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Abstract

This paper provides the set of Rankine–Hugoniot (R–H) jump conditions for shocks in space and astrophysical
plasmas described by kappa, distributions. The characteristic result is the development of a new R–H condition that
transforms the values of kappa upstream and downstream the shock. The kappa index parameterizes and labels kappa
distributions, and it is necessary for characterizing the thermodynamics of space plasmas. This first approach is
restricted to non-magnetized plasmas, and the whole achievement is derived by following first principles of statistical
mechanics and thermodynamics. The results show that, depending on the shock strength, the kappa indices across the
shock may decrease or increase, indicating cases of shock acceleration or deceleration, respectively.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Space plasmas (1544); Shocks (2086);
Heliosphere (711)

1. Introduction

The Rankine–Hugoniot (R–H) jump conditions transform
the thermodynamic properties of space and astrophysical
plasmas during their passage through shock discontinuities
(Rankine 1870; Hugoniot 1887, 1889). These conditions
describe the relationships between thermodynamic variables
of the plasma flow, such as, density, velocity, temperature, and
magnetic field, on both sides of the shock. These relationships
enable us to link the thermodynamic properties upstream and
downstream of shocks and derive their characteristics, such as
the shock speed and normal angles (e.g., see: Colburn &
Sonett 1966; Zhuang & Russell 1981; Winterhalter et al. 1984;
Szabo 1994; Petrinec & Russel 1997; Owen 2004; Zank et al.
2010; Janvier et al. 2014).

In particular, the R–H conditions connect the upstream and
downstream values of (i) the density n, (ii) the bulk velocity of
the flow V, (iii) the angle of the velocity flow to the shock
normal a, and (iv) the temperature T, based on the following
four conservations:

1. Mass conservation:

=n V a n V acos cos , 1a1 1 1 2 2 2 ( )

2. Momentum conservation (parallel to the shock normal):

+ = +n mV a k T n mV a k Tcos cos , 1b1 1
2 2

1 B 1 2 2
2 2

2 B 2( ) ( ) ( )

3. Momentum conservation (perpendicular to the shock
normal):

=V a V asin sin , 1c1 1 2 2 ( )

4. Energy conservation:

+ + = + +mV d k T mV d k T2 2 , 1d1
2

B 1 2
2

B 2( ) ( ) ( )

where the subscript notation indicates “1” for upstream and “2”
for downstream; m is the particle mass (that is, the proton mass
in this paper); the polytropic index γ is the exponent associated
with a polytropic relationship between pressure—density
µ gP n or density—temperature µ g-n T1 1( ) (e.g., Parker

1963; Chandrasekhar 1967; Totten et al. 1995; Newbury et al.
1997; Kartalev et al. 2006; Nicolaou et al. 2014, 2015); the
polytropic index γ can be written in terms of an effective
dimensionality, d, that is, g = + d1 2 or gº -d 2 1( )
(e.g., Sanderson & Uhrig 1978); thus, µ +P n d1 2 or µn T d 2.
Note: for the adiabatic case (only), the effective d coincides
with the actual dimensionality of particles.
The solutions of the above relationships are the four explicit

expressions of the downstream variables, expressed in terms of
the upstream variables (e.g., Liepmann & Roshko 1957;
Livadiotis 2015a):

=n n R, 2a2 1 · ( )

= - - -V V a R1 cos 1 , 2b2 1
2

1
2· ( ) ( )

=
+ -
+ -

-
T T

d R

d R

1

1
, 2c2 1

1
· ( )

=a R atan tan . 2d2 1· ( )

The above Equations 1(a)–(d) provide also the solution for the
compression ratio (or shock strength), R, that is,

b
=

+

+ +
=R

d

d
R

1

1 1
, or 1, 3

TV
1

2 1( )
( )

where the thermal ratio bTV1 is defined by:

b º
k T

mV a

2

cos
. 4TV

B
2 2

( )

To date, the R–H conditions have been exclusively
developed for plasmas described by the classical Maxwell–
Boltzmann distributions (e.g., Cairns & Grabbe 1994; Zank
et al. 1994, 2010; Livadiotis 2015a). However, space plasmas
are characterized by a non-Maxwellian behavior, typically
manifested by kappa distributions. Indeed, kappa distributions
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have become increasingly widespread across the physics of
space and astrophysical plasmas, describing particles in the
heliosphere, from the solar wind and planetary magnetospheres
to the distant heliospheric boundaries and beyond, to the
interstellar and intergalactic plasmas (Livadiotis 2017; Ch.1).

The origin of kappa distributions in space plasmas comes
from its solid connection with statistical mechanics and
thermodynamics. It has been shown that the most generalized
form of particle distributions that can be assigned with a
temperature, and thus, be consistent with thermodynamics, is
that of kappa distributions (or combinations thereof)
(Livadiotis 2018a, 2018b). The concept of “thermalization” is
the characterization of a particle system residing in any
stationary state assigned by a temperature; in these states, the
particle velocities or energies are stabilized into kappa
distributions.

Kappa distributions are consistent with thermodynamics, but
this fact alone cannot justify the generation and existence of these
distributions. Once a kappa distribution of velocities or energies is
generated by a certain mechanism, the preservation—or not—of
this distribution is a matter of thermodynamics alone. Nevertheless,
there are a number of mechanisms generating kappa distributions
in space plasmas; among others, some important examples are the
following: macroscopic extensivity of entropy (Livadiotis 2018c),
superstatistics (Beck & Cohen 2003; Schwadron et al. 2010; Hanel
et al. 2011; Livadiotis et al. 2016); local correlations among the
particles induced by long-range interactions (Livadiotis &
McComas 2011a); effect of shock waves (Zank et al. 2006);
weak turbulence (Yoon et al. 2006; Yoon 2014, 2019); turbulence
with a diffusion coefficient inversely proportional to velocity (Bian
et al. 2014); effect of pickup ions (Livadiotis & McComas 2011b);
pump acceleration mechanism (Fisk & Gloeckler 2014); polytropic
behavior (Livadiotis 2019a, 2019b, 2019c, 2018d, 2016; Nicolaou
& Livadiotis 2019); and effects of Debye shielding and magnetic
coupling (Livadiotis et al. 2018); for all the above, see Livadiotis
(2017, Chapters 5, 6, 8, 10, 15, 16).

The kappa index is the characteristic parameter that governs
the kappa distributions, and it is necessary for characterizing the
thermodynamics of space plasmas. The physical meaning of
the kappa index is interwoven with the particle correlations; the
stronger the correlations, the smaller the kappa. The largest value
of kappa, i.e., k  ¥, corresponds to the system residing at the
classical thermal equilibrium, described by a Maxwell–Boltz-
mann distribution, and characterized by the absence of any
correlations; on the other hand, the smallest possible kappa value,
k  3

2
, corresponds to the furthest state from classical thermal

equilibrium, a state called anti-equilibrium (Livadiotis &
McComas 2013), and characterized by the highest correlations.
In fact, a simple relationship exists between the correlation
coefficient ρ and the kappa index κ, that is, r k= 3

2
(Livadiotis

& McComas 2011a; Livadiotis 2015b, 2017, Chapter 5; for
particles with d=3 degrees of freedom).

As it was shown (Livadiotis 2018a), the kappa index is a
thermodynamic quantity independent of temperature, where
both the temperature and kappa are primarily defined by the
zeroth law of thermodynamics and the concept of thermal
equilibrium. Thereafter, the kappa index, together with density,
temperature, and pressure, constitute the set of basic thermal
observables for characterizing the thermodynamics of plasmas
described by kappa distributions, such as space and astro-
physical plasmas. It is, then, obvious that the set of R–H
conditions, which is based on classical statistical mechanics

and thermodynamics, needs to be modified to incorporate the
concept of kappa distributions.
The set of R–H conditions incorporating kappa distributions

must keep the mass, momentum, and energy conservations, i.e.,
Equations 1(a)–(d). As it is argued in Livadiotis (2015a), the
statistical averages of mass, momentum, and energy, are
independent of the kappa index, and thus, all kappa indices
(infinite or finite) are physically equivalent for describing the
thermodynamic nature of the plasma. The respective R–H
conditions, corresponding to the conservation of mass,
momentum, and energy, can be equivalently used in particle
systems described either by Maxwell–Boltzmann or kappa
distributions.
Therefore, for space plasmas described by kappa distribu-

tions, (i) the density n, (ii) the bulk velocity of the flow V, (iii)
its angle to the shock normal a, and (iv) the temperature T, are
still given by the standard R–H conditions, given by
Equations 2(a)–(d); even so, the shock strength R is still given
by Equation (3).
What is actually missing is an additional equation that will

connect the kappa value upstream and downstream the shock,
k k= f R;2 1( ). As mentioned by Livadiotis (2015a), “the values
of the kappa index upstream and downstream the shock must be
connected through a new R–H condition, yet to be discovered.”
There were several attempts to resolve the problem of

incorporating kappa distributions in the R–H conditions.
Unfortunately, these were based on temperature misinterpreta-
tions. In the earlier years of the theory of kappa distributions,
there was the impression that the temperature was dependent on
the kappa index, i.e., k k= -T t3

2
[ ( )] · , where t was

interpreted as a temperature-related quantity that remains
invariant for all kappas, frequently called the Maxwellian
temperature. Given such a relationship between temperature
and kappa index, k = -T T T t3

2
( ) ( ), and having already

known the R–H condition for temperature, i.e., Equation 2(c),
then it could be trivially used to develop the R–H condition for
kappa index, i.e., k k = - -T T t T T t2 1 2 1 1 2( ) [ ( )] (e.g., Vogl
et al. 2003). However, the development of the theory the
previous two decades showed that the temperature and kappa
index are both independent thermodynamic parameters (and
that t is depended on both κ and T). (For further details, see:
Livadiotis 2014, 2018a, 2018b, 2018e; see also the book of
kappa distributions, Livadiotis 2017, Chapter 1.)
The paper attempts to develop a new set of R–H conditions

incorporating kappa distributions, which is based on physical
principles and consistent with thermodynamics. Specifically,
the paper constructs the relationship between the upstream and
downstream values of kappa indices, k k= f R;2 1( ), based on
the following physical frameworks: (i) nonextensive statistical
mechanics; (ii) connection of kappa distributions with
statistical mechanics and thermodynamics; and (iii) mechanism
of “superstatistics.” The presented first approach is restricted to
non-magnetized plasmas. In Section 2 we presented the method
followed, which was based on the above physical concepts, in
order to find the R–H condition for the kappa index. The results
of our theoretical analysis are shown in Section 3, while they
are discussed in detailed in Section 4. Finally, Section 5
summarizes the findings of this paper.

2. Method

The presented theoretical analysis is based on the following
theoretical frameworks, (i) nonextensive statistical mechanics

2
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(e.g., Tsallis 1988, 2009; Tsallis et al. 1998); (ii) connection of
kappa distributions with statistical mechanics and thermody-
namics (e.g., Livadiotis & McComas 2009; Livadiotis 2017,
Ch.1; 2018a); and (iii) mechanism of “superstatistics,” that is,
the analysis of a kappa distribution to superposition of
Maxwell–Boltzmann distributions of variant temperatures
(e.g., Beck & Cohen 2003; Schwadron et al. 2010; Hanel
et al. 2011; Livadiotis et al. 2016), in order to develop the
evolution of kappa distributions across a shock, thus deriving
the relationship between the upstream and downstream values
of the kappa index, k k= f R;2 1( ).

Nonextensive statistical mechanics is a generalization of the
classical statistical physical theory of Boltzmann and Gibbs;
among others, it describes particle systems with local
correlations such as space and astrophysical plasmas. The
involved entropy is a mono-parametrical function of the
probability distribution. This entropic parameter q can attain
any value, while q→1 recovers the Boltzmannian entropy and
the Boltzmann–Gibbs statistical mechanics. The nonextensive
statistical mechanics is the background of kappa distributions.
The theory of kappa distributions shows that the kappa and the
entropic q indices are connected through k = -q1 1( ).

The kappa index depends on the particle dimensionality or
degrees of freedom d, as k k= = +d dconst. 1

2
( ) , so that the

difference k -d d1

2
( ) remains invariant under variations of d.

The invariant kappa index κ0 is defined by k kº -d d;0
1

2
( )

hence, we obtain k k= +d d0
1

2
( ) . The physical meaning of

the thermodynamic parameter kappa is better carried by its
invariant value k0, as this is independent of the degrees of
freedom (Livadiotis & McComas 2011a, 2013; Livadiotis
2015b, 2015c, 2017). Therefore, throughout this paper, we use
the notion of the invariant kappa index k0, but the typical three-
dimensional index can be easily retrieved,

k k= +
3

2
. 50 ( )

Specifically, the mechanism of “superstatistics” (e.g., Beck
& Cohen 2003; Schwadron et al. 2010; Hanel et al. 2011;
Livadiotis et al. 2016) deals with the analysis of the canonical
distribution (derived within nonextensive statistical mechanics)
as a superposition of Maxwell–Boltzmann distributions. It
shows that the kappa index can be expressed in terms of
thermal fluctuations, i.e., k d= F T T0 ( ). The infogram in
Figure 1 shows the path of the analytical derivations.

3. Results

3.1. Derivation of the Kappa Index Expression in Terms of the
Temperature Standard Deviation

First, we derive the relationship k d= F T T0 ( ). This
derivation is based on the theory of superstatistics, one of the
possible mechanisms that can generate kappa distributions in
space plasmas. Below, we expose in more detail the theory of
superstatistics and how it is involved in the derivation
of k d= F T T0 ( ).

Let the d-dimensional Boltzmannian distribution of kinetic
energy ε, for temperature denoted by its inverse β≡kBT

−1, i.e.,

e b
b

b e e=
G

- -P
d

; exp . 6M

d
d

1

2

1
1
2 1

2

( )( ) · ( ) · ( )

If the temperature is not fixed and characterized by fluctuations,
then the system does not reside in the classical thermal
equilibrium described by Maxwell distributions. Instead, the
superposition of Maxwell distributions with different tempera-
tures can lead to a stationary state that is described by a kappa
distribution,

e k
k

k

k
e

e

=
+

´ +
k

-

- - -
-

P T
k T

B d

k T

; ,
, 1

1
1

, 7

K

d

d
d

0
0 B

1

2 0

0 B

1
1

1
2

0
1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

( )( ) ( )

· · ( )

where = G G G +B x y x y x y,( ) ( ) ( ) ( ) denotes the Beta func-
tion. As we will see, the definition of the global temperature
can be related with the inverse of the average value of β, i.e.,

b kº á ñ º +-k T q q, with 1 1 , 8B 0
1

0 0 ( )

so that

e b k
k b

k

k
b e e

á ñ =
+ á ñ

+

´ +
+

á ñ
k

-

- - -
-

P
B d

; ,
1

, 1

1
1

1
.

9

K

d

d
d

0
0

1

2 0

0

1
1

1
2

0
1
2

1
2

⎛
⎝⎜

⎞
⎠⎟

( )( ) [( ) ]

· ·

( )

This is the generalization of the Maxwellian distribution in
Equation (6) for finite values of the kappa index κ0, while
Equation (6) recovers for κ0→¥.
It has been shown that particle systems with variable

temperature are consistent with a particular distribution
function of temperatures, that is, the gamma distribution (a
generalization of the chi-square distribution; see: Abramowitz
& Stegun 1972), with average bá ñ and degrees of freedom

Figure 1. Infogram showing the method for deriving the R–H condition for the
kappa index, k k= f R;02 01( ).
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+ d1 1

2 0,

b
b

b
b

b=

+

á ñ

G +
-

+

á ñ

+

D

d

d

d

1

1
exp

1
.

10

d

d

1

2 0
1

1

2 0

1

2 0

1
2 0

1
2 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
· · ·

( )

According to superstatistics, the kappa distribution can be
generated by the following integral transformation

òe e b b b=
¥

P P D d, , 11K M
0

( ) ( ) ( ) ( )

which expresses the transition from the equilibrium state,
described by the Maxwell–Boltzmann distribution, to the non-
equilibrium state, described by the kappa distribution (of kappa
index κ0). Then, the integral in Equation (11) is rewritten as:

ò

e
b

e

b
b

e b b

b

b
e e

=

+

á ñ

G G +

´ -
+

á ñ
+

=
+

á ñ

G + +

G G +

´
+

á ñ
+

+

-

¥
+

+

- - -

-

P

d

d d

d
d

d d d

d d

d

1

1

exp
1

1 1

1

1
, 12

K

d

d

d d

d

d d

d

1

2 0
1

1

1

2

1

2 0

0

1

2 0

1

2 0
1 1

2 0
1

2

1

2

1

2 0

1

2 0
1

1

1
2 0

1
2

1
2

1
2 0

1
2 0

1
2 0

1
2

1
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

( )
( ) ( )

( )

·

· ( )

hence,

e
b

b e e

=

+

á ñ

+

´ +
+

á ñ

-

- - -

-

P

d

B d d

d

1

, 1

1
1

1
. 13

K

d

d d

d

1

2 0

1

2

1

2 0

1

2 0

1

1

1
2

1
2 0

1
2

1
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )( )

· ( )

Then, we include the notion of mean energy:

ò

ò

ò

ò

e
e e e

e e

e b e e

e b e e

á ñ =

=
+ á ñ

+ á ñ

¥

¥

¥

+

- - -

¥ -
+

- - -

P d

P d

d

d

1

1

, 14

K

K

d
d

d d

d
d

d d

0

0

0

1

1

1

0
1 1

1

1

1
2

1
2 0

1
2 0

1
2

1
2

1
2 0

1
2 0

1
2

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

( )

( )

·

·

( )

which leads to the kinetic definition of global temperature,
mentioned in Equation (8):

e
b

e
b

á ñ =
+

á ñ
º á ñ =

+
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º

15

d d

d
d k T d

d

d
k T

1
or

1
,

1

2

1

2 0

1

2 0

1

2 B
1

2

1

2 0

1

2 0
B

( )

· ( )
/

thus, the energy distribution is written as

e

e

e

e
e

=

á ñ

+

´ +
á ñ

-

- - -

-

P

d
d

B d d

d d

, 1

1
1

, 16

K

d

d d

d

1

2 0 1

2
1

2

1

2 0

1
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1

2

1

1

1
2

1
2 0

1
2

1
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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( )

· · ( )

or substituting the temperature eº á ñk T dB
1

2
, we end up with

the typical d-dimensional kappa distribution

e

e
e

=
+

´ +

-

- - -

-

P
d k T

B d d

d k T

, 1

1
1

, 17

K

d

d d

d

1

2 0 B
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2
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2 0
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2 0 B
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1
2

⎛

⎝
⎜⎜
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( )
( )

( )

· · ( )

that is, the kappa distribution, as shown in Equation (7), with
kappa index k º d0

1

2 0.
The moments of the gamma distribution, Equation (10), are

given by:

ò

ò

b b b b
b

b
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b b

á ñ = =
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thus,

b
b

á ñ =
G + +

G +

á ñ

+

d a

d d

1

1 1
. 19aa

a1

2 0

1

2 0
1

2 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
· ( )

Hence,

b
b

bá ñ =
G + +

G +

á ñ

+
= á ñ

d

d d

1 1

1 1
, 19b1

1

2 0

1

2 0
1

2 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
· ( )

b
b

bá ñ =
G + +

G +

á ñ

+
=

+

+
á ñ

d

d d

d

d

1 2

1 1

2

1
.

19c

2

1

2 0

1

2 0
1

2 0

2 1

2 0

1

2 0

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )
·

( )

4

The Astrophysical Journal, 886:3 (10pp), 2019 November 20 Livadiotis



Then, the variance is given by:

db b b bº á ñ - á ñ =
+

á ñ
d

1

1
, 20a2 2 2

1

2 0

2( ) ( )

db
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=
+ d

1

1
, 20b

1

2 0

( )

thus, given k º d0
1

2 0, we obtain from Equations (20b) and
(15), respectively:

db
b ká ñ

=
+

1

1
, 21

0

( )

k
k

b b=
+

á ñ = á ñ- -k T q
1

. 22B
0

0

1
0

1 ( )

Next, we express the normalized standard deviation of
temperature, dT T , as a function of the normalized standard
deviation of the inverse temperature, db bá ñ. We consider the
deviation of the inverse temperature b b b + D , which
corresponds to a propagated deviation to temperature,
 + DT T T , hence

b
b

b b b
b

b
b

D
=

Dá ñ
á ñ

=
á ñ + D - á ñ
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⎞
⎠⎟
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( )

Then, using the standard deviations, dT and db , which are in an
absolute value in contrast to the deviations, DT and bD , we
find the relationship k d= F T T( ), i.e.,

d d
k

=


=


=
+ 

db
b

db
b

b
db

á ñ

á ñ
á ñ

T

T

T

T1

1

1
or

1

1 1
. 24

0

( )

The Maxwell–Boltzmann distribution is characterized by zero
temperature deviation, while the latter must be larger as the
kappa index decreases. It is therefore required to have zero
deviation for κ0→∞ and infinite deviation when κ0→0;
hence, we keep “−1” in (24):

d
k

=
+ -

T

T

1

1 1
. 25

0

( )

3.2. Propagation of the Temperature Standard Deviation

Next, we derive the error propagation relationship
d d=T G T R;2 1( ). We derive the relationship that connects the
thermal fluctuations upstream and downstream of the shock.
This is achieved by perturbing the energy conservation
condition (that is, the Bernoulli integral), in Equation 2(c),
ending up with d d=T G T R;2 1( ).

The energy is conserved upstream and downstream of the
shock, á ñ = á ñE E1 2, where E is the particle kinetic energy in the
shock reference frame. Indeed, we have

= = - +

= - + + -

u u V V

u V V V u V

E m m

m 2 , 26

1

2
2 1

2
2

1

2
2 2

[( ) ]

[( ) · ( )] ( )

so that its average becomes

á ñ = + á - ñ = + +V u V VE m m m d k T1 .

27

1

2
2 1

2
2 1

2
2 1

2 B( ) ( )
( )

Hence, Equation 2(c) is written as á ñ = á ñE E1 2. However, for
the standard deviation we have also the equality d á ñ =E 1

d á ñE 2. The summation of standard deviations follows the L2

norm (sum of squares), so that

d d dá ñ = + +VE m d k T1 , 282 1

2
2 2 1

2 B
2⎡⎣ ⎤⎦( ) ( ) { [( ) ]} ( )

that is,

d d dá ñ = + +E mV V d k T1 . 292 2 1

2 B
2⎡⎣ ⎤⎦( ) ( ) ( ) ( )

Then, the first term to the right becomes

d d
d

b

= =

´ = -

mV V mV m V
mV

k T

m V

k T

k T r k T

4 4

4 ,
30

TV

2 1

2
2 1

2
2

1

2
2

B

1

2
2

B

B
2 1

B
2

( ) ( )[ ( ) ] ·
( )

( ) · ( )
( )

where b= -mV k T TV
1

2
2

B
1( ) , as shown in Equation (4), while

with r we denote the ratio of the fluctuation energy per thermal
energy:

d
ºr

m V

k T
. 31

1

2
2

B

( )
( )

The limited values of r can be calculated as follows: (i) when
the momentum fluctuation dm V is mostly transferred to the
more mobile electrons (e.g., low ion versus high electron
temperature), then we have d = =m V m u m k T2e eth Be , with

=u k T m2 eth Be , where me is the electron mass; in this case,
we have =r m me . (ii) When the momentum fluctuation dm V
is mostly transferred among ions as thermal energy, then it is
proportional to d qµ =V k T m2 B or d =m V d k T;1

2
2 1

2 B( )

in this case, we have =r d1

2
. Various physical processes and

phenomena may contribute to the momentum fluctuation dm V
and the ratio r, e.g., turbulence and magnetic field, where the
values of r lie between  m m r de

1

2
. However, we

understand that =r d1

2
is the most profound case, thus, we

adopt this value for the examples illustrated by this paper.
Therefore, the energy variance is

d b

b

á ñ = + +

= + +

-

-

E r k T d k T s

r d s k T

4 1

4 1 , 32

TV

TV

2 1
B

2 1

2

2
B

2 2

1 1

2

2 2
B

2

( )
( )

( ) ( ) ( )

[ ] · ( ) ( )

where we included the factor dºs T T .
Then, from the conservation of energy deviation, d á ñ =E 1

d á ñE 2, we derive

b

b

+ +

= + +

-

-

r d s T

r d s T

4 1

4 1 . 33
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⎡
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The thermal parameter bTV1 is determined by:

b
b

b

º =
+

+ +

=
+

+ -
-

-

k T

mV
R

d

d

d

d R

2
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1

1 1
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1

1 1
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1
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We then derive the same parameter downstream of the shock:

b b b

b

= = =

´
+ -
+ -

=
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+ -

-

-

k T
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V

V

T

T
R

d R

d R
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2
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1 1
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· ( )
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from Equations 2(b), (c). Its inverse is given by

b b=
+ -
+ -

- -
-d R

d R

1 1

1 1
. 36TV TV2

1
1

1
1

· ( )
( )

( )

Returning to Equation (33) and substituting b-
TV 2

1 from
Equation (36) and T2/T1 from Equation 2(c), we obtain

b b+ + =
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+ +
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+ -
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-

r d s r R
d R

d R
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4 1 4
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and solving in terms of s2:
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After some calculus using Equation (3), we derive:

= ++ -
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- + - +
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-s s ,
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R R d R R
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2 1
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while in the case of r 1 , the above is approximated to

@
+ -
+ - -

s
d R

d R
s

1

1
. 39b2 1 1

⎛
⎝⎜

⎞
⎠⎟ · ( )

Equation 39(a), or 39(b), constitutes the relationship
=s G s R;2 1( ), as set in the infogram of Figure 1. Also, we

may readily derive the condition for the temperature deviation,

that is,

d

d= +
+

- + - +
+ -
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T

T
r

d

R R d R R

d R
T

4

1

1

1
.
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( )

3.3. Connection between Upstream and Downstream Kappa
Indices

At this last step, using the relationships k d= F T T0 ( ) (25)
and d d=T G T R;2 1( ) (40), we end up with the final relationship
that connects the upstream and downstream kappa indices,
k k= f R;02 01( ).

Using Equations (25), (40) we obtain

or

k
k

=
+ -

+ -
+ -

+
+

´
- + - +

+ -
+ -
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- -

-

-
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For small values of r=1, Equations 41(a), (b) are
approximated to

k k+ -
@

+ -
+ - + --

d R

d R
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1 1

1

1

1

1 1
, 42a
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1
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1
1 1 1. 42b
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⎤
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Figure 2 plots the downstream kappa index, κ02, as a function
of the upstream kappa index, κ01, and for various values of the
shock strength 1�R<d+1.

4. Discussion

4.1. Shock Acceleration or Deceleration

The family of curves k k= f R;02 01( ) can be separated to
those with κ02<κ01, and those with κ02>κ01, where the
separatrix k k=02 01 stands for the specific case where the
downstream and upstream kappa indices are equal. This is
derived by setting k k k= º02 01 0iso in Equations 41(a) or
41(b), leading to k k= f R;0iso 0iso( ):

k + -
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+

+ - +
+ - +
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-

43a

R

r

d

d R R

d R R

1

1 1

4

1

1

2 1
, or

0iso
1

2

1

1

( )
( )

· ( )
( ) ( )

k k+ -
=

+ -
+ -
+ -

+
+

- + - +
+ --

- -

-

d R

d R

r

d

R R d R R

d R

1

1 1

1

1 1

1

1

4

1

1

1
, 41a

02 01

2

1

2

1

2

1 1

1 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟· · ( ) · [ ( )]

( )
( )

6

The Astrophysical Journal, 886:3 (10pp), 2019 November 20 Livadiotis



k =
+

+ - +
+ - +
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1
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The critical curve (plotted with thick black line in Figure 2(a))
separates shocks that accelerates the plasma flow (i.e., κ02<
κ01) from those shocks that decelerate the plasma flow
(i.e., κ02>κ01). Indeed, when the kappa index decreases
(κ01→κ02<κ01), then the suprathermal tail at the high energy
part of the distribution becomes harder (more flattened), thus, a
larger number of particles correspond to higher energies and a
smaller number to moderate energies (from which particles are
accelerated). When the kappa index increases (κ01→
κ02>κ01), then the suprathermal tail becomes softer (more
sharpened), thus a larger number of particles correspond to
moderate energies and a smaller number to higher energies (from
which particles are decelerated). (For more details, see, Figures 6

and 7 in Livadiotis & McComas 2011a; Figure1 in Livadio-
tis 2014; Figure1 in Livadiotis 2019b.)
Setting R=1 in Equation 43(b), we obtain the minimum

possible upstream kappa index, k01 min, for which the down-
stream kappa index is smaller than the upstream index,
κ02<κ01; hence, the acceleration is possible only for
k k>01 01min, where:

k =
-
+

+ -
-

d r r
d

d d
, 4

1

2
1 1. 4401min

21
2⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

( ) ·
( )

( )

In the case of r=d/2 and d=3, we find k = 3.486 ...01min .
The acceleration (A) and deceleration (D) regions are shown

in Figures 2(a), (b). In panel (a) the downstream kappa index
κ02 is plotted as a function of the upstream kappa index κ01, for
various shock strength values, R. Region D {A} is above
{below} the diagonal κ02=κ01. We observe that for small
upstream kappa indices, e.g., κ01<1, the corresponding

Figure 2. Relationship between the downstream and upstream kappa indices for various shock strength values R. The downstream kappa index κ02 (a), and its ratio
with the upstream kappa index κ02/κ01 on a semi-log scale (b), are plotted against κ01, for various shock strengths R. In (c) and (d), the same quantities are plotted
against R, for various upstream kappa indices κ01. (Note: the upstream kappa κ01 in (c) can be deduced from the vertical axis for R=1.) Explicitly shown are the
regions of acceleration (A) κ02<κ01, deceleration (D) κ02>κ01, and the separatrix k k k= º02 01 0iso, for shock strength R smaller than the critical Rc≈3.73205;
for R�Rc, the super-deceleration (sD) region appears.
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downstream indices for the same shock strength are sharply
larger, κ02?κ01, with k kd d 1;02 01  however, for quite
larger values of κ01, the downstream indices increase less, with
k kd d 102 01  (function k k= f R;02 01( ) is concave). In
panel (b) the ratio of the two indices, k k02 01, is plotted against
κ01, on a semi-log scale (larger scales are better illustrated by
this panel). The ratio of the two indices increases for small
upstream kappa indices κ01, while for larger indices it reaches a
maximum, and then declines and intercepts the horizontal line
k k = 102 01 at a certain index k R01iso( ), as shown by
Equation 43(b);the values of k k02 01 above {below} the
horizontal line correspond to deceleration {acceleration}. The
smallest intercept of k k02 01 with the horizontal line at 1, is
given by k = 3.486 ...01min . The described behavior occurs for
shock strengths smaller than a critical value given by
Rc≈3.73205;exactly for this shock strength, we have
k k d d 002 01 as k  ¥01 , while for R>Rc, the down-
stream kappa index is dramatically increasing, even for very
small upstream kappa indices, a behavior we call super-
deceleration (sD).

The behavior of the downstream kappa index, κ02, as a
function of the shock strength, R, is illustrated in Figures 2(c),
(d). Panel (c) plots the downstream index κ02 against R, for
various upstream kappa indices κ01, while panel (d) plots the
corresponding ratio, k k02 01, against R on a semi-log scale.
The strongest acceleration is achieved at the local minimum of
k = f R02 ( ), as shown in Equation 41(b); the shock strength
corresponding to this minimum is given by the quartic
solution of:

The minimum shock strength, Rmin, corresponds to the smallest
possible downstream kappa index, κ02, thus, to the strongest
acceleration for a given upstream kappa index, κ01; note: s1 is
expressed in terms of κ01, as shown in Equation (25).

4.2. Symmetry

Strictly mathematically, the two sides of the shock must be
equivalent (due to mirror symmetry). The shock compresses
the plasma with strength R, while on the other side rarefies the
plasma with strength R−1. There is no mathematical preference
for any side of the shock, upstream or downstream; then, any
R–H shock condition should obey to this symmetry: «1 2 and

« -R R 1. Indeed, Equation 39(a) is characterized by this
symmetry

For the approximation shown in Equation 39(b), and applying
the same symmetry «1 2 and « -R R 1, we obtain

@
+ -
+ -

 @
+ -
+ --

-
s s

d R

d R
s s

d R

d R

1

1

1

1
. 46b2 1 1 1 2

1
· · ( )

4.3. Connection with the Polytropic Index

In the case where the plasma particles are subject to a
potential energy, the polytropic behavior has been shown to
have a one-to-one relationship with kappa distributions.
Namely, not just the old-known result that the kappa
distributions can lead to the polytropic relationship, µ gP n
or µ g-n T1 1( ) (Meyer-Vernet et al. 1995; Moncuquet et al.
2002; Livadiotis 2017, Ch. 5; 2018d; Nicolaou & Livadiotis
2019), but the reverse derivation has also been shown, that is,
the polytropic behavior requires the particle velocities to be
described by the kappa distributions. This means that the
polytropic behavior has the role of a mechanism generating
kappa distributions (Livadiotis 2019a, 2016). Then, the
developed relationship between the kappa indices upstream
and downstream of the shock leads to the corresponding
relationship between the polytropic indices.

4.4. What’s Next: Incorporation of the Magnetic Field and
Turbulence

It is our next goal to work on the generalization of the R–H
conditions for particle velocities described by kappa distribu-
tions and oblique shocks in magnetized space plasmas. In this

case, the temperature fluctuation dT will have to be connected
with both the momentum fluctuation dVm and the magnetic
fluctuation dB (Zhuang & Russell 1981; Cairns & Grabbe
1994). Finally, further investigation is necessary for under-
standing the role and contribution of turbulence in the
fluctuations of dVm and dB, as well as of the turbulent energy
(e.g., Bavvasano et al. 2000; Adhikari et al. 2015), derived
from the variance of the Elsässer variables (Tu & Marsch
1995).

5. Summary and Conclusions

This paper developed the R–H jump conditions for shocks in
space and astrophysical non-magnetized plasmas described by
kappa distributions. The set of R–H conditions incorporating
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kappa distributions must keep the known mass, momentum, and
energy conservations. Therefore, for space plasmas described by
kappa distributions, (i) the density n, (ii) the bulk velocity of the
flow V, (iii) its angle to the shock normal a, and (iv) the
temperature T, are still given by the standard R–H conditions.
The challenge was to derive the R–H jump condition for the new
thermodynamic parameter, the kappa index.

This was achieved using the following theoretical frameworks:
(i) nonextensive statistical mechanics; (ii) connection of kappa
distributions with statistical mechanics and thermodynamics; and
(iii) mechanism of “superstatistics” (that is, the analysis of a
kappa distribution to superposition of Maxwell–Boltzmann
distributions of variant temperatures). The result was to develop
the evolution of kappa distributions across a shock, that is, to
derive the relationship between the upstream and downstream
values of the kappa index, k k= f R;02 01( ). The condition
k k= f R;02 01( ) was derived following three steps: (i) used of
the theory of superstatistics, in order to derive the kappa index
expression in terms of the temperature standard deviation,
k d= F T T ;0 ( ) (ii) apply the propagation theory of the
temperature standard deviation, in order to derive the expression
between the downstream and upstream kappa indices,
d d=T G T R; ;2 1( ) and (iii) combine the derived relationships to
connect the upstream and downstream kappa indices,
k k= f R;02 01( ) (e.g., see Figure 1).

Therefore, the four R–H jump conditions incorporating the
kappa distributions are:

1. Mass conservation:

=n V n V , 47a1 1 2 2 ( )
2. Momentum conservation:

+ = +n mV k T n mV k T , 47b1 1
2

B 1 2 2
2

B 2( ) ( ) ( )
3. Energy conservation, that is,
3.1. Average Energy, á ñ = á ñE E1 2:

+ + = + +mV d k T mV d k T1 1 , 47c1

2 1
2 1

2 B 1
1

2 2
2 1

2 B 2( ) ( ) ( )

3.2. Energy deviation, d dá ñ = á ñE E1 2:
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where b =- mV k T2TV
1 2

B( ) and d=s T T , leading to the
desired relationship, k k= f R;2 1( ):
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The presented theoretical analysis was restricted under the
following simplifications: non-magnetized plasma; plasma flow
parallel to shock normal; isotropic dimensionality and polytropic

indices equal for both sides of the shock; and absence of potential
energy. It is therefore straightforward to follow the method
presented here in extended future theoretical analyses, in order to
include oblique shocks in magnetized and anisotropic space and
astrophysical plasmas.
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