the vacuum T-matrix(Lippmann &
Schwinger 1950) and the Bethe–Goldstone (BG) equation
(Bethe 1956; Goldstone 1957) to account for in-medium effects
in the T-matrix. The bremsstrahlung rate, or more precisely the
associated structure function S(q, ω), with q and ω the
momentum and energy transfer, is obtained using Fermi’s
golden rule in the long-wavelength limit (q → 0), which is
consistent with that derived from finite-temperature linear
response theory (see, e.g., Weldon 1983; Roberts & Reddy
2017). To account for multiple-scattering effects and to get
around divergences at ω→0, we introduce a relaxation rate
parameter or width parameter whose value is determined from
the normalization of S(q → 0, ω) (Hannestad & Raffelt 1998).
Our calculations consider final-state blocking for the nucleons
in calculating the bremsstrahlung rates. They are compared to
results using Boltzmann distributions without blocking, which
are only valid in the non-degenerate regions.
The paper is organized as follows. In Section 2, we calculate

perturbatively the structure function and the neutrino bremsstrah-
lung rate, and then study the effects of using different nuclear
matrix elements (vacuum T-matrix, in-medium T-matrix, and
OPE potential) with/without blocking, and with half-off-shell
or on-shell matrix elements. In Section 3, we include the width
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parameter to normalise the structure function properly, and then
compare our results with previous ones in the literature. Correlation
effects due to the random phase approximation (RPA) are
considered and studied in Section 4. We present a summary and
discussions in Section 5.

2. Neutrino Bremsstrahlung Rate: Perturbative Calculation

2.1. Formalism

To study neutrino bremsstrahlung and related processes, we
consider the diagrams as shown in Figure 1, including both the
direct and the exchange contributions. Neglecting weak
magnetism and pseudoscalar corrections, the amplitudes of
the diagrams are
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where ñab nas∣ and ñcd nas∣ are normalized antisymmetric states of
the initial and final nucleon pair, which are characterized by
their relative momenta and spin projections (see Appendix B

for more details). For neutrino pair absorption we have
w = + >n nE E 0. si

a( ) (i=x, y, z) are the Pauli matrices
acting on the nucleon Na, li are the spatial components of the
leptonic weak current, Ca

A=gA/2;0.63 if Na is a proton and
= -C g 2A

a
A if it is a neutron, and GF is the Fermi coupling

constant. Note that we do not include the vector terms in
 1,2,3,4( ) since they completely cancel each other out in the
non-relativistic limit within the Born approximation(Friman &
Maxwell 1979; Raffelt & Seckel 1995; Hannestad &
Raffelt 1998). Going beyond the Born approximation and
using the half-off-shell T-matrix, the complete cancellation of
the vector terms does not hold any longer. Nevertheless, its
contribution is negligible compared to the axial-vector terms. V
could denote either the nucleon–nucleon scattering T-matrix
based on the χEFT potential of Entem et al. (2017) with cutoff
Λ=500MeV or the OPE potential. For comparison with
previous results(Friman & Maxwell 1979; Hannestad &
Raffelt 1998; Bartl et al. 2014), the OPE potential is treated
in the Born approximation. In the limit of non-degenerate
nucleons our OPE results are identical to those of Bartl et al.
(2014). We will use  to explicitly denote the scattering
T-matrix based on the χEFT potential. Bartl et al. (2014) have
shown, that in the Born approximation, OPE and χEFT
potentials give similar rates at subsaturation densities because
they are dominated by the long-range part of the tensor force,
which is well described by the OPE potential. However, they
also showed that the low-energy resonant nature of the
nucleon–nucleon interaction(Bartl et al. 2014) enhances the
rates and requires one to go beyond the Born approximation.
The total amplitude can be written in a more compact form

as
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where tz is the z-component of the isospin operator with
t ñ = ñn nz∣ ∣ and t ñ = - ñp pz∣ ∣ , and r runs over the two initial
or final nucleons. The prime in the commutator denotes that
the potential is evaluated at different values of the energy for
the first (“positive”) and second (“negative”) terms; see the
definition in Equation (61). For energy-independent potentials,
such as the OPE or the chiral potential at the Born level, it
reduces to the standard commutator. The squared amplitude
can be divided into leptonic, L, and hadronic, H, parts as

å = å G g H L8F A ij ij
ij

spins tot
2 2 2∣ ∣ ( ) . For an isotropic medium,

we only need to consider the trace average of the hadronic
part(Hannestad & Raffelt 1998):
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Figure 1. Feynman diagrams of neutrino bremsstrahlung, +  +N N Na b c

n n+ +a aNd , where N stands for either a neutron, n, or a proton, p, and
α = e, μ, τ for different neutrino flavors. Both the direct (left) and exchange
(right) diagrams are considered.
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Note that H̄ is a scalar under rotations due to the invariance
of the trace under basis transformations. The partial wave
expansions of =H Hnn pp¯ ¯( ) ( ) and =H Hnp pn¯ ¯( ) ( ) are presented in
Appendix B. The calculation of H̄ requires the evaluation
of the T-matrix elements in momentum space á ñk kf i∣ ∣ , where

º -k k k 2i a b( ) and º -k k k 2f c d( ) are the relative
momenta of the initial and final nucleon pair, and only
the initial or final nucleon pair is on-shell for finite values of ω
(see Figure 1), i.e., we deal with half-off-shell matrix elements.
Here, we fully consider their contribution when we solve the
Lippmann–Schwinger equation based on the χEFT potential of
Entem et al. (2017). Additionally, we include in-medium Pauli
blocking effects (see Appendix A) when solving the Bethe–
Goldstone equation. With such medium effects taken into
account, H̄ is a function of = º + = +K k k k kK a b c d∣ ∣ ∣ ∣ ∣ ∣,

= kki i∣ ∣, = kkf f∣ ∣, and qcos , where θ is the angle between ki

and kf .
The response of a nuclear medium can be described by the

so-called structure function or response function. For neutrino
bremsstrahlung in the long-wavelength limit (i.e., we ignore
momentum exchange3), the axial structure function, s

lhS( ), with
λ, η=n or p, is given by (Hannestad & Raffelt 1998; Lykasov
et al. 2008; Bartl et al. 2014)
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where nB is the total baryon number density and fl are the Fermi
functions. Throughout this work, we always take the non-
relativistic energy–momentum relation, and correspondingly
the non-relativistic chemical potential without including the
rest mass. Note that, unlike the formalisms adopted in
Hannestad & Raffelt (1998), we do not need to consider a
symmetry factor for identical nucleon species since our matrix
element is calculated for normalised antisymmetric nucleon
states. In the perturbative limit of Equation (4) the total axial
structure function, Sσ, is simply

w w w w= + +s s s sS S S S . 5nn pp np( ) ( ) ( ) ( ) ( )( ) ( ) ( )

The structure function in Equation (4) with the Fermi
distributions and blocking involves a multidimensional int-
egral, which can only be computed numerically. We choose ki
along the z-axis, and without loss of generality we set ka in the
xz-plane with a polar angle denoted by θa. We further denote
the polar and the azimuthal angles of kf by θ and f. Once ki, ka,
θ, f, and θa are specified, all momenta are then fixed, making
Equation (4) a five-dimensional integral. We use the Vegas
subroutine in the CUBA library (Hahn 2005), invoking a
Monte Carlo algorithm to evaluate all the multidimensional
integrals in this work.

In the non-degenerate limit, we have -f f f1a b c( )
- f f f1 d a b( )  m m- - + +K k m Texp 4 i N a b

2 2{[( ) ] } ,

independent of all the angles, and Sσ(ω) can be simplified to

òw
p

m m

=

´ -
+ - -

s
lh lh

=S
m

n
dKdk K k k H K k k

K m k m

T

4

2
, ,

exp
4

,

6

m b
N

B
i i f L i f

N i N a b

, , 5
2 2

0

2 2

( )
( )

¯ ( )

( )

( )

( ) ( )

⎧⎨⎩
⎫⎬⎭

where mN=(mn+mp)/2 is the averaged nucleon mass, and
μa,b are the non-relativistic chemical potentials of nucleons.
Since ò q q d=d Pcos cos 2L L0( ) , where PL is the Legendre

polynomial, only the L=0 component of H̄ contributes; see
Equation (59). We use the subscript m (v) to refer to the in-
medium (vacuum) T-matrix elements, and b ( f ) when we use
the Boltzmann (Fermi) distribution without (with) blocking.4

Throughout this work, we always take the bare nucleon mass
for all our studies. For typical densities in the neutrinosphere,
the effective mass of nucleons is close to the bare value. At the
saturation density, χEFT calculations(Hebeler et al. 2009;
Wellenhofer et al. 2014; Drischler et al. 2017) found an
effective mass ∼0.9mN. Using such a value for both proton and
neutron, the rates are only affected by a few per cent.
When the vacuum T-matrix elements or the OPE potential

are used, lhH̄ ( ) is independent of K and integration over K can
be done analytically with ò - =dKK K m Texp 4 N

2 2( ( ))
p m T4 N

3( ) , leading to
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Once Sσ(ω) is known, the inverse mean free path or opacity
of a neutrino against neutrino pair absorption is
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where ¢k and f′ are the momentum and distribution function of
the counterpart (anti)neutrino, and qnn̄ is the angle between the
neutrino momenta.
The spectrum of emitted neutrinos with a particular flavor

per unit of solid angle is
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If one can neglect the final-state blocking of neutrinos,
Equation (9) can be further simplified to
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3 Based on the OPE potential, we have estimated that the long-wavelength
limit introduces an error of 10% at the saturation density.

4 Not to be confused with the medium blocking for the T-matrix. From now
on, we will always use “blocking” to refer to the Pauli blocking of the final
nucleon states as shown in Equation (4), unless otherwise specified.
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where we have used the detailed balanced relation
w w w- = -s sS S Texp( ) ( ) ( ). Assuming thermal distributions

for neutrinos, we find f l µ -n n n n
-E E E E TexpA

1 2( ) ( ) ( ). For
demonstration, we always use Equation (10) to calculate the
neutrino spectra emitted, but the final-state neutrino blocking
can be easily included in neutrino transport in realistic
supernova simulations. Similarly, the energy loss rate due to
neutrino pair emission is
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if the final-state neutrino blocking can be neglected. Note that
the prefactor 3 accounts for three different neutrino flavors.

Assuming the neutrino spectrum follows a Boltzmann
distribution, µ -n n nf E E Texp( ) ( ), with a neutrino temper-
ature Tν=T, the energy-averaged pair absorption inverse
mean free path per neutrino can be expressed as
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We use the inverse mean free path per neutrino number density
instead of the inverse mean free path because the latter depends
on the number density of neutrinos, which needs to be
determined by full Boltzmann transport calculations.

2.2. Energy-averaged Inverse Mean Free Path Using Different
Treatments

As already mentioned above, we can perform calculations
based on different schemes: vacuum T-matrix, in-medium
T-matrix, and OPE potential; each considers different approx-
imations: either on-shell or half-off-shell and the Boltzmann or
Fermi distribution that includes final-state blocking. In what
follows, we first consider lá ñ ¢n

- nA
1 based on the vacuum/in-

medium T-matrix and the OPE potential, and explore the

effects of the different approximations. As in Bartl et al. (2014),
we take the typical conditions in SNe characterized by

r
r
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1 3
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⎛
⎝⎜

⎞
⎠⎟
/

and choose Ye=0.1, 0.3, and 0.5 for the following studies.
Figure 2 compares the results of lá ñ ¢n

- n nA B
1 ( ) using the

vacuum T-matrix, in-medium T-matrix, and the OPE potential.
By dividing by the explicit factor nB in Equation (13), the value
of lá ñ ¢n

- n nA B
1 ( ) still increases with density as shown in

Figure 2 due to the temperature dependence of Equation (14),
which results in neutrinos with higher energies as the density
grows. This will be further discussed when the normalized
structure function is introduced.
Compared to the OPE potential, the T-matrix leads to an

enhancement of lá ñ-
A

1 below ∼0.001–0.002 fm−3, i.e.,
r ~ ´1.7 3.4 1012( – ) g cm−3, and a suppression above. The
enhancement at low densities for the T-matrix is due to the
resonant property of the nuclear force(Bartl et al. 2014). At
high densities, higher relative momenta become more relevant,
for which the T-matrix elements are suppressed and hence so is
the inverse mean free path. Medium effects on the T-matrix
lead to a slight increase in the bremsstrahlung rate by ∼10%.
The effect is relatively small because for the conditions we
consider in Equation (14) nucleons are not very degenerate, and
meanwhile, the effects on the real and the imaginary parts of
the T-matrix balance each other. We choose to show the in-
medium T-matrix results for the following studies but will not
focus on the details.
Figure 3 shows the ratios of lá ñ-

A
1 using the Boltzmann

distributions without blocking to those using the Fermi
distributions with blocking, where the half-off-shell elements
are used for both cases. The impact of blocking increases
with density as the nucleon degeneracy increases. Using
Equation (14), the degeneracy parameter for neutrons can
be expressed as r= - - E T Y0.1 1 10 g cmn F

n
e

11 3 1 3[ ( ) ]( ) 
- - -n Y0.12 1 10 fmB e

4 3 1 3[ ( ) ] . We find that the Boltzmann
approximations overestimate the opacity by ∼20% at òn ; 0.5,
i.e., at nB;10−2 fm−3, and by ∼50%–100% at nB ; 10−1 fm−3.
As expected, the impact of the Pauli blocking is insensitive to the
nuclear potentials used.
As given in Equations (38) and (39), the on-shell diagonal

vacuum T-matrix is related to the experimentally measured
phase shifts and mixing parameters; see Appendix A. This

Figure 2. lá ñ ¢
n- n nA B

1 ( ) as functions of density with the temperature given by Equation (14) and =Y 0.1, 0.3e , and 0.5, respectively. The half-off-shell elements based
on the vacuum T-matrix, in-medium T-matrix, and the OPE potential have been used for comparison.
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provides a method to estimate the on-shell diagonal elements of
the T-matrix. Following Bartl et al. (2014), we use an effective on-
shell element á ñk k¯∣ ∣ ¯ to approximate the half-off-shell and non-

diagonal T-matrix element á ñk kf i∣ ∣ with = +k k k 2i f
2 2¯ ( ) .

This approximation has been found to be reasonable for the OPE
potential(Bartl et al. 2014). Compared to the studies based on the
half-off-shell T-matrix, the effective on-shell matrix elements
underestimate the rates significantly for densities -n 10B

2 fm−3

by a factor up to 0.7, and overestimate them above (see Figure 4).
Therefore, the use of the half-off-shell T-matrix is required to
reach an accurate bremsstrahlung rate.

3. Normalized Structure Function

The structure function, Sσ(ω), given in Equation (4) in the
long-wavelength limit diverges as ω−2 for ω → 0, which is a
common feature of any bremsstrahlung-type process(Raffelt
et al. 1996). Though there is no divergence for the inverse
mean free path lá ñ-

A
1 studied in Section 2.2, it may lead to an

unphysical enhancement of l n
- EA

1( ) in the limit of Eν → 0.
Hence, we want to obtain a well-behaved Sσ(ω) and study how
the related rates are modified. It also provides a proper
comparison with existing studies with well-behaved structure
functions (Hannestad & Raffelt 1998; Raffelt 2001; Bartl et al.
2014). This also allows us to extend the calculations to include

RPA correlation effects based on a smooth Sσ(ω), as will be
done in Section 4.
It has been suggested (see, e.g., Hannestad & Raffelt 1998;

Raffelt 2001; Lykasov et al. 2008; Bacca et al. 2009, 2012;
Roberts et al. 2012; Bartl et al. 2014; Roberts & Reddy 2017)
that the structure function can be regularized by replacing ω−2

with (ω2+Γ2)−1, where the width parameter Γ is introduced
to characterize the spin fluctuation or relaxation rate. The axial
structure function can also be viewed as a spin autocorrelation
function, which is expected to decay exponentially as

-Gtexp( ) at long times, leading to a Lorentzian form of
Sσ(ω) (Hannestad & Raffelt 1998; Raffelt 2001). This is
equivalent to considering that the nucleon propagator has a
width due to nucleon–nucleon scattering in the nuclear
medium, i.e., replacing ω−1 by (ω+iΓ)−1. Therefore, the
proper renormalization of nucleons in the medium (also called
“multiple-scattering” effects in the literature, see, e.g.,
Hannestad & Raffelt 1998) renders Sσ(ω) a well-behaved
function. Studies based on Landau’s theory of Fermi liquids
that compute an energy-dependent relaxation rate also lead to a
well-behaved Sσ(ω) (Lykasov et al. 2008; Bacca et al.
2009, 2012; Bartl et al. 2014; Bartl 2016). Since the relaxation
rate varies very slowly with ω, we find that Sσ(ω) regularized
by a constant Γ agrees within a few per cent with the results of
Bartl et al. (2014).

Figure 3. Ratios of lá ñ-
A

1 using the Boltzmann distribution without blocking to those using the Fermi distribution with blocking. The half-off-shell elements are used.

Figure 4. Ratios of lá ñ-
A

1 using the effective on-shell diagonal elements to those based on the half-off-shell/non-diagonal elements. The Fermi distribution with
blocking is used.
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The parameter Γ can be determined by the normalization
condition (Raffelt & Strobel 1997; Hannestad & Raffelt 1998):
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with ε(k)=k2/(2mN) and nB the total nucleon number density.
Note that the above equation is exact for a non-interacting
system, and we assume that the main effect of nucleon–nucleon
collisions is to increase the width of Sσ(ω) while keeping the
normalization. Unless otherwise stated, Sσ(ω) refers to the
properly normalized structure function, and we call the ones
computed in Equations (4)–(7) unnormalized structure
functions.

The normalized Sσ(ω) can be expressed in Lorentzian form
as(Hannestad & Raffelt 1998; Raffelt 2001; Lykasov et al.
2008; Bacca et al. 2009, 2012; Roberts et al. 2012; Bartl et al.
2014; Roberts & Reddy 2017)

w w
w

=
G
+ G

sS s
2

, 16
2 2

( ) ( ) ( )

where s(ω) is a dimensionless quantity that contains additional
energy dependences originating from the nuclear correlations
and blocking. For ω=Γ, s(ω) ; 1, and one has Sσ(ω) ; 2/Γ;
for ω?Γ, Sσ ; 2s(ω)Γ/ω2, which is fully determined by the
perturbative calculation in Equations (4) and (5).

Taking as a reference the calculation based on the in-medium
T-matrix, we introduce

w w
w w

w
wº

+ G

G
=s

s

s
s S

S

S
s

2
, 17T

T
T

T
2 2

m

m
m

m˜( ) ( ) ( )
( )

˜ ( ) ( )

with GTm, sSTm, and sTm˜ the width and structure functions using
the in-medium T-matrix. We present the comparison of ws̃( ) in
Figure 5 to show the relative differences in Sσ(ω) when using
different approaches. Results based on the fitting formulae of
the structure function from Hannestad & Raffelt (1998)
consider only neutron–neutron interactions using the OPE
potential. To demonstrate the effects of the off-shell elements
and blocking, we also show the results based on the effective

on-shell vacuum T-matrix following the formalism of Bartl
et al. (2014), where the blocking effects are neglected and
Sσ(ω) is normalized to ∼1; see Equation (15).
At low density where the blocking of the final nucleons can

be ignored (see the left panel of Figure 5), we find an
underestimation of ws̃( ), or Sσ(ω), at intermediate ω and an
overestimation for high ω  20MeV, when the effective on-
shell T-matrix elements are used. This is also consistent with
the results shown in Figure 4, considering that Sσ(ω) for
ω∼3T dominates the inverse mean free path, see
Equation (13). As density increases, the Pauli blocking starts
to play a role, and its impact becomes comparable to or even
dominant over that of off-shell effects (see the middle and the
right panels). For ω  10MeV, the off-shell effects and
blocking together suppress Sσ significantly. It is also interesting
to notice that s(ω) based on the half-off-shell T-matrix
including the blocking is close to 1 with a maximum deviation
of ∼40%. For s(ω)∼1, Sσ(ω) based on the T-matrix is simply
determined by the width parameter; see Equation (16).
The behavior of Sσ(ω) for high values of ω is very important

to the energy-averaged opacity against pair absorption (and
bremsstrahlung energy loss rate) due to the factor of ω5 (ω6) in
the integral (see Equations (13) and (11)). As will be shown
later, the combined effect of off-shell elements and blocking on
Sσ(ω) at high ω can give rise to notable differences in lá ñ-

A
1 .

Compared to the T-matrix, the OPE potential gives rise to a
very different Sσ(ω), or ws̃( ). Since Sσ(ω→ 0) ; 2/Γ, the value
of ws̃( ) at small ω is determined by the width parameter Γ. The
resonant property of nuclear force exhibited in the T-matrix at
low density (temperature) will lead to a larger Γ and thus a
smaller Sσ(ω) or ws̃( ) at small ω. The T-matrix elements
decrease rapidly with the relative momenta. For high values of
ω, the relative momenta between nucleons become large,
leading to smaller values of Sσ(ω) than in the OPE results.
Studies by Hannestad & Raffelt (1998) consider only neutron–

neutron interactions, and hence our OPE results are close to theirs
at low Ye. Aside from the relatively small errors introduced in
the fitting formulae of Sσ(ω) in Hannestad & Raffelt (1998),
the remaining differences are due to the use of different πNN
coupling constants. We use [gA/(2Fπ)]

4 in calculating the matrix
element with gA=1.26 and Fπ=92.4MeV, which is about
∼30% smaller than ( f/mπ)

4 used in Hannestad & Raffelt (1998)
with f=1 and mπ the pion mass.

Figure 5. s̃ as functions of ω at nB=0.001 fm−3, 0.01 fm−3, and 0.1 fm−3, respectively, for Ye=0.1. The half-off-shell matrix elements of the vacuum, in-medium
T-matrix, and OPE potential with the Pauli blocking are used. ws̃( ) from the fitting formulae in Hannestad & Raffelt (1998) based on the OPE potential, and obtained
using the effective on-shell T-matrix following the formalism of Bartl et al. (2014), are also added for comparison.
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The corresponding values of Γ/nB required to normalize
Sσ(ω) are shown in Figure 6 as a function of nB. For nB around
0.01fm−3, Γ can be as high as a few MeV. As already
mentioned above, the resonant property at low energy/density
and a rapidly decreasing T-matrix element with relative
momenta are responsible for the enhancement/suppression of
Γ at low/high density compared to the OPE results.
Furthermore, the behaviors of Γ/nB based on the T-matrix
and the OPE potential can be understood in a more
quantitative way as follows. At low energy, the T-matrix is
dominated by the two resonant channels, 1S0 and 3S1, hence
the corresponding hadronic part of the matrix element
for ω → 0, H k k,¯ ( ), varies with the relative momenta
as µ µ += =

- -H k k T a k, S S0,1
2

0,1
2 2 1¯ ( ) ∣ ∣ ( ) , where aS=0,1 are

the scattering lengths. For comparison, the OPE potential
leads to a different hadronic part, which takes a form like

µ + pH k k k k m, 4 2 2 2¯ ( ) ( ) (Hannestad & Raffelt 1998). We
consider the non-degenerate conditions where ~k TmN ,
and from the power counting of T in Equation (7) for
the unnormalized structure function we find G µnB

w w hµ +w s
- -S n T m T alim B N0

2 0 1 2 2 1[ ( )] ( )( ) for using the
T-matrix, and hG µ + ¢ p

-n T m T mB N
2 1 2( ) for using the OPE

potential, with the coefficients h h¢ ~ , 1( ). Using the
physical values for aS=0,1, mπ, and mN, one can explain the
behavior of Γ/nB with density (or temperature) based on
the T-matrix or the OPE potential shown in Figure 6.

Figure 7 compares the results for lá ñ ¢
n- n nA B

1 ( ) based on
different normalized structure functions. The differences are

simply due to different Sσ(ω) at high ω, as shown in Figure 5. It
should also be emphasized that lá ñ-

A
1 based on the normalized

Sσ are only slightly smaller (by up to ∼10%) than those based
on the unnormalized ones; see Figure 2. Therefore, the studies
of lá ñ-

A
1 based on the unnormalized structure functions in

subsection 2.2 still hold.
A more relevant quantity to neutrino transport in supernova

matter is the energy-dependent opacity against pair absorption,
l n
- EA

1( ), defined in Equation (8), and the neutrino emissivity
from nucleon–nucleon bremsstrahlung, f(Eν), given in
Equation (10) neglecting the final-state blocking of neutrinos.
Since f(Eν) does not depend on the (anti)neutrino number
density if the Pauli blocking is neglected, we choose to show
f(Eν) in Figure 8 at nB=0.001, 0.01, and 0.1 fm−3, for
Ye=0.1. Note that l n

- EA
1( ) can be obtained simply from f(Eν)

with f l µ -n n n n
-E E E E TexpA

1 2( ) ( ) ( ). At low density
(temperature) or for low Eν, the T-matrix with half-off-shell
matrix elements gives rise to the largest emissivities. As density
(temperature) or Eν increases, using the effective on-shell T-
matrix or the OPE potential overestimates the emissivities. For
the range of density and Eν explored in Figure 8, the ratios of
emissivities based on the effective on-shell T-matrix and the
OPE potential to those based on the in-medium T-matrix with
half-off-shell elements range from ∼0.5–1.8 and ∼0.7–5,
respectively. Just as for the energy-averaged inverse mean free
path lá ñ-

A
1 , the medium effect on the T-matrix increases f(Eν)

by (10–20)%.
We provide a numerical table of the normalized structure

function Sσ(ω) based on the vacuum T-matrix for calculating

Figure 6. Γ/nB as a function of density based on different nuclear matrix elements for Ye=0.1, 0.3, and 0.5, respectively.

Figure 7. lá ñ ¢n
- n nA B

1 ( ) based on normalised Sσ as a function of density for Ye=0.1, 0.3, and 0.5, respectively.
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the bremsstrahlung rate; see Appendix C. To implement the
table in SN simulations, one has to do a 4D interpolation of the
structure function over temperature, density, Ye, and ω. It
should also be pointed out that, since we use exactly the same
notation as that adopted in Hannestad & Raffelt (1998), the
implementation of our new structure function should be similar.

4. RPA Correlations

In addition to the multiple-scattering effects discussed above,
there is another correlation effect that has been investigated
within the framework of the RPA (Burrows & Sawyer 1998;
Reddy et al. 1999). Multiple-scattering effects account for the
renormalization of the virtual nucleon propagator in the
medium, while the RPA correlations screen the coupling
between the leptonic weak current and the nucleons. Then, they
can be treated as separate contributions in such a way that each
nucleon propagator in the RPA ring diagrams is modified by
multiple-scattering effects before performing the RPA summa-
tion. In this section, we discuss how the RPA correlation affects
the structure function as well as the related rates.

The RPA provides a formalism to account for the correlation
effects by summing an infinite number of ring diagrams (Fetter &
Walecka 1971; Burrows & Sawyer 1998; Reddy et al. 1999).
Taking number density correlation for systems composed of one
species as an example, the polarization function at the RPA level
takes the form w w wP = P - Pq q v q q, , 1 ,u uRPA( ) ( ) [ ( ) ( )],
where Πu(q, ω) is the polarization function without the RPA
correlation and v(q) is the spin-independent potential. As adopted
in previous literature (Burrows & Sawyer 1998; Reddy et al.
1999), Πu(q, ω) can be taken to be the free polarization function
Π(0)(q, ω), which has an analytical expression and is the same for
both density and spin-density correlations (Burrows & Sawyer
1998; Reddy et al. 1998). In this work, we choose to consider the
RPA corrections on top of our calculated structure function Sσ(ω),
which already incorporates the multiple-scattering effects. We
follow the formalism of Burrows & Sawyer (1998) based on a
spin-dependent potential (see also Reddy et al. 1999; Horowitz
& Schwenk 2006; Horowitz et al. 2017). In principle, RPA
calculations should be based on the same chiral potential as
the one used for the T-matrix(Entem et al. 2017). However, the
choice of Burrows & Sawyer (1998) leads to nucleon scattering
rates within ∼10% of the model-independent studies based on
virial expansion in the low-density region(Horowitz & Schwenk
2006; Horowitz et al. 2017). On general grounds the effects of the

RPA on the bremsstrahlung rates are expected to be smaller than
for scattering; hence following the approach of Burrows &
Sawyer (1998) provides a simple-to-implement method to
quantify their relevance.
For a nuclear system consisting of protons and neutrons, the

axial structure function (or the corresponding polarization
functions) takes a 2×2 matrix form as(Burrows & Sawyer
1998)

=s
s s

s s

S
S S

S S
, 18

pp pn

np nn

1

2
1

2

ˆ ( )
( ) ( )

( ) ( )

⎡

⎣
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⎤

⎦
⎥⎥

where the different entries in the matrix contain contributions
due to NN collisions described by the T-matrix. The total axial
structure function Sσ entering is given by = + +s s sS S Spp nn( ) ( )

+ = + +s s s s sS S S S Spn np pp nn np1

2
( )( ) ( ) ( ) ( ) ( ); see Equation (5).

Despite the fact that Burrows & Sawyer (1998) consider
scattering and we are interested in bremsstrahlung, we find that
their Equation (47) also applies to our case, and the structure
function that includes both collision effects based on the T-
matrix and the RPA correlation is given by

w w w= P - -s
- -S

n
T

2
Im 1 exp , 19

B
A

RPA 1 1( ) [ ( )][ ( )] ( )

where

w w= - P + P v v1 Re Im , 20A GT
2

GT
2 2{ [ ( )]} [ ( )] ( )

with = ´ - -v 4.5 10 MeVGT
5 2, and Π(ω) is given by

w w wP = - -s
n

S TIm
2

1 exp , 21B[ ( )] ( )[ ( )] ( )/

òw
p

w
w

w w
P = ¢

P ¢
- ¢

 dRe
1 Im

. 22[ ( )] [ ( )] ( )

Figure 9 shows how the normalized structure functions in
Equation (15) based on different nuclear matrix elements
are affected by RPA in different conditions with ºR

w ws sS SRPA ( ) ( ). The effect of the RPA correlation is to reduce
Sσ(ω) at low ω due to a negative Re[Π(ω)], and to increase it
slightly at high ω as Re[Π(ω)] turns positive. We also show in
Figure 10 the effects of the RPA on the static structure function
(or the normalization of Sσ(ω); see Equation (15)) in the long-

Figure 8. Emissivities of neutrinos from bremsstrahlung f nE( ), given in Equation (10), at nB=0.001, 0.01, and 0.1 fm−3, respectively, for Ye=0.1. Note that the
results for nB=0.001 and 0.1 fm−3 shown in the plots need to be multiplied by additional factors of 10−3 and 103, respectively.
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wavelength limit, which is defined as
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For comparison, we also present the mean-field or Hartree
result(Reddy et al. 1998), which is simply given by
Equation (15), the same as the static structure function
associated with our normalized Sσ(ω) without including the
effects of the RPA. The RPA correlations reduce s =S q, 0,
consistent with the studies based on virial expansion(Horowitz
& Schwenk 2006; Horowitz et al. 2017). Furthermore, we find
a very similar reduction due to RPA correlations for the mean-
field case and for cases that consider collisions based on the T-
matrix. This justifies our assumption that the nucleon–nucleon
collisional broadening does not affect the normalization of
Sσ(ω), but just redistributes the strength in a broader energy
region.

Figure 11 shows the effects of the RPA correlations and the
width parameter Γ on lá ñ-

A
1 as a function of density. As

discussed above, the inclusion of Γ only affects Sσ(ω) for ω 
Γ. However, lá ñ-

A
1 is determined by Sσ(ω) at high ω and hence

the effect of Γ is rather insignificant, reducing the rates by up to
a few per cent at subsaturation densities. The average rate,
lá ñ-

A
1 , is enhanced slightly by the effects of the RPA, due to the

increased Sσ(ω) in the high-ω region; see Figure 9. The
combined effect of Γ and RPA is ∼3% at most.

The effect of the RPA correlations on the energy-dependent
inverse mean free path l n

- EA
1( ) is illustrated in Figure 12 by

showing the ratio of l n
- EA

1( ) including RPA correlations to that
without. The impact is similar to that on Sσ(ω) shown in
Figure 9, i.e., a suppression in the low-energy region and an
enhancement at high energy. We find that the effects become
significant only for nB0.01 fm−3 and can reach up to 10%
near the saturation density, consistent with the results shown in
Figure 11 for lá ñ-

A
1 .

5. Summary and Conclusions

We have revisited the rate of neutrino bremsstrahlung in
supernova matter in the long-wavelength limit and investigated the
effects of different treatments in a systematic way. The vacuum/in-
medium T-matrix for NN scattering with half-off-shell elements

obtained by solving the Lippmann–Schwinger/Bethe–Goldstone
equation based on χEFT potentials has been used to study the
bremsstrahlung rates, to be compared with those based on the OPE
potential and the associated diagonal/on-shell matrix elements. For
a broad range of density, temperature, and Ye relevant to supernova
conditions, we have considered the blocking of the final nucleons,
which is to be compared with studies using the Boltzmann
distribution without blocking. We have also explored the effects of
the width parameter, to account for multiple-scattering effects, and
the RPA correlations on the structure function and the related rates.
A numerical table of our new structure function based on the
vacuum T-matrix is provided (see more details in Appendix C).
Taking Equation (14) to characterize the typical SN

conditions, our studies show that ignoring the blocking of
the final nucleons overestimates the rates by ∼20% at nB=
0.01 fm−3 (ρ≈1.7×1013 gcm−3) and by ∼50%–100% at
nB=0.1 fm−3 (ρ≈1.7×1014 gcm−3). Using the effective
diagonal/on-shell T-matrix elements underestimates the rates by
∼50%–70% at nB=10−4 fm−3 (ρ≈1.7×1011 gcm−3) and
by ∼30%–50% at nB=10−3 fm−3 (ρ≈1.7×1012 gcm−3),
with the effects getting stronger with increasing Ye. Close to the
saturation density, the effective on-shell T-matrix gives rise to an
enhancement by ∼20%–40%. We therefore argue that the half-
off-shell T-matrix elements are required for an accurate study of
the bremsstrahlung rate. We confirm the results of previous
studies(Bartl et al. 2014; Bartl 2016) that using the T-matrix
element instead of the OPE potential leads to an enhancement by
a factor of 2–5 at nB=10−4 fm−3 (ρ≈1.7×1011 gcm−3) due
to the resonant property of the NN force, and a suppression at
densities above ∼2×10−3 fm−3 (ρ≈3.3×1011 gcm−3). For
the supernova-relevant conditions explored in this paper (see
Equation (14)), we find that the results obtained using the standard
vacuum T-matrix are very similar to those based on the in-
medium T-matrix. Nevertheless, we expect that the differences
will be larger for cold neutron stars where nucleons are highly
degenerate.
Following Hannestad & Raffelt (1998), we introduce a width

parameter or spin relaxation rate Γ to normalise the axial structure
function Sσ(ω) and to make a proper comparison with the previous
studies in the literature(Raffelt 2001; Lykasov et al. 2008; Bacca
et al. 2009, 2012; Bartl et al. 2014). The effect of Γ is to suppress
Sσ(ω) at low ω, and we find that the rates based on the normalized
Sσ(ω) are only reduced by a few per cent for densities above
∼0.01 fm−3 (ρ≈1.7×1013 gcm−3). Comparisons of neutrino

Figure 9. Effects of the RPA correlation on Sσ(ω) at nB=0.001 fm−3, 0.01 fm−3, and 0.1 fm−3, respectively, for Ye=0.1. w wº s sR S SRPA ( ) ( ).
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pair absorption/emission rates based on our normalized Sσ(ω) to
those from Hannestad & Raffelt (1998) and Bartl et al. (2014) are
summarized in Figures 7 and 8. We find that the relative ratios of
our results using the T-matrix to those from the previous literature
could be either as small as ∼0.2 or as large as ∼5 for different

regions of density and Eν considered. The difference from Bartl
et al. (2014) originates mainly from off-shell effects on the
T-matrix as well as the blocking of the final nucleons.
Effects of the RPA correlation on top of the normalised

Sσ(ω) that incorporates collisional broadening are further
explored. We find that Sσ(ω) is reduced significantly at low ω
and slightly enhanced at high ω. Though the normalization of
Sσ(ω) is reduced, which is consistent with the prediction from
virial expansion, the energy-averaged inverse mean free path
lá ñ-

A
1 is slightly enhanced by (2–3)% below the saturation

density. Similarly to Sσ(ω), l n
- EA

1( ) is suppressed at low Eν and
enhanced at high Eν by the RPA correlations, but only by a
negligible factor that is within a few per cent for the relevant
conditions.
The impact of neutrino bremsstrahlung rates beyond OPE

has been explored in 1D supernova simulations(Bartl et al.
2016; Fischer 2016) (see also Raffelt 2001; Keil et al. 2003 for
studies based on bremsstrahlung rates using the OPE potential).
Our calculations based on the half-off-shell T-matrix, similarly
to those of Bartl et al. (2014), predict a low-density resonant
enhancement of the bremsstrahlung rate lá ñ-

A
1 and a suppression

at high densities when compared with the OPE results (see
Figure 7). Bartl et al. (2014) predict a transition density that is
typically smaller than the value reached at the neutrinosphere,
which moves from ρ∼1012 to 1014gcm−3 as the proto-
neutron star deleptonizes. Hence, the net effect in the
supernova simulations of Bartl et al. (2016) is a reduction of
the bremsstrahlung rate by a factor of ∼2–5 when compared
with the OPE rates. Such a reduction translates into a minor
change in the neutrino luminosities (5%) and a small increase
in the averaged neutrino energies, á ñnE , within 1MeV. In our
calculations, the transition density is shifted to higher densities
similar to those in the neutrinosphere. This may indicate an
even smaller impact on the neutrino emission of the rates
presented here. However, given the nonlinear nature of
neutrino processes in supernova matter, a fully self-consistent
simulation is required to quantify their impact.
We expect that the improved treatment of the NN interaction

presented in this work will significantly affect the inelastic
scattering process, ν+N+N → ν+N+N, which should
exhibit more relevance in SN dynamics(Sawyer 1995; Raffelt
& Strobel 1997; Hannestad & Raffelt 1998; Raffelt 2001;
Melson et al. 2015; Burrows et al. 2018; Kotake et al. 2018).
In principle, the same structure function, Sσ(q, ω), governs

Figure 10. Static structure function in the long-wavelength limit, Sσ,q=0, as functions of density for Ye=0.1, 0.3, and 0.5, respectively.

Figure 11. Ratios of lá ñ-
A

1 considering the effects of Γ and the RPA correlation
to those based on the unnormalized structure functions, as functions of density
for Ye=0.1, 0.3, and 0.5.

Figure 12. Ratios of l n
- EA

1( ) with the RPA effect to those without at
nB=0.01, 0.03, and 0.1 fm−3 and Ye=0.1 and 0.3. The in-medium T-matrix
elements are used for calculating Sσ(ω).
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both neutrino scattering and bremsstrahlung as well as pair
absorption in the nuclear medium, though different regions
in (q, ω) are relevant to each process, i.e., q2�ω2 for pair
absorption and bremsstrahlung, and q2�ω2 for inelastic
scattering. To obtain Sσ in this work, we have taken the
long-wavelength limit and therefore ignored the recoil of
nucleons. This is a good approximation for studying pair
absorption and bremsstrahlung, since the recoil energy, Er, is
always negligible compared to the energy transfer or the width
parameter, i.e., w~ ~ E qP m T m q T mr N N N N

1 2 1 2( ) ( ) 
w Gmax ,( ) with PN the typical nucleon momentum. We have

checked by using the OPE potential that nucleon recoil affects
the associated rates by only a few per cent for typical SN
conditions. However, this is not the case for inelastic scattering,
since q is typically of the order of n n

¢E Eor , and could be much
larger than w = - ¢n nE E , which vanishes in the elastic limit.
Therefore, the nucleon recoil is no longer negligible (Raffelt
2001). We argue that the studies of Sσ(ω) in this work should
still be reliable for studying neutrino scattering in the limit of

~ ¢ ´ Gn nE E E T mmax ,r N
1 2( ) ( )  . In the opposite limit

where Γ is negligible compared to Er and ω, S(q, ω) has an
analytical expression including the recoil effect(Burrows &
Sawyer 1998; Reddy et al. 1998; Raffelt 2001). We plan to
provide a full treatment of Sσ(q, ω) incorporating both
collisional broadening and nucleon recoils in future work.
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Appendix A
T-matrix Elements in Vacuum/Nuclear Medium

The relevant formulae for obtaining the NN scattering T-
matrix elements in vacuum/nuclear medium are shown below.

A.1. Vacuum T-matrix

The vacuum T-matrix can be obtained from the Lippmann–
Schwinger (LS) equation as
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where k ( ¢k ) is the relative momentum between the two
incoming (outgoing) nucleons, and we adopt the notation
º kk ∣ ∣. We usually call the T-matrix on-shell when
= ¢ =E k m k mN N

2 2 , half-off-shell when one of them holds,
or off-shell when neither holds.

In partial wave components, the LS equation can be cast as
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where indices J, S, and T are the three conserved quantum
numbers: the total angular momentum, the total spin, and the
total isospin of the nucleon pair; and ¢l l, are the relative orbital
angular momenta for the incoming and outgoing nucleon pairs.
Note that the coupling of partial waves with different l arises
from the tensor part of the nuclear force, which does not
conserve the angular momentum l. Due to the conservation of J
( = +J l S) and parity Π=(−1)l, the only allowed values of
D º - ¢l l l are 0, ±2. Another selection rule from the Pauli
exclusion principle is that l+S+T should be odd.
The LS equation (Equation (25)) can be numerically solved

by matrix inversion after discretizing the integral into a sum
(Haftel & Tabakin 1970; Machleidt 1993, 2001). Note that the
factor iε in the denominator coupling the real and imaginary
parts of the T-matrix makes the calculation more involved.5 A
more efficient way is to deal with the real R-matrix (or K-
matrix), which is defined as (Landau 1990)

p d= + -   i E H , 260( ) ( )

and the R-matrix obeys a “real” version of the LS equation as
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Once ¢ll
JST is known, we can obtain the components of the

T-matrix from Equation (26). For a half-off-shell T-matrix, we
need to solve

d p
p

+
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with =E k mk N0
2

0 . This can be further simplified for
uncoupled channels (with l=l′) to

p
=

+
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5 A direct solution for the complex T-matrix from matrix inversion is also
carried out, which can provide a crosscheck for the R-matrix calculations. It has
been shown that high-precision consistency between these two approaches can
always be reached.
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The phase shifts for uncoupled channels are simply given by
(Machleidt 2001)

d
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and for coupled channels we have

d

d
p

p
= -

´

- -

+

- - - +

+ - + +

 

 

U
E

E
U

k m

k k E k k E

k k E k k E

tan 0

0 tan 2 2

, ; , ;

, ; , ;
, 33

J
J

k

J
J

k

N

J J
J

k J J
J

k

J J
J

k J J
J

k

1 1

1

0
3

1, 1 0 0 1, 1 0 0

1, 1 0 0 1, 1 0 0

0

0

0 0

0 0

( )
( ) ( )

( ) ( )

( ) ( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

with U the standard 2×2 mixing matrix given by

e e
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U cos sin
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Note that we are allowed to drop the indices S, T for coupled
channels without introducing any confusion since they are
fixed for a given J (i.e., use d J

J
1, ε

J, and  J J
J

1, 1). From
Equation (33), we can obtain
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Once the phase parameters ε J and d J
J

1 are fixed from the R-
matrix elements, the T-matrix elements for the coupled
channels can be obtained from Equation (28) as
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The above phase shifts and mixing parameters for coupled
channels are defined in the so-called “BB” convention (Blatt &
Biedenharn 1952). An alternative convention for the phase
parameters is proposed in Stapp et al. (1957), which is known
as the “bar” convention, and is usually adopted for analyzing
NN scattering data. The two conventions are the same for
uncoupled channels but different for coupled channels. In the
“bar” convention, the on-shell T-matrix is given by

p
d= - -¢ k k E
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for uncoupled channels, and
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for coupled channels. Note that only the on-shell T-matrix
elements can be obtained from measured phase shifts; in order
to obtain the off-shell elements, the LS equation should be
solved based on a given nuclear potential.

A.2. In-medium T-matrix

The discussion for the vacuum T-matrix can be applied to the
in-medium T-matrix using the Bethe–Goldstone (BG) equation,

å ò p
¢ W = ¢ +
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where W g K k, ,II¯ ( ) is an angle-averaged two-particle propa-
gator,6 which in the quasiparticle approximation is given by

e e
e e h

W =
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W - - + q

g K k
f k f k

k k i
, ,

1
, 41II

1 2

1 2
¯ ( ) ( ( )) ( ( ))

( ) ( )
( )

with the two nucleon momenta = k K k1,2
1

2
and θ the angle

between the total momentum K and the relative momentum k. Ω
is the total energy of the nucleon pair and ε(k1,2) is the non-
relativistic single-particle energy of the nucleon that in the
quasiparticle approximation can be given by e =ki( )

+k m U2i n p n p
2

, ,*( ) , where mn p,* and Un,p are the effective masses
and interacting potentials of neutron and proton in the nuclear
medium. The Fermi function takes the standard form as

e = + e m-f 1 1 exp
k TB

( )( ) ⎡
⎣⎢

⎤
⎦⎥/ with μ the non-relativistic chemi-

cal potential of the nucleon. In the low-density limit, we have
e e =k k k m2 N1,2 0 1,2 1,2

2( ) ( ) ( ) and e e- - f k f k1 1 2( ( )) ( ( ))
1, and therefore hW  - + -g K p E k m i, ,II N

2 1¯ ( ) ( ) with
E=Ω−K2/(4mN) and mN=(mn+mp)/2 the averaged
nucleon bare mass.
Exactly the same procedures are taken to numerically

solve the in-medium T-matrix. Once the partial wave
components of the R-matrix are obtained from matrix
inversion, one can use Equations (29) and (37) to obtain the
T-matrix elements, but with the replacement of k mN0 by

e e e eá - - ñ á + ñq q =
-k f k f k d k k dk2 1 k k0

2
1 2 1 2

1
0( ( )) ( ( )) [ ( ) ( ) ∣ ] at

e eW = á + ñqk k1 2( ) ( ) for any given value of K (see
Equations (29) and (36)). In the low-density limit we have
e eá + ñ = +qk k K

m

k

m1 2 4 N N

2 2

( ) ( ) , f (ò(k1,2))=1, and therefore

e eá + ñ =q =d k k dk k m2k k N1 2 00( ) ( ) ∣ , which guarantees that
the in-medium T-matrix goes to the vacuum one.
Throughout this work, we always take the bare nucleon mass

for all our studies. For bremsstrahlung, the nucleon interaction
potentials can be absorbed into the chemical potentials and we

6 The angle-averaged procedure is applied to avoid coupling of partial waves
with different values of J; and only minor effects are introduced compared to
the exact procedure with the full two-particle propagator (Sartor 1996; Suzuki
et al. 2000; Frick et al. 2002).

12

The Astrophysical Journal, 887:58 (16pp), 2019 December 10 Guo & Martínez-Pinedo



can simply take Un,p=0 without affecting the final results. As
can be easily seen, the medium effects on the T-matrix
considered in this work are mainly from the blocking factor in
Equation (41).

Appendix B
Matrix Elements for NN Bremsstrahlung in Partial Wave

Components

Bartl et al. (2014) and Bartl (2016) have developed a
formalism for the calculation of matrix elements of NN
bremsstrahlung in partial wave components within the long-
wavelength approximation in the pn-formalism. In the follow-
ing, we present an alternative derivation using the isospin
formalism.

Let us consider the process (see Figure 1)

n n+  + + +N N N N , 42a b c d ( )

where N stands for either a neutron, n, or a proton, p. Energy
and momentum conservations imply

+ = + +k k k k q, 43aa b c d ( )
w+ = + +E E E E . 43ba b c d ( )

In the following, we will consider the long-wavelength limit in
which neutrinos carry away zero momentum, i.e., =q 0. We
define the relative momenta of the nucleons as
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As the center-of-mass momentum of the nucleons is conserved,
we consider states that are characterized by the relative
momenta of the nucleons and their spin projections,
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States of good spin and isospin are obtained as
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where we use the convention of neutrons having isospin
projection 1/2. Expanding the plane wave states into partial
waves, we obtain

åñ = ñk kSS TT Y k lm SS TT , 48z z
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with k̂ the unit vector in the direction of k and = kk ∣ ∣. The
partial wave states are normalized as
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Coupling the orbital angular momentum and spin, we finally
have states

åñ = á ñ ñk lSJM TT l m S S J M k lm SS TT . 50z
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We can build normalized antisymmetric states using the
permutation operator, e.g.,
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The calculation of the matrix element for NN bremsstrahlung
requires the evaluation of the spatial trace of the hadronic
tensor(Raffelt & Seckel 1995; Hannestad & Raffelt 1998).
This includes contributions from the eight diagrams given in
Figure 1(see also Friman & Maxwell 1979), which give for the
nn or pp channel
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where the sum on u runs over the spherical components, 0 and
±1, of the vector operator that satisfies = - +

-O O1u
u

u
1( ) ( ) ˜† .

We have used non-antisymmetric states to explicitly show the
direct and exchange contributions. Expressions for the operator
 within the long-wavelength limit used in the present work
will be provided later. For the moment, we keep the formalism
fully general. The obtained expressions are then also applicable
for more sophisticated treatments of the nuclear weak current
and/or the intermediate nucleon propagator. Using states of
total spin S and isospin T, we have
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For the np case the direct and exchange terms correspond to
physically different processes whose contribution needs to be
summed. We obtain
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which gives for isospin states
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In the following we provide formulas to evaluate the necessary
matrix elements using standard angular momentum algebra. We
need to evaluate the following matrix elements:
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FollowingBartl et al. (2014) and Bartl (2016), we proceed
by doing a partial wave expansion using Equation (48),
introducing states of total angular momentum using
Equation (50), and then writing the product of spherical
harmonics with the same arguments as a sum over spherical
harmonics. In addition, we use the Wigner–Eckart theorem to
explicitly perform the sum over projections. This gives
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where the matrix elements are reduced in total angular
momentum space but not in isospin and we have introduced
the notation º +J J2 1[ ] . The sums over projection
quantum numbers can now be performed using the following
relations between 3-j and 6-j symbols, the orthogonality of 3-j

symbols, and the spherical harmonics addition theorem:
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Equation (59) is valid for any vector (rank 1) operator and
hence can be used even in calculations that consider the weak
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hadronic current beyond the leading-order approximation, and
it allows for the inclusion of two-body currents. At leading
order in the weak current and within the long-wavelength limit
the operator can be expressed as
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where  is the T-matrix and the sum in r runs over the two
initial or final nucleons. We have introduced the isospin
operator t tñ = ñ ñ = - ñn n p p,z z∣ ∣ ∣ ∣ to make clear the spin–
isospin dependence of the operator. The factor 1/ω originates
from the non-relativistic propagator of the nucleon to which
the weak interaction is attached. The prime in the commutator
denotes that the T-matrix is evaluated at different values of
the energy for the first (“positive”) and second (“negative”)
terms:
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with A an arbitrary operator and Ek=k2/mN. Finally, for the
reduced matrix elements of the operators and Õ we have
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where we have introduced the shorthand notation for the
vacuum T-matrix elements
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with E given by =E k mk i N
2

i or =E k mk f N
2

f for the initial or
the final nucleon pair to be on-shell. It can be easily generalised
to the case of using the in-medium T-matrix, where one needs
to replace all the T-matrix elements,  k k E, ;l l
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f i kf i

( ), by
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( ), with Ωk=K2/(4mN)+k2/mN and k

being either ki or kf. The reduced matrix elements of the
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Notice that, due to the fact that we use normalized
antisymmetric states, the sums in Equation (59) are restricted
to combinations of l, S, and T such as + +l S T is odd; see
Equation (51). For Tz=1 we have Si=Sf=1, while for
Tz=0 we have Ti=0, Tf=1 or Ti=1, Tf=0 and either
Sf>0 or Si>0.

Appendix C
Numerical Table for our New Structure Function Based on

the Vacuum T-matrix

We provide a numerical table of the normalized structure
function S(ω) based on the vacuum T-matrix at http://github.com/
dcpresn23/Tables-for-Bremsstrahlung-Rate-in-SN (“S_Table_Tv.
dat”), where the multiple-scattering effects are included but the
RPA correlation is not considered. The table covers a wide range
of conditions relevant to SN matter with 2 MeV� T� 50MeV
(25 bins), 10−4 fm−3 � nB� 1 fm−3 (37 bins), and 0� Ye� 0.5
(26 bins). The structure function is evaluated at ωi= 100.1 × i − 1.4

with i= 1, 2, K, 40. The maximal energy transfer is ωmax;
400MeV. Note that our results may be inaccurate at densities
higher than the saturation density, since the medium effects and
three-body force can be important. However, we expect that
neutrinos are trapped in such conditions. To use the table in SN
simulations, one needs to do 4D interpolations over T, nB, Ye, and
ω to obtain S(ω) in each condition. Since we use the same notation,
the new structure function can be implemented in a similar way to
the fitting formula from Hannestad & Raffelt (1998).
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