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Abstract

It has been found that the Kelvin–Helmholtz instability (KHI) induced by both transverse and torsional oscillations
in coronal loops can reinforce the effects of wave heating. In this study, we model a coronal loop as a system of
individual strands, and we study wave heating effects by considering a combined transverse and torsional driver at
the loop footpoint. We deposit the same energy into the multistranded loop and an equivalent monolithic loop, and
then observe a faster increase in the internal energy and temperature in the multistranded model. Therefore, the
multistranded model is more efficient in starting the heating process. Moreover, higher temperature is observed
near the footpoint in the multistranded loop and near the apex in the monolithic loop. The apparent heating location
in the multistranded loop agrees with the previous predictions and observations. Given the differences in the results
from our multistranded loop and monolithic loop simulations, and given that coronal loops are suggested to be
multistranded on both theoretical and observational grounds, our results suggest that the multistrandedness of
coronal loops needs to be incorporated in future wave-based heating mechanisms.
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1. Introduction

Various magnetic structures in the solar atmosphere are
reported to support a large amount of magnetohydrodynamic
(MHD) waves and oscillations (e.g., De Moortel & Nakariakov
2012; Nakariakov et al. 2016), which are believed to be an
important candidate to heat the solar corona due to their
capability of carrying energy (e.g., Taroyan & Erdélyi 2009;
Parnell & De Moortel 2012). To this end, dissipation
mechanisms are required to transfer the wave energy into
internal energy. For kink oscillations, resonant absorption is
expected to transfer the collective transverse modes into local
azimuthal modes in an inhomogeneous region (Hollweg &
Yang 1988; Goossens et al. 1992, 2011). Meanwhile, phase
mixing of Alfvén modes between different magnetic surfaces
help the energy cascade from large spatial scale structures to
small structures, then the wave energy dissipates at such small
structures (Heyvaerts & Priest 1983; Soler & Terradas 2015;
Guo et al. 2019). Recently, numerical studies have found that
transverse waves in coronal loops can induce the Kelvin–
Helmholtz instability (KHI), due to the strong velocity shear
near the edge of the loops (e.g., Terradas et al. 2008a; Antolin
et al. 2014; Magyar et al. 2015; Howson et al. 2017a, 2017b;
Karampelas et al. 2017; Guo et al. 2019). The generated small
turbulent structures can help dissipate wave energy more easily.
Therefore, ohmic or viscous dissipation of wave energy can be
achieved (Poedts et al. 1990; Poedts & Kerner 1991; Ofman
et al. 1995) thanks to the occurrence of small structures in the
aforementioned physical processes.

From the early observations with the Transition Region and
Coronal Explorer (TRACE) to the recent measurements with
high-resolution instruments (e.g., SDO/AIA, Hi-C), more and
more evidence shows that coronal loops are filled with bundles
of thin strands (Testa et al. 2002; Brooks et al. 2012; Cirtain
et al. 2013; Peter et al. 2013; Aschwanden & Peter 2017).
Multistranded loop models can help to explain some observa-
tions, which thus provide indirect evidence for the loop fine
structuring. Guarrasi et al. (2010) modeled the loops composed

of subarcsecond strands to explain the “fuzzy” appearance of
hot loops (Tripathi et al. 2009). Meanwhile, they predicted that
the fuzziness will decrease in strands with temperature larger
than 3MK, which has been confirmed with SDO/AIA
observations in the active region by Reale et al. (2011).
Transverse waves are also reported in the thin threads observed
with the Hinode Solar Optical Telescope (SOT; Ofman &
Wang 2008). Analytically, transverse oscillations in a two loop
system have been investigated by Luna et al. (2008) and Van
Doorsselaere et al. (2008). Oscillations and flows in a more
complicated twisted multithreaded model have been studied by
Ofman (2009). Luna et al. (2010) investigated the transverse
oscillations in a loop system with randomly distributed strands
and found that the interactions of strands strongly influence the
dynamics of the whole loop and thus disturb the coherent
motions of the strands. In such randomly structured loops,
mode coupling between kink modes and Alfvén modes is still
efficient (Terradas et al. 2008b; Pascoe et al. 2011).
Simulations of a tightly packed multistranded loop by

Magyar & Van Doorsselaere (2016b) have shown that the loop
is unstable when driving by transverse waves. Karampelas &
Van Doorsselaere (2018) revealed that a driven monolithic loop
can become fully deformed due to the induced instability.
Therefore, the plasma in both multistranded and monolithic
models can achieve a turbulent state with continuous driving.
In this paper, we will examine the wave heating effects from

driven transverse and Alfvén oscillations in a multistranded
loop. Meanwhile, a density equivalent monolithic loop is also
considered, in order to find out how the loop configuration will
influence the heating effects.

2. Numerical Models

2.1. Equilibrium and Drivers

In our simulations, we consider a loop system with density
enhanced, straight strands, which are tightly packed and
embedded in a uniform background corona. A uniform
temperature T=1MK is considered in the whole simulation
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domain. To maintain magnetostatic pressure balance, the
magnetic field has a slight variation from the center of each
strand B0=50 G to the external medium Be=50.07 G. For
simplicity, the loop is filled with seven identical strands. The

initial loop cross-section can be found in the left panel of
Figure 1. Each strand has a radius Rs=0.3 Mm and an initial
peak density ρp=3ρe, where the external background density
is r = ´ - -8.36 10 g cme

16 3. The density profile in each

Figure 1. Snapshots of density (upper row) and z-vorticity (lower row) evolutions of the cross-section at loop apex for the Ms-model (a) and Mono-model (b).
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strand is given by
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L=150Mm, which is chosen within the range of observations
(Aschwanden et al. 2002). As a comparison, we also consider a
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which gives α=2.26. Thus the peak density of the monolithic
loop is r r¢ = 2.26p e. The terms in the square brackets in
Equation (2) are the integration of density of the seven strands
and the background medium density between them in the
radius R=1Mm region in the multistranded model. The other
terms come from the integration of density in the same region
in the monolithic loop.

For both models, we employ a mixed driver that consists of a
loop-region transverse motion and seven independent strand-
region torsional motions at the footpoint (z=0). The
transverse motion is similar to those in the previous models
(Pascoe et al. 2010; Karampelas et al. 2017; Guo et al. 2019),
which is a continuous, monoperiodic “dipole-like” driver and
given by
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where b=16, which gives the width of the intermediate layer
l≈0.2 Mm. v0 is the velocity amplitude, which varies in
different models. The period is Pk=87s (78.5 s) for the
multistranded model (the monolithic model), which corre-
sponds to the analytical value for the fundamental kink mode
(Edwin & Roberts 1983). For the multistranded model, an
initially perturbed loop test shows that the kink periods of the
oscillations of individual strands are almost the same; because
the strands here are tightly packed. Simultaneously, the
torsional motions at the footpoint (z=0) are described by
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where n=1,2, K,7. The period is given by =P rnA ( )
m rL r B r2 n n0 ( ) ( ). In both models, the drivers follow the

motions of loops. The positions change with time, making sure
that the motions at footpoint are always described by
Equations (3) and (6).

2.2. Numerical Setup

To solve the 3D ideal MHD equations, we use the PLUTO
code (Mignone et al. 2007), in which a second-order finite
volume piecewise parabolic method (PPM) is employed for the
spatial integration (Mignone 2014). The numerical fluxes are
computed by a Roe Riemann solver. A third-order Runge–
Kutta algorithm is used for the time advance. The simulation
domain is - ´ - ´8, 8 Mm 8, 8 Mm 0, 150 Mm[ ] [ ] [ ] . We
adopt a uniform grid of 100 points from 0 to L in the z-direction
and 256 nonuniformly spaced cells in the x- and y-directions.
The highest resolution is 15 km in the region of

x y, 1.5 Mm∣ ∣ .
We fix the velocities at z=L to be zero to mimic loops

anchored in the lower atmosphere. At the other footpoint
(z=0), the z-component velocities are antisymmetric and vx,
vy are described by the driver. The other variables at both
footpoints are set to be Neumann-type (zero-gradient) condi-
tions. All the lateral boundaries are set to be outflow
conditions.

3. Results

We ran our simulations until t=1000 s for both the
multistranded model (“Ms-model” hereafter) and the mono-
lithic model (“Mono-model” hereafter). In the following
analysis, we focus on the subvolume of  x y, 1.5 Mm, 0∣ ∣
z 150 Mm.
In the previous study, we found that the energy input into the

system was influenced by the perturbations of the magnetic
field at footpoint (Guo et al. 2019). This means that the input
energy varies in different models even if the same velocity
drivers are employed. For a straightforward comparison, in the
current study, we allow the input energy in both models to be
the same through keeping the velocity amplitude of the driver

= -v 4 km s0
1 in the Ms-model, while = -v 2.8 km s0

1 in the
Mono-model by a parameter study. Therefore, any variations of
the internal energy and temperature are not induced by a
difference in the input energy.
The evolution of the loop cross-section at the apex is shown

in Figure 1. This indicates that the KHI is induced in both
models. In the Ms-model, the KHI is quickly induced by the
mixed transverse and torsional motions at each strand, and the
intermixing between different strands. In the Mono-model,
besides the collective transverse motion, Alfvén modes are also
established inside the loop, which help the instability extend
from the loop edge to almost the whole loop region.
To quantify the heating effects from wave energy dissipation,

we examine the internal energy and temperature variation in both
models. The input energy flux from the driver is given by

ò= - S AF t
A

d
1

, 7
A

( ) · ( )

where S=E×B/μ0 is the Poynting flux, A is the surface area
of the subregion ( x y, 1.5 Mm∣ ∣ ), and Ad is the normal
surface vector of the bottom plane. As mentioned before, the
input energy flux in both models are at the same level. From the
left panel of Figure 2, we see that the energy flux is about
50Wm−2 in the beginning and ∼20Wm−2 near the end of the

3

The Astrophysical Journal, 883:20 (9pp), 2019 September 20 Guo et al.



simulation. It is somewhat smaller than the radiative energy
losses of the quiet corona, ∼100Wm−2 (Withbroe & Noyes
1977; Tomczyk et al. 2007). Further discussions can be found
in Section 4. From the right panel of Figure 2, we can see that
the volume-averaged internal energy and temperature increase
in both models. In the Ms-model, both quantities have a faster
increase before 300 s and then keep a stable increase rate in the
later stage. The increase rate in the Mono-model has a slight
variation and it is almost the same as that in the Ms-model after
t=550 s. This indicates that both models are effective in
heating, however, the multistranded loop is more efficient in
starting the heating process than the equivalent monolithic
loop. The kink frequency in the two models is different due to
the different peak density, leading to the phase difference in the
left panel of Figure 2. However, such a frequency difference is
quite small, we thus have 11.5 period kink oscillations in the
multistranded model and 12.8 periods kink oscillations in the
monolithic model in the entire simulation time (1000 s).

Now we go further to examine the heating properties in detail in
both models, rather than volume-averaged values. In order to
clarify the dissipation mechanisms in our models, we examine the
averaged enstrophy ( ò=  ´E v dAz A A z

1 2( ) ) and the averaged
square z-current density (J2z) profiles along the z-direction, which
are shown in Figure 3. As predicted in Van Doorsselaere et al.
(2007), we can see the maximum Ez near the loop apex and the
maximum J2z near the loop footpoint in both models. The
profiles do not exactly follow a sinusoidal profile and this is
probably due to the driving of the plasma and the nonlinear
effects in our models. If the heating location is near the
footpoint, then the heating is mainly caused by the high current
density there, and thus the dominant heating mechanism there
is resistive heating. Otherwise, if the heating location is near
the loop apex, the dominant heating mechanism is viscous
heating. In the Ms-model, the temperature is higher near the
loop footpoint, which probably means that the resistive heating
is dominant. This result seems to favor the footpoint heating
prediction and observations in Van Doorsselaere et al. (2007).
We see that J2z near the footpoint is larger in the Ms-model than
that in the Mono-model. Due to the more turbulent structure in
the Ms-model, the magnetic field is greatly disturbed and a
larger radial variation is induced. In Figure 3, it seems that the

hot plasma accumulates near the footpoint in the Ms-model.
To understand this point, we examine the enstrophy at z=
130Mm in Figure 5. As mentioned in Guo et al. (2019), the
development of the turbulent structures induces a reduction in
the vorticity evolution profile, because of the expansion of the
smaller structures. A larger reduction indicates that smaller and
smaller structures expand to a larger region and the plasma is
more turbulent. In Figure 5, we see that the turbulent structures
are fully developed after about t=300 s in the Ms-model and
t=500 s in the Mono-model. The smaller turbulent structures
develop faster in the Ms-model, the heating process thus starts
faster, as is shown in Figure 2. The enstrophy in the Ms-model
has a larger decrease than that in the Mono-model, meaning
that plasma in the Ms-model becomes more turbulent. In the
Ms-model, we see that the maximum J2z appears around
t=200 s in Figure 3. It extends further along the z-direction
from the footpoints toward the apex, leading to a heated band
from the footpoint to the apex. Since the turbulent structures
are not well developed around t=200 s, it is thus just a slight
temperature increase in the heated band.
In the Mono-model, the temperature is higher near the loop

apex. This is not only due to the higher vorticity at the apex
than that in the Ms-model. We can also observe an additional
density fluctuation in the Mono-model in Figure 4. Such
periodic fluctuation has also been found in Magyar & Van
Doorsselaere (2016a) and Karampelas et al. (2019), which is
associated with the ponderomotive force in the case of standing
oscillations in a loop (Terradas & Ofman 2004). This
fluctuation can also influence the temperature profile in the
Mono-model in Figure 3, inducing a temperature variation
around t=600 s. However, due to the more turbulent plasma
in the Ms-model, such ponderomotive force associated
fluctuation is greatly prevented by the redistribution of the
magnetic field.
Karampelas et al. (2019) observed a similar temperature

profile near the footpoint and the apex in a transverse driven
monolithic model. In the current work, we obtain a larger
heating region that extends from the footpoint to the apex in the
Mono-model. This is due to the inclusion of torsional motions
in the current model. The induced KHI extends the nonuniform
layers where phase mixing takes place. In Guo et al. (2019), we
proved that the mixed transverse and torsional motions induce
more turbulent structures, which can help dissipate wave

Figure 2. Left: the input energy flux variations. Right: percentages of volume-averaged internal energy (black) and temperature (blue) variations.
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energy of the excited kink and Alfvén modes. The energy
dissipation is thus enhanced, compared to the single wave
mode driving experiments.

In Figure 4, we notice that the averaged density at the apex
decreases after about t=600 s in the Ms-model and t=800 s
in the Mono-model. This is similar to the enstrophy reduction
in Figure 5. The extension of the smaller and smaller structures
at a given height leads to a decrease in the surface averaged
value, especially near the loop apex.

In Figure 3, the temperature profiles near the lower footpoint
(z=0) in both models are plotted separately due to their higher
values when getting very close to the driver (z<5Mm). This
is because the velocity shear between the different torsional
driving regions induces extremely high current density, which
cannot be seen near the other fixed footpoint. Although this
boundary effect slightly increases the temperature in the lower
half of the loop, it does not influence the main properties of the
heating profile mentioned above.

Figure 3. Averaged enstrophy (Ez), surface averaged square z-current density (J2z), and surface averaged temperature profiles along the z-direction for the Ms-model
and the Mono-model.
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4. Discussion and Conclusions

In this study, we simulated a multistranded loop with a
mixed footpoint driver, considering both transverse and
torsional motions. By comparing with an equivalent monolithic
loop, we found that heating effects are observed in both
models. The multistranded loop has a quick increase in the
internal energy and temperature. Therefore, it is more efficient
at starting the heating process than the monolithic model.
Further studies showed that the main heating location is near
the footpoint in the multistranded loop, while the temperature is
higher near the loop apex in the monolithic loop. Therefore, the
apparent heating location in the multistranded loop agrees with
the footpoint heating prediction in the linear theory and
observations. Considering the efficient heating effects, the
multistranded loop probably can be a better choice to model
coronal loops and study AC heating effects.

In this paper, we assume that both the monolithic and
multistranded loops existed before the driving. So we just focus

on the process when the drivers are launched. Perhaps it is true
that the emergence time of different loops are different.
However, it seems more reasonable to consider a multistranded
loop because the loop structure is filled with plasma according
to the distribution of magnetic field due to the very low plasma
beta. This means that the plasma moves together with the
magnetic field. The ideal case is that once the loop structure is
formed, the internal configuration of the loop is settled. So we
do not need to consider a different construction time in the two
models. However, because realistic coronal loops are highly
dynamic, it would not be easy to recognize the construction
time of the strands for the modern instruments. The observed
fine structures in a loop can either be explained as wave-
induced instability (e.g., transverse wave-induced KHI rolls
suggested by Antolin et al. 2014) or as subloops (strands).
Different velocity amplitude of drivers are employed in our

models, because the magnetic field at the footpoint evolves
with time freely and it thus depends on the dynamics of the
loop. Therefore, the Poynting flux depends on both the velocity
described by the driver and the dynamics of the loop. Similar to
the enstrophy profile of Figure 5, a larger number of turbulent
structures lead to a larger decrease in the averaged magnetic
field perturbations at footpoint in the Ms-model due to the
expansion of the turbulent structures. Therefore, to obtain an
equivalent input energy as in the Mono-model, a larger velocity
is needed. If we impose the same velocity, namely a larger
velocity in the Mono-model, the Poynting flux will probably
increase. As a consequence, the values of internal energy or
temperature in the later simulation time will be affected.
However, if we focus on the start stage of the heating process,
we can hardly say that the monolithic loop would be easier to
be heated. A faster start of the heating process (as in the Ms-
model) depends on the faster development of the turbulent
structures. However, the initial number of the KHI eddies will
decrease when the shear velocity between a loop and the
corona increases (Terradas et al. 2008a; Antolin et al. 2014).

Figure 4. Surface averaged density profiles along the z-direction from the apex (z=75 Mm) to the footpoint (z=150 Mm) for the Ms-model and the Mono-model.

Figure 5. Time evolution of the enstrophy for the Ms-model (solid line) and
Mono-model (dashed line). The quantities are averaged over the region of

x y, 1.5 Mm∣ ∣ at z=130 Mm.
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This means that the size and number of the initially induced
eddies in the Mono-model would not be able to support a faster
dissipation.

In the multistranded model, KHI eddies extend to the
whole strand region due to the mixed wave modes. Each
individual strand is similar to the mixed driving loop in Guo
et al. (2019). However, because the strands are tightly packed
initially, each deformed strand is thus strongly influenced by
its neighboring ones. In this paper, we consider only seven
strands and their radius is 0.3 Mm. We mentioned that higher
resolution observations showed that the fine structures in
coronal loops should probably have a smaller spatial scale.
Cirtain et al. (2013) reported that the braided magnetic
strands have a width of about 150 km. It is true that if we fill
the loop with smaller strands, the interactions between
different strands (see Appendix B for details) are stronger
and probably lead to even more rapidly enhanced heating.
However, in the scope of this paper, we focus on the
comparison between the multistranded loop and its density
equivalent monolithic loop, more strands will not influence
our main conclusion that the multistranded loop is more
efficient at starting the heating process. In addition, the radius
of the monolithic loop (R=1 Mm) is comparable to the size
of the strands bundle, although the filling factor in the
multistranded loop is not large.

The input energy flux in our models is comparable to the
radiative losses of the quiet solar corona, though it is still
smaller than ∼100Wm−2. Note that the models here are ideal
and still lack some realistic solar atmosphere conditions (e.g.,
gravity, more realistic drivers). The input energy will increase
when considering gravity and larger amplitude drivers (see
Karampelas et al. 2019). Note that our models are assumed to
be anchored in the lower atmosphere, where the amplitude of
motions should be very small (~ -5 km s 1 in the photosphere,
Matsumoto & Shibata 2010). In our current models, we neglect
the realistic atmosphere conditions under the corona, assuming
a longitudinally uniform loop. If the incorporation of realistic
chromosphere conditions would allow for a larger velocity
amplitude (e.g., a nonthermal velocity of 10–20 km s−1

reported in Brooks & Warren 2016), it is indeed helpful to
increase the input energy. However, we should note that the
Poynting flux not only depends on the velocity amplitude of the
driver, but also on the dynamics of the loop, which can
influence the magnetic field perturbations at the footpoint. A
more realistic footpoint driver according to an observed power
spectrum was used in Pagano & De Moortel (2019) and they
found that the phase mixing of Alfvén waves is not sufficient to
maintain the energy losses of the corona. However, things may
change if KHI is quickly induced in a line-tied loop.
Matsumoto & Shibata (2010) reported that turbulent photo-
spheric motions can be observed by Hinode/SOT. It is thus
reasonable to consider mixed motions at the loop footpoint.
The realistic footpoint drivers may be complicated. While our
driver is not realistic, this does not influence our main
conclusions aforementioned. We focus on the energy dissipa-
tion that depends on the configuration and the temporal
evolution of loops with almost the same energy input into both
models.

In our models, we solved the MHD equations in the
presence of the effective numerical resistivity and viscosity

(see Appendix A for details). Therefore, the aforementioned
heating is due to the numerical dissipation. The temperature
profiles would not change even if explicitly larger resistivity
and viscosity are considered (Karampelas et al. 2019). Even
though the numerical resistivity and viscosity are signifi-
cantly larger than the realistic values in the solar corona, we
can still say that the resistive or viscous heating mechanism is
effective. In the realistic case, the turbulent structures can be
much smaller than those captured in the current numerical
experiments, the effective heating can thus be achieved even
with the much smaller transport coefficients.

The authors thank the referee for helpful comments that
improved the manuscript. This project has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (grant agreement No. 724326). The authors acknowl-
edge funding from the China Scholarship Council (CSC), the
National Natural Science Foundation of China (41674172), and
the GOA-2015-014 (KU Leuven).

Appendix A
Monolithic Loop Simulation with Lower Resolution

As aforementioned, even though we solve the nominal ideal
MHD equations, numerical viscosity/resistivity is certainly
unavoidable. To quantify this numerical effect, we have
conducted a number of computations incorporating explicit
viscosity and resistivity, similar studies have been done by
Howson et al. (2017b) and Karampelas et al. (2019). This is not
meant to mimic the extremely small dissipation coefficients
expected for the solar corona, but rather to offer an order-of-
magnitude estimate of the numerical viscosity and resistivity.
According to the estimate, the dimensionless numerical
resistivity and viscosity in the Ms-model and the Mono-model
are of the same order (∼10−6), although the grid number that is
required to resolve a single strand and the monolithic loop is
different.
To find out the influence of the numerical resistivity and

viscosity, we consider the same monolithic model with a lower
resolution of 50 km (Mono-coarse model hereafter), such that
the same number of grids can be used to resolve the Mono-
coarse loop and each strand in the Ms-model. Thus the
effective numerical resistivity and viscosity are equivalent to
the values in an individual strand.
Similar to Figure 2, Figure 6 shows the volume-averaged

internal energy and temperature variation with the same input
energy flux in all three models. The dissipation is slightly
enhanced in the Mono-coarse model, comparing to the Mono-
model. This means that the effective numerical resistivity/
viscosity in the Mono-coarse model is larger than that in the
Mono-model and thus larger than the estimated values
(∼10−6). However, both internal energy and temperature in
the Mono-coarse model still show a rate of smaller increase
than those in the Ms-model before 300 s. This means that even
if considering a more numerically dissipative monolithic loop,
the wave energy can still get a rapid dissipation in the
multistranded loop.
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Appendix B
Individual Strand Simulation

To reveal the interaction between different strands, we pick
up and drive one individual strand in the Ms-model. We keep
the same setup as in the Ms-model, except the density
distribution and the torsional driver. The density distribution
of the strand is described by

r r r r
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= + - r
r
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where = +r x y .2 2 We employ the same transverse driver
that is described by Equation (3), but the localized torsional
driver is launched in the strand region only

p
=q v r v

t

P r
r Rsin

2
, . 90
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s
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As aforementioned, we expect the same energy input into
different loops and thus different velocity amplitudes are
employed. For an individual strand, the velocity amplitude is

= -v 4.3 km s0
1, which is larger than that in the Ms-model

since the torsional component is only limited in the single
strand region now.

The comparison between the individual strand and the Ms-
model is shown in Figure 7. Here we check the input energy
density in the loop region. The Poynting flux provided by the

driver is calculated by

ò ò= - ¢S AS t
V

d dt
1

, 10
t

A0
( ) · ( )

where S is the Poynting flux, A is the normal surface vector of
the bottom plane, and V is the volume of the loop region, which
is defined by ρ(x, y, z)�1.002ρe. The Alfvén component of
the input energy depends on the number of the strands. In order
to obtain a more reasonable comparison between loops with
different strand numbers, the input energy is averaged in the
density enhanced volume only. We see that the input energy
density in both models is almost the same before ∼200 s in
Figure 7, whereas the averaged internal energy and temperature
have a slower increase in the individual strand model.
Therefore, the interaction between different strands, which is
absent in the individual strand simulation, plays an important
role in dissipation. After ∼200 s, the input energy density in the
individual strand increases more slowly, due to the redistribu-
tion of the magnetic field in the bottom plane (similar to the
models in Guo et al. 2019).
In Figure 8, we see that the displacement of the central strand

in the Ms-model is smaller than the individual strand. This is
due to the smaller amplitude of the driver and also the
interaction with neighboring strands in the Ms-model. Because
of the different dynamics of this strand in the Ms-model and the
individual strand, it is not easy to compare them directly. After
several periods, for instance t=280 s in Figure 8, we can

Figure 6. Left: the input energy flux variations. Right: percentages of volume-averaged internal energy (black) and temperature (blue) variations.

Figure 7. Left: the input energy density. Right: percentages of volume-averaged internal energy (black) and temperature (blue) variations. Note that the input energy
density is calculated in the loop region, which is defined by ρ(x, y, z)�1.002ρe.
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hardly recognize and pick up a single strand from the
Ms-model since different strands are highly mixed.

Note that the individual strand here is not exactly a thinner
(0.3 Mm) density equivalent monolithic loop. The peak density
of a thinner density equivalent monolithic loop should be much
larger than ρp since the density ratio is α≈3.42/R2−1.16,
according to Equation (2). It is not straightforward to compare
the individual strand to the Mono-model (R=1Mm) since
both the peak density and the loop radius are different.
Therefore, the influence of density contrast on the heating
efficiency is unclear and requires further study.
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