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Abstract

The Schwabe cycle of solar activity exhibits modulations and frequency fluctuations on slow timescales of
centuries and millennia. Plausible physical explanations for the cause of these long-term variations of the solar
cycle are still elusive, with possible theories including stochasticity of the alpha effect and fluctuations of the
differential rotation. It has been suggested recently in the literature that there exists a possible relation between the
spatiotemporal structure of the solar cycle and the nonlinear dynamics of magnetohydrodynamic (MHD) Rossby
waves at the solar tachocline, including both wave–wave and wave–mean flow interactions. Here we extend the
nonlinear theory of MHD Rossby waves presented in a previous article to take into account long-term modulation
effects due to a recently discovered mechanism that allows significant energy transfers throughout different wave
triads: the precession resonance mechanism. We have found a large number of Rossby–Hauwirtz wave triads
whose frequency mismatches are compatible with the solar cycle frequency. Consequently, by analyzing the
reduced dynamics of two triads coupled with a single mode (five-wave system), we have demonstrated that in the
amplitude regime in which precession resonance occurs, the energy transfer throughout the system yields
significant long-term modulations on the main ∼11 yr period associated with intratriad energy exchanges. We
further show that such modulations display an inverse relationship between the characteristic wave amplitude and
the period of intratriad energy exchanges, which is consistent with the Waldmeier law for the solar cycle. In the
presence of a constant forcing and dissipation, the five-wave system in the precession resonance regime exhibits
irregular amplitude fluctuations, with some periods resembling the grand minimum states.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Solar activity (1475); Maunder
minimum (1015)

1. Introduction

The solar cycle observed in sunspot number time series is
approximately periodic in nature, with the main period being
around 11 yr. On closer inspection, however, the solar cycle
exhibits both long-term modulations and fluctuations in the
11 yr period on the same timescales. It has been suggested that
several periods exist for these modulations, including 100, 220,
and 1000 yr periods (Usoskin 2017).

It has long been noted that an apparent connection between
the duration and magnitude of the cycle does exist (Waldme-
ier 1936), suggesting an inverse correlation between the
amplitude of the solar activity (maximum number of sunspots
at the peak of the cycle) and the duration of the cycle. Possibly,
one of the most remarkable manifestations of this relationship
is the period of the cycle during the historical minimum of solar
activity (Maunder minimum), which was found to be increased
by as much as twice the usual 11 yr period. Such a relation has
been used as an empirical prediction method of the maximal
activity at the peak of the cycle as a function of the increased
rate of the activity during the ascending phase of the cycle
(Pipin et al. 2012).

All of the characteristics mentioned above impose a
remarkable challenge to dynamo models of practical impor-
tance, since the improvement of such modeling issues may lead
to better predictions of the solar activity. Although the theory
behind such long-term variations of the solar cycle remains
elusive, dynamo models are able to reproduce some long-term
features of the solar cycle by the inclusion of a stochastically
fluctuating alpha effect with slow variations. The physical basis

behind such stochastic fluctuations, however, remains unclear,
where one of the possible suggestions is that they are related to
turbulent fluctuations in vortex sizes and their turnover
timescales (Pipin et al. 2012). One particular class of models
that has been able to reproduce long-term variation patterns of
solar activity refers to alpha-omega dynamos with stochastic
parameters (Hoyng 1993). This class of dynamo models yields
wavelike solutions of the induction equation that propagate
toward the equator, therefore reproducing the butterfly pattern
of solar activity, with the activity beginning at midlatitudes,
around 35°–40° of latitude, and gradually migrating toward the
equator. Long-term activity variations can also be achieved in
flux-transport dynamo models with a prescribed meridional
flow (Dikpati et al. 2005).
Another feature of solar activity that is believed to exhibit

fluctuations on slow timescales is the differential rotation, or
the zonal flow profile. Although it might be difficult to detect
long-term variations of the differential rotation at the tachocline
or inside the convection zone, variations in differential rotation
are observed at the solar surface and might be associated with
hemispheric asymmetries in sunspot activity (see Zhang et al.
2015). Such variations on the mean zonal flow are apparently
in anticorrelation with amplitudes of solar activity, suggesting a
possible coupling between smaller-scale processes, such as the
ones that may lead to sunspot activity, and the global-scale
differential rotation profile.
Raphaldini & Raupp (2015) analyzed the weakly nonlinear

interaction theory of magnetohydrodynamic (MHD) Rossby
waves embedded in a constant toroidal magnetic field
background state and showed that the periodic fluctuations of
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the wave amplitudes associated with the resonant triad coupling
occur on the same timescale of the solar cycle (typically around
1 order of magnitude greater than the linear period of the
waves). Consequently, the authors suggested that the temporal
energy modulations of such MHD Rossby waves due to
nonlinear interaction might be related to the periodic nature of
the solar magnetic activity.

Recently, Dikpati et al. (2018) analyzed a shallow-water
MHD model for the solar tachocline and highlighted that the
nonlinear interaction involving magnetic Rossby waves, the
differential rotation profile, and toroidal magnetic fields might
be responsible for the so-called quasiperiodic tachocline
nonlinear oscillations. Here we will argue that a similar
mechanism might also give rise to long-term modulations in the
solar magnetic activity.

In a recent article, Bustamante et al. (2014) proposed a novel
mechanism of nonlinear wave systems that might produce
long-term fluctuations in the wave amplitudes in an inter-
mediate-amplitude regime. The basis of this mechanism relies
on a resonance between the nonlinear oscillations of one wave
triad and the fluctuations in the wave phases of an adjacent
triad. In this scenario, the phases’ oscillations will be strongly
influenced by the frequency mismatch among the waves. The
precession resonance mechanism is shown to be responsible for
strong energy transfers throughout the whole nonlinear wave
system in several contexts (Bustamante et al. 2014). Also,
another interesting feature of this mechanism is that it allows
the mean zonal flow (represented by eigenmodes having both
zero time frequency and zero zonal wavenumber) to exchange
energy with the waves, which is not possible in the weak
turbulence limit (small amplitude) in that the zonal flow acts as
a catalyst for the energy exchanges between the waves.

Here we augment the nonlinear interaction theory of MHD
Rossby waves at the solar tachocline developed by Raphaldini
& Raupp (2015) by accounting for effects similar to the
precession resonance that allows significant energy transfer
throughout different triads, as well as the interaction between
Rossby waves and the differential rotation. For this purpose,
we first search for sets of three interacting waves such that the
mismatch among the waves’ eigenfrequencies is close to one of
the harmonics of the solar cycle, that is,

w w w p+ - ~ =-j j22 yr , 1, 2, 3 ....1 2 3
1

The triads mentioned above contain a mode with zero zonal
wavenumber and eigenfrequency that mimics the solar
differential rotation effects. Then, we have analyzed a
representative example of such triads in which the triad is
connected via one wave mode to a second triplet. If one of
these triads dominates the initial energy of the system, the
initial excitation of the secondary triplet can be explained by a
linearized theory through a mechanism reminiscent of
modulational instability (Connaughton et al. 2010). However,
we have demonstrated that when the nonlinearity associated
with the secondary wave triad is restored, the maximum
efficiency of intertriad energy exchange is attained in the
precession resonance regime with the secondary triplet having
a nonlinear frequency of amplitude modulation near
jπ/22 yr−1, which refers to the frequency mismatch among
the waves of the primary triad. The resulting energy exchanges
between the two wave triads yield modulations on a timescale
longer than the 22 yr cycle, which corresponds to the period of
the amplitude oscillations of the second triad.

In addition, as a consequence of the Manley–Rowe invariant
(Bustamante & Kartashova 2011), the nonlinear oscillation
period of the mode amplitudes of a wave triad is inversely
proportional to the square root of the energy of two modes of
the triad, that is,

( ) µT I I1 ,

where I is a weighted sum of the squares of the mode
amplitudes.
The above equation provides an inverse relationship between

the amplitude and nonlinear period of the triad, which is
remarkably similar to the aforementioned Waldmeier law.
Also, the zonal flow mode amplitude modulations are found to
be approximately in opposite phase with the amplitude
oscillations of the second triad, which is supposedly related
to the Schwabe cycle, according to our theoretical model.
Therefore, we argue here that the precession resonance
involving MHD Rossby wave triads might be a possible
mechanism behind the long-term modulations of the solar cycle
observed in sunspot number time series.
In Section 2 we introduce the model equations, which refer

to a simplified version of the quasi-geostrophic MHD equations
derived by Zeitlin (2013), but augmented to take into account
the effects of spherical geometry. Section 2 also revisits the
linear theory of the model equations for a resting and constant
toroidal magnetic field background state, as well as the reduced
dynamics of a single triad of nonlinearly interacting waves. In
Section 2 we also show that there is a considerable amount of
triads of large-scale Rossby–Hauwirtz modes whose frequency
mismatch among the waves is comparable to the typical main
frequency of the solar cycle. We then consider in the following
sections a representative example with a set of four modes
coupled to a zonal flow mode (zero eigenfrequency and zonal
wavenumber mode). The solutions of the system are analyzed
in Sections 3 and 4 for the conservative and forced-dissipative
cases, respectively. Section 5 discusses how the precession
resonance mechanism explored here might operate in the full
model equations. The main conclusions are presented in
Section 6. Further details of the calculations and mechanisms
explored here are presented in the appendixes. Appendix A
presents details of the calculation of the nonlinear coupling
coefficients. Appendix B reviews the general ideas regarding
the integration of the three-wave interaction equations.
Appendix C provides a further explanation of the two processes
of excitation that are relevant to this study: the modulational
instability and the aforementioned precession resonance
mechanism. Appendix D details the evaluation of the damping
coefficients.

2. Model Equations and Wave Theory

2.1. Basic Equations and Linear Theory

As the simplest context supporting the existence of MHD
Rossby wave disturbances, we consider the barotropic vorticity
equation in the rotating MHD case (Gilman 2000; Zaqarashvili
et al. 2007; Raphaldini & Raupp 2015). This equation can be
regarded as the asymptotic limit of the quasi-geostrophic MHD
equations for high equivalent depth. The quasi-geostrophic
MHD equations, in turn, have been derived by Zeitlin (2013) as
a distinguished limit of the shallow-water MHD equations in
the regime of strong rotation. The advantage of adopting this
simplified model instead of the original MHD shallow-water
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system is that the quasi-geostrophic equation filters out the
inertia-gravity waves and, therefore, allows only the rotational
modes that are relevant to our analysis. We assume that there is
a global structure background magnetic field in the toroidal
direction given by ( )q q=B B cos0 . As will be shown later,
this choice simplifies our mathematical analysis by yielding
linear eigenmodes with a purely oscillatory nature associated
with a separable linear operator. Indeed, Equations (1) and (2)
are no longer separable when one considers more realistic
banded structures for the background toroidal magnetic field
(Zaqarashvili et al. 2007)3. With the considerations described
above, the evolution equations of the system in spherical
coordinates can therefore be written in terms of the absolute
vorticity q, stream function ψ, and magnetic potential A as
follows:

( ) ( ) ( )y
¶
¶

+ =  
q

t
q A A, , , 12

( ) ( )y
¶
¶

+ =
A

t
A, 0, 2

where y q=  + Wq 2 sin2 and Ω refers to the rigid body
rotation rate of the Sun. In the spherical coordinate system
adopted here, the Jacobian and Laplacian operators take the
form

⎛
⎝⎜

⎞
⎠⎟( ) ( )

q q f q f
=

¶
¶

¶
¶

-
¶
¶

¶
¶

 f g
a

g f f g
,

1

cos
, 3

2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

q q f q
q

q
 =

¶
¶

+
¶
¶

¶
¶

f
a

f f1

cos

1

cos
cos 42

2

2

2

for any differentiable functions f and g, where f is the
longitude, θ is the latitude, and a is the tachocline solar radius.
In order to linearize the equations around a background state at
rest and with a zonally symmetric toroidal magnetic field in the
zonal direction, ( ( ) )qB , 0 , we set = + ¢A A A , ψ=ψ′ and
discard the terms arising from products of perturbations, where
A is chosen such that the mean toroidal magnetic field assumes
the special form q=B B cos0 . With the assumptions described
above, the linearized perturbation equations can be written in a
vector form as

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )y y¶

¶
 =

- W - 
f m r f

f

¶
¶

¶
¶

¶
¶

t A A0
. 5

a

B

a a

B

a

2
2 1 2
2

0

0
2

0

In the equation above, we have omitted the primes when
referring to the perturbations for simplicity. Equation (5) can be
solved by spherical harmonics (see Zaqarashvili et al. 2007 for
similar treatment). Briefly, we assume a plane wave ansatz,

⎡
⎣⎢

⎤
⎦⎥ ( )

( ) ( )

y f q

q

= L

= L

w

f w

-

-

R

R

A
Y e

N P e

,

sin , 6

n
m i t

n
m

n
m im i t

with Λ being an arbitrary constant and the associated Legendre
functions satisfying the following orthogonality relation:

( )!
( )!( )

( )ò d=
+

- +-
P P dz

n m

n m n
2

2 1
, 7n

m
n
m

n n
1

1

1 2 1 2

with d = 1n n1 2 if n1=n2 and zero otherwise. The normalization
constant Nn

m is given by

⎛
⎝⎜

⎞
⎠⎟

( ∣ ∣)!( )
( ∣ ∣)!

=
- +

+
N

n m n

n m

2 1
.n

m

1
2

Inserting the ansatz (Equation (6)) into the linearized
Equation (5) yields the following eigenvalue problem:

( )w= R Ri , 8*

where the matrix * refers to the symbol of the linear operator
of Equation (5), that is,

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( ) ( )( ) ( )=
- W -

m r+ +
2

0
. 9

m

n n

B m

a n n

B m

a

1

1 2

1
0

0
2

0

*

The two branches of the characteristic equation of Equation (8)
are defined according to

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

( )
( )

( ) ( )
( )

w

m r

= -
W
+

-
W
+

+ -
+

- m n
m

n n

m

n n

B m

a n n

,
1

2

2

1

2

1

4
1

2

1
, 10

2
0
2 2

0
2

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

( )
( )

( ) ( )
( )

w

m r

= -
W
+

+
W
+

+ -
+

+ m n
m

n n

m

n n

B m

a n n

,
1

2

2

1

2

1

4
1

2

1
. 11

2
0
2 2

0
2

The branch ω− refers to the fast hydrodynamic mode, while ω+

represents the slow magnetic mode (Zaqarashvili et al. 2007).
In fact, ω− reduces to the classical hydrodynamic Rossby–
Hauwirtz wave dispersion relation for B0=0. Note also that
for n=1, the magnetic effects cancel out, and there is only one
branch corresponding to a Rossby–Hauwirtz wave mode. This
agrees with the dispersion relation obtained in Zaqarashvili
et al. (2007). The corresponding right eigenvectors R are given
by

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( )

( )

( )

w

=



R m n

m n

m
B

a

,

,

. 12
0

2.2. Nonlinear Theory of Wave Interactions

Restoring the nonlinear terms in the perturbation approach
described in the previous subsection, Equation (5) now reads

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟ ( )y y y y¶

¶
 = = 

t A A A A
, . 13

2

3 In addition, Raphaldini & Raupp (2015) showed that the effect of variable
coefficients associated with a meridionally sheared zonal flow mimicking the
solar differential rotation allows the existence of waveguides that trap MHD
Rossby modes in specific latitudinal sectors. A background toroidal field
withmore structure could have similar effects.
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In Equation (13), the linear operator  is the same as in
Equation (5), and the nonlinear (bilinear) operator  is given by

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
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⎡
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⎦
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( ) ( )

( )
( )y y y y

y
=

-  + 
m r

 

A A

A A

A
,

, ,

,
. 14

2 1 2

0

We now consider the following ansatz in the form of a linear
combination of a few linear eigenmodes:

⎡
⎣⎢

⎤
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å
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,
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k

K

k n
m k

k

K

k n
m

n
m im k

1

1

k
k

k
k

k
k k

where Λk(t) now represents the complex valued mode
amplitudes. Let us first consider the case of a single-wave
triplet (K=3). In this case, we insert the ansatz given by
Equation (15) into Equation (13) and proceed to obtain the time
evolution equations for the mode amplitudes Λk, k=1, 2, 3. In
order to do so, we make use of the orthogonality relation
(Equation (7)), the orthogonality of the feimk components in the
[0, 2π] interval for different k, and the orthogonality of the
eigenvectors ( )R k regarding the inner product,

( )
m r

á ñ = +X Y X Y X Y,
1

, 161 1
0

2 2* *

where ( )=X X X,1 2 and ( )=Y Y Y,1 2 represent two arbitrary
elements of the 2 vector space, and the superscript * denotes
complex conjugation. Therefore, the evolution equations for
the complex valued mode amplitudes are the so-called triad
equations:

( )w
L

= L + L L
d

dt
i C , 171

1 1 1,2,3 2 3*

( )w
L

= L + L L
d

dt
i C , 182

2 2 2,3,1 1 3*

( )w
L

= L + LL
d

dt
i C . 193

3 3 3,1,2 1 2

In the equations above, C1,2,3, C2,1,3, and C3,1,2 are the
interaction coefficients among the mode components of the
triad, given by

[ ( )]∣ ∣
[ ] ( )
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with =
m r

V B
A

0

0
indicating the Alfvén wave speed and z=sin

θ. A detailed derivation of the interaction coefficients C1,2,3,
C2,1,3, and C3,1,2 is presented in Appendix A. These coefficients
are nonzero provided the mode indexes (m1, n1), (m2, n2), (m3,
n3) satisfy the following selection rules:

( ) ( )
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+ =
+ ¹
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+ +
- + - >
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2 1 3

1
2

3
2

2 1 3

2 1 3

2
2

2
2

1
2

1
2

2 1 3 2 1

2 2 3 3 1 1 3 3

The coupling coefficients given by Equation (20) can also be
explicitly calculated in terms of Wigner 3j symbols (see
Jones 1985 for details). To focus on the nonlinear terms only,
the triad Equations (17–19) can be rewritten using the change
of variables ( ) ( )w= L -B t i texpk k k , k=1, 2, 3, resulting in

( )= wDdB

dt
C B B e , 25i t1

1,2,3 2 3*

( )= wDdB

dt
C B B e , 26i t2

2,1,3 1 3*

( )= w- DdB

dt
C B B e , 27i t3

3,1,2 1 2

where Δω=ω3−ω2−ω1 is the mismatch among the triad
eigenfrequencies. When Δω=0, the triad is said to be
resonant. In the weakly nonlinear regime, in which the wave
amplitudes are assumed to be small, the contribution of
nonresonant triads for the nonlinear evolution of the system is
usually neglected. The justification for this approach is
essentially based on the highly truncated three-wave problem
dynamics described by Equations (25)–(27). In fact, in the
weakly nonlinear regime, the mode amplitudes evolve in a
timescale longer than that associated with the linear wave
phases. Consequently, the factor w De i t, in general, makes the
right-hand side of Equations (25)–(27) highly oscillatory in
time, so that the average contribution of the nonlinearity for the
time evolution of the wave amplitudes is rather small. The
exception occurs when the triad is resonant, or nearly so; in this
case, the nonlinearity yields significant energy exchanges
among the triad components. The predominance of resonant
triads in the weakly nonlinear regime can also be demonstrated
by near-identity transformation (Zakharov et al. 2012).
Raphaldini & Raupp (2015) analyzed the solutions of
Equations (25)–(27) for resonant triads of MHD Rossby
modes. They showed that in the amplitude regime in which
all three modes undergo significant energy modulations, the
nonlinear amplitude oscillations have a period compatible with
the Schwabe cycle. Consequently, they argued that these
temporal energy modulations of MHD Rossby waves due to
resonant triad interaction might be related to the periodic nature
of the solar magnetic activity.
Nevertheless, for a system of several connected wave

triplets, Bustamante et al. (2014) demonstrated that even if
the linear frequency mismatch Δω is large, strong energy
transfer can occur between different wave triads, provided the
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linear frequency mismatch of a wave triad resonates with the
characteristic nonlinear frequency of the system (for example,
the frequency of energy exchange associated with an adjacent
wave triad). This novel mechanism of nonlinear wave systems
is called precession resonance and occurs in an energy level
that is not sufficiently small to neglect nonresonant wave
triplets but still small enough to make the linear frequency
mismatch Δω to dominate the time evolution of the
combination of the phases of the complex valued mode
amplitudes Λj(t), j=1, 2, 3. Consequently, it was shown that
this mechanism is able to promote events of strong energy
exchanges between waves even if they are nonresonant. A
more detailed description of the precession resonance mech-
anism for a system of two connected wave triplets is presented
in Appendix C.

Therefore, in order to investigate the potential role of the
precession resonance mechanism in promoting significant
energy transfer between different wave triads in our MHD
Rossby wave context, as well as to analyze its potential role in
yielding long-term modulations in the Schwabe cycle of solar
magnetic activity, we have sought triads whose linear
frequency mismatch among the modes is close to one of the
harmonics of the main solar cycle frequency, that is,
Δω≈jπ/22 yr−1, j=1, 2, 3 ... . Another condition imposed
for the intended triads is that they contain a mode with zero
zonal wavenumber (and, consequently, zero eigenfrequency)
that mimics the zonal flow effects of solar differential rotation.
This condition is based on the observational results of Zhang

et al. (2015), who showed that modulations of the Schwabe
cycle exhibit a significant negative correlation with observed
variations of the solar differential rotation strength. The number
of such wave triplets as a function of the Alfvén wave speed is
displayed in Figure 1 for resonances of 2:1 (Δω≈ 4π/22 yr−1)
and 4:1 (Δω≈ 8π/22 yr−1).
In the next section, we shall analyze the reduced dynamics in

which a representative example of the triads mentioned above
is connected with a nearly resonant triad whose nonlinear
interaction period is close to the Schwabe cycle period, which
in turn is one order of magnitude longer than the linear period
of the waves. As we will demonstrate, strong energy transfer
between the two wave triads occurs due to a modulational type
of instability and the precession resonance mechanism men-
tioned above, which enhances the efficiency of energy transfer
between two adjacent wave triplets in the unstable regime. This
intertriad energy exchange yields significantly longer period
modulations on the intratriad energy exchanges that exhibit a
period compatible with long time modulations of the Schwabe
cycle.

3. Nonlinear Five-wave Model in the Conservative Case

Let us consider now the ansatz (Equation (15)) for K=5, in
which modes 1, 2, and 3 satisfy the conditions of
Equation (24), and modes 3, 4, and 5 satisfy the same selection
rules, apart from the resonance condition for their eigenfre-
quencies (ω3≈ ω4+ ω5). In this way, substituting
Equation (15) into the nonlinear perturbation Equation (13)

Figure 1. Number of triads whose mismatch among the mode eigenfrequencies corresponds to a period of 5.5 or 11 yr (with 10% of tolerance), as a function of the
Alfvén wave speed =

m r
V B

A
0

0
. The periods of 5.5 and 11 yr correspond to resonances of 4:1 and 2:1, respectively, with the Schwabe cycle. We consider only triads

involving a zonal mode with a spherical harmonic degree of 1, 2, 3, or 4. The search has been truncated for harmonics with a degree and order up to 30. We observe
that the number of triads, of the order of hundreds, satisfying the above conditions is abundant for any value of Alfvén wave speed up to 1000 m s−1.

5

The Astrophysical Journal, 887:1 (17pp), 2019 December 10 Raphaldini et al.



yields
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= L + L L
d

dt
i C . 325

5 5 5,3,4 4 3

Equations (28)–(32) have been integrated numerically by using
an explicit eighth-order Runge–Kutta discretization. A repre-
sentative example of two wave triplets constituting the five-
wave model (Equations (28)–(32)) is displayed in Table 1. The
triplets are labeled by “a” (modes 1, 2, and 3) and “b” (modes
3, 4, and 5) and composed of magnetic-branch (slow) modes
having spherical harmonics (0, 2), (1, 10), (1, 9) and (1, 9), (1,
12), (2, 10), respectively. Recall that triad a has a frequency
mismatch of around 5.5 yr, whereas triad b is a nearly resonant
wave triplet with a mismatch among the mode eigenfrequencies
of the order of 15 yr.

Figure 2 displays the result of a numerical integration of the
five-wave model (Equations (28)–(32)) for the representative
example illustrated in Table 1. In this integration, the initial
mode amplitudes of triad b are set to match the precession
resonance regime, in which the characteristic frequency of
amplitude modulation of this triad exhibits a 2:1 resonance with
the eigenfrequency mismatch of triad a. From the time
evolution of the mode energies presented in Figure 2, one
can notice the shortest period of energy oscillation of the order
of 10 yr, which is associated with the energy exchanges within
each triad. This refers to half of the period of the corresponding
mode amplitude oscillation. Apart from the main ≈10 yr period
associated with intratriad coupling, the time evolution of the
mode energies displayed in Figure 2 exhibits the alternation of
small and large peaks, indicating that the magnitude of the
≈10 yr cycle is modulated on a longer timescale. Comparing
the time evolution of the energies of modes (0, 2) and (1, 12),
which pertain to different wave triads, shows that their large
and small energy peaks are approximately in opposite phase
with each other. This points out that the longer timescale
modulation of the main ≈10 yr cycle is a result of the intertriad

energy transfers. Therefore, Figure 2 shows that, in the
precession resonance regime, a strong energy transfer between
the adjacent wave triads takes place, yielding long-term
modulations of the main ≈10 yr cycle associated with intratriad
energy exchanges.
There are two processes of excitation that are relevant to this

study. The first process is based on instability and considers
small initial amplitudes for modes 1 and 2, pertaining to triad a.
The process is reminiscent of modulational instability (Con-
naughton et al. 2010). By linearizing the system around a
quasiperiodic solution of the isolated triad b (modes 3, 4, and
5), we calculate the maximal Lyapunov exponent of the full set
of equations, yielding a growth rate of 0.29 yr−1 (see
Appendix B). The second process is fully nonlinear and based
on precession resonance (Bustamante et al. 2014). There, as the
system explores several amplitude levels due to forcing and
dissipation, at certain mode amplitudes, a balance can be struck
between a linear combination of the frequency mismatches of
the two triads and the nonlinear frequency broadening
stemming from the finiteness of the amplitudes. At such
amplitudes, a low-frequency oscillation is generated that can
lead to strong energy transfers across modes. When some of the
triads are quasi-resonant, the amplitudes at which precession
resonance occurs can be quite small and therefore attainable in
real situations. In Appendix C we briefly study this mechanism
for Equations (28)–(32), yielding energy transfer efficiencies of
up to 34%.
In order to better quantify the periods involved in the time

evolution of the mode energies presented in Figure 2, Figure 3
shows the power spectrum referred to the time series
corresponding to the energy of mode (1, 9) (mode 3). The
spectrum has been calculated by using Welch’s method
(Welch 1936). From Figure 3, one observes a main peak at
around the 10 yr period and a secondary peak at around 120 yr,
which is reasonably compatible with the Gleissberg cycle
(Usoskin 2017).
Recall that in the case of a single-wave triplet, whose

dynamics is described by the three-wave Equations (25)–(27),
the time evolution of the wave amplitudes (energies) is exactly
periodic in time, with the solutions being described in terms of
Jacobi elliptic functions, as described in Appendix B (see also
Raphaldini & Raupp 2015 and references therein). In addition,
as a consequence of the Manley–Rowe invariants, the nonlinear
oscillation period of the mode amplitudes of a wave triad (triad
b, for instance) is inversely proportional to the square root of
the energy of two modes of the triad, that is,

( ) µT I I1 ,

where ∣ ∣ ∣ ∣= L + LI 3
2

4
2 is the Manley–Rowe invariant (see

Bustamante & Kartashova 2011 for details). However, in the
five-wave problem described by Equations (28)–(32), the
quantity I of a wave triad becomes variable in time due to its
coupling to the adjacent wave triplet, and so does the period of
triad amplitude oscillation T(I). Consequently, in the five-wave
model, the dynamics of the characteristic interaction period T
of a wave triad is decreased (increased) during the periods of
large (small) energy peaks of the correspondent wave triad. As
the characteristic interaction period T of triad b is compatible
with the timescale of the Schwabe cycle of solar magnetic
activity, this relationship between the interaction period of a
wave triad and the correspondent triad energy level is

Table 1
Wavenumbers and Corresponding Eigenfrequencies and Coupling Coefficients
of the Selected Waves in the Five-wave Model, Separated into Two Triads (a

and b)

Wavenumber Eigenfrequency (Hz) Triad Coupling Coefficient

(0, 2) 0 a −0.200293i
(1, 10) 1.78236×10−7 a −1.75195i
(1, 9) 1.72695×10−7 a −2.15463i
(1, 9) 1.72695×10−7 b 0.620163i
(1, 12) 1.85859×10−7 b 0.27978i
(2, 10) 3.56473×10−7 b 0.904184i

Note. The corresponding frequency mismatches give 1/Δ ωa=5.72248 yr
and 1/Δωb=15.2326 yr.
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consistent with the well-known Waldmeier law for the solar
cycle. To verify this relation, we have computed the
instantaneous frequency of the spectral amplitudes Λk(t) by
applying the Hilbert transform. Figure 4 shows the time
evolution of the instantaneous frequency of the amplitude of
mode (1, 9), which shows that the frequency increases
(decreases) during periods of high (low) amplitudes of the
10 yr cycle.

4. Nonlinear Five-wave Model with Forcing and Dissipation

As waves in the solar tachocline are subjected to the action
of forcing and dissipation, here we investigate how these
effects can modify the five-wave dynamics in the precession
resonance regime. As argued in Raphaldini & Raupp (2015),
the forcing acting on barotropic Rossby waves comes from the
horizontal divergence of both two-dimensional velocity and
magnetic fields. This approach of considering a prescribed
zero-mean horizontal divergence field as a Rossby wave source
is usual in studies of Rossby waves in Earth’s atmosphere
(Hoskins & Karoly 1981 and references therein). In the solar
tachocline, the horizontal divergence of the velocity field stems
from different physical processes, such as baroclinic instability
(Gilman & Dikpati 2014), gravity waves, and nonhomoge-
neous thermal forcings at the top of the radiative zone. In this
context, the generalization of the nonlinear perturbation

Equation (13) for the forced-dissipative case is given by

⎡
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⎤
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where the prescribed forcing vector F and damping operator 
are

⎡
⎣⎢

⎤
⎦⎥

( ) ( )q f q= - WF D t2 sin , ,
0

, 34u

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )n
h

=
 

 


0

0
, 35

2 2

2 2

with ( )f qD t, ,u indicating the prescribed horizontal diver-
gence of the velocity field. We have omitted the nonlinear
terms involving Du, as well as the nonlinear terms involving the
divergence of the two-dimensional magnetic field on the right-
hand side of the magnetic potential equation, assuming them to
be small. In Equation (35), the parameters ν and η are the
coefficients of viscous and magnetic diffusivity, respectively.
Here we have utilized the values of ν=2.7×10 and
η=4.1×102 cm2 s−1, as suggested in Gough (2007). We
have further assumed that the horizontal divergence field

Figure 2. Time evolution of the mode energies in the conservative five-wave model. Modes 1, 2, 3, 4, and 5 are characterized, respectively, by the spherical harmonics
(0, 2), (1, 10), (1, 9), (1, 12), and (2, 10), all in the slow branch.
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(actually, 2Ω sin θDu) has the same spatial structure as mode 3,
which is the mode that couples the two triads, and the time
dependence of the forcing resonates with this mode. The effect
of these assumptions is to yield a constant forcing coefficient
only on the right-hand side of the time evolution equation of
mode 3 amplitude.

With the above considerations, the resulting generalization
of the five-wave Equations (28)–(32) with the inclusion of the
forcing and damping is

( )w
L

= L + L L - L
d

dt
i C d , 361

1 1 1,2,3 2 3 1 1*

( )w
L

= L + L L - L
d

dt
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L

= L + + LL + L L - L
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dt
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for i=1, 2, 3, 4, and 5, and the coefficient f3 is a constant that
depends on the magnitude of the divergence forcing. A more
thorough derivation of the damping coefficients is presented in
Appendix D.

The results of the numerical integration of
Equations (36)–(40) are presented in Figures 5 and 6.
Figure 5 displays the time evolution of the mode energies
during a 1000 yr period, whereas Figure 6 shows the time
evolution of mode 3 energy correspondent to the same
numerical solution as Figure 5 but for a longer period of
integration (5000 yr). As in the conservative case, from

Figure 5, one notices oscillations in the mode energies on a
decadal timescale superposed by modulations of the energy
peaks on a timescale of centuries. Again, to better quantify the
main oscillation periods involved in the time evolution of the
mode energies, Figure 7 shows the power spectrum computed
from the mode 3 energy time series (i.e., the mode with
spherical harmonic (1, 9)). In comparison with the spectrum
obtained in the conservative system, one can notice in the
forced-damped case a broader main spectral peak, which is also
slightly shifted to a period of 7–9 yr. Also, apart from this
broad spectral peak band around 8 yr, Figure 7 shows a spectral
peak corresponding to long-term modulations with period
around 230 yr.
One remarkable feature of the five-wave model with forcing

and dissipation is that the evolution of the mode energies
presents some periods of suppressed activity that resemble the
Maunder minimum. This fact can be more clearly illustrated in
the longer time integration presented in Figure 6. One can
observe in Figure 6 the appearance of several periods with very
low activity lasting several decades. Other integrations with
different values of the forcing parameter f3 show that the
duration of such periods is highly dependent on the magnitude
of the divergence forcing (figures not shown).

5. Which Modes Are Relevant for the Solar/Stellar
Activity?

So far we have provided a simplified theoretical description
with a reduced model of only five wave modes to illustrate how
the precession resonance mechanism associated with MHD
Rossby–Haurwitz triads might operate to generate long-term
modulations of the solar cycle. The reduced models presented
in the previous sections reproduce several aspects of the solar
magnetic activity, and the qualitative features of the results do
not depend on the particular modes chosen but rather on the
type of triads that they form (the size of the mismatch and the
relative size of the interaction coefficients that will determine
the instability properties of the system). It is important,
however, to explicate the relevance of the precession resonance

Figure 3. Power spectral density of mode (1, 9) energy time series referred to the conservative five-wave model integration displayed in Figure 2. There is one primary
peak in the spectrum at the period of 10 yr and a secondary peak associated with a modulation with a period around 120 yr.
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mechanism in the full set of partial differential equations
(PDEs) that govern the dynamics of MHD Rossby waves at the
solar tachocline. The key point elucidated with the reduced
five-wave system is that the precession resonance enhances the
efficiency of the spectral broadening of the energy injected into
the system. In this context, in the reduced model with only two
interacting wave triplets, the concept of energy spectral
broadening is restricted to the energy transfer between the
two interacting triads, and, as the intertriad energy exchanges
occur on a longer timescale than the interaction involving the
modes of the primary triad, this spectral broadening leads to
long-term modulations of the primary cycle. However, despite
the rather oversimplified setting of only five-wave modes, the
key point elucidated by the reduced model still applies to the
whole spectral representation of the governing equations; that
is, the reduced five-wave model (Equations (28)–(32)) should
be seen as a building block for a complete understanding of the
full system (Equation (13)). Indeed, as can be inferred from the
results of Bustamante et al. (2014) in the full PDE governing
the dynamics of Rossby/drift waves, the amplitude (energy)
regime at which the interaction between different wave triads
becomes the most efficient one is a regime of intermediate
amplitudes, in which the concept of “intermediate” acquires a
precise meaning: a regime in which there is a balance between
the characteristic nonlinear timescale of the whole system and
the timescale associated with the mismatch among the linear
mode frequencies. Once the system is found in this regime, a
synchronization of triad phases across several scales will take
place, and, depending on how the energy is injected into the
system by forcing mechanisms (like the one considered in
Section 4), this forcing will select not only one triad but a
group of interacting wave triplets, thus allowing efficient
energy transfer paths along the whole spectral network. In this
context, the cyclic nature of the full model equations comes
from the fact that a turbulent system in the precession
resonance regime operates in the vicinity of an unstable
periodic orbit (UPO; Bustamante et al. 2014). The corresp-
onding period is then set when the system chooses a particular
UPO, which will depend on the energy amount injected into the
system: the higher the energy level associated with the forcing
injection, the faster the cycle referred to the UPO, and
vice versa. Thus, one may define a precession resonance
scaling between a characteristic nonlinear frequency, ΩT, and a
typical value associated with the mismatch among the linear
eigenfrequencies, δωT, to divide a turbulent system into three

categories:

( ) ( )dw > W weak turbulence regime , 42T T

( ) ( )dw » W intermediate turbulence regime , 43T T

( ) ( )dw < W strong turbulence regime , 44T T

where the balance associated with the intermediate turbulence
regime (Equation (43)) is closely related to the concept of
critical balance in turbulence (Goldreich & Sridhar 1995;
Nazarenko & Schekochihin 2011).
Another important issue that arises from our analysis is about

how the mechanism presented here would apply to the
magnetic cycle of other stars. First, it is important to mention
that observations of magnetic activity in other stars are much
more difficult, with a very limited time span of observations
(e.g., see Baliunas et al. 1995 and Saar & Brandenburg 1999
for further discussions). Conversely, there seems to be a
consensus that, at least for Sun-like stars, younger and more
rapidly rotating stars tend to exhibit shorter cycles of magnetic
activity, with some of them sometimes even exhibiting
irregular cycles and strong activities. On the other hand, older
and more slowly rotating stars, such as the Sun, tend to have
longer cycles with weaker activity (Lorenzo-Oliveira et al.
2018; Radick et al. 2018).
Nevertheless, there are several factors that need to be taken

into account when comparing our arguments with these basic
trends in the state of the art of stellar magnetic activity. For
instance, the intensity of both the toroidal magnetic field and
the rotation of the star may alter the linear wave frequencies, as
well as the typical MHD Rossby wave amplitudes that will set
the corresponding characteristic nonlinear frequency of the
system. Despite these difficulties, the overall tendency of
stronger activity being associated with a shorter cycle of star
magnetic activity seems to be compatible with both the
behavior of the nonlinear frequencies in the precession
resonance regime and the Waldmeier law. Finally, the other
possibility is that the magnetic activity of a star operates in a
regime of even higher amplitudes, so that the nonlinear
timescale is faster than the typical linear wave frequency
mismatch of the system. In this regime, the mechanism
presented here should not be relevant, and the behavior of
the corresponding star magnetic activity would probably appear
to be more random, without a clear cycle, which may be the
case for some young stars. Alternatively, a star operating in the
weakly turbulent regime would probably have much lower
levels of activity characterized by longer cycles.

Figure 4. Instantaneous frequency of mode (1, 9) (referred to the same numerical integration displayed in Figures 2 and 3). The dashed line represents the amplitude of
the mode, and the solid black line represents the instantaneous frequency. Gray bands show that periods with low amplitudes coincide with periods in which the
instantaneous frequency is low (i.e., longer cycles).
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6. Conclusions

Here we have augmented the nonlinear interaction theory of
MHD Rossby waves in the solar tachocline developed by
Raphaldini & Raupp (2015) to take into account the effect of
the precession resonance mechanism that allows significant
energy transfer throughout different wave triads, as well as the
interaction between Rossby waves and modes having zero
zonal wavenumber and eigenfrequency, which are believed to
contribute to the zonal flow profile associated with the solar
differential rotation. For this purpose, we have sought
interacting triads containing a zero zonal wavenumber mode
yielding unstable solutions (in the modulational sense accord-
ing to Connaughton et al. 2010).

Consequently, we have analyzed a representative example of
such triads in which the triad is connected via one wave mode
to a second triplet that is nearly resonant. Numerical
integrations of the five-wave system show that the energy
transfers between the two wave triplets allowed by modula-
tional type instability yield long-term modulations on the main
approximately 11/22 yr cycle associated with intratriad energy
exchanges. In addition, the zonal flow mode amplitude
modulations are found to be approximately in opposite phase
with the amplitude oscillations of the second triad, which is
supposedly related to the Schwabe cycle, according to our
theoretical model. This result is consistent with the observa-
tional work of Zhang et al. (2015), who showed that

modulations of the Schwabe cycle exhibit significant negative
correlation with observed variations of the solar differential
rotation strength.
When analyzing the dynamics of the five-wave system in the

presence of a divergence forcing and dissipation, a remarkable
resemblance is found between the time evolution of the wave
amplitudes and the observed long-term variations of the solar
cycle, with an 11/22 yr cycle being modulated at timescales 1
order of magnitude longer (100 yr), as well as the emergence of
periods of suppressed wave activity lasting several decades that
resemble the grand minimum states. In addition, we have
demonstrated that the amplitude of the Rossby wave “activity”
is inversely proportional to the instantaneous period of
nonlinear energy exchange. Similarly, observations of the solar
cycle point out that the amplitude of the cycle, which is
commonly measured by the number of sunspots at the peak
phase of the cycle, is inversely proportional to the duration of
the cycle. This relation between the strength and duration of the
solar cycle is described by the so-called Waldmeier law.
Therefore, we argue here that the modulation-like instabilities
involving MHD Rossby wave triads might be a possible
mechanism behind the long-term modulations of the solar cycle
observed in sunspot number time series.
It was shown recently by Raphaldini & Raupp (2015) that

the propagation of the magnetic branch of MHD Rossby modes
is confined to an equatorial belt extending from −35° to +35°

Figure 5. Similar to Figure 3 but for the forced-damped case. We observe in certain periods of the time series of the first three wave modes that they synchronize in a
“Maunder minimum–like” behavior.
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in latitude and refracted toward the equator, similar to the
sunspot evolution during the solar cycle depicted by the
butterfly diagram. We believe that combining the arguments of
the present paper with Raphaldini & Raupp (2015) makes
MHD Rossby waves strong candidates to play a major role in
the dynamics of solar activity. Therefore, we have to speculate
on the possible link between Rossby waves and solar magnetic
activity.

A dynamo model provided by Rossby wave motions was
first suggested by Gilman (1969a, 1969b) by using a two-layer
quasi-geostrophic model. As further argued recently by the
same author (Gilman & Dikpati 2014), baroclinic Rossby
waves and instability should be able to account for a dynamo
mechanism, since they provide both vorticity and small vertical
motions, which constitute the necessary physical ingredients
for the alpha effect, which is known to be associated with
helicity. Such a combination of vorticity and vertical motions

could also be able to amplify the poloidal component of the
magnetic field at the expense of the toroidal one. Smaller-scale
instabilities could also create ascending filaments of magnetic
field associated with sunspots. Possible extensions of the
present study include the analysis of larger clusters of
nonlinearly interacting triads and the possibility of the
emergence of self-organized synchronized states, such as in
Chian et al. (2010), that could explain the approximately
periodic nature of the solar dynamo.
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Figure 6. Same as Figure 5 but for a longer time integration only for mode (1, 9). We have separated the integration into four panels in order to better observe the
different regimes of the system, including Maunder-like periods with low amplitude and periods with high amplitude resembling grand maxima states.
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Appendix A
Coupling Coefficients

In Section 2 we introduced the coupling coefficients that
arise from the nonlinear terms in the perturbation equations,
which have the form of a Jacobian operator ( ) .,. . Here we
provide a more detailed description of the derivation of such
coefficients. The definition of the interaction coefficient Cj,k,l

involving three arbitrary modes, j, k, and l, is the projection, in
terms of the pseudoenergy norm, of the nonlinear term applied
to modes l, k onto the first mode j:
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where the vector uk describes the spatial structure of a
particular eigensolution of the linear perturbation equations
(similarly for the jth and lth modes)
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components of the corresponding eigenvector ( )R k defined by
Equation (12), and Ej is the pseudoenergy norm of the jth
eigenmode, given by
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Therefore, to evaluate the nonlinear coupling coefficient Cj k l, , ,
one needs to obtain the pseudoenergy norm from the nonlinear
perturbation equation (Equation (13)). As the first equation is
written for y2 and the second for A, one must multiply the
first equation by y* and the second by  A2 * and integrate by
parts to yield the pseudoenergy norm, where the superscript *

denotes the complex conjugate. Consequently, to be consistent
with the pseudoenergy norm, one projects the nonlinear term
onto the corresponding adjoint eigensolution †uj referred to the
jth mode, given by
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In this way, substituting the ansatz of Equation (15) into the
nonlinear perturbation given by Equation (13), multiplying the
resulting equations by the adjoint eigensolution of mode j given
above, integrating by parts the resulting equations, and using
the boundary conditions (periodic solutions in f and regularity
at the poles), as well as the orthogonality relations, we get
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where the nonlinear operator is given by
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Figure 7. Power spectral density of mode (1, 9) energy time series referred to the forced-damped five-wave model integration displayed in Figure 5. There is one
primary broad peak in the spectrum with a period of 7.5–9 yr and a secondary peak that gives the modulation with a period around 250 yr.
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Consequently, the nonlinear terms in the equations above can
be explicitly written in terms of the eigenmodes as
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Evaluating the integrals in Equation (51), as well as the inner
product according to Equation (16), it follows that
Equation (51) becomes

( ) ( ) ( )w
L

- L = L L
d

dt
i t t C , 56

j
j j k l j k l, ,

with the coupling coefficientCj k l, , being expressed according to
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where the constants In n n
m m m
j k l

j k l, Ln n n
m m m
j k l

j k l and the coupling integral
Kn n n

m m m
1 2 3

1 2 3 are given by
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Appendix B
The Three-wave Equations

Here we review some basic features of the dynamics of the
three-wave equations. Typically, in nonlinear wave problems
with quadratic nonlinearities, the nonlinear interactions invol-
ving the normal modes of the linear system are described by a
complex chain of three-wave systems of the form

( )w
L

= L + L L
d

dt
i C , 611

1 1 1 2 3*

( )w
L

= L + L L
d

dt
i C , 622

2 2 2 1 3*

( )w
L

= L + LL
d

dt
i C , 633

3 3 3 1 2

where Λi denotes the complex valued amplitude of the ith
wave, ωi is the corresponding eigenfrequency, and Ci is the
corresponding coupling coefficient. The dynamical system
described above has three independent conserved quantities,
namely, the Hamiltonian

( ) ( )= LL LH Im , 641 2 3*

as well as two quantities called Manley–Rowe relations:

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

= L + L
= L + L

I

I .
12 1

2
2

2

13 1
2

3
2

These three conserved quantities make the system integrable, as
will be discussed below. In fact, using the polar representation
L = FA ej j

i j, the complex Equations (61)–(63) can be rewritten
as four equations describing the time evolution of the real
amplitudes and the combination of the phases represented by
Φ:

( )= F
dA

dt
C A A cos , 651

1 2 3

( )= F
dA

dt
C A A cos , 662

2 1 3

( )= - F
dA

dt
C A A cos , 673

3 1 2

⎛
⎝⎜

⎞
⎠⎟ ( )w

F
= D + + +

d

dt
A A A

C

A

C

A

C

A
, 681 2 3

1

1
2

2

2
2

3

3
2

where Δω=ω3−ω2−ω1 is the mismatch among the mode
eigenfrequencies. With the conserved quantities described
above, these equations are integrable by quadrature, with the
solutions being expressed in terms of Jacobi elliptic functions
(see Bustamante & Kartashova 2011 for details):
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13 2

In the equations above, sn stands for the elliptic sine, and K(μ)
is the elliptic integral of the first kind, given by

( ) ( )òm
q
m q

=
-

p
K

d

1 sin
, 72

0

2
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where the argument μ of the elliptic integral above is

( )
( )

( )m
a p
a p

=
+
-

cos 3 6

cos 3 6
. 73

The solutions described above are periodic in time, with period
T given by

( )
( ) ( )

( )m
r r a p

=
- - -

T
K

Z I

2 3

1 cos 3 6
, 74

2
13

where ρ is the ratio between two Manley–Rowe constants,
ρ=I13/I23, and the angle [ ]a pÎ 0, is defined by
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( ) ( )

( )a
m
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cos

2 3

1 cos 3 6
. 75

2
13

Likewise, the solution for the phases is given by
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with dn and cn indicating the other Jacobi elliptic functions.

Appendix C
Two Robust Energy Transfer Mechanisms in a Five-wave

Model

Let us now couple two triads of nonlinearly interacting
waves through one mode, resulting in the five-wave model

( )w
L

= L + L L
d

dt
i C , 771

1 1 123 2 3*

( )w
L

= L + L L
d

dt
i C , 782

2 2 231 1 3*

( )w
L

= L + LL + L L
d

dt
i C C , 793

3 3 312 1 2 345 4 5*

( )w
L

= L + L L
d

dt
i C , 804

4 4 435 5 3*

( )w
L

= L + L L
d

dt
i C , 815

5 5 534 3 4

where ωj and Cijk can be read off from Table 1, namely,

w w w
w w

= = ´ = ´
= ´ = ´

- -

- -

0, 1.78236 10 , 1.72695 10 ,

1.85859 10 , 3.56473 10 ,
1 2

7
3

7

4
7

5
7

and

= - = - = -C i C i C i0.200293 , 1.75195 , 2.15463 ,123 231 312

= = =C i C i C i0.620163 , 0.27978 , 0.904184 .345 453 534

In general, Equations (77)–(81) are not integrable, but it is easy
to show that the following quadratic functions of the dependent
variables { }L =j j 1

5 are constants of the motion (Manley–Rowe
invariants):

∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ( )= L + L + LI
C

C

C

C
, 823

2 345

534
5

2 312

123
1

2

∣ ∣
∣ ∣

∣ ∣
∣ ∣

( )=
L

-
L

J
C C

, 831
2

123

2
2

231

∣ ∣
∣ ∣

∣ ∣
∣ ∣

( )=
L

+
L

K
C C

. 844
2

453

5
2

534

The constancy of J has a direct interpretation: ∣ ∣L1
2 and ∣ ∣L2

2 are
directly coupled, as evidenced by the plots of the energies of
modes with spherical wavenumbers (0, 2) and (1, 10) in
Figures 2 and 5. Similarly, the constancy of K means the direct
coupling of ∣ ∣L4

2 and ∣ ∣L5
2, corresponding to spherical

wavenumbers (1, 12) and (2, 10) in the same figures. Finally,
the constancy of I represents the coupling between triads a and
b and means that the energies ∣ ∣ ∣ ∣ ∣ ∣A A A, ,1

2
3

2
5

2 must lie on a
certain spheroid. Notably, from the fact that the numerical
factors in these formulae take finite values, it follows that all
modes’ energies are bounded from above.
Below, we briefly discuss two robust mechanisms of energy

transfer between the triads.
Modulational instability. Note that, in case the amplitude and

mismatch frequencies are commensurable, a particular solution
of triad b alone defines a periodic orbit of the system of five
waves. This is done by setting initial conditions Λ1=Λ2=0
at t=0, and the first and second modes’ amplitudes will
remain zero for all times. We can, in principle, linearize the
system around a periodic solution of triad b and analyze the
stability of the system to small perturbations on the first and
second amplitudes. Such instability is reminiscent of the
modulational instability explored in Connaughton et al. (2010)
in the case of Rossby waves. In the periodic case, this
instability can be studied by using Floquet analysis (Hale 1969).
However, in general, the triad equations are quasiperiodic, so
the instability analysis can be done by calculating the largest
Lyapunov exponent of the system. In order to do this, we use
the procedure of Benettin et al. (1976) and the implementation
available in Datseris (2018). In the case of Equations (77)–(81),
with initial amplitudes for triad b ( ) ( )L = + ´ -i0 9.56 1 103

9,
( ) ( )L = L-0 10 04

2
3 , and ( ) ( )L = L0 05

3

2 3 (and infinitesimally
small initial amplitudes for modes Λ1, Λ2), the largest
Lyapunov exponent is 9×10−9, corresponding to a growth
rate of 0.28 yr−1, which seems compatible with the timescales
associated with the solar cycle. We illustrate the instability by
plotting the real and imaginary parts of mode Λ4 in a 100 yr
integration in Figure 8.
Precession resonance. To explain this mechanism, let us

consider a simple instance whereby triad (1, 2, 3) initially has
low energy in comparison with triad (3, 4, 5). Let us also
assume, for simplicity of exposition, that triad (3, 4, 5) is
resonant or quasi-resonant (Δω2≡ω3+ ω4− ω5≈ 0). In this
case, as presented before, the time evolution of the mode
amplitudes of triad (3, 4, 5) is periodic in time, with period T2
inversely proportional to the wave amplitudes according to
Equation (74). Consequently, in this appropriate amplitude
regime, in which the Δω1 term dominates the corresponding
time evolution equation of the relative phase of triad (1, 2, 3), if

w» Dp
T

2
1

2
, the last term on the right-hand side of Equation (79)

will act as a resonant forcing for triad (1, 2, 3), making the
energy of this triad grow in time. This resonance between the
linear frequency mismatch of one triad and the nonlinear
frequency of the energy oscillation of the other one was called
precession resonance by Bustamante et al. (2014). In this
resonant case, Bustamante et al. (2014) showed that there is a
strong energy transfer between different wave triads, even in
the case of nonresonant interactions ( wD ¹ 01 ). To illustrate
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this effect, we consider a more appropriate set of initial
conditions: ( )aL = ´ -i1.48 exp 1.53 101

13,
( )aL = ´ -i1.71 exp 0.304 102

13,
( )aL = ´ -i1.03 exp 1.11 103

8,

( )aL = ´ -i1.22 exp 5.06 104
8, and

( )aL = ´ -i1.17 exp 3.95 105
8, where α is a real scale

parameter (of order 1) used to search for the resonance. The
phases of these initial conditions were randomly generated

Figure 8. Real and imaginary parts of mode 4 in the conservative five-wave model linearized around the solution of the first triad in a 100 yr integration. The growth
of this mode is a result of a modulational type instability with a growth rate of 0.28 yr−1.

Figure 9. Evolution in time (over 1268 yr) of quotients ( ) t from Equation (85) for different values of the scale parameter: α=0.45 (red), 0.55 (green), and 0.70
(blue). The maximum over time for each plot defines the efficiency ( )a , giving ( ) ( ) ( )= = =  0.45 0.23, 0.55 0.34, 0.70 0.23.
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uniformly over [0, 2π]; apart from the scale parameter α, the
amplitudes ∣ ∣ ∣ ∣L L,1 2 were randomly generated uniformly over
the domain [1, 2]×10−13, and the amplitudes ∣ ∣ ∣ ∣ ∣ ∣L L L, ,3 4 5
were randomly generated uniformly over the domain [1,
2]×10−8. In order to find the resonance, a simulation of
Equations (77)–(81) is done for selected choices of scale
parameter α. For each simulation, the quotient

( ) ∣ ∣ ∣ ( )∣
∣ ∣

( )

( )

º
L

   t
C t

C I
t t, 0 1 for all 0,

85

312 1
2

123

where I is defined in Equation (82), is plotted over a long time
range (about 1524 yr in this work), and its maximum value over
that time range is recorded, giving the so-called efficiency

( ) ( )a º  tmaxt . Plots of ( ) t for selected values of the scale
parameter (α= 0.45, 0.55, and 0.70) are shown in Figure 9,
and a plot of efficiency ( )a over an extended range
0.1�α�14.0 is shown in Figure 10. Remarkably, the peak
of efficiency at α=0.55 gives 34% efficiency, significantly
larger than the calculated efficiency at unfeasibly higher
amplitudes α ? 1. The time series plotted in Figure 9 show
three timescales: a fast one corresponding to the typical
nonlinear timescale of the order of 10 yr, an intermediate one
corresponding to the envelopes’ widths of the order of 100 yr,
and a slow one corresponding to the distance between the
envelopes, which can vary between 100 and 1000 yr. as we
could measure in our extended sweep over values of α between
0.1 and 14. The energy share of this long time range, as a

function of α, has a marked peak in the vicinity of the peak at
α=0.55 and also in the vicinity of the transition point at
α=3.40 (figure not shown). These low-frequency peaks
provide evidence that precession resonance is the mechanism
behind the observed strong energy transfers toward zonal
modes.

Appendix D
Evaluating the Damping Coefficients

Due to the fact that the dissipation coefficients are different
for the velocity and magnetic fields, we have to project the
resulting effects onto the eigenvectors corresponding to each
wave mode in order to obtain the dissipation coefficients.
Consider an equation for a freely decaying vector field,

( )¶
¶

= V V
t

, 86

where

⎡
⎣⎢

⎤
⎦⎥ ( )y= V

A
87

2

and the linear dissipation operator is given by

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )n
h

=
 

 


0

0
. 88

2 2

2 2

As described before, in the equations above, ν and η are the
coefficients of viscous and magnetic diffusivity, respectively.

Figure 10. Solid curve: efficiency ( )a , calculated over a time evolution of 1524 yr, for a wide range of the scale parameter [ ]a Î 0.1, 14.0 . This range is shown in
log scale to aid visualization. The highest efficiency (34%) is attained at α=0.55, significantly higher than the efficiencies attained at large amplitudes α ? 1.
Vertical markers: selected values of α=(0.45, 0.55, 0.70) used for Figure 9.

16

The Astrophysical Journal, 887:1 (17pp), 2019 December 10 Raphaldini et al.



In order to obtain the spectral amplitude equations associated
with the freely decaying vector field, one multiplies the first
component equation by ψ and the second by ∇2A and
integrates by parts, obtaining in the spectral space the following
equation for the amplitudes Λj:

( )å
L

= L
d

dt
, 89

j

i
ij i

where i, j denote the particular eigenmode, characterized by a
spherical harmonic (m, n) and one of the mode types (slow
magnetic or fast hydrodynamic branch). Because of the
orthogonality relations of the spherical harmonics, a given
mode can be influenced only by itself and the corresponding
mode with the same wavenumber but in the opposite branch
(other type of wave), since the nonlinear interaction of one
mode with another with the same wavenumber is forbidden by
the Ellsaesser rules (Ellsaesser 1966). Therefore, we consider
only diagonal interactions, whose coefficients are given by
Equation (41).
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