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Abstract

Though they are the most abundant stars in the Galaxy, M dwarfs form only a small subset of known stars hosting
exoplanets with measured radii and masses. In this paper, we analyze the mass–radius (M-R) relationship of
planets around M dwarfs using M-R measurements for 24 exoplanets. In particular, we apply both parametric and
nonparametric models and compare the two different fitting methods. We also use these methods to compare the
results of the M dwarf M-R relationship with that from the Kepler sample. Using the nonparametric method, we
find that the predicted masses for the smallest and largest planets around M dwarfs are smaller than similar fits to
the Kepler data, but that the distribution of masses for 3 R⊕ planets does not substantially differ between the two
data sets. With future additions to the M dwarf M-R relation from the Transiting Exoplanet Survey Satellite and
instruments like the Habitable Zone Planet Finder, we will be able to characterize these differences in more detail.
We release a publicly available Python code called MRExo (https://github.com/shbhuk/mrexo) that uses the
nonparametric algorithm introduced by Ning et al. to fit the M-R relationship. Such a nonparametric fit does not
assume an underlying power-law fit to the measurements and hence can be used to fit an M-R relationship that is
less biased than a power law. In addition, MRExo offers a tool to predict mass from radius posteriors, and
vice versa.

Key words: methods: statistical – planets and satellites: composition

1. Introduction

In the Galaxy, M dwarfs are the most common type of star
(∼75%; Henry et al. 2006). With the launch of the Transiting
Exoplanet Survey Satellite (TESS; Ricker et al. 2014), the hope
is that we will soon discover hundreds of exoplanet candidates
around them. While the discovery of these planets is interesting
in itself, the comparison between them and the Kepler planets
provides insight into the differing formation pathways of
planets around M and FGK stars (Lissauer 2007). For example,
the pre-main-sequence lifetime of the star varies with its mass,
which has an effect on the planetary migration process during
its formation. Young M dwarfs are extremely active and exhibit
high-intensity XUV radiation, which affects the inner planets
and can potentially strip away the atmospheres of gaseous
planets to leave rocky cores (Owen & Wu 2017 and Owen &
Lai 2018 show this for Kepler planets). There is also empirical
evidence from Kepler (Dressing & Charbonneau 2015; Gaidos
et al. 2016) and radial velocity (RV) surveys (Bonfils et al.
2013) that suggests that the mass and radius distribution of
planets is not identical for M and FGK dwarfs. These suggest
that different physical processes may be at play and pose a
number of questions. Do smaller planets around M dwarfs have
more rocky compositions (Mulders et al. 2015a, 2015b)? Is
planet formation more efficient around M dwarfs (Dressing &
Charbonneau 2015; Ballard & Johnson 2016; Ballard 2019)? If
so, how does planet formation impact exoplanet chemical
composition?

Probabilistic mass–radius (M-R) relationships provide us
with an empirical window into these questions, as they are

closely related to distributions of exoplanet compositions. They
also have very practical uses. For example, efficient planning of
TESS follow-up RV observations requires an estimate of the
planetary mass given a planetary radius. Future microlensing
space missions like WFIRST (Green et al. 2012) will produce
hundreds of exoplanets with the inverse problem of having a
mass but not a radius. The M-R relationships can be used to
predict one quantity from the other. For this purpose, one needs
a model for the M-R relationship that best balances the trade-
off between the prediction’s variance (i.e., the width of the
range of possible masses for a given planet) and its bias in the
predicted values (i.e., the difference between the true mass and
the mean predicted mass).
Using transit spectroscopy due to the lower stellar brightness

and relatively large planet-to-star radius ratio, M dwarfs will
also offer potential targets for atmospheric characterization of
Earth-like habitable zone planets. It has also been shown that the
spot-induced RV jitter is reduced in the near-infrared (NIR;
Marchwinski et al. 2015), which is where the spectral energy
distributions for these stars peak. For these reasons, many more
M dwarf planets will have their masses measured in the near
future by instruments such as the Habitable Zone Planet Finder
(HPF; Mahadevan et al. 2012), CARMENES (Quirrenbach et al.
2016), NIRPS (Wildi et al. 2017), IRD (Kotani et al. 2018),
SPIRou (Artigau et al. 2014), iSHELL (Cale et al. 2018), GIANO
(Claudi et al. 2017), and NEID (Schwab et al. 2016). Here we set
the stage for these future data sets by assessing the dependence of
the M-R model choices on mass and radius predictions, especially
as a function of stellar type.
Substantial efforts have been put toward studying M-R

relations in recent years. A summary of this is presented in Ning
et al. (2018). Several of the widely used M-R relationships
include those of Weiss & Marcy (2014), Wolfgang et al. (2016),
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and Chen & Kipping (2017), the latter of which also introduced
a publicly available Python package called Forecaster.
The M-R model underlying Forecaster uses a broken power
law to fit the M-R relationship across a vast range of masses and
radii, in recognition of potential changes in the physical
mechanisms responsible for the planetary formation at different
mass regimes. However, as has been discussed in Ning et al.
(2018), such a restrictive parametric model can portray an
incomplete picture, since we do not know the true functional
form of the underlying relationship, such as whether it is a power
law to begin with. Conversely, a nonparametric model offers
more flexibility in the fit, which can be advantageous when the
goal is to obtain predictions that best reflect the existing data set.
Ning et al. (2018) introduced a nonparametric model for the
M-R relationship that uses Bernstein polynomials, a series of
unnormalized beta probability distributions. We apply this model
to M dwarf exoplanets in preparation for future, larger data sets
of small planets around small stars, which are less likely to be
fully described by highly parametric models.

While adapting the methodology of Ning et al. (2018) to a
new data set, we have developed and are now offering a
publicly available Python package called MREXo, inspired by
the useful community tool Forecaster. Not only can
MREXo be used as a predicting and plotting tool for our M
dwarf and Kepler M-R relationships, it can also be used to fit
an M-R relationship to any other data set (but see Section 6 for
a discussion about the minimum data set size at which a
nonparametric fit becomes useful). This makes it a powerful
tool for exoplanet population studies and a probe for potential
differences in composition across samples. This package uses
the open-source tools of Python deployed with parallel
processing for efficient computation. It also offers a fast
predictive tool for the M dwarf and Kepler sample M-R fits
used in this paper, so that either mass or radius can be predicted
from the other.

The rest of the paper is structured as follows. In Section 2 we
discuss the input data set, and in Section 3 we discuss the
parametric and nonparametric fitting process and algorithms
followed. In Section 4, we describe the Python package
MRExo that we release along with this paper. Then, in
Section 5 we discuss the results of the fits, where we compare
the parametric fit with the nonparametric and the M dwarf M-R
relationship with that from the Kepler exoplanet sample. In
Section 6, we explain the simulation performed to test the
efficacy of the nonparametric method. We end with a
discussion in Section 7 and conclude in Section 8.

2. Data Set

Fitting an M-R relationship requires a sample set with
confirmed mass and radius measurements.6 The mass and
radius values for the exoplanets used in this work are obtained
from the NASA Exoplanet Archive, which we last accessed on
2018 December 14 (Akeson et al. 2013). Figure 1 shows the 24
M-R data points that we have used, color-coded by host star
temperature. The mean values for mass and radius, along with
their respective measurement uncertainties, are shown in
Table 3 in the Appendix. We include mass value estimates

from both RV and transit timing variations. The orbital periods
for these planets range from about 1.5 to 33 days. This sample
is hereafter referred to as the M dwarf data set in this paper. We
specifically chose to omit the three planets discovered by direct
imaging with both radius and mass constraints, as these planets
have substantially larger orbital separations than the other
planets in our sample. Furthermore, the directly imaged planets
have their masses and radii modeled and not directly measured.
To limit ourselves to the M dwarfs, we restrict our host star

sample to Teff<4000 K. To exclude brown dwarf compa-
nions, we restrict ourselves to planetary masses (Mp<10MJ).
We chose to use the most recent mass and radius values from
the Exoplanet Archive rather than the default values. We
manually verified the reported values from the Exoplanet
Archive with the literature references. For the TRAPPIST-1
system, we used the Grimm et al. (2018) values for the mass
and radius measurements. Note that of the 24 exoplanet
measurements in our sample, seven belong to the TRAPPIST-1
system, and thus our M-R joint distribution is heavily
influenced by the TRAPPIST-1 system in the small planet
(R<2 R⊕) regime. For purposes of comparison, we also use
the Kepler data set from Ning et al. (2018) to compare our M
dwarf results with those from a larger Kepler sample, which
consists of 127 M-R measurements and does not have any Teff
restrictions on the host stars. This sample is hereafter referred
to as the Kepler data set in this paper.

3. Fitting the Data Set

To fit these data sets, we use two recently proposed methods:
a parametric method proposed by Wolfgang et al. (2016) and a
nonparametric method by Ning et al. (2018). The two methods
and their M-R fits are detailed and compared in subsequent
sections. We perform the following analysis.

1. Comparing the parametric and nonparametric results for
the M dwarf sample.

2. Comparing the M dwarf and Kepler sample M-R
relations using the nonparametric model.

3. Estimating the impact of the TRAPPIST-1 system on the
M dwarf M-R relationship.

Figure 1. Mass and radius of the 24 exoplanets in the M dwarf sample set,
color-coded by stellar temperature. The upper limits are shown by the arrows;
these upper limits are included only in the parametric hierarchical Bayesian
modeling, not in the nonparametric fitting. The black squares represent the
eight planets in our solar system, which are shown for comparison purposes
and are not used in the fitting. See Table 3 for a detailed list of these planets.

6 The nonparametric framework employed here cannot handle measurement
upper limits, since the MLE method used in Ning et al. (2018) does not allow
censored data; hence, planets with only upper limits are excluded from the
results presented in Section 5.2. Adapting this methodology to include upper
limits is an area for future work.
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4. Performing a simulation study to show the efficacy of the
nonparametric method as (a) the sample size increases,
and (b) the intrinsic astrophysical dispersion in the
sample increases (assuming a power law with an intrinsic
dispersion).

We compare the parametric method with the nonparametric
technique because the planetary masses and radii of the M
dwarf sample currently appear to resemble a power law. This
may not remain the case as we accumulate more data for M
dwarf planets; indeed, with over 100 mass and radius
measurements, the Kepler data set is not currently well
described by a power-law model (Ning et al. 2018).
Additionally, nonparametric methods offer less biased predic-
tions, as long as the data set they were fit to is representative of
the underlying distribution. In contrast, nonparametric methods
often perform poorly for small data sets and can easily overfit
the data, while parametric methods are easier to implement and
are valuable for gaining an intuitive understanding of the data
set. Acknowledging both the simplicity and easy insight from a
parametric model and the improved predictive capabilities of a
nonparametric model for larger data sets, we compute both and
compare the outputs for the current M dwarf sample (see
Section 5). In addition, we run simulations to assess at what
data set size the nonparametric technique works well (we also
test the fitting as the intrinsic dispersion in the data set
increases).

We note that the nonparametric method cannot handle upper
limits in its current implementation. In the TESS era of planet
discoveries, we will soon have many exoplanet candidates with
just upper limits, so this is a clear area for future statistical
development of this nonparametric approach. For the time
being, we incorporate the upper limits in the parametric
approach, which can accommodate censored data like upper
limits.

3.1. Parametric Method: Hierarchical Bayesian Modeling

The parametric method we use is heavily borrowed from the
probabilistic hierarchical Bayesian model (HBM) introduced in
Wolfgang et al. (2016). This model consists of a power law to
describe the mean planet mass as a function of radius plus a
normal distribution around that line to describe the intrinsic
astrophysical scatter in planetary masses at a specific radius.
The model we employ here is very similar to that of Wolfgang
et al. (2016, Equation (2)), except that we use a lognormal
distribution to describe the intrinsic scatter. This change causes
the intrinsic dispersion to be constant in log space, which Chen
& Kipping (2017) showed is a better descriptor of the scatter
over a larger mass range than was considered in Wolfgang et al.
(2016). The parametric model used here is therefore

( )
⎛
⎝⎜

⎞
⎠⎟m g s s~ = + =

Å Å


M

M
C

R

R
log log , , 1M

where C is the normalization constant of the mean power law
(once it is converted to the linear mass scale), γ is the power-
law index, and σM is the intrinsic scatter in terms of log(M).
The ∼ symbol implies that the masses are drawn from a
probabilistic distribution (as opposed to an = sign for a
deterministic model); this distribution is what models the
astrophysical scatter in planetary masses. Here it is parameter-
ized as a Gaussian centered on a line, which, when converted to

linear scale, is a lognormal distribution centered on a power
law. Evaluating this model within a hierarchical framework
allows the upper limits in our data set to be incorporated into
the inference of C, γ, and σM, along with an arbitrary
measurement uncertainty for individual data.

3.2. The Nonparametric Method—Bernstein Polynomials

As explained in the Introduction, we also employ the
nonparametric model introduced by Ning et al. (2018) to fit
M-R relationships, with an eye toward future M dwarf data set
sizes that will likely benefit from a more flexible approach. The
nonparametric method fits the joint M-R distribution and hence
can treat either mass or radius as the independent variable and
be used to predict one from the other. This method uses a
sequence of Bernstein polynomials as the basis functions to fit
a nonparametric M-R relationship; when normalized, these
Bernstein polynomials are identical to beta probability
distributions. Hence, the model is equivalent to a mixture of
unnormalized beta probability distributions. We translate the
code presented in Ning et al. (2018) from R to Python and
release it in a publicly available package called MRExo; this
code is further discussed in Section 4.
The nonparametric approach uses these Bernstein polyno-

mials as the basis functions to fit the joint distribution of
masses and radii f(m,r). This is detailed in Section 2 of Ning
et al. (2018),
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where wkl is the klth element of the matrix w, which is a set of
weights corresponding to individual Bernstein polynomials.
Each weight is positive, and the sum of individual weights
equals unity. The weights describe how much each term in the
series contributes to the joint distribution. The degrees for the
polynomials in the mass and radius dimensions are represented
by d and d′, respectively. Here m and r depict the continuous
variables that represent mass and radii, and M , M , R, and R
represent the lower and upper bounds in mass and radius,
respectively. To fit for the weights (wkl), we use maximum-
likelihood estimation (MLE). The likelihood (Equation (4))
includes measurement uncertainties as normal distributions;
hence, Equation (4) modifies Equation (2) to introduce a
convolution of the normal and Bernstein polynomials. The
measured values for mass and radii are assumed to be drawn
from a normal distribution centered on the true value, with a
standard deviation equal to the measurement uncertainty. This
produces the joint distribution shown in Equation (4), where
Mi

obs, sM
obs

i
are the mass observations and their uncertainties, and

likewise Ri
obs, sR

obs
i

for radius. Here  denotes a normal
distribution. After optimization for the weights using the MLE
method via the Python package SciPy (Oliphant 2007), the
joint distribution for the M dwarf data set can be plotted (see
Figure 3(b)).
A key consideration in fitting this nonparametric model to a

data set is identifying the optimum degree for the Bernstein
polynomial series. We use the cross-validation method as
explained in Ning et al. (2018) to find that the optimum values
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for d and d′ are both 17. In total, there are d×d′ weights that
serve as our “parameters” to fit for. While 172=289
parameters may seem excessive for a data set size of 24
planets, in practice, there are only five nonzero weights in the
series (see Figure 2 for a pictorial representation of this). This
highlights one of the advantages of using Bernstein poly-
nomials as our basis functions: estimating the weights in this
series is self-regularizing, meaning that the smallest number of
nonzero coefficients is automatically found. Additionally, using
Bernstein polynomials efficiently reduces the number of
nonzero free parameters; if one instead used a mixture of
Gaussians to fit the joint distribution, that fit would require at
least three times as many free parameters (amplitude, mean,
and standard deviation per component, rather than just the
polynomial coefficients).

After finding the weights via MLE, we repeat the process
using the bootstrap method, which helps to account for the
variation of the parameters in the model. We do this by
resampling the data set with replacement and running the fitting
routine again for each bootstrap. In regions without data points,
the Bernstein polynomials revert to the overall mean of the
distribution.

We found that the Bernstein polynomials may behave
counterintuitively at the boundaries of the joint distribution (see
Appendix A in Ning et al. 2018). To address this issue, we fix
the first and last row and column of Bernstein polynomials to
have zero weights (w0j, wdj, wi0, wid′), and as such, they do not
contribute to the joint distribution. This was not done by Ning
et al. (2018),
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since their Kepler sample had enough samples near the
boundaries to constrain the fit.

4. MRExo

In this section, we shall discuss an important contribution
made in this paper. We translate Ning et al.’s (2018) R code7

into a publicly available Python package called MRExo.8 This
can be easily installed using PyPI and has extensive
documentation and tutorials to make it easy to use.

The MRExo package offers tools for fitting the M-R
relationship to a given data set. In this package, we use a
cross-validation technique to optimize for the number of
degrees. We then fit the joint distribution (Section 3.2) to the
sample set; this can then be marginalized to obtain the
conditional distribution, which we can use to predict one
variable from the other. We bootstrap our fitting procedure to
estimate the uncertainties in the mean M-R relation. Further,

MRExo is equipped with dedicated and easy-to-use functions to
plot the best-fit conditional M-R relationships, as well as the
joint M-R distribution.9 Crucially, MRExo also predicts mass
from radius, and radius from mass. For example, in the case of
planets discovered using the transit method, the feasibility of an
RV follow-up campaign can be evaluated by predicting the
estimated mass and its confidence intervals given the measured
radius and its uncertainty. Another feature of this package is
that it can accommodate radius (or mass) posterior samples
from separate analyses, which are then used to compute the
posterior predictive distribution for mass. Along with the
MRExo installation, the results from the M dwarf sample data
set from this paper and the Kepler exoplanet sample from Ning
et al. (2018) are included.
The degree of the Bernstein polynomials (d) approximately

scales with the sample size (N). Since the number of weights
goes as d2, the computation time involved in fitting a new M-R
can soon start to become prohibitive. Therefore, we also
parallelize the fitting procedure and the bootstrapping algo-
rithm. As an example, the M dwarf sample (N=24; d=17)
took about 2 minutes to perform cross-validation, fit a
relationship, and do 100 bootstraps on a cluster node with 24
cores and 2.2 GHz processors. The Kepler sample (N=127;
d=55) took about 36 hr for the cross-validation, fitting, and
48 bootstraps. We realize that the fitting computation time will
start to become prohibitive as the sample size increases 200;
therefore, we plan to optimize the code further by benchmark-
ing, optimizing floating point operations, and correcting the
precision requirements in the integration step. However, this
time-intensive step of cross-validation and fitting is only
necessary if users need to fit their own relationships. To run the

Figure 2. Optimal weights chosen by cross-validation for the M dwarf sample.
The cross-validation procedure selected 17 degrees as the optimum for both
mass and radius, which gives 172=289 weights, of which only five (four are
visible, the fifth one at 9, 12 is difficult to see in this stretch) are nonzero.

7 https://github.com/Bo-Ning/Predicting-exoplanet-mass-and-radius-
relationship
8 https://github.com/shbhuk/mrexo

9 We caution the user not to overinterpret the joint distribution; in the first
version of this software, we have made no attempt to correct for detection and
selection bias, which is needed before the joint distribution can be interpreted
as an M-R occurrence rate. We show the joint distribution in Figure 3 solely to
illustrate how the behavior of the conditionals relates to the joint.
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prediction routine on the preexisting M dwarf or Kepler
samples is fairly quick and takes less than a second for a
prediction. In order to do a large number of predictions as part
of a larger pipeline or simulation, users can also generate a
lookup table that makes the calculations even faster (the
function to generate and use the lookup table is provided with
the package).

5. Results

5.1. Parametric Fit Results

As discussed in Section 3, there is a trade-off between the
flexibility and lower bias of nonparametric models and the
interpretability and lower predictive variance of parametric
models. At present, the M dwarf data set only consists of 24
planets, and their masses and radii seem to be well
approximated by a power law. As such, we fit the parametric
model described by Equation (1) to the same M dwarf data set
to serve as a basis for comparison to the nonparametric results.
Currently, the fit looks to be fairly reasonable by eye (see
Figure 3(e)), but this is not guaranteed to be the case as more
measurements are obtained (indeed, it is clear from the fit to the
Kepler data, which consist of >100 planets, that a single power
law is not a sufficient model for that data; see Figure 3(f)).

The best-fit parameter values for the model described in
Equation (1) are g= - =-

+
-
+C 0.130 , 2.140.055

0.081
0.16
0.11 and s =M

-
+0.184 0.021

0.077; these values were found by identifying the mode of
the joint three-dimensional hyperparameter posterior, and the
error bars represent the marginal central 68% credible intervals.
This power-law slope is steeper than that found by Wolfgang
et al. (2016) for nearly all of the data sets they consider (most
lie within 1.3<γ<1.8). There are two possible explanations
for this. First, the data set used by Wolfgang et al. (2016)—and,
in fact, nearly all previous M-R results except Neil & Rogers
(2018)—is dominated by FGK dwarf planet hosts. This result
could therefore be driven by intrinsic differences between the
planets that form around Sun-like stars and those that form
around M dwarfs. However, Wolfgang et al. (2016) also used
only a limited radius range for their data set (R<4 or 8 R⊕), as
their focus was on super-Earths. As shown by Ning et al.
(2018), the slope for 1 R⊕<R<4 R⊕ is shallower than that
for 4 R⊕<R<10 R⊕, so one would expect that a single
power-law fit to the entire radius range would result in a steeper
slope than that fit just to R<4 R⊕. This is corroborated by the
fact that the slopes fit to the R<8 R⊕ radius range are steeper
than those fit to the R<4 R⊕ range. Additionally, Chen &
Kipping (2017) found that the segment of their broken power-
law relation that most closely matches the radius range of our
M dwarf data set (1 R⊕R11 R⊕) has a power-law slope
of = 1.71

0.59
. We note that the fact that there is a noticeable

difference between the slopes fit to different radius ranges is
evidence that a more flexible relation, such as the nonpara-
metric one developed in Ning et al. (2018), is needed. A broken
power-law approach, such as the one implemented by Chen &
Kipping (2017), could be employed; however, a nonparametric
method provides for a smooth transition between adjacent
radius ranges, something the broken power law does not.

Another notable difference between the parametric fit for the
M dwarf planets and the FGK planet sample from Wolfgang
et al. (2016) is the predicted mass for a 1 R⊕ planet. This
information is contained in C, the mean power-law normal-
ization constant. In linear units, the best-fit C for the M dwarf

data set is 10−0.13=0.74M⊕. This is significantly lower than
the power-law constants found in Wolfgang et al. (2016); it is
inconsistent with the R<8 R⊕ fit (C=1.5 M⊕) at 4σ and the
R<4 R⊕ fit (C=2.7M⊕) at 7σ. At least two effects are
contributing to this difference. First, very few planets around
FGK dwarfs with R<1 R⊕ have had their masses measured
and constrained to be M<1.5 M⊕. Because of the publication
bias quantified in Burt et al. (2018), wherein planetary masses
are required to reach a certain significance threshold to be
published, small, low-mass planets are more likely to be left out
of the FGK dwarf data sets. This causes the relation to be fit to
the more massive small planets that do appear in the literature,
which in turn causes C to be high. Conversely, the M dwarf
data set is strongly affected by the presence of the TRAPPIST-
1 planets (Gillon et al. 2017), whose masses are reported by
Grimm et al. (2018) to be both small and quite precise. This
one analysis of a single system dominates the M dwarf data set
at 0.7 R⊕<R<1.2 R⊕ and therefore the best-fit value of C—
a caveat that all potential users of these M dwarf relations
should keep in mind. We study the impact of the TRAPPIST-1
system on our M-R fits in detail in Section 5.5.
To determine whether the differences highlighted above are

due to the differences in the host star population, models, or
considered radius ranges, we also fit this simple parametric
model to the Kepler data set from Ning et al. (2018). While we
do not expect this model to be a good fit to the data, it offers an
apples-to-apples comparison to the above M dwarf parametric
results, and its shortcomings highlight the advantages of more
flexible nonparametric models. The best-fit parameter values
for the Kepler data set are g= - =-

+
-
+C 0.0250 , 2.130.111

0.093
0.14
0.11,

and s = -
+0.457M 0.044

0.026. Therefore, there is no statistically
significant difference between the M dwarf planetary mean
power law and the one that would be fit to the planets around
FGK dwarfs. More specifically, the two slopes are nearly
identical; while the Kepler normalization constant is larger than
the M dwarf constant, the difference is at the 1σ level. This
comparison is consistent with the result of Neil & Rogers
(2018), which used a sample size of six M dwarf planets. In
contrast, there is a statistically significant difference in the
intrinsic scatter for the M dwarf and Kepler data sets, with the
Kepler data set having more variation in planet mass at a given
radius. However, this may be at least partially affected by the
differences in the sample sizes (N=24 versus N=127) and
the fact that it takes more time to get significant mass
measurements for planets on the low-mass side of the intrinsic
scatter distribution. As we obtain more masses for transiting M
dwarf planets with instruments like HPF, we will be able to test
whether the difference in the intrinsic scatter remains
statistically significant.
All told, the comparison between the M dwarf and Kepler

parametric model fits does not yield very much insight into
the differences between the planetary populations. Because the
parametric model is not able to capture detailed features of
the M-R relation, it may hide some important differences
between the two data sets once the M dwarf data set becomes
large enough to warrant detailed analyses of these features.
Looking ahead to the M-R data set we will have by the end of
the TESS mission, we apply the nonparametric model to the
current M dwarf data set and perform the comparison between
it and the nonparametric fits to the Kepler data set to serve as a
basis for comparison to this future work (see Section 5.4).
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Figure 3. Panels (a), (b), (c), and (d): nonparametric fitting results for the M dwarf data set (see Figure 1) and Kepler sample. Panels (e) and (f): parametric fitting
results for the M dwarf and Kepler sample. (a) The conditional distributions ( ∣ )f m r and ( ∣ )f r m are shown in red and blue, respectively. The dark line represents the
mean of the conditional distribution that was obtained from the full data set run (no bootstrapping); this is the most likely mass at a given radius (or radius at a given
mass). The lightest shaded region represents the 16%–84% quantiles of the conditional distribution; this illustrates the width of the predicted mass (or radius)
distribution at that radius (or mass). The darker shaded region is the result of the bootstrapping procedure and shows the 16% and 84% quantiles of the median of the
distribution; this represents the uncertainty in the solid line. The increased uncertainty in the bootstrap regions, especially near the boundaries, is because of the
sparseness of data near the boundaries. This leaves the relation unconstrained when the data set is resampled with replacement. (b) Joint probability distribution f (m,
r), where the background color represents the highest probability. (c) and (d) Same conditional and joint distribution plot for the Kepler sample. (e) and (f) Posterior
predictive distribution from the parametric fitting of the M dwarf and Kepler samples using HBM.
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5.2. Nonparametric Fit

We fit the M dwarf exoplanet data set shown in Figure 1
using the nonparametric approach described in Section 3.2; the
results of this fit are displayed in Figures 3(a) and (b). Using the
cross-validation method, the optimum number of degrees
selected are both equal to 17, giving 172=289 total weights.
We note that our algorithm automatically forces most of the
weights to zero to prevent overfitting, especially for small data
sets. For this data set, only five weights are nonzero (see
Figure 2).

We also plot the conditional distributions ( ∣ )f m r and
( ∣ )f r m , where the conditional distribution ( ∣ )f m r is the ratio

of the joint distribution (Equation (2)) to the marginal
distribution of the radius f (r); likewise for ( ∣ )f r m (see
Equations (1) and (2) of Ning et al. 2018). The conditional
distribution spans regions of M-R space where there are no
data. This is due to the symmetrical nature of the Bernstein
polynomials and indicates that the current data set is not yet
large enough to be effectively described by a nonparametric
method; this is further discussed in Section 6.

From Figure 3(b), we note that the red conditional
distribution– ( ∣ )f m r is not the same as the blue conditional
distribution– ( ∣ )f r m . This is because when the joint distribution
(see Figures 3(b) and (d)) is marginalized to obtain the
conditional, the distribution behaves differently for each axis.
The two conditional distributions would be the same for a data
set with very little error and symmetric, equal scatter along the
entire M-R relation (see Section 6 for an illustration of this).
The Kepler data set effectively illustrates how localized areas
of large scatter in one dimension can drive differences between

( ∣ )f m r and ( ∣ )f r m . In particular, at log(m)∼0.5, there is a
large scatter in radius, which is fit by the mean M-R relation in

( ∣ )f m r but represented by the distribution (the width of the
light shaded region) around that mean relation in ( ∣ )f r m . While
both conditionals were computed from the same joint
distribution (Figure 3(d)), asymmetries such as this in the joint
distribution can produce conditionals that qualitatively look
very different. We also note that truncating the probability
distributions for integration (that is, using finite bounds to
compute f (r) and f (m) for the conditionals) also contributes to
some differences between the two conditional distributions.
This can be further seen in the simulation in Figure 7, where the
disparity between the two conditional distributions increases as
the dispersion from the power law increases. Therefore, to
predict one quantity from the other it is imperative to use the
right conditional distribution.

A common concern about nonparametric methods is their
ready ability to overfit data. The cross-validation method we
adopt to choose d and d′ is designed to minimize overfitting
while maximizing the predictive accuracy of the M-R relation.
Both underfitting and overfitting produce high predictive error
(that is, the predicted value is far from the true value); because
the cross-validation method identifies the degree that minimizes
the predictive error, it finds the optimum d that balances the
trade-off between the two. That said, we acknowledge that by
eye, there are wiggles in the M dwarf M-R relation that do not
appear to be supported by the data set. This is likely due to the
sparsity of the data set in certain radius and mass ranges; where
there is no data, the relation tends toward the mean of the
closest nonzero term. This is why we perform the simulation

study in Section 6, to find at what size data set does our
nonparametric model effectively describe the conditionals.

5.3. Comparing Nonparametric versus Parametric Fitting

We plot the conditional probability density functions
(CPDFs) of planetary masses for planets with R=1, 3, and 10
R⊕ in Figure 4. These CPDFs show the distribution of
planetary masses that would be predicted for planets at those
radii. Assessing the differences visually, the parametric and
nonparametric M dwarf fits have the same median but different
spreads. This difference is expected due to the bias versus
variance trade-off in parametric versus nonparametric model-
ing: if the parametric model is a poor description of the data,
the nonparametric fit will be less biased but have a higher
variance than the parametric estimator. Because the medians of
the CPDFs are similar between the nonparametric and
parametric models, it appears that, with this current data set,
a power law is a decent fit to the data. That said, we emphasize
that this will likely not remain the case as the M dwarf data set
grows, as we have seen for the Kepler data set.
To quantify the differences between the mass predictions

produced by these two model choices, we perform the two-sample
Kolmogorov–Smirnov (K-S; Kolmogorov 1933; Smirnov 1948)
and Anderson–Darling (AD; Anderson & Darling 1952; Scholz &
Stephens 2012) tests on samples drawn from these CPDFs (see
Table 1). These statistical tests assess whether we can reject
the null hypothesis that two data sets were drawn from the same
distribution, with the K-S test being more sensitive to the location
of the median and the AD tests more sensitive to differences of
the tails.
Importantly, the reported significance of these tests depends

on the size of the data sets, with small differences between the

Figure 4. The CPDFs of mass given radius for planets at 1, 3, and 10 R⊕.
These show the predicted mass distributions at these radii from the
nonparametric fit to the M dwarf sample (top), the nonparametric fit to the
Kepler sample (middle), and the parametric fit to the M dwarf sample (bottom).
The means of both M dwarf fits are at lower mass for 1 and 10 R⊕ planets than
for the Kepler fit, indicating that the smallest and largest planets are less
massive around M dwarfs than around Sun-like stars. Interestingly, the means
of the predictive masses for 3 R⊕ planets are similar.
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samples becoming more significant as the data sets grow. Since
we have the functional form of these CPDFs from our fitting
procedure, we have a choice in how many samples we can
draw from them and therefore how significant we report them
to be.10 As such, the results in Tables 1 and 2 should be
interpreted on a comparative basis, not on an absolute basis:
rather than concluding that the CPDFs for 1 R⊕ planets are
different on a statistically significant level while the CPDFs for
10 R⊕ are not, the correct interpretation is that it will take a
smaller number of mass measurements of planets at 1 R⊕ to
distinguish between the parametric and nonparametric models
than it will for planets at 10 R⊕ (see Table 1). Along the same
vein, an even smaller number of mass measurements would be
needed to distinguish between the parametric and nonpara-
metric models for 3 R⊕ planets. Because we only have 24
planets in our M dwarf data set in total, let alone at any single
radius, these model comparisons will need to be reassessed in
the future with more data.

5.4. Comparing M dwarf M-R versus Kepler M-R

We also seek to compare the M-R relationship from a Kepler
exoplanet sample to an M dwarf exoplanet sample. As
discussed in Section 1, there is empirical evidence that the
planetary radius and mass distributions differ between M and
FGK dwarfs. This is further illustrated empirically by our fit to
the M dwarf and Kepler sample (Figure 3): there are visual
differences between the joint and conditional distributions for
the M dwarfs and Kepler. Additionally, Figure 4 shows that the
median value of the CPDFs of Kepler and M dwarf masses do
not coincide for the smallest and largest planets; this is true
whether the nonparametric or parametric M dwarf relation is
used. Therefore, if the Kepler M-R relationship was used to
predict the mass of a transiting M dwarf exoplanet like
TRAPPIST-1 b, it would produce mass predictions that were
too large, on average. Conversely, if used for a nontransiting
planet like Proxima-b to predict its radius from its mass, the
prediction would be erroneous. This illustrates that the
conditional density functions are different for the two samples.
We also perform the K-S and AD tests to quantify the
differences between the M dwarf and Kepler CPDFs (see
Section 5.3 for discussion of these tests). We find that it will
take <<100 planets to distinguish between the M dwarf and
Kepler mass predictions at 1 and 10 R⊕, while even a data set
of 100 3 R⊕ planets does not illuminate any statistically
significant difference between the mass predictions. Therefore,
the M dwarf M-R relation could be most different from the
FGK dwarf M-R relation at the smallest and largest planet
sizes.

5.5. Estimating the Impact of the TRAPPIST-1 System on the M
Dwarf M-R Relationship

Considering that our sample of M dwarf planets with masses
and radii is limited to 24 planets, of which seven belong to the
TRAPPIST-1 system, we explore the influence of the system on
the M-R relationship in the 1 R⊕ regime. To do this, we eliminate
the seven TRAPPIST-1 planets from our 24 planet sample. We
are left with 17 planets, which we then fit in two ways.

1. We fit the sample using 17 degrees, the same number of
degrees used to fit the full 24 planet M dwarf planet
sample (see Section 5.2).

2. We rerun our cross-validation algorithm on this reduced
sample to estimate the optimum number of degrees to use
for the fitting. This results in 11 degreesbeing used for
the fit.

We run both cases for the reduced sample set, i.e., without
the TRAPPIST-1 system, to decouple the influence of said
system from that of a Bernstein polynomial M-R fit with a
reduced number of degrees. The resultant fits for these are
shown in Figure 5 for comparison with Figure 3.
After fitting this relationship, we look at the resultant

probability distribution function that we obtain when we
marginalize this distribution to use it as a predictive function.
Similar to Figure 4, we compare the predicting functions
without TRAPPIST-1 in Figure 6.

6. Impact of Sample Size on Nonparametric Methods

As discussed in Section 3, we run a simulation to test the
effectiveness of the nonparametric method as a fitting and
predictive tool. In particular, we visually assess the ability of

Table 1
Two-sample Comparison Tests between the Parametric and Nonparametric M

Dwarf Sample

Radius K-S AD

R⊕ Statistic p-value Statistic p-value

1 0.26 1.3×10−3 8.30 <10−4

3 0.30 2×10−4 8.65 <10−4

10 0.15 0.1511 1.87 0.1046

Note.Note that these are relative p-values based on generated data sets of 100
planets, not absolute p-values (see Section 5.3 for discussion).

Table 2
Two-sample Comparison Tests between the Nonparametric Fit to the M Dwarf

and Kepler Samples

Radius K-S AD

R⊕ Statistic p-value Statistic p-value

1 0.47 <10−4 24.2 <10−4

3 0.16 0.1057 2.03 0.0824
10 0.42 <10−4 14.5 <10−4

Note.Note that these are relative p-values based on generated data sets of 100
planets, not absolute p-values (see Section 5.3 for discussion).

10 For every comparison in Tables 1 and 2, we use 100 samples from each
CPDF. We also note that the assignment of a p-value to a given statistic
depends on a theoretical statistical distribution for the variation in that statistic
given randomly drawn data sets from the same distribution. To test this
theoretically assigned p-value, we generated reference distributions of K-S and
AD statistics based on 20,000 randomly drawn data sets (each of which also
contains N=100 planets) from the CPDFs, compared against themselves for a
total of 10,000 comparisons (and 10,000 values for the K-S and AD statistics).
We then identified at what quantile is the median of the nonparametric versus
parametric K-S statistic distribution with respect to the distribution of K-S
statistics produced by comparing the M dwarf nonparametric CPDFs against
themselves. These values are what is reported in Table 1 (and an analogous
comparison between the Kepler and M dwarf nonparametric CPDFs with
respect to the self-compared nonparametric M dwarf CPDFs is reported in
Table 2). It turns out that this more careful approach is in good agreement with
the theoretical p-values provided by the R package kSamples, built from the
work of Scholz & Stephens (2012). If the median of the nonparametric versus
parametric K-S statistic distribution fell completely outside that of the
nonparametric self-compared K-S distribution, the p-value is reported as
<10−4, as we only generate 10,000 pairs of data sets for these K-S and AD
statistic distributions.
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the Bernstein polynomial model to qualitatively reproduce a
known underlying distribution as a function of sample size and
astrophysical scatter. We set the known distribution to be a
power law in M-R space with a slope of ∼2.3 (mass as a
function of radius). We simulated synthetic data sets from this
known distribution and added mass and radius uncertainties of
10%. We then tested this data set for three different values of
intrinsic dispersion, i.e., the scatter of the data points around the
original power law. The tested values of intrinsic dispersion are
0, 0.1, and 0.5 in units of log(m).

We note that in the simulation, the nonparametric algorithm
fits the simulated data set well in the case of low intrinsic
dispersion, even for small data sets (∼20 points; see Figure 8).
However, as we increase the intrinsic dispersion, the fit
compensates by increased uncertainties and visual departures
from the known underlying distribution (see Figure 7). Our
simulation demonstrates that the nonparametric technique can

reproduce the underlying (power law in this test case)
distribution with as little as 20 points, with its precision
improving as the number of points grows (Figure 8).

7. Discussion

7.1. Nonparametric versus Parametric Methods

In Section 5.3, we compare the results of the nonparametric
and parametric fit to the M dwarf sample. A parametric model
is useful for small data sets, where it offers an easy means to
develop an intuitive understanding for the data. It can also be
used when there is a known physical process that is being fit or
tested for. However, in cases where we need to explore the
relationship and develop a forecasting or predicting routine,
nonparametric methods offer a more flexible and unbiased
option. Furthermore, in cases where the underlying distribu-
tions of the variables are unknown, or the data could have

Figure 5. Similar to Figure 3, showing the conditional ( ∣ )f m r ((a) and (c)) and joint ((b) and (d)) distribution for the M dwarf sample with and without the TRAPPIST-
1 planets. Panels (a) and (b) show the case without the TRAPPIST-1 system with the M-R relationship fit using 11 degrees, as optimized by the cross-validation
method. Panels (c) and (d) show the same for 17 degrees, which is the number of degrees the original M dwarf M-R relationship was fit with. These should be
compared with the fit result plots for the M dwarf sample in Figure 3.
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small-scale structure that cannot be captured by a power law,
the nonparametric method is a better predictor. For this M
dwarf sample, the parametric and nonparametric methods offer
similar median predictions in the realm of limited sample size
(see Figure 4). However, as has been shown by Ning et al.
(2018) with the Kepler sample, a simple parametric power law
(or broken power law) does not necessarily capture the features
in the data as the sample size grows. A parametric predicting
method will not necessarily reflect the data with the same
accuracy and has the potential for higher bias, meaning that the
predicted masses or radii will be farther from the true masses or
radii. Furthermore, a broken power law gives a disjoint intrinsic
scatter across the regions, as well as making it difficult to
predict values close to the transitions between different regions.
Therefore, we propose this nonparametric method for the M-R
relationship and offer the Python package MRExo as a
practical tool for making these predictions.

7.2. M Dwarf versus Kepler

Neil & Rogers (2018) fit an M-R relationship on a sample of
M dwarf exoplanets and compared it to a sample of exoplanets
orbiting FGK dwarfs to try to find evidence for any dependence
on the host star mass. They did so by expanding upon the HBM
approach introduced in Wolfgang et al. (2016) to include
another dimension that accounts for a possible host star mass
dependence. As their M dwarf sample consisted of only six
planets with radii and mass measurements, they found that their
M-R power law was slightly shallower than that for their FGK
sample, yet still consistent with no host star mass dependence.
Our sample size of 24 planets agrees with this when fit with a
similar parametric relationship.

On the other hand, we find in Section 5.4 that the Kepler and
M dwarf predictive mass distributions are different for the
smallest and largest planets, in the sense that the smallest and
largest planets are, on average, less massive around M dwarfs
than around Sun-like stars. This result holds for both the
nonparametric and parametric M dwarf fit. The difference

appears in these comparisons but not in the parametric
comparison. This is because, as shown by Ning et al. (2018),
the parametric model is not flexible enough to fit the larger
Kepler data set and hence does not provide a reasonable
baseline for comparison.
Astrophysically, this could indicate that the low-mass

protoplanetary disks around M dwarfs result in lower-mass gas
giants, which would explain the lower predictive masses for
the 10 R⊕. The HARPS M dwarf survey results (Bonfils et al.
2013), along with other results from Johnson et al. (2010)
and Gaidos & Mann (2014), point to a difference in mass
distributions for M dwarfs versus FGK stellar host planets for
giant planets (R∼10 R⊕). The M dwarf giant planet (10 R⊕)
occurrence rate seems to be fundamentally different from that of
FGK stars. Therefore, we do not think that the difference in
CPDFs for 10 R⊕ is solely because of the fewer M dwarf giant
planets, as compared to the Kepler sample.
For the smaller planets that are likely terrestrial, a lower

mass at a given radius means a higher silicon-to-iron ratio,
which may suggest that M dwarf disks process their refractory
elements differently than Sun-like protoplanetary disks. The
small planet (1 R⊕) regime does suffer from a paucity of planets
in the Kepler sample. This can be attributed to an observational
bias due to the difficulty in finding terrestrial planets around
Sun-like stars due to the smaller exoplanet detection signature.
That being said, previous studies, such as Mulders et al.
(2015a), have shown that there is a difference in planet
occurrence rate for Earth-like planets around M stars versus
FGK stars.
Interestingly, the predictive mass distributions for 3 R⊕

planets are similar between M and FGK dwarf hosts. This
could indicate that the process of sub-Neptune formation is
independent of the mass of the protoplanetary disk. That said,
the predictive mass distributions between the M dwarf and
FGK planetary samples do overlap substantially, and the M
dwarf data set is still quite small and dominated by the
TRAPPIST-1 planets. Therefore, these preliminary results
should be revisited once more transiting M dwarf planets are

Figure 6. Similar to Figure 4, we compare the CPDF of the M dwarf sample set with and without the TRAPPIST-1 system. The left plot shows the comparison for the
reduced sample set, with 11 degreesused to fit the relationship. The right plot uses 17 degreesfor the reduced sample set. For both cases, we notice that the 1 R⊕
CPDF is unconstrained in the absence of the TRAPPIST-1 system. The 3 and 10 R⊕ density functions are altered in the left plot and not the right. This suggests that
the reduced number of degrees (11 vs. 17) being used to fit the joint distribution is smoothening the CPDFs.

10

The Astrophysical Journal, 882:38 (14pp), 2019 September 1 Kanodia et al.



discovered and followed up with ground-based observations.
We also note that the orbital period ranges for the two samples
differ. For the Kepler sample, the orbital periods range from
about 0.3 to 1100 days, whereas for the M dwarf samples, they
vary from 1.5 to about 33 days. Therefore, future work that
incorporates the orbital period dimension into a higher
dimension relation could lead to further detailed insights into
the orbital period dependence of exoplanet M-R relations
around different exoplanet hosts. It would be very interesting to
see how these results hold in this higher dimensional space as
more transiting M dwarf planets are discovered and have their
masses measured.

7.3. Estimating the Impact of the TRAPPIST-1 System on the M
Dwarf M-R Relationship

In Section 5.5, we study the impact of the TRAPPIST-1
system on our M dwarf M-R relationship. In the <1.2 R⊕
regime, we have eight planets, of which seven are from said

system, and the last one is Kepler-138b. Even though no
studies have so far suggested that the TRAPPIST-1 system is
unusual in any aspect, we entertain the possibility by
conducting a check and comparing the results with and without
the TRAPPIST-1 system. However, by removing seven of the
eight planets in that region, the prediction is unconstrained
(Figure 6). Therefore, at this point, we cannot conclude
whether the difference between the M dwarf and Kepler sample
predictions for the 1 R⊕ predictions is because of a peculiarity
in the TRAPPIST-1 system. However, we are very optimistic
that this will be further probed with mass measurements of
TESS discoveries of transiting Earth-like planets around M
dwarfs.

7.4. Future Prospects

As was seen with the Kepler sample, as the sample size
increases, we can start to unearth interesting phenomena that
would be hard to discern from small data sets. In addition, more

Figure 7. Nonparametric fits to a simulated sample of 50 planets with an increasing amount of dispersion around the power law. The nonparametric method
reproduces the power law well when the intrinsic dispersion is low.

11

The Astrophysical Journal, 882:38 (14pp), 2019 September 1 Kanodia et al.



precise measurements with smaller error bars would help in
more accurate M-R model fits. This would further unveil
features and regions that were indistinguishable earlier. This will
particularly hold true as the M dwarf M-R space starts to fill up
with radii from TESS (Ricker et al. 2014) and the advent of high-
precision RV follow-up instruments like HPF (Mahadevan et al.
2012), NEID (Schwab et al. 2016), MAROON-X (Seifahrt et al.
2016), MINERVA-RED (Blake et al. 2015), CARMENES
(Quirrenbach et al. 2016), SPIROU (Thibault et al. 2012), IRD
(Kotani et al. 2018), ESPRESSO (González Hernández et al.
2018), NIRPS (Wildi et al. 2017), SPIRou (Artigau et al. 2014),
iSHELL (Cale et al. 2018), GIANO (Claudi et al. 2017), and
EXPRES (Jurgenson et al. 2016).

8. Conclusion

In this paper, we fit the M-R relationship for a sample of
24 exoplanets around M dwarfs using nonparametric and
parametric methods. Considering the small sample size, the

measurements are currently well described by a power law,
which we fit with a parametric hierarchical Bayesian model.
We then discuss the deficiencies of parametric methods and the
utility of nonparametric models, especially as the sample size
increases. To further illustrate this point, we also run a
simulation study showing how the nonparametric fit changes
with a change in sample size and dispersion in the sample. We
then compare the nonparametric and parametric results, finding
them to be similar, on average, but currently with a larger
variance for the nonparametric mass predictions. We also
discuss differences in the M-R relationship for M dwarf versus
Kepler exoplanets and note that the predicted CPDFs differ for
the smallest and largest planets. Using this comparison, we
illustrate the utility of an M dwarf M-R relationship in an era of
exciting new discoveries with TESS and ground-based preci-
sion RV instrumentation.
We also introduce a new Python package called MRExo,

which can be used as a predictive tool, as well as to fit

Figure 8. Nonparametric fits to simulated samples of 20, 50, and 100 planets with the same amount of intrinsic scatter. The fit improves as the sample size increases.
One can also note that the conditional ( ∣ )f m r and ( ∣ )f r m distributions begin to converge as the sample size increases.
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nonparametric M-R relationships to new data sets. This code is
available to the community to use in its own applications.
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Appendix

In Table 3, we show the mean values and uncertainties for
the masses and radii for the 24 planets in the M dwarf sample.

Table 3
Masses and Radii of M Dwarf Planets Used in This Work

Planet Mass σM Radius σR Mass Radius
Name (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

HATS-6 b 101.3878 22.2481 11.187 0.213 Hartman et al. (2015) Hartman et al. (2015)
GJ 1214 b 6.26125 0.85814 2.847 0.202 Harpsøe et al. (2013) Harpsøe et al. (2013)
K2-22 ba 444.962 0 2.5 0.4 Sanchis-Ojeda et al. (2015) Sanchis-Ojeda et al. (2015)
K2-18 b 7.96 1.91 2.38 0.22 Cloutier et al. (2017) Cloutier et al. (2017)
LHS 1140 b 6.98 0.89 1.727 0.032 Ment et al. (2019) Ment et al. (2019)
NGTS-1 b 258.078 22.40702 14.908 5.268 Bayliss et al. (2018) Bayliss et al. (2018)
K2-137 ba 158.915 0 0.89 0.09 Smith et al. (2018) Smith et al. (2018)
K2-33 ba 1175.971 0 5.04 0.355 Mann et al. (2016) Mann et al. (2016)
LHS 1140 c 1.81 0.39 1.282 0.024 Ment et al. (2019) Ment et al. (2019)
GJ 436 b 23.1 0.8 4.191 0.109 Turner et al. (2016) Turner et al. (2016)
GJ 1132 b 1.66 0.23 1.43 0.16 Bonfils et al. (2018) Southworth et al. (2017)
Kepler-32 b 9.4 3.35 2.231 0.072 Hadden & Lithwick (2014) Berger et al. (2018)
Kepler-32 c 7.7 4.4 2.112 0.071 Hadden & Lithwick (2014) Berger et al. (2018)
GJ 3470 b 13.9 1.5 4.57 0.18 Awiphan et al. (2016) Awiphan et al. (2016)
TRAPPIST-1 b 1.017 0.1485 1.121 0.0315 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 c 1.156 0.1365 1.095 0.0305 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 d 0.297 0.037 0.784 0.023 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 e 0.772 0.077 0.91 0.0265 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 f 0.934 0.079 1.046 0.0295 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 g 1.148 0.0965 1.148 0.0325 Grimm et al. (2018) Grimm et al. (2018)
TRAPPIST-1 h 0.331 0.0525 0.773 0.0265 Grimm et al. (2018) Grimm et al. (2018)
Kepler-45 b 159 19 11.634 0.362 Southworth (2012) Berger et al. (2018)
Kepler-138 b 0.066 0.048 0.629 0.0275 Jontof-Hutter et al. (2015) Berger et al. (2018)
Kepler-138 c 1.97 1.516 1.519 0.0975 Jontof-Hutter et al. (2015) Berger et al. (2018)
Kepler-138 d 0.64 0.5305 1.323 0.043 Jontof-Hutter et al. (2015) Berger et al. (2018)
Kepler-26 b 5.02 0.66 3.191 0.095 Hadden & Lithwick (2017) Berger et al. (2018)
Kepler-26 c 6.12 0.71 2.976 0.253 Hadden & Lithwick (2017) Berger et al. (2018)

Note.
a Upper limits.

13

The Astrophysical Journal, 882:38 (14pp), 2019 September 1 Kanodia et al.



ORCID iDs

Shubham Kanodia https://orcid.org/0000-0001-8401-4300
Angie Wolfgang https://orcid.org/0000-0003-2862-6278
Gudmundur K. Stefansson https://orcid.org/0000-0001-
7409-5688
Bo Ning https://orcid.org/0000-0001-5256-6418
Suvrath Mahadevan https://orcid.org/0000-0001-9596-7983

References

Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989
Anderson, T. W., & Darling, D. A. 1952, The Annals of Mathematical

Statistics, 23, 193
Artigau, T., Kouach, D., Donati, J.-F., et al. 2014, arXiv:1406.6992
Awiphan, S., Kerins, E., Pichadee, S., et al. 2016, MNRAS, 463, 2574
Ballard, S. 2019, AJ, 157, 113
Ballard, S., & Johnson, J. A. 2016, ApJ, 816, 66
Bayliss, D., Gillen, E., Eigmüller, P., et al. 2018, MNRAS, 475, 4467
Berger, T. A., Huber, D., Gaidos, E., & van Saders, J. L. 2018, ApJ, 866, 99
Blake, C., Johnson, J., Plavchan, P., et al. 2015, AAS Meeting, 225, 257.32
Bonfils, X., Almenara, J.-M., Cloutier, R., et al. 2018, A&A, 618, A142
Bonfils, X., Delfosse, X., Udry, S., et al. 2013, A&A, 549, A109
Burt, J., Holden, B., Wolfgang, A., & Bouma, L. G. 2018, AJ, 156, 255
Cale, B., Plavchan, P., Gagné, J., et al. 2018, arXiv:1803.04003
Chen, J., & Kipping, D. 2017, ApJ, 834, 17
Claudi, R., Benatti, S., Carleo, I., et al. 2017, EPJP, 132, 364
Cloutier, R., Astudillo-Defru, N., Doyon, R., et al. 2017, A&A, 608, A35
Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45
Gaidos, E., & Mann, A. W. 2014, ApJ, 791, 54
Gaidos, E., Mann, A. W., Kraus, A. L., & Ireland, M. 2016, MNRAS,

457, 2877
Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Natur, 542, 456
Green, J., Schechter, P., Baltay, C., et al. 2012, arXiv:1208.4012
Grimm, S. L., Demory, B.-O., Gillon, M., et al. 2018, A&A, 613, A68
Hadden, S., & Lithwick, Y. 2014, ApJ, 787, 80
Hadden, S., & Lithwick, Y. 2017, AJ, 154, 5
Harpsøe, K. B. W., Hardis, S., Hinse, T. C., et al. 2013, A&A, 549, A10
Hartman, J. D., Bayliss, D., Brahm, R., et al. 2015, AJ, 149, 166
Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. 2006, AJ, 132, 2360
González Hernández, J. I., Pepe, F., Molaro, P., & Santos, N. 2018, Handbook

of Exoplanets (Berlin: Springer)

Hunter, J. D. 2007, CSE, 9, 90
Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP,

122, 905
Jontof-Hutter, D., Rowe, J. F., Lissauer, J. J., Fabrycky, D. C., & Ford, E. B.

2015, Natur, 522, 321
Jurgenson, C., Fischer, D., McCracken, T., et al. 2016, Proc. SPIE, 9908,

99086T
Kanodia, S. 2019, MRExo, v0.1.4.1 Zenodo, doi:10.5281/zenodo.3306969
Kolmogorov, A. N. 1933, Giornale dell’Istituto Italiano degli Attuari, 4, 83
Kotani, T., Tamura, M., Nishikawa, J., et al. 2018, Proc. SPIE, 10702, 1070211
Lissauer, J. J. 2007, ApJL, 660, L149
Mahadevan, S., Ramsey, L., Bender, C., et al. 2012, Proc. SPIE, 8446, 84461S
Mann, A. W., Newton, E. R., Rizzuto, A. C., et al. 2016, AJ, 152, 61
Marchwinski, R. C., Mahadevan, S., Robertson, P., Ramsey, L., & Harder, J.

2015, ApJ, 798, 63
Ment, K., Dittmann, J. A., Astudillo-Defru, N., et al. 2019, AJ, 157, 32
Mulders, G. D., Pascucci, I., & Apai, D. 2015a, ApJ, 814, 130
Mulders, G. D., Pascucci, I., & Apai, D. 2015b, ApJ, 798, 112
Neil, A. R., & Rogers, L. A. 2018, ApJ, 858, 58
Ning, B., Wolfgang, A., & Ghosh, S. 2018, ApJ, 869, 5
Oliphant, T. 2006, NumPy: A Guide to NumPy (USA: Trelgol Publishing)
Oliphant, T. E. 2007, CSE, 9, 10
Owen, J. E., & Lai, D. 2018, MNRAS, 479, 5012
Owen, J. E., & Wu, Y. 2017, ApJ, 847, 29
Pérez, F., & Granger, B. E. 2007, CSE, 9, 21
Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2016, in IAU Symp. 320,

Solar and Stellar Flares and their Effects on Planets (Cambridge: Cambridge
Univ. Press), 388

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, JATIS, 1, 014003
Robitaille, T. P., Tollerud, E. J., Greenfield, P., et al. 2013, A&A, 558, A33
Sanchis-Ojeda, R., Rappaport, S., Pallè, E., et al. 2015, ApJ, 812, 112
Scholz, F. W., & Stephens, M. A. 2012, J. Am. Stat. Assoc., 82, 918
Schwab, C., Rakich, A., Gong, Q., et al. 2016, Proc. SPIE, 9908, 99087H
Seifahrt, A., Bean, J. L., Stürmer, J., et al. 2016, Proc. SPIE, 9908, 990818
Smirnov, N. 1948, The Annals of Mathematical Statistics, 19, 279
Smith, A. M. S., Cabrera, J., Csizmadia, S., et al. 2018, MNRAS, 474,

5523
Southworth, J. 2012, MNRAS, 426, 1291
Southworth, J., Mancini, L., Madhusudhan, N., et al. 2017, AJ, 153, 191
Thibault, S., Rabou, P., Donati, J.-F., et al. 2012, Proc. SPIE, 8446, 844630
Turner, J. D., Pearson, K. A., Biddle, L. I., et al. 2016, MNRAS, 459, 789
Weiss, L. M., & Marcy, G. W. 2014, ApJL, 783, L6
Wildi, F., Blind, N., Reshetov, V., et al. 2017, Proc. SPIE, 10400, 1040018
Wolfgang, A., Rogers, L. A., & Ford, E. B. 2016, ApJ, 825, 19

14

The Astrophysical Journal, 882:38 (14pp), 2019 September 1 Kanodia et al.

https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0001-8401-4300
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0003-2862-6278
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-7409-5688
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-5256-6418
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://orcid.org/0000-0001-9596-7983
https://doi.org/10.1086/672273
https://ui.adsabs.harvard.edu/abs/2013PASP..125..989A/abstract
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1214/aoms/1177729437
http://arxiv.org/abs/1406.6992
https://doi.org/10.1093/mnras/stw2148
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463.2574A/abstract
https://doi.org/10.3847/1538-3881/aaf477
https://ui.adsabs.harvard.edu/abs/2019AJ....157..113B/abstract
https://doi.org/10.3847/0004-637X/816/2/66
https://ui.adsabs.harvard.edu/abs/2016ApJ...816...66B/abstract
https://doi.org/10.1093/mnras/stx2778
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.4467B/abstract
https://doi.org/10.3847/1538-4357/aada83
https://ui.adsabs.harvard.edu/abs/2018ApJ...866...99B/abstract
https://ui.adsabs.harvard.edu/abs/2015AAS&x02026;22525732B/abstract
https://doi.org/10.1051/0004-6361/201731884
https://ui.adsabs.harvard.edu/abs/2018A&A...618A.142B/abstract
https://doi.org/10.1051/0004-6361/201014704
https://ui.adsabs.harvard.edu/abs/2013A&A...549A.109B/abstract
https://doi.org/10.3847/1538-3881/aae697
https://ui.adsabs.harvard.edu/abs/2018AJ....156..255B/abstract
http://arxiv.org/abs/1803.04003
https://doi.org/10.3847/1538-4357/834/1/17
https://ui.adsabs.harvard.edu/abs/2017ApJ...834...17C/abstract
https://doi.org/10.1140/epjp/i2017-11647-9
https://ui.adsabs.harvard.edu/abs/2017EPJP..132..364C/abstract
https://doi.org/10.1051/0004-6361/201731558
https://ui.adsabs.harvard.edu/abs/2017A&A...608A..35C/abstract
https://doi.org/10.1088/0004-637X/807/1/45
https://ui.adsabs.harvard.edu/abs/2015ApJ...807...45D/abstract
https://doi.org/10.1088/0004-637X/791/1/54
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...54G/abstract
https://doi.org/10.1093/mnras/stw097
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.2877G/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.2877G/abstract
https://doi.org/10.1038/nature21360
https://ui.adsabs.harvard.edu/abs/2017Natur.542..456G/abstract
http://arxiv.org/abs/1208.4012
https://doi.org/10.1051/0004-6361/201732233
https://ui.adsabs.harvard.edu/abs/2018A&A...613A..68G/abstract
https://doi.org/10.1088/0004-637X/787/1/80
https://ui.adsabs.harvard.edu/abs/2014ApJ...787...80H/abstract
https://doi.org/10.3847/1538-3881/aa71ef
https://ui.adsabs.harvard.edu/abs/2017AJ....154....5H/abstract
https://doi.org/10.1051/0004-6361/201219996
https://ui.adsabs.harvard.edu/abs/2013A&A...549A..10H/abstract
https://doi.org/10.1088/0004-6256/149/5/166
https://ui.adsabs.harvard.edu/abs/2015AJ....149..166H/abstract
https://doi.org/10.1086/508233
https://ui.adsabs.harvard.edu/abs/2006AJ....132.2360H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1086/655775
https://ui.adsabs.harvard.edu/abs/2010PASP..122..905J/abstract
https://ui.adsabs.harvard.edu/abs/2010PASP..122..905J/abstract
https://doi.org/10.1038/nature14494
https://ui.adsabs.harvard.edu/abs/2015Natur.522..321J/abstract
https://doi.org/10.1117/12.2233002
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..6TJ/abstract
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..6TJ/abstract
https://doi.org/10.5281/zenodo.3306969
https://doi.org/10.1117/12.2311836
https://ui.adsabs.harvard.edu/abs/2018SPIE10702E..11K/abstract
https://doi.org/10.1086/518121
https://ui.adsabs.harvard.edu/abs/2007ApJ...660L.149L/abstract
https://doi.org/10.1117/12.926102 
https://ui.adsabs.harvard.edu/abs/2012SPIE.8446E..1SM/abstract
https://doi.org/10.3847/0004-6256/152/3/61
https://ui.adsabs.harvard.edu/abs/2016AJ....152...61M/abstract
https://doi.org/10.1088/0004-637X/798/1/63
https://ui.adsabs.harvard.edu/abs/2015ApJ...798...63M/abstract
https://doi.org/10.3847/1538-3881/aaf1b1
https://ui.adsabs.harvard.edu/abs/2019AJ....157...32M/abstract
https://doi.org/10.1088/0004-637X/814/2/130
https://ui.adsabs.harvard.edu/abs/2015ApJ...814..130M/abstract
https://doi.org/10.1088/0004-637X/798/2/112
https://ui.adsabs.harvard.edu/abs/2015ApJ...798..112M/abstract
https://doi.org/10.3847/1538-4357/aabcc9
https://ui.adsabs.harvard.edu/abs/2018ApJ...858...58N/abstract
https://doi.org/10.3847/1538-4357/aaeb31
https://ui.adsabs.harvard.edu/abs/2018ApJ...869....5N/abstract
https://doi.org/10.1109/MCSE.2007.58
https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..10O/abstract
https://doi.org/10.1093/mnras/sty1760
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.5012O/abstract
https://doi.org/10.3847/1538-4357/aa890a
https://ui.adsabs.harvard.edu/abs/2017ApJ...847...29O/abstract
https://doi.org/10.1109/MCSE.2007.53
https://ui.adsabs.harvard.edu/abs/2007CSE.....9c..21P/abstract
https://ui.adsabs.harvard.edu/abs/2016IAUS..320..388Q/abstract
https://doi.org/10.1117/1.JATIS.1.1.014003
https://ui.adsabs.harvard.edu/abs/2015JATIS...1a4003R/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1088/0004-637X/812/2/112
https://ui.adsabs.harvard.edu/abs/2015ApJ...812..112S/abstract
https://doi.org/10.1080/01621459.1987.10478517
https://doi.org/10.1117/12.2234411
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..7HS/abstract
https://doi.org/10.1117/12.2232069
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..18S/abstract
https://doi.org/10.1214/aoms/1177730256
https://doi.org/10.1093/mnras/stx2891
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.5523S/abstract
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.5523S/abstract
https://doi.org/10.1111/j.1365-2966.2012.21756.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.426.1291S/abstract
https://doi.org/10.3847/1538-3881/aa6477
https://ui.adsabs.harvard.edu/abs/2017AJ....153..191S/abstract
https://doi.org/10.1117/12.926697
https://ui.adsabs.harvard.edu/abs/2012SPIE.8446E..30T/abstract
https://doi.org/10.1093/mnras/stw574
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459..789T/abstract
https://doi.org/10.1088/2041-8205/783/1/L6
https://ui.adsabs.harvard.edu/abs/2014ApJ...783L...6W/abstract
https://doi.org/10.1117/12.2275660
https://ui.adsabs.harvard.edu/abs/2017SPIE10400E..18W/abstract
https://doi.org/10.3847/0004-637X/825/1/19
https://ui.adsabs.harvard.edu/abs/2016ApJ...825...19W/abstract

	1. Introduction
	2. Data Set
	3. Fitting the Data Set
	3.1. Parametric Method: Hierarchical Bayesian Modeling
	3.2. The Nonparametric Method—Bernstein Polynomials

	4. MRExo
	5. Results
	5.1. Parametric Fit Results
	5.2. Nonparametric Fit
	5.3. Comparing Nonparametric versus Parametric Fitting
	5.4. Comparing M dwarf M-R versus Kepler M-R
	5.5. Estimating the Impact of the TRAPPIST-1 System on the M Dwarf M-R Relationship

	6. Impact of Sample Size on Nonparametric Methods
	7. Discussion
	7.1. Nonparametric versus Parametric Methods
	7.2. M Dwarf versus Kepler
	7.3. Estimating the Impact of the TRAPPIST-1 System on the M Dwarf M-R Relationship
	7.4. Future Prospects

	8. Conclusion
	Appendix
	References



