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Abstract

Recent Ly« forest tomography measurements of the intergalactic medium (IGM) have revealed a wealth of cosmic
structures at high redshift (z ~2.5). In this work, we present the Tomographic Absorption Reconstruction and
Density Inference Scheme (TARDIS), a new chronocosmographic analysis tool for understanding the formation
and evolution of these observed structures. We use maximum likelihood techniques with a fast nonlinear
gravitational model to reconstruct the initial density field of the observed regions. We find that TARDIS allows
accurate reconstruction of smaller-scale structures than standard Wiener-filtering techniques. Applying this
technique to mock Ly« forest data sets that simulate ongoing and future surveys such as CLAMATO, Subaru PFS,
or the ELTs, we are able to infer the underlying matter density field at observed redshift and classify the cosmic
web structures. We find good agreement with the underlying truth in both the characteristic eigenvalues and
eigenvectors of the pseudo-deformation tensor, with the eigenvalues inferred from 30 m class telescopes correlated
at r = 0.95 relative to the truth. As an output of this method, we are able to further evolve the inferred structures to
late time (z = 0) and also track the trajectories of coeval z = 2.5 galaxies to their z = 0 cosmic web environments.
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1. Introduction

A major goal of modern astrophysics is to understand how
galaxies form and evolve from initial density fluctuations to the
current day. Over the past few decades, it has become
increasingly clear that the surrounding large-scale structures
around galaxies play a critical role in their formation,
morphology, and evolution (Dressler 1980; Kauffmann et al.
2004). There has also been new theoretical understanding of
how these large-scale dark matter structures evolve, from
both an analytical approach and numerical simulations (see
Conselice 2014, for an overview). However, our understanding
of the small-scale processes driving galaxy evolution remains
poor, with many competing models (Conselice 2014; Naab &
Ostriker 2017). Part of the challenge lies in the fact that most
observations linking galaxy evolution and large-scale structure
are at low redshifts, whereas most of the galaxy and star
formation in the universe peaked at the so-called “Cosmic
Noon” epoch at z ~ 1.5-3 (Madau & Dickinson 2014), which
remains out of reach of most large-scale structure surveys.

There are many indications of the interconnected nature
of cosmic structure and galactic evolution at high redshift.
Numerous studies have found that low-redshift galaxies living
in cluster environments have lower star formation rates and
significantly older stellar ages than those in the field (Wake
et al. 2005; Skibba et al. 2009). This indicates that these
regions underwent significant star formation and quenching
at high redshift (z>1.5; Tran et al. 2010). This is further
supported by simulation work showing that protoclusters
produce roughly half of their stellar content at 2 < z < 4 and
are therefore an important contribution to the overall cosmic
star formation rate (Chiang et al. 2017). Beyond protoclusters,
there is evidence to suggest that star formation properties may

further depend on where the galaxy is first formed in the cluster
or falls in along filamentary structure (Porter et al. 2008).
Similarly, hydrodynamical simulations (Dubois et al. 2014)
have suggested that the spin of galaxies may depend on the
filament orientation, with simulated red and blue galaxies
aligning perpendicular and parallel to the filament, respectively.
Very few data are available tracing these cosmic structures at
high redshift, but next-generation surveys will provide the
depth over sufficient sky coverage to better constrain these
astrophysical processes (Kartaltepe et al. 2019; Overzier &
Kashikawa 2019).

Understanding these complex relationships between baryo-
nic properties and dark matter in the context of the overall
large-scale structure environment is not only useful in
modeling galaxy formation but also crucial in exploiting
galaxies as biased tracers of large-scale structure for cosmo-
logical constraints (Desjacques et al. 2018). The relationships
between cosmic web structures and bias have been explored in
the case of tidal shear bias (Baldauf et al. 2012) and, more
recently, assembly bias (Ramakrishnan et al. 2019). Quantify-
ing the sources of bias will be necessary when extending
galaxy clustering surveys into the nonlinear regime where the
particulars of the cosmic web may play a role (Alam et al.
2019) or in cosmic shear surveys where intrinsic alignments of
galaxies will contribute substantial systematic uncertainty to
precision cosmological measurements (Troxel & Ishak 2015).

So far, most studies of the cosmic web have used optically
selected galaxies from spectroscopic redshift surveys as a tracer
of the cosmic web. As a high number density (and therefore
high spectroscopic sampling rate) is necessary for this sort
of survey, this technique becomes increasingly expensive at
higher redshift. The current state-of-the-art galaxy survey
probing the high-redshift cosmic web is the VIPERS survey


https://orcid.org/0000-0001-7832-5372
https://orcid.org/0000-0001-7832-5372
https://orcid.org/0000-0001-7832-5372
https://orcid.org/0000-0001-9299-5719
https://orcid.org/0000-0001-9299-5719
https://orcid.org/0000-0001-9299-5719
https://orcid.org/0000-0001-9912-5070
https://orcid.org/0000-0001-9912-5070
https://orcid.org/0000-0001-9912-5070
https://orcid.org/0000-0003-2183-7021
https://orcid.org/0000-0003-2183-7021
https://orcid.org/0000-0003-2183-7021
mailto:bhorowitz@berkeley.edu
https://doi.org/10.3847/1538-4357/ab4d4c
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab4d4c&domain=pdf&date_stamp=2019-12-11
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab4d4c&domain=pdf&date_stamp=2019-12-11

THE ASTROPHYSICAL JOURNAL, 887:61 (16pp), 2019 December 10

(Guzzo et al. 2014) on the Very Large Telescope (VLT), which
has obtained redshifts for 100,000 galaxies over 24 deg” as the
largest-ever spectroscopic campaign on that facility. This
enabled a cosmic web analysis in the redshift range 0.4 < z <
1.0 (Malavasi et al. 2017), which suggested segregation of
massive galaxies toward filaments already at this redshift. Over
the next few years, new, massively multiplexed fiber spectro-
graphs on 8m class telescopes, such as VLT-MOONS
(Cirasuolo et al. 2014) and Subaru Prime Focus Spectrograph
(PFS; Takada et al. 2014), will allow such high sampling rate
galaxy surveys to push to z ~ 1.5, but they would be prohibitively
expensive at the “Cosmic Noon” epoch of z ~ 2-3.

In recent years, however, intergalactic medium (IGM)
tomography (Pichon et al. 2001; Caucci et al. 2008; Lee
et al. 2014; Stark et al. 2015) of the hydrogen Ly« forest has
provided a complementary approach to mapping high-redshift
large-scale structure. This technique uses dense configurations
of closely spaced star-forming galaxies, in addition to quasars,
as background sources to probe the three-dimensional (3D)
structure of the optically thin IGM gas at z > 2 on scales of
several comoving Mpc. The ongoing COSMOS Lya Mapping
and Tomographic Observations (CLAMATO) survey is the
first observational program to implement IGM tomography and
now has 240 sight lines covering an ~600 arcmin® footprint
within the COSMOS field, yielding a 3D tomographic map of
the 2.05 < z < 2.55 Lya forest (Lee et al. 2018). A number of
z ~ 2.3 cosmic structures have already been detected in the
CLAMATO data, including protoclusters (Lee et al. 2016) and
cosmic voids (Krolewski et al. 2018).

In the coming years, a number of next-generation spectro-
scopic surveys will radically increase the observational
resources available for IGM tomography, including the Subaru
PFS and Maunakea Spectroscopic Explorer (McConnachie
et al. 2016). These telescopes will offer multiplex factors of
several thousand over ~1 deg” fields of view, allowing several
times the volume of the current CLAMATO data to be
observed within a single night. Meanwhile, with far sparser
sight-line number density but significantly larger sky coverage,
the Dark Energy Spectroscopic Instrument (DESI; Levi et al.
2013) could be another interesting platform for Lya forest
tomography to probe large-scale overdensities. Farther into the
future, the 30 m class facilities, such as the Thirty Meter
Telescope (TMT; Skidmore et al. 2015), Giant Magellan
Telescope (GMT; Johns et al. 2012), and European Extremely
Large Telescope (EELT; Evans et al. 2014), will have smaller
fields of view but dramatically improved sensitivity for faint
background sources at much greater sight-line densities that
can probe spatial scales of ~1 cMpc and below. The need for
accurate modeling of the formation and evolution of galaxies
and galaxy clusters increases in order to maximize the science
return of these facilities.

The current standard procedure for IGM tomography
analysis is to create a Wiener-filtered absorption map from
the observed Ly« absorption features (Pichon et al. 2001;
Caucci et al. 2008; Lee et al. 2014). This absorption field can
then be related to the underlying matter density through
the fluctuating Gunn—Peterson approximation (FGPA). This
Wiener filtering does not explicitly include information about
the physical processes of the system and could, in an extreme
case, lead to inferred matter distributions that cannot arise from
gravitational evolution. In this work, we implement a different
approach, finding the maximum a posteriori initial density field
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that gives rise to the observed density field, often known as a
“constrained realization.” This will constrain the transmitted
flux® field to those that are likely to arise from gravitational
evolution, providing a more accurate reconstruction at z = 2.5.
This epoch is particularly amenable to this technique, since
the observed structures are only mildly nonlinear and have
not yet undergone shell crossing. This will yield not only
information on the underlying dark matter density field but
also velocity information that allows us to deconvolve redshift-
and real-space quantities (see Nusser & Haehnelt 1999 for a
reconstruction method applied to 1D quasar Ly« forest sight
lines and Pichon et al. 2001 for a full 3D convolution). This
velocity information can also help inform the astrophysical
processes occurring in the region; for example, combining the
flux information, matter velocity information, and a galaxy
catalog will provide insights into galaxy formation environ-
mental dependence. In addition, since we have the z = 2.5
matter density and velocities, we are able to further evolve our
field to z =0 to infer the late-time fate of the observed
structures.

Reconstructing the initial density field has additional
advantages beyond possible improvements in late-time recon-
struction. As there is currently no evidence for primordial non-
Gaussianity (Planck Collaboration et al. 2018), the power
spectrum of the initial density modes should provide a lossless
statistic. The entire family of higher-order correlations (such as
three-point functions, density peak counts, voids, topological
measures, etc.) arises due to gravitational evolution of a density
field described by a single power spectrum. In the case of
galaxy large-scale structure surveys, there has already been
work toward performing this optimal reconstruction (Seljak
et al. 2017). As Lya tomography builds up toward cosmolo-
gical volumes, it would be worth exploring the application of
the aforementioned techniques.

In this paper, we apply initial density reconstruction to mock
observations of IGM tomography using the Tomographic
Absorption Reconstruction and Density Inference Scheme
(TARDIS). We overview the formalism in Section 2,
describing the optimization scheme, forward model used, and
measures of the cosmic web. In Section 3, we describe our
mock data sets that simulate Ly tomography observations. In
Section 4 we describe our results, and we discuss next steps in
Section 5.

2. Methodology

In order to implement our scheme to go from observed data
to the system initial conditions, we need (a) a dynamic forward
model (FastPM), (b) an absorption model (FGPA), (c) mapping
from the field to data space (flux skewers), and (d) a noise
model. In this section, we describe each component of our
model.

2.1. Modeling

Here we summarize the optimization technique and
standardize notation. For a more complete description, see
Seljak (1998), Simon et al. (2009), Seljak et al. (2017), and
Horowitz et al. (2019).

We measure N skewers of flux, assuming perfect identifica-
tion of the continuum spectra each of length L, and stack those

5 It is a mild misnomer to refer to the Ly« transmission as a “flux,” but in this
paper, we use both terms interchangeably.
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into a full data vector, d, of total dimension N x L. This data
vector will depend on the initial conditions we wish to estimate
at a certain resolution M, s, the Ly« absorption model, and a
noise term 7, which we choose to have the same dimension as
the data, i.e.,

d = R(s) + n, (1

where R: M3 — N x L is the (nonlinear) response operator
composed of a forward operator and a skewer-selector
function. The Gaussian information is contained in covariance
matrices, § = (ss*) and N = (nn'), for the estimated signal
and noise components, which are assumed to be uncorrelated
with each other, i.e., (R(R(s))") = 0. In this work, we are
interested in maximizing the likelihood of some underlying
signal given the data. The generic likelihood function can be
written as

L(s|d) = Q) N+M/2 det (SN)~1/2

X exp[—%s*S‘ls +(d — R@s)'/N'(d — R(s))], )

where we assume the signal covariance S around some
fiducial power spectra. The exponential in this likelihood
can be interpreted as the sum of a prior term (s"S~'s) and a
data-dependent term ((d — R(s)N~'(d — R(s))), with the
prefactor as a normalization term. Note that the minimum
variance solution for the signal field can be found by
minimizing,

x2=5"S"Is + (d — R(s))/N-'(d — R(s)), 3)

with respect to s. Working in quadratic order around some
fixed s,,, we have

X2 = X2+ 28(s — sw) + (s — Sw)D(s — sw), 4
with gradient function
2
- %% — S5y — RN\ — R(sw)  (5)
and curvature term6
1 0%x?
=-——=8"+R'NR 6
2 OsOs ©)

Calculation of the derivative term R’ requires calculation with
respect to every initial mode. We use an automated
differentiation framework in Appendix B of Feng et al.
(2018) to calculate the Jacobian products of our evolution
operator without running additional simulations. This avoids
running additional involved simulations with respect to every
mode, which would be prohibitively costly.

2.2. Optimization

As each iteration of the chain requires running a PM
simulation, it is important to minimize computational time.
While others have used Hamiltonian Markov Chain Monte
Carlo algorithms to find fast reconstructions for galaxy surveys
(see Jasche & Wandelt 2013; Wang et al. 2014, 2016a), in
this work, we are instead finding the most likely map

6 Note that we drop the R” term, as it fluctuates with mean zero and does not
appreciably affect the optimization.
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reconstruction. We therefore use a limited-memory Broyden—
Fletcher—Goldfarb—Shanno (LBFGS) algorithm (Press et al.
2002), a general technique for solving nonlinear optimization
problems. Rather than sampling over the entire parameter
space, LBFGS takes a quasi-Newtonian approach; i.e., it is
similar to the standard Newton—Ralphson method, but rather
than calculating the inverse of the entire Hessian (a very large
matrix for a density field on the scales of interest), it iteratively
updates a pseudo-Hessian as the function is being optimized.

Quasi-Newtonian methods, like LBFGS, are only guaranteed
to find extrema for convex optimization problems. For the case
of large-scale structure, it was demonstrated that the posterior
surface is multimodal at the smallest scales but not modes
probed by next-generation large-scale structure surveys (Feng
et al. 2018). This optimization technique was previously
implemented for the case of cosmological shear measurements
and cosmic microwave background reconstruction, finding fast
numerical conversion even in very high dimensional parameter
space (Horowitz et al. 2019), as well as in dark matter—only
models (Seljak et al. 2017; Feng et al. 2018).

Our implementation is based on the vmad framework,’ an
extension of the abopt framework used to perform similar
reconstructions from late-time galaxy fields (Modi et al. 2018).
This framework allows very fast reconstruction convergence;
for the cases studied in this work, each reconstruction took
approximately 5 CPU hr.

2.3. Response Function and Forward Model

Optimization over the initial density skewers requires
defining a differential forward model that will allow us to
define a x* problem as in Equation (3) and gradient function as
in Equation (5). This procedure is summarized in Figure 1.

2.3.1. Forward Evolution

Following the work of Feng et al. (2018), we first use
Lagrangian perturbation theory (LPT) to evolve the initial
conditions while the field is still almost entirely linear. We do
this until z = 100.0, at which point we then use five steps of
FastPM (Feng et al. 2016)® to evolve until redshift z = 2.5.

There are fundamental limitations due to using a particle
mesh framework with limited time steps and constraints
imposed by the speed requirements for optimization. As
discussed in Feng et al. (2016) and Dai et al. (2018), halos
are not fully virialized when using these methods. This will not
affect our ability to reconstruct structures on >1/4"' Mpc
scales relevant for current and upcoming surveys. Similarly, we
use a particle resolution of 128> for our reconstructions to allow
fast optimization.

We use the z = 2.5 particle positions to generate a density
field and infer the hydrogen Ly« optical depth using the FGPA,
with T = Ty(p/p)"~" with slope v = 1.6 (Lee et al. 2015).
Note that we calculate the optical depth first, which is then
redshift space—distorted using the inferred velocity field. Then
we compute the flux F = exp(—7) and select lines of sight
matching the positions of the mock observations. The skewers
are then smoothed with a o = 1.0 Mpc/h Gaussian filter to
imitate spectrographic smoothing; this is a conservative
estimate for upcoming surveys.

7 https://github.com /rainwoodman /vmad

& htps: //github.com/rainwoodman /fastpm
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Table 1
Mock Data Sets for Reconstructions
Name N-body LOS Separation LOS Density S /onin S /DNmRX Description
Code (h~" Mpc) (deg™) AN A"
T-TomoDESI TreePM 3.7 363 1.4 4.0 Dedicated survey with DESI spectrograph (4 m)
T-CLA/PFS TreePM 2.4 863 1.4 10.0 Survey with 8-10 m class telescopes
T-30+T TreePM 1.0 4970 2.8 10.0 Survey with 30 m class telescopes
F-CLA/PFS FastPM 24 863 1.4 10.0 Same as T-CLA/PFS but using FastPM
Table 2
Cosmic Web Recovery at z = 2.5 (Eulerian Comparison)
Mock Data Pearson Coefficients Volume Overlap (%)
A Ao A3 Node Filament Sheet Void
T-TomoDEST 0.62 0.58 0.66 28 51 58 47
T-CLA/PFS 0.78 0.75 0.77 45 59 67 67
T-30+T 0.94 0.94 0.95 74 80 82 81
2.3.2. Overview of Forward Model detailed discussion with respect to observational strategy. The
1. Initialize a Gaussian random field (the signal field). CLAMAT%I iﬁwle(y S‘ieflet al. 20;}8)’ I curre?tly
2. Evolve field forward to z = 2.5 with FastPM. ‘?%ﬂ%WM:ebT ‘”Wﬁ%@”?i??wnwmmwﬁ
3. Use FGPA to calculate a real-space Lya optical depth. ? . - ¢ of %C 16 © dweS n t51g 1rt1es Aa féMovter a Smﬁ
4. Use the line-of-sight velocity field to shift the Ly« optical ootprint- of 1. eg” at present). An omography

depth to redshift space.

5. Exponentiate the redshift-space optical depth field to get
the transmitted flux field.

6. Select skewer sight lines from the redshift-space flux
field.

7. Convolve skewers with Gaussian spectrograph smoothing.

3. Mock Data Sets

While the FastPM code provides a rapid convergence toward
the underlying density field within the TARDIS framework, to
rigorously test our reconstruction, we apply the formalism to
mock data generated from well-characterized, large-volume,
high-resolution N-body simulations. We therefore use a
simulation volume run with TreePM (White 2002; White
et al. 2010), which has been used for other work on Ly« forest
tomography (Stark et al. 2015; Krolewski et al. 2018), This
simulation uses 2560° particles in a box with 256 4~ ' Mpc
along each dimension, with cosmological parameters (2, =
0.31, Q,h* = 0.022, h = 0.677, ny = 0.9611, and o5 = 0.83.
The initial conditions are generated using second-order LPT to
Zic = 150 and then further evolved using the TreePM code. The
output was taken at z = 2.5 and O for comparison, and a
7z = 2.5 Lya absorption field was generated using the FGPA
with Ty = 2.0 x 10* and v = 1.6.

We generated mock skewers from (64 A~ ' Mpc)® subvo-
lumes of the TreePM simulation with different survey
parameters to mimic various ongoing and upcoming IGM
tomography surveys; these are summarized in Table 2. The
most important survey parameter is the mean sight-line
separation, or, equivalently, the areal density of background
sources on the sky. This is typically set by the overall
sensitivity of the telescope/instrument combination and desired
integration time, but in this work, we simply quote the sight-
line separation and minimal signal-to-noise ratio (S/N) for each
survey; we refer the reader to Lee et al. (2014) for a more

program is currently being planned for the upcoming PFS
(Sugai et al. 2015), which should achieve comparable spatial
samfling to CLAMATO but over a much larger area (~15
deg”). Further into the 2020s, 30 m class telescopes such as the
TMT, ELT, and GMT will allow much greater sight-line
densities by observing fainter background sources. While the
exact parameters of future IGM tomography surveys on TMTs
will depend on instruments that are largely still under early
development, for now we assume a 1A 'Mpc sight-line
separation. We also study a hypothetical dedicated IGM
tomography program carried out with the DESI spectrograph,
which is currently being installed on the 4 m Mayall telescope
(Levi et al. 2013). Note that this is not the quasar Ly« forest
survey currently being planned as part of the DESI cosmology
program, which, at only ~50-60 deg 2, is far too sparse for
cosmic web analysis. While the DESI instrument offers 5000
fibers over a 7.5 deg2 field of view, we assume that 10% of the
fibers will be dedicated to sky subtraction and a 1.7 x overhead
factor in background sources will be targeted to maintain the
specified sight-line density over a finite redshift range of
6z = 0.3 (Lee et al. 2014). This implies a mean sight-line
separation of 3.7 ' Mpc for a dedicated DESI tomography
program.

For pixel noise, we assume Gaussian random noise that
varies among different skewers but is constant along each
skewer. To simulate a realistic distribution of skewer S/N, we
follow the prescriptions in Stark et al. (2015) and Krolewski
et al. (2018) and draw the individual skewers’ S/Ns from a
power-law distribution with minimum value S/N.;, (.e.,
dnyes/dS/N o< S/N™) and spectral amplitude « = 2.7. The
S/Nuin is the same for both the DESI and CLAMATO/PFS
mocks, since it reflects the actual minimal S/N in the real
CLAMATO data, but for 30m class telescopes, Lee et al.
(2014) found that the S/N needs to be increased, as the
tomographic reconstruction is no longer limited by the shot
noise from finite skewer sampling. To be conservative, we also
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Table 3
Cosmic Web Recovery at z = 0 (Lagrangian Comparison)

Pearson Coefficients

Volume Overlap (%)

Mock Data

At Ao A3 Node Filament Sheet Void
T-TomoDEST 0.58 0.40 0.34 20 42 54 31
T-CLA/PFS 0.70 0.54 0.47 41 50 54 37
T-30+T 0.82 0.67 0.54 48 55 62 46

impose a maximal S/N for all mock data sets (Lee et al. 2018),
as specified in Table 1.

In addition to the random pixel noise, we add continuum
error to account for the difficulty in identifying the intrinsic
quasar or galaxy continuum. The ability to estimate the
continuum is dependent on the S/N of the skewers, and we
apply the fitted continuum error distribution of Krolewski et al.
(2018) to our mock skewers. In particular, we take our
observed flux to be

— F;im
146

where 6, is taken from an underlying Gaussian distribution with
width o, depending on S/N along each skewer as

O, = 0205 + 0.015, ®)

S/N

where the constants are fitted from data from the CLAMATO
field. While we add continuum errors to our mock spectra, we
do not directly model continuum errors in TARDIS. This could
be included as an off-diagonal term in the covariance matrix in
future work.

In addition to the TreePM run, we have also generated mock
skewers from FastPM using the exact same technique and
parameters as in our forward model. This serves to isolate effects
caused by known limitations of FastPM to resolve small-scale
halo properties, as well as provide a tool for rapid consistency
checks. These are applied toward the discussions regarding the
code convergence in Appendix A and the method’s sensitivity to
astrophysical assumptions in Appendix B.

)

Fobs

4. Results

We apply the TARDIS method, described in Section 2, to the
mock data set generated as described in Section 3. Broadly,
we are interested in both how well we reconstruct cosmic
structures at the observed redshift (z =2.5) and the late-time
(z=0) fate of those structures. TARDIS solves for the initial
density fluctuations within the volume, which one can then use
to initialize a simulation using any cosmological N-body or
hydrodynamical code to study the cosmic evolution of the
large-scale structure realization. For convenience, however, in
this paper, we continue to use FastPM to study the gravitational
evolution of the TARDIS realizations at both z = 2.5 and 0.
The z =2.5 field is simply the best-fit TARDIS solution,
whereas to get to z = 0, we evolve FastPM by another five
steps. We then compare the resulting fields with the “truth”
from the fiducial TreePM simulation volume.

Examples of reconstructed fields for initial density, z = 2.5
matter density and Ly« flux, and line-of-sight velocity and
z = 0 matter density for T-CLA/PFS are shown in Figure 2.
In comparison with the “true” fields, there is a strikingly good
recovery of the overall filamentary backbone of the z = 2.5

matter density field, as well as the overall distribution of the
velocity field. However, the TARDIS reconstruction appears to
underestimate the overall amplitude of the density field, with
less prominent density peaks in both the initial conditions and
z = 2.5 matter density. As expected, the underestimated matter
power propagates through to the evolved density field at z = 0,
where the density peaks in the reconstruction are much less
prominent than the true underlying density.

The underestimated matter amplitude appears to be a result
of the reconstruction method and can be seen when we
compare the reconstructed initial fluctuation power spectrum
with that used to generate the “true” TreePM simulation
volume (Figure 3). There is a shortfall in the recovered power
in all of the mock reconstructions, especially on scales below
the mean sight-line density of the mock data, but also on larger
scales. This gets worse with the reduced sight-line density
of the T-TomoDESI reconstruction, while conversely, the
improved sight-line sampling of the T-30+T mock allows a
better job of recovering the true power spectrum, although
there is still a shortfall at all scales. This is possibly due to the
fact that the Ly« forest absorption blends and saturates in
matter overdensities. In particular, at a fixed noise level, the
Ly« forest features have a higher density resolution at lower
absorption levels than at higher absorption levels due to the
exponential FGPA mapping. For example, the optimization
algorithm can distinguish between a 1o and 20 overdensity at
higher significance than a 100 and 110 overdensity at a given
flux noise level. While it might be possible to correct for this
reduced power in the initial density fluctuations, this is a
nontrivial process that we defer to an upcoming paper that will
focus on modeling galaxy protoclusters within the TARDIS
framework. It is also possible to adjust for this nonlinear noise
bias at the power-spectrum level within a response formalism
(Seljak et al. 2017; Horowitz et al. 2019).

Nevertheless, TARDIS appears to do a reasonable job in
recovering the moderate-density cosmic web as seen in
Figure 2. We thus focus on the large-scale cosmic web and
compare the performance of TARDIS across cosmic time.

4.1. Classification of the Cosmic Web

For quantitative comparison of the large-scale structure
recovery in TARDIS, we use the deformation tensor cosmic
web classification of Krolewski et al. (2017) and described in
Lee & White (2016), which was inspired by Bond et al. (1996),
Hahn et al. (2007), and Forero-Romero et al. (2009). While
there exist other cosmic web classification algorithms (see
summary in Cautun et al. 2014), the deformation tensor
approach has a strong physical interpretation within the
Zel’dovich approximation (Zel’dovich 1970) and allows easy
comparison to previous work in the context of Lya forest
tomography. However, in contrast to Lee & White (2016) and
Krolewski et al. (2017), who measured the eigenvalues and
eigenvectors of Wiener-filtered maps of the Ly« transmitted
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Figure 1. Schematic illustration of our forward model (see Section 2.3.2). The underlying field we are optimizing for is the initial matter density field (left). The output
of our forward model is the Lya flux skewers probing the observational volume at the same positions as the data.
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Figure 2. The reconstructions of various recovered quantities for the F~CLA/PFS mock data set, smoothed at 2 4~ ' Mpc, are shown on the bottom row. The true
corresponding fields from the FastPM simulation are shown on the top. In all panels, we project along a 5 h~' Mpc slice. The region outside the solid blue box is
masked in our analysis, while the dotted lines are merely to guide the eye. We find that the large-scale features are qualitatively captured well in the reconstructions.

flux, in this work, we directly measure the eigenvalues and A are filaments, one value above )y, is a sheet, and zero values
eigenvectors of the dark matter fields reconstructed with above My, are voids. The deformation tensor, Dy, is defined as
TARDIS, which have first been smoothed with an R = the Hessian of the gravitational potential, ®, i.e.,

2 h~ " Mpc Gaussian kernel. 92D
The eigenvectors and eigenvalues of the deformation tensor i = ——,
relate directly to the flow of matter around that point in space; 0x; 0x;
matter collapses along the axis of the eigenvector when the
associated eigenvalue is positive and expands when it is
negative. Points with three eigenvalues above some nonzero ok
threshold value )\, (as in Forero-Romero et al. 2009) are nodes D. = 7 (10)
(roughly corresponding to (proto)clusters), two values above

©)

or, equivalently, in Fourier space in terms of the density field,
Or, as
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This tensor is then diagonalized to obtain the eigenvalues é;, é5,
and é; at each point on our spatial grid, ordered such that their
corresponding eigenvalues are A\; > A\, > A3 (i.e., to demand
that collapse first occurs along é;). Note that one could use the
velocity field from the reconstruction itself to determine the
flow at each point (e.g., Libeskind et al. 2013; Pahwa et al.
2016) instead of relying on the Zel’dovich approximation used
in the classification here. We use the deformation tensor in
order to stay consistent with past IGM tomography work (Lee
& White 2016; Krolewski et al. 2017). Cosmic web directions
for our reconstructed field are thus defined by the eigenvectors
with associated eigenvalues used to classify the cosmic web.
We follow Lee & White (2016) and Krolewski et al. (2017)
and define our threshhold value )\; for each simulated field
such that the voids occupy 21% of the total volume at z = 2.5
and 27% at z = 0 (inspired by the redshift evolution in Cautun
et al. 2014). The void fraction is somewhat arbitrary in the
analysis as long as it is consistent between the mock
reconstructions and true density field used for comparison.

4.2. Matter/Flux Density at z ~ 2.5

We compare the recovery of z = 2.5 Lya flux to previously
standard Wiener-filtering techniques. As we are assuming the
FGPA, this reconstructed flux can be mapped directly to the
density field. While past work on Wiener-filtered IGM
tomographic maps (Caucci et al. 2008; Lee et al. 2018)
smoothed the field on 1.4x the mean sight-line spacing, for
these comparisons, we smooth the respective matter fields with
ao = 2h " Mpc Gaussian kernel. The smaller smoothing scale
is appropriate for our work because our method should be
better able to infer nonlinear and semilinear structure between
sight lines. For all plots, we treat the field in real space (without
redshift-space distortions), since our optimization is over the
initial real-space density field.

The reconstructed matter density fields from the various
mock IGM tomography surveys (summarized in Table 2) are
shown in the first row of Figure 4 in comparison with the
true density field from the TreePM simulation. In all cases, they
are smoothed with an R = 24 ' Mpc Gaussian kernel. On
large scales, the reconstructed density fields are well matched
in terms of voids and sheets, but CLAMATO/PFS data miss
out on some prominent filamentary structures and nodes as a
consequence of the underestimated matter amplitude. The 30
+ m telescopes, on the other hand, yield a matter density
reconstruction with excellent fidelity over the entire volume.

We next calculate the characteristic eigenvalues of the
deformation tensor, as described in Section 4.1, on the
smoothed matter density fields. The scatter of the eigenvalues
relative to the true underlying eigenvalues is plotted in
Figure 6. This reflects how well we recover the amplitude of
curvature of the matter density field along each cosmic web
direction. The distribution of all three eigenvalues is unbiased
relative to the truth, albeit with more scatter in the case of the
sparser CLAMATO/PFS reconstruction. We quantify the
agreement in terms of Pearson correlation coefficients, showing
the scatter from a linear trend in Table 2. These show a strong
correlation between the reconstructed and true eigenvalues,
ranging from r = [0.78, 0.75, 0.77] in recovering the three
eigenvalues [\, Ay, A3] for CLAMATO/PFS to the excellent
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Figure 3. Top: power spectra of the reconstructed initial conditions for various
experimental configurations, with the true initial conditions shown for
comparison. Bottom: cross-correlation coefficient, Prr /  Prr Prr, where Pgy
is the cross-power between the true field and reconstructed field, Pgg is the
reconstructed power spectrum, and Pzr is the true power spectrum. As the
number of sight lines and spectral noise improve, power-spectrum reconstruc-
tion improves; however, there remains a residual noise bias for realistic
experiments.

reconstruction of the 30m class telescopes with correlation
coefficients of r = [0.94, 0.94, 0.95].

Next, we classify the each point within the density field as
void, sheet, filament, or node, depending on how many of the
eigenvalues are greater than the threshold value, \; > Ay. In
the true matter density field, we find that [22%, 50%, 25%, 3%]
of the volume is occupied by voids, sheets, filaments, and
nodes, respectively; by construction, the reconstructed matter
fields show similar volume occupation fractions to within
+2%. The volume overlap fractions between cosmic web
classifications in the mock data reconstructions compared to the
true matter field are listed in Table 2; these do not include a
buffer region of 54 ' Mpc near the edge of the volume where
we expect to be contaminated by boundary effects. For the
CLAMATO/PFS mock reconstructions, the volume overlap
fractions are ~60%—62% for the sheets and voids, declining to
32% for the nodes. It is unsurprising that the nodes are more
challenging to recover, since they occupy such a small fraction
(3%) of the overall density field. These numbers are, on the
surface, comparable to those found by Krolewski et al. (2017,
their Table 1) for a similar CLAMATO-like mock data set but
in fact somewhat better, since we are probing the matter field
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z = 2.5 density field for an xy-slice. Fields have been smoothed by an R = 2 A~ Mpc Gaussian kernel. Top: matter density. Bottom: classification of cosmic structure.
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Figure 5. Probability density function showing the dot product of the eigenvectors from cosmic web reconstruction vs. the true cosmic web for various experimental
configurations. Here cos @ = 1.0 indicates that the cosmic web structures are oriented the same way, while cosf = 0.0 indicates perpendicular alignment. The
horizontal dashed line indicates the expected distribution for randomly aligned structure. In T-30+T, the recovery of the cosmic web structure is nearly perfect, with

only very slight misalignments, on average.

directly on 2 A" Mpc scales, whereas Krolewski et al. (2017)
were evaluating the Lya transmission field over coarser
(4 =" Mpc) scales in the equivalent case. This improvement
is due to the fact that TARDIS incorporates the physics of
gravitational evolution into its reconstructions, in contrast with
Wiener filtering, which only assumes a correlation function.
The 30 m class reconstruction, as expected, fares even better
thanks to its finer sight-line sampling, with the voids, sheets,
filaments, and nodes overlapping [81%, 82%, 80%, 74%] with
the true matter density cosmic web.

To further illustrate the fidelity of the recovery, Figure 7
shows the confusion matrix, evaluated at all grid points in
our volume, between the true cosmic web from the simulation
and our reconstructions, finding good agreement. Overall,

we find that 80%, 60%, and 53% of the total observed
volume is properly classified for T-30+T, T-CLA/PFS, and
T-TomoDEST, respectively. Allowing misclassification by a
structurally adjacent type (i.e., void to sheet, sheet to void/
filament, filament to sheet/node, and node to filament), the
agreement goes up to 98%, 96%, and 95%, respectively. We
also examine the eigenvector recovery by computing the dot
product between the eigenvectors recovered from the recon-
structions with those at the same Cartesian point in the true
matter density field’; with a good recovery, the recovered
eigenvectors would be well aligned with the true eigenvectors

° These values only include structure in the observed region, excising an
additional buffer of 2 =" Mpc near the survey boundary.
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Figure 7. Confusion matrix for cosmic structures at z = 2.5 in real space showing the reconstructed fraction printed over each cell. For T-30+T, we correctly identify

approximately 80% of the volume.

and lead to dot products of order unity. These are shown in
Figure 5. For [¢, é;, €3], we find average alignment cosine
angles of [0.80, 0.70, 0.80] for T-TomoDEST, [0.87, 0.79,
0.80] for T-CLA/PFS, and [0.96, 0.92, 0.96] for T-30+T.
This is again comparable to the results derived from Wiener-
filtered flux maps in Krolewski et al. (2017) for the
CLAMATO/PFS case but probing smaller scales.

4.3. Matter Density at z = 0

A main motivation for the TARDIS framework is inferring
the late-time fate of structures and constituent galaxies found in
regions observed by Ly« forest tomography. As an output of
our model, we further evolve the particle field to z = 0 in order
to study the reconstruction. We compare this evolved field with
the TreePM “truth” at z = 0. The true underlying field contains
cosmic structures with a mass fraction [0.15, 0.49, 0.31, 0.05]
and volume fraction [0.02, 0.28, 0.48, 0.22] for [nodes,
filaments, sheets, voids], respectively.

Eulerian (real) space provides a qualitative picture of the the
structures reconstructed in this limit. In Figure 9 (top), we show
the matter field and cosmic web reconstructed for different
survey mock data. While they are qualitatively similar, as
described in Section 4.2, the peaks of the z = 2.5 density field

are poorly reconstructed for realistic survey parameters. This
results in significant drift of the Eulerian space structures and
makes point-by-point comparisons difficult. This can be seen in
Figure 9 (bottom), where the qualitative structure is quite
similar, especially for 30+T, but the exact positions of nodes
and filaments are slightly different relative to the true matter
field. This leads to unsatisfactory cosmic web recovery when
evaluated in the same way as z = 2.5.

However, the reconstructions’ cosmic web fidelity at z = 0
is a somewhat abstract concept, since the Eulerian matter
density field is not accessible via any observations. Instead, we
can evaluate the reconstructed field in Lagrange space, i.e.,
tracking the z = 0 environments sampled by test particles
observed at z = 2.5. Since we expect galaxies to act roughly
like test particles in the large-scale gravitational potential, this
provides a direct connection to understanding the late-time fate
of z ~ 2.5 galaxies observed in the same volume as the Ly«
tomography data. We test this by the following. From the
z=12.5 density field reconstructed from the mock data
reconstructions with TARDIS /FastPM, we select a set of test
particles at Eulerian real-space positions [x;25, o5 ;> 2225.i;
track them to their z = 0 Eulerian positions [x;0,i, Y,0.;» Zz0,i)s
and then evaluate their cosmic web eigenvalues and classifica-
tions (on the Eulerian real-space grid). From the TreePM “true”
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Figure 8. Displacement fields from z = 2.5 to 0 for random matched particles
between the TreePM truth and that reconstructed in the mock observed volume.
The underlying z = 0 density field is also shown. TARDIS is able to well
reconstruct the movement and z = 0 environment of test particles identified
at z = 2.5.

matter density field at z = 2.5, we find matching test particles
at the same Eulerian positions [x;s;, ¥,p5 ;5 Z:25,:] and again
track them to their z = 0 positions and environments. This
process is visualized in Figure 8, where we show the
displacement vectors for particles from the reconstructions
versus matched particles from the TreePM simulation evolved
toz=0.

The results of this exercise are shown in the z =10
Lagrangian confusion matrix in Figure 10 and summarized in
Table 3. For CLAMATO/PFS, we are able to successfully
predict the z = 0 environment sampled by the test particles
with ~40%-50% fidelity, while this increases slightly to
~50%—-60% in the case of T-30+T. In both cases, >90% of
the particles are predicted to lie within 1 of the correct cosmic
web classification, with the exception of CLAMATO/PFS
node particles that are misidentified as sheet particles in 15% of
cases. Nonetheless, this demonstrates the remarkable ability of
TARDIS to infer the z = 0 environment of galaxies observed at
z = 2.5 across 10 Gyr of cosmic time.
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5. Conclusion

We present the first use of initial density reconstruction on
densely sampled Ly« forest data sets (often called “IGM
tomography”) and show that by using this technique, we are
able to accurately reconstruct large-scale properties within the
survey volume over a range of scales. In particular, we are able
to recover the characterization and orientation of the cosmic
web at z = 2.5 in terms of the deformation eigenvalues and
eigenvectors assuming mock data that reflect upcoming and
future multiplexed spectroscopic instrumentation. In addition,
we are able to recover the qualitative structure of the observed
structures at late time, z = 0. We have also shown that the
inferred flux maps from TARDIS are more accurate and have
less variance than those from Wiener filtering. Excitingly, we
argue that we would be able to predict the late-time
environments of z ~ 2.5 galaxies that are coeval with our
reconstructed IGM tomography volume. This provides a
promising and direct route to studying galaxies and active
galactic nuclei in the context of their surrounding cosmic
web. For example, we would be able to identify the direct
progenitors of z = 0 filament galaxies and study their z = 2.5
galaxy properties. While we are currently limited by noise
levels and sight-line spacing, in future papers, we will explore
ways to correct for underestimated fluctuation amplitude as a
function of survey parameters.

While only explored indirectly (through z=0 density
reconstruction), a direct product of this technique is the particle
velocity field at z = 2.5, which could have significant uses in
informing astrophysical processes, as well as cosmological
constraints. For example, it could allow accurate estimation of
velocity dispersions in high-redshift protoclusters, which is
currently uncertain due to challenges in disentangling galaxy
peculiar motions from the large-scale Hubble expansion (Wang
et al. 2016b; Cucciati et al. 2018; Topping et al. 2018). More
generally, the velocity field reconstruction extends over the
entire field and could be a useful addition beyond velocity
fields from galaxy redshift-space distortions and kinetic
Sunyaev—Zel’dovich effects (Sugiyama et al. 2017). While
one might hope to use this reconstruction for constraining other
exotic physics (such as using void velocity profiles to provide
constraints on modified gravity (Falck et al. 2018) and neutrino
mass (Massara et al. 2015)), the nature of our forward model
will restrict the reconstructed maps to obey a ACDM
cosmology. If alternative models were implemented efficiently
into an N-body solver, their validity could be tested by
comparing the best-fit likelihood values.

In this work, we have held the astrophysical and cosmolo-
gical parameters constant. A more complete treatment would
require varying these jointly with the underlying field;
however, we view this as unnecessary at this point, since
existing data cover a very limited volume with minimal
cosmological constraining power. For next-generation surveys,
which will greatly expand the footprint covered, it will be
required to jointly vary these parameters as well. Within
the FGPA approximation, the astrophysical parameters are
not a significant limitation, since there are only two global
parameters of interest (Ag, ¥), and our optimization scheme is
fast enough that a naive Markov Chain Monte Carlo sampling
would be sufficient to explore this parameter space. We
explored the sensitivity of the reconstruction with respect to the
absorption model in Appendix B.
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Figure 10. Confusion matrix for cosmic web structures at z = 0 in Lagrange space (i.e., comparing particles with those matched in z = 2.5 positions) shown with the
reconstructed fraction printed over each cell. While structure is not as well classified as at z = 2.5, classifications are approximately correct and tend toward
morphologically similar environments. For comparison, the mass fractions residing in z = 0 nodes, filaments, sheets, and voids are [0.15, 0.49, 0.31, 0.05], respectively.

Our focus in this work is on reconstructing the moderate-
density large-scale structure within the survey volume, and
we demonstrated that we were able to recover qualitative
structure over a range of scales. Going forward, it would be
useful to study how well similar techniques would work
on reconstructing halo-scale (i.e., <1h_1Mpc) structure,
such as stacked halo and void profiles. However, going to
this small-scale regime reconstruction will be limited by the
specific astrophysical processes within the high-density
regions where the FGPA will no longer hold. In particular,
numerical hydrodynamic simulations have shown that there
are significant deviations away from a simple temperature-
density scaling relationship close to halos, in some cases
even showing a turnover of the relationship (Sorini et al. 2018).
It should be possible to extend the formalism proposed in
this work and treat the variations from FGPA with some
additional parameters to be fit for (or marginalized) in this
limit, such as was done for galaxy surveys via a bias expansion

CLAMATO/PFS

11

Predicted

Predicted

(Ata et al. 2015; Kitaura et al. 2016; Jasche & Lavaux 2019).
One could also use grid-based approximation methods for
baryonic effects (such as Dai et al. 2018) to provide a more
precise formation formalism for halo substructure or a more
accurate N-body—based approximation than FGPA (Sorini et al.
2016). It would be a natural extension to test this method on
mock data generated from the NyX hydrodynamic simulations
designed to accurately reproduce Lya absorption physics
(Almgren et al. 2013; Luki¢ et al. 2015). Other nontomographic
techniques have shown great promise in detecting high-redshift
clusters from Lya observations (Cai et al. 2016), including a
detection of a cluster at z = 2.32 (Cai et al. 2017), but these
techniques probe scales of ~10 /4" Mpc.

On the other hand, additional work is needed to make this
reconstruction technique useful for full-scale cosmological
analysis. Directly extracting power-spectrum estimates from
our reconstructed maps suffers from significant noise bias
effects that would make them difficult to apply directly to
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constrain cosmological parameters, as well as mode coupling
effects due to the complexity of our forward model. Using a
response formalism (as in Seljak et al. 2017; Feng et al. 2018;
Horowitz et al. 2019) to estimate band powers would be
straightforward and require O(N) additional optimization runs
to estimate N band powers. However, before using these
reconstructions for cosmological analysis, additional considera-
tions are necessary, such as incorporating light-cone effects
(i.e., evolution) within the survey volume and including
correlated errors within our model. While work in this direction
is ongoing, upcoming and proposed Lya tomography surveys
will cover only a small sky fraction and are unlikely to be
directly competitive with other cosmological surveys.

For future reconstruction efforts, the combination of galaxy
surveys and Lya tomographic mapping will be necessary
in order to probe different redshift ranges with maximum
efficiency. By including the galaxy density field in the
reconstruction, we will be able to measure overdensities with
higher precision than with IGM tomography alone. Further-
more, incorporating baryonic effects from hydrodynamical
simulations can show how different components of the IGM
trace the cosmic web at different redshifts (Martizzi et al.
2018). This will allow a joint understanding of the galaxy and
IGM large-scale structure distribution and how they influence
each other.
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Appendix A
Convergence

An important question with any optimization scheme is the
convergence properties of the procedure. This is particularly
important for nonlinear processes like structure evolution,
where the likelihood surface is non-Gaussian and conceivably
nonconvex. We divide the issue into two questions to explore
in this appendix: how many iterations are necessary for us to be
confident in our reconstruction technique, and how sensitive is
the found solution to the initial optimization starting point? For
both questions, we explore as a function of scale by looking at
the reconstructed transfer function.

It has been shown that in the very low noise limit, the
likelihood surface of possible initial conditions in multimodal,
i.e., gravitational, evolution is a noninjective map from initial
conditions to late-time structure (Feng et al. 2018). However,
this uncertainty is due to the shell-crossing degeneracy, which
is only relevant for small-scale nonlinear structure not observed
by even the optimistic configurations considered in this work.
To study whether or not there is one “true” solution or whether
there exist sufficiently different converged solutions, we
perform the optimization analysis for the same mock catalog
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Figure 11. Transfer function with respect to a well-converged solution as a
function of iteration number. As the iteration number progresses, smaller and
smaller scales converge. In addition, there are larger modes on the order of the
box size that are similarly slow to converge.

with different optimization starting points. In particular, we
randomly choose a wide range of initial white-noise fields with
variance spanning 3 orders of magnitude. We calculate their
transfer functions after 100 iterations versus a fiducial “well-
converged” solution that underwent 500 iteration steps. Up to
the scales of interest for the structures studied in this work,
~1h'Mpc, we find very good agreement between all
different starting points. There are some differences of power
on very large scales, reflective of the poor constraining power
of modes of order the box size. The number density of modes
per uniform bin scales as k%, resulting in significantly more
weight placed on smaller modes, until the window function
(depending on the smoothing scale and sight-line density)
creates a sharp cutoff. If these larger modes are of significant
interest, an adiabatic optimization scheme could be used
wherein the optimization begins first on a smoothed version of
the observed field, and then slowly, small-scale power is
introduced back in by varying the smoothing scale as the
optimization progresses (as done in Feng et al. 2018) or
potentially directly using a multigrid preconditioner technique
(Smith et al. 2007). Utilization of these techniques will likely
be useful when extending this work for cosmological analysis.

The next important consideration is how long our scheme
takes to be fully converged. We plot the transfer function
as a function of the convergence step in Figure 11. The exact
choice of cutoff depends on the scales of interest, but since
we are fundamentally limited in the transverse direction by the
line-of-sight density and the longitudinal direction by the
spectrograph resolution, power above k = 1.0 2#/Mpc is mostly
lost to the smoothing operations on our field. By n = 100, we
find good agreement up to k = 1.0 (h/Mpc), and we use this
criterion as an iteration limit in the main work.

Appendix B
Sensitivity to Cosmology and Absorption Model

In the main body of this work, we have held cosmological
and astrophysical parameters constant for the reconstructions.
Here we briefly explore how wrong assumptions about the
astrophysics or cosmology would bias our late-time den-
sity field.
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Figure 12. Effect of assuming the wrong astrophysical parameters on the z = O structure, both for a slice in real space (top) and the power spectra (bottom). Even

under wrong astrophysical assumptions, we recover similar cosmic structures.

We use a different mock catalog, T-IDEAL, in order to
examine the effects of varying the astrophysical parameters.
This catalog has a constant S/N of 50 along each skewer, no
continuum error, and a sight-line density twice that of T-30
+T. The idea of this superexperiment is to isolate the effects
of the astrophysics from other potential sources of noise in
the reconstruction. We perform our reconstructions assuming
the “truth” astrophysics from our mock catalog, as well as the
wrong the overall flux amplitude, Ay = exp(—171p), and the
density scaling exponent, .

We see the effects of wrong astrophysical assumptions in
Figure 12. Even with rather radically different astrophysical
assumptions, we find similar qualitative features in the late-
time structure. On the power-spectrum level, we find that these
wrong assumptions result primarily in a bias offset from the
true power spectra. In practice, for surveys of the size studied in
this work, it would be easily numerically tractable to sample
over these parameters to perform the late-time reconstruction
or, alternatively, to use Ly« tomography as a constraint on
these parameters.

Appendix C
Comparison to Wiener Filtering

A promising aspect of this initial density reconstruction
technique is that the reconstructed z ~ 2 flux field should be
strictly more accurate than that from direct Wiener filtering of
the skewers. This is because direct Wiener filtering is a purely
statistical process that does not take into account the physical
evolution of the system under gravity, which further constrains
the observed flux field. In this section, we review the Wiener-
filtering technique that we compare our method against. For a
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more general discussion of efficient Wiener filtering and
associated optimal band-power construction, see Seljak (1998)
and Horowitz et al. (2019). For a more through description in
the context of the Ly« forest, see Stark et al. (2015).

As we are trying to reconstruct the optimal map given the
data, we have to take into account the data—data covariance,
Cpp; the map—data covariance, Cyp; and the overall map noise
covariance, N;;. The reconstructed map can then be expressed
in terms of the observed flux, &, as a standard Wiener filter by

Cvp - (Cop + N) L bp. (11)

We approximate the covariance by assuming that N; = n? 0ij
where n; is the pixel noise. This neglects the correlated error
component of the continuum errors, but this is subdominant to
the spectrograph noise and should not appreciably affect our
reconstructed maps. The map—data and data—data covariances
are therefore approximated as

rec __
F =

A.XHZ
21

2
C= 0% exp Ax

212

12)

In order to compare directly to the Wiener filter map, we use
the inferred reconstructed flux map from TARDIS.

We apply the Wiener-filtering algorithm to the T-CLA/PFS
mock catalog and compare along a number of slices to the
TARDIS reconstruction. The results are shown in Figure 13.
Overall, there is good agreement between all maps, with certain
smaller-scale features better reconstructed in the TARDIS maps
than the Wiener-filtered maps.

A well-known feature of the reconstructed maps is the
presence of a bias caused by the presence of noise. We correct
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Figure 13. Comparison of the true field, TARDIS reconstructed field, and Wiener-filtered field for the T-CLA/PFS mock. In the far left panels, we show the
unsmoothed true flux field, with sight lines indicated as blue dots. The blue box indicates the boundaries of the survey, with the blue cross to help aid the eye in
matching structures. We smooth the three rightmost column maps on 2 4~ Mpc and project over a 5 h~" Mpc slice. The recovered flux field is fairly similar between

TARDIS

and the Wiener filter.
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Figure 14. Comparing the flux reconstruction for the T-CLA/PFS mock catalog. For these comparisons, we have taken a central box that is 35 ™' Mpc side length in
order to mitigate potential boundary effects and smoothed the region with a 1.5 h~' Mpc Gaussian. In this plot, we work in redshift space, unlike the other plots in the
paper. (a) Comparison of the corrected fluxes for the Wiener filter map and TARDIS reconstruction vs. the true flux. (b) Scatter plot of the TARDIS reconstructed
corrected flux vs. the true flux. Also shown is the linear fit of the uncorrected flux (dashed gray line), which was linearly transformed to the x = y dotted line. If
interpreted as a flux probability density function, each level surface indicates 0.50 density. After this linear correction, the resulting TARDIS flux has no significant

bias and mildly outperforms a linearly corrected Wiener-filtered map.

for this bias by a linear transformation calibrated from a
separate simulated volume. The effect of this transformation is
shown in Figure 14(b). We show the reconstructed flux error in
Figure 14(a), showing that the TARDIS maps have a smaller
flux error variance than the Wiener-filtered maps.
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