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Abstract

The acceleration of thermal solar wind (SW) protons at spherical interplanetary shocks driven by coronal mass
ejections is investigated. The SW velocity distribution is represented using κ-functions, which are transformed in
response to simulated shock transitions in the fixed-frame flow speed, plasma number density, and temperature.
These heated SW distributions are specified as source spectra at the shock from which particles with sufficient
energy can be injected into the diffusive shock acceleration process. It is shown that for shock-accelerated spectra
to display the classically expected power-law indices associated with the compression ratio, diffusion length scales
must exceed the width of the compression region. The maximum attainable energies of shock-accelerated spectra
are found to be limited by the transit times of interplanetary shocks, while spectra may be accelerated to higher
energies in the presence of higher levels of magnetic turbulence or at faster-moving shocks. Indeed, simulations
suggest that fast-moving shocks are more likely to produce very high energy particles, while strong shocks,
associated with harder shock-accelerated spectra, are linked to higher intensities of energetic particles. The prior
heating of the SW distribution is found to complement shock acceleration in reproducing the intensities of typical
energetic storm particle (ESP) events, especially where injection energies are high. Moreover, simulations of
∼0.2–1MeV proton intensities are presented that naturally reproduce the observed flat energy spectra prior to
shock passages. Energetic particles accelerated from the SW, aided by its prior heating, are shown to contribute
substantially to intensities during ESP events.
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1. Introduction

Energetic particle enhancements observed at Earth are often
associated with the passage of interplanetary (IP) shocks,
driven by, e.g., coronal mass ejections (CMEs), during
energetic storm particle (ESP) events (Bryant et al. 1962;
Lario & Decker 2002; Ho et al. 2009; Huttunen-Heikinmaa &
Valtonen 2009; Mäkelä et al. 2011). These enhancements are
thought to occur as a result of particle acceleration at the shock,
for which diffusive shock acceleration (DSA; Axford et al.
1977; Krymskii 1977; Bell 1978a, 1978b; Blandford &
Ostriker 1978) continues to be regarded as a viable mechanism,
often coupled with self-generated turbulence in the form of
magnetohydromagnetic waves (Lee 1983). See also the
relevant discussions of Desai & Giacalone (2016) on ESPs
and DSA. More recently, attention has been drawn to the
notable flattening of proton energy spectra in observations
directly preceding the passage of IP shocks at Earth (Lario et al.
2018). This is attributed to follow as a result of the propagation
of accelerated particles from the shock to the observer but is not
fully explained. Moreover, while CME shock properties such
as speed and compression ratio have been linked to the
efficiency of particle acceleration (Lario et al. 2005b;
Giacalone 2012), shock obliquity (Ellison et al. 1995) and
the nature of the seed particles (Desai et al. 2006) have also
been identified as important factors.

It has been suggested that IP shocks can accelerate particles
from thermal energies (e.g., Giacalone 2005). Indeed, for quasi-
parallel shocks, where particles can repeatedly cross the shock
front along magnetic field lines, injection energies are assumed
to be small, and Maxwellian-like distributions are proposed to

provide adequate seed particles for DSA (Giacalone et al. 1992;
Neergaard Parker & Zank 2012). By contrast, injection
energies are generally assumed to be high for perpendicular
shocks because the perpendicular diffusion coefficient is small
for particles interacting resonantly with microscale turbulence.
However, the injection energy is considerably lowered when
particles experience perpendicular diffusion along intermedi-
ate-scale meandering magnetic field lines. The injection speed
at perpendicular shocks can become comparable to those at
parallel shocks, and DSA thereby more effective, if the
amplitude of field line meandering is large enough (Giaca-
lone 2005). On the other hand, the shock front itself may be
rippled: while an idealized shock propagating through an
approximately radial magnetic field may vary from being
quasi-perpendicular at the CME flanks to quasi-parallel near
the nose, realistically, local geometries may resemble any
obliquity (see Klein & Dalla 2017).
Aside from conducive shock geometry, injection into the

DSA process is facilitated by the formation of nonthermal seed
particles (Neergaard Parker et al. 2014; Zank 2017), which has
also recently been investigated using kinetic hybrid simulations
(Sunberg et al. 2013; Caprioli et al. 2015). Suprathermal tails
are often observed in solar wind (SW) velocity distributions
(Collier et al. 1996; Maksimovic et al. 1997; Chotoo et al.
2000; Qureshi et al. 2003) and are considered conducive
features for the injection of particles into DSA (Desai et al.
2006; Kang et al. 2014). To parameterize these distributions,
Vasyliunas (1968) introduced the kappa (κ) distribution
function, which characterizes both the Maxwellian core and
the suprathermal tail at higher energies. Refer to Pierrard &
Lazar (2010) and Livadiotis & McComas (2013) for complete
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reviews on the theory and applications of κ-functions. These
functions characterize SW distributions using only three
parameters, namely, the κ-parameter, which relates to the
spectral index of the high-energy tail, and the equivalent
temperature and number density of the plasma or particle
species considered (Formisano et al. 1973; Chateau & Meyer-
Vernet 1991). Of course, quantities such as the plasma density
and temperature are observed to change during the passage of
an IP shock (e.g., Lario & Decker 2002), which also transforms
the κ-function and thereby the properties of the potential DSA
seed population it represents.

In this study, two broad scientific questions are addressed,
namely, how the prior heating of the SW distribution affects
acceleration at IP shocks, and what role these shock-accelerated
particles play in producing the spectral features observed
during ESP events. The acceleration of SW particles is
modeled by solving a set of stochastic differential equations
(SDEs; introduced in Section 3), equivalent to the Parker
(1965) transport equation (TPE), in spherical symmetry. The
applications are limited to halo CME shocks expanding radially
at constant speeds. In this spherically symmetrical scenario, the
shock normal is radially aligned so that the shock obliquity can
be approximated using the Parker (1958) spiral angle.

The manner in which the shock passage affects the energy
distribution of SW particles is investigated both before and
after injection into the DSA process: It is first considered how
the initial SW distribution transforms in response to changes in
the plasma properties (Section 2), and later how the resulting
distribution affects the subsequent DSA process as a seed
population (Section 6). The classical spectral characteristics of
DSA for traveling shocks and the comparative efficiency of
DSA at fast and strong shocks are revisited in Sections 4 and 5,
respectively. In addition to reproducing these more typical
DSA features, the model is also applied to investigate the
spectral flattening reported by Lario et al. (2018) ahead of IP
shock passages (Section 6.2), as well as to identify the original
spatial distributions and energies of seed particles (Section 6.3)
that would eventually contribute to intensities during ESP
events.

2. Modeling CME Shock-induced Changes in the SW

To describe both the thermal and suprathermal velocity
distributions observed in the SW, the κ-function is implemen-
ted in terms of particle speed v as
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is the normalization constant obtained when setting
f d v n3ò =k , with n taken as the SW number density and

where Γ is the Gamma function. This normalization is
discussed in some detail in Appendix A.3.

The κ-parameter is related to the power-law index of the
suprathermal tail. Note that Equation (1) is defined for κ>3/
2, and that if k  ¥, it reduces to a Maxwellian. For the
correct interpretation of Equation (2) and the associated
temperature T, it is instructive to consider the discussion by
Hellberg et al. (2009): vκ is introduced by Vasyliunas (1968) as
the most probable particle speed, associated with the
nonrelativistic kinetic energy of E m v 2p

2=k k . Evaluating the
second moment of fκ yields a total energy of
NE NEN

3

2
k= k /(κ−3/2), where EN and N are the mean

energy per particle and the total number of particles,
respectively. Equation (2) then follows upon the introduction
of the plasma temperature T (originally by Formisano et al.
1973) through the invocation of the equipartition theorem,
E k TN

3

2 B= , for a monatomic gas. Although this temperature
definition and the foregoing assumption of the equipartition of
energy are not strictly valid for non-Maxwellian distributions,
their use in this manner has become standard practice and is
generally considered appropriate (see Hellberg et al. 2009, and
references therein).

2.1. Changes in Plasma Properties across the Shock

An objective of this study is to consider how the κ-function
changes during the passage of an IP shock and to implement
this transformed distribution as a seed particle spectrum for
DSA. To this end, while the κ-index is assumed constant across
the shock, it is necessary to model the change in n and T, on
which fκ depends (see also Livadiotis 2015). For consistency,
transitions across the shock are modeled to correspond to that
of the flow speed as would be observed by, e.g., a spacecraft in
Earth’s orbit. The SW is consequently modeled to transition
across the shock between up- and downstream flow speeds in
the spacecraft (or fixed) frame, that is, V1¢ and
V V s V s12 sh 1¢ = - + ¢( ( ) ) , respectively, according to
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where s is the shock compression ratio (or ratio of up- and
downstream flow velocities in the shock frame), Vsh is the
shock speed, r− rsh is the radial position relative to the position
of the shock rsh, and L is a characteristic length used to specify
the broadness of this transition. Figure 1 illustrates this
transition for the reference parameters listed in Table 1. Should
Vsh=0, Equation (4) reduces to an expression (used by, e.g.,
le Roux et al. 1996) for a stationary shock.
Note furthermore that L is not a direct measure of the shock

width. Its extent can, however, be approximated from
Equation (4) as x r2 csh » , with

r
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where a fraction 0, 0.5 Î [ ] is chosen such that
V V V V 2c 1 2 1= ¢ + ¢ - ¢( ) is the flow speed at some distance
rc from the shock. Typically, to approximate the shock width,

0.01 = , so that V Vc 1» ¢. It is illustrated in Figure 1 how the
lengths xsh , L, and the actual shock width compare.
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With the flow speed transition given, the change in number
density n across the shock follows from the continuity
equation. Of course, the total factor by which the number
density jumps across the shock must be equal to the
compression ratio. In terms of Vsw¢ it follows, in spherical
coordinates, that

n n
V V
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where n0 is the number density at some reference position such
as Earth (r0=1 au), and where the flow speeds are
transformed back to the shock frame, where their ratio is equal
to s. This transition is also shown in Figure 1.

To estimate the jump in temperature across the shock,
instead of implementing the relevant hydromagnetic Rankine–
Hugoniot jump condition, a simpler approach capturing the

essential physics is used. The magnetic energy is expected to be
much smaller than the thermal energy in the flow-dominated
region considered in this study. It is therefore assumed that the
change in kinetic energy density d sw of the bulk SW flow, as a
function of position through the shock, is converted to thermal
energy. That is,

d m n V V n V V
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which is related through the equipartition theorem to the
change in temperature dTsw by
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where 2 1cdf g= -( ) is the number of degrees of freedom
and γc is the ratio of specific heats. dTsw is subsequently added
to the unshocked temperature value, that is, T=T0+dT,
where

T T r r 9e0 0
2 1 c= g-( ) ( )( )

and Te is the plasma temperature at Earth. For a monatomic gas
for which γc=5/3 it follows that T0∝r−4/3. It is assumed
that the temperature gain during the shock passage is not
significant enough to disassociate molecules, and hence γc
remains constant as for a calorically ideal gas. Furthermore,
given the multispecies composition of the SW plasma, γc may
deviate from the monatomic value of 5/3. It is noted that while
the hydromagnetic treatment of the shock jump conditions may
break down in the transition region itself, it approximates the
up- and downstream quantities adequately. Since DSA requires
particles to interact with the shock on length scales exceeding
its width (e.g., Jones & Ellison 1991; Krülls & Achter-
berg 1994), this description is sufficient for the current study.
See also Section 4.1.
The shock transitions of Vsw¢ , n, and T are displayed in

Figure 2 as viewed by an observer at the position of Earth. The
parameters used to define these quantities are listed in Table 1
and are mostly informed by observations of CMEs during the
2003 Halloween epoch (Skoug et al. 2004; Gopalswamy et al.
2005; Lario et al. 2005a; Richardson et al. 2005; Wu et al.
2005). In particular, SW flow speeds in excess of 1800 km s−1

(Skoug et al. 2004) and shock speeds of ∼2400 km s−1

(Gopalswamy et al. 2005; Wu et al. 2005) are noted. Since
density measurements during some larger events were
uncertain (e.g., Skoug et al. 2004; Wu et al. 2005), the
compression ratio for such events can be calculated using the
ratios of shock-frame flow velocities. For example,
s V V V V 3sh 1 sh 2= - ¢ - ¢ =( ) ( ) for Vsh= 2400 km s−1, V1¢=
600 km s−1, and V 18002¢ = km s−1.

2.2. Evolution of the κ-function during the Shock Passage

Aside from κ, which is kept fixed, fκ is shown above to
depend on parameters n and T, both of which change during the
shock passage. Additionally, to illustrate how the SW
distribution shifts when the flow speed is shocked to higher
values, it is necessary to express the particle speed in fκ relative
to flow speed in the spacecraft frame, that is, v v V: sw - ¢ (see
also Leubner 2004; Kong et al. 2017). The SW distribution is
therefore expected to be transformed by the shock in at least
three ways, depending on how Vsw¢ , n, and T change. To

Figure 1. Top: transition of the fixed-frame SW flow speed Vsw¢ , as viewed by
an observer at Earth, as a function of the shock position relative to that of Earth
(rsh − r0). L (=0.005 au) and Δxsh are as defined for Equations (4) and (5),
respectively. Bottom: SW number density profile corresponding to the flow
speed profile shown above.

Table 1
Reference Configuration of the Parameters Needed to Define the Fixed-frame

Flow Speed Vsw¢ , Number Density n, Temperature T, and κ-function as
Discussed in Section 2.1

Variable Parameter Value Units

Vsw¢ : V1¢ 600 km s−1

Vsh 2400 km s−1

s 3.0 L
L 0.005 au

n: n0 6.0 cm−3

T: Te 5×105 K
γc 3.5/3 L

fκ: κ 2.25 L

3
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illustrate this transformation, the SW distribution, as repre-
sented by fκ and viewed by an observer at Earth, is shown at
different stages during the shock passage on the right-hand side
of Figure 2 for parameters as specified in Table 1. Bear in mind
that these distributions have not yet been injected into the DSA
process and that these transformations occur solely because the
shock had heated the SW plasma. Also note that for
consistency with the units in which observations are typically
presented, fκ is converted throughout this study into units of
differential intensity (as discussed in Appendix A.2) and is
subsequently denoted as jκ.

With the shock still 0.02 au away from Earth, Figure 2 shows
that the SW distribution at Earth is as of yet unchanged, since
none of the plasma quantities have been shocked at this point.
When the shock passes Earth, that is, when rsh=r0, the
temperature is shown to have increased substantially, accom-
panied by more modest increases in the flow speed and density.
The most obvious changes the SW distribution incurred at this
point is that it notably broadened as a result of the temperature
increase and that the thermal peak shifted to higher energies as
a result of the increased flow speed. Note that because fκ is
normalized to the number density, the conservation of particles
demands that the peak intensity of the distribution decreases
when it broadens. Considering, finally, how the distribution
changes when the shock has moved 0.02 au beyond Earth, it
shifts further, to higher energies, as the flow speed attains its
full downstream value, while increasing overall intensities as a
result of the increase in number density. At this point the
temperature had already plateaued, and hence the distribution
shows no appreciable broadening from when the shock passed
Earth’s position.

These SW distributions are specified as source spectra for
DSA in Section 3.2.

3. Modeling Energetic Particle Acceleration at CME Shocks

The events of interest in this study are large ESP events with
small associated anisotropies. These events are typically
associated with fast-moving shocks driven by halo CMEs
(Mäkelä et al. 2011), that is, those propagating radially outward
and approximately centered on the solar disk. Therefore, to
describe the transport and DSA of energetic particles associated
with such events, it sufficient to solve the Parker (1965) TPE
for a single spatial dimension. See also the motivation offered
by Giacalone (2015) in this regard. Hence, in radial
coordinates, the TPE is written as

f
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with ξ(E)=(E+2Ep)/(E+Ep), where Ep is the proton rest-
mass energy. The TPE contains the relevant particle transport
processes such as SW convection, spatial diffusion, and energy
changes due to transport in regions of compressing or
expanding SW flows. The last-mentioned process implicitly
simulates DSA for regions such as shocks with negative SW
velocity divergences. Q represents a particle source function.
Note that the TPE is solved for the pitch-angle-averaged,
omnidirectional distribution function f f r p t, ,0= ( ), which is
only a function of position, scalar momentum, and time; see
Appendix A. As before, when presented, the distribution
function is converted to units of differential intensity, that is,
j=p2f.
The diffusion coefficient considered is the effective radial

diffusion coefficient κrr, which relates to the equivalent mean

Figure 2. Left: transitions of the fixed-frame SW flow speed Vsw¢ , number density n, and temperature T, as viewed by an observer at Earth, as a function of the shock
position relative to that of Earth (rsh − r0). Right: heating of the SW energy distribution at Earth in response to the shock transitions of plasma parameters as shown on
the left. The curves represent SW distributions at different stages of the shock passage corresponding with the values of rsh − r0 indicated using vertical lines of similar
colors on the left.
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free path (MFP) λrr according to

v

3
, 11rr rrk l= ( )

where v is the particle speed and λrr is given by
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where R E EE2 p
2= + is the particle rigidity and λ0 is a

reference MFP defined at R 1 GeV0 º . Given that the parallel
diffusion coefficient is much larger than the perpendicular
coefficient and that magnetic field lines are largely radial for the
fast flow speeds considered, diffusion along field lines is
assumed to dominate. The rigidity dependence implemented
here is hence chosen to emulate that predicted for parallel
diffusion by quasi-linear theory (Jokipii 1966) for a Kolmo-
gorov-distributed turbulence power spectrum. Kallenrode et al.
(1992) report no pronounced variation in MFPs with radial
distance between the Sun and 1 au for diffusive events. As
such, a radial dependence is omitted in Equation (12).
Furthermore, radial MFPs of 0.02–0.15 au are reported for
0.3–0.8 MeV electrons (Kallenrode et al. 1992), and the ratio of
MFPs for 18MeV protons to 1MeV electrons is 1.6±0.9
(Kallenrode 1993). Taking the lower limits of the aforemen-
tioned quantities into account, the corresponding lower limit of
λ0 (defined at 1 GeV) for protons is estimated from
Equation (12) as ∼0.05 au. λ0 is varied in Section 4 and
chosen as 0.06 au elsewhere, using the above lower limit and
the results of the aforementioned section as guidelines.

3.1. The Numerical Model: SDEs

The TPE specified in multiple computational dimensions
typically requires numerical methods to solve. However,
instead of solving Equation (10) using finite-difference
methods (e.g., Giacalone 2015), the transport and DSA of
energetic particles are simulated here by solving an equivalent
set of SDEs (see also Krülls & Achterberg 1994; Marcowith &
Kirk 1999; Zhang 2000). The aspects of the SDE approach that
are important for this study are detailed below. Refer to Strauss
& Effenberger (2017) for a comprehensive review.

Equation (10) is conveniently written in the form of the time-
backward Kolmogorov equation
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from which the SDEs can be cast into the form of the Itô
equation (see, e.g., Zhang 1999)

dr dt dW 14r rm s= + ( )

dE dt, 15Em= ( )

where dW dt t= L( ) represents the Wiener process and Λ(t)
is a simulated Gaussian-distributed pseudo-random number.
Note that the forward time t′ as used in Equation (10) is related
to the backward time t according to t=tT− t′, where tT is the
total simulation time. It thus follows that ∂/∂t′=−∂/∂t in
Equation (13). Substituting the coefficients corresponding to
μr, μE, and σr from Equation (10) into Equations (14) and (15)

yields
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which are equivalent to the TPE in Equation (10).
These SDEs are integrated in a time-backward fashion:

Starting from an observational point (robs, Eobs) at which the
value of the distribution function is sought, Equations (16) and
(17) are solved iteratively using the Euler–Maruyama numer-
ical scheme (Maruyama 1955) for a finite time step Δt. The
coordinates r and E are updated upon each iteration until
t′=0, or, equivalently, until t=tT. When simulating ESP
events, tT is chosen as the transit time of the shock traveling (in
a time-backward fashion) from robs to the inner modulation
boundary near the Sun (rmin=5Re), that is,
tT=(robs− rmin)/Vsh. The shock position rsh is therefore
updated in step with r and E, according to

r r V t, 18sh obs sh= - ( )

where 0<t�tT. A constant shock speed is assumed, since
the mean acceleration of CME-driven shocks associated with
ESP events is reportedly close to zero (Mäkelä et al. 2011).
Note that the time is not incremented by the same amount
during each iteration. It is instead specified to vary, depending
on the dominant transport process at the current position, to
maintain a fixed step length, that is,

t
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L
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This has at least two advantages: First, limiting the step length
to some fraction of the length scale L, which is associated with
the shock, ensures that the shock structure is properly resolved.
Second, scaling Δt in this manner saves computation time,
since instead of applying a very small fixed time step, Δt will
only be small when it is required. As a result of this variable
time step, computation times are typically longer for larger
values of κrr, such as at higher energies, and for narrower
shocks (smaller L-values).
The above time integration is repeated Np (typically, ∼106)

times for each observational point (robs, Eobs), thereby tracing
out Np trajectories in r and E of phase-space density elements,
conventionally referred to as pseudo-particles. The source
function Q in Equation (10) is handled in the SDE approach as
a correction term (Strauss & Effenberger 2017). Expressing it
as a rate of contribution to the distribution function allows the
contribution per pseudo-particle (or its amplitude) to be
calculated iteratively along the integration trajectory. That is,
Q=dα/dtΔα=QΔt, from which it follows that

t t t Q t. 20i ia a- D = + D( ) ( ) ( )

The source contribution is then tallied for Np pseudo-particles
such that

f r E
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,
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gives the value of the distribution function at the observational
point at time t′=tT (t=0). Section 3.2 discusses how the
source function itself is specified. Furthermore, physical
particle distributions can also be obtained by tallying the
amplitude-weighted flux contributions of pseudo-particles
within appropriately sectored spatial and energy intervals (or
bins) at any time during the simulation, divided by the number
of pseudo-particles counted within each sector. This method is
used in Section 6.3 to trace likely acceleration sites and seed
particle energies in a time-backward fashion.

Finally, a reflective inner boundary is implemented such that
if r<rmin, r=2rmin− r, while at the outer boundary, if
r>rmax=1.4 au, the time-integration routine is interrupted
and that pseudo-particle’s contribution is discarded, defining an
absorbing boundary condition.

3.2. Modeling the Shock Source Function

As per Equation (20), when a pseudo-particle is traced back
to a point where it interacts with the shock, its amplitude is
attributed a value that depends on the product of the source
function Q and the timeΔt it spends interacting with the shock.
Indeed, considering Equation (10), Q should have units
corresponding to that of the distribution function per unit time.
Otherwise, the specification of Q is largely arbitrary: e.g.,
Giacalone (2015) employs delta functions, others (e.g., le Roux
et al. 1996) specify distribution functions to represent seed
populations, while Malkov & Völk (1995) also consider shock-
heated seed populations. Drawing on aspects of the aforemen-
tioned examples, the following source function is proposed:

Q
f

m

dV

dr
H

E E

E
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Here fk is the κ-function representing the SW distribution. As
discussed in Appendix A.3, the mp

3 factor is included for
dimensional consistency between fκ and the distribution
function in the TPE. Since fκ is already normalized to the
number density, scaling the SDE solutions is not necessary.
The dimensionless Heaviside function H E E Einj inj-(( ) )
ensures that only the contributions of particles with energies
larger than the injection energy Einj are included. Note that
Einj=60 keV unless stated otherwise; see also Section 6.1.
The absolute value of the SW velocity gradient dV drsw¢∣ ∣ is
included to provide a spatial region with a width and position
that is self-consistently associated with the shock and that has a
reasonable probability of being sampled by pseudo-particles.
Figure 3 shows how dV drsw¢∣ ∣ is representative of the width of
the shock. While it is sufficient for a physical particle to pass
between the upstream and downstream media in order to gain
energy, using this time-backward SDE method, a finite-width
region has to be sampled by pseudo-particles to register flux
emanating from the shock.

3.3. Advantages and Limitations of the SDE Approach

The SDE approach has been successfully applied in many
instances to simulate space particle transport (Zhang 1999; Pei
et al. 2010; Strauss et al. 2011, 2013; Moloto et al. 2019) and
DSA in particular (Krülls & Achterberg 1994; Marcowith &
Kirk 1999; Zhang 2000; Zuo et al. 2011; Hu et al. 2017). The

time-backward approach is favored here owing to its efficiency,
since every simulated pseudo-particle contributes to intensities
at the desired observational point. Additionally, in a similar
fashion to how the boundary interactions of pseudo-particles
are used to trace the most probable points of entry into the
heliosphere for cosmic rays (e.g., Strauss et al. 2011), this
backward tracing of phase-space trajectories is similarly
utilized in this study to map probable acceleration sites and
seed particle energies; see Section 6.3. Since these pseudo-
particle trajectories are solved entirely independently of each
other, this approach is also conducive to the utilization of
parallel computing platforms.
However, this mutual independence of the SDE solutions

also limits applications to the test-particle case. Nonlinear
effects of shock acceleration such as self-generated turbulence
(Lee 1983; le Roux & Arthur 2017) or particle mediation of
shock structures (Mostafavi et al. 2017) can therefore not be
considered. Moreover, any process that requires the calculation
of particle intensity gradients becomes computationally
expensive (e.g., Moloto et al. 2019). Nevertheless, the SDE
approach remains suitable to investigate the intricacies of
classical DSA, without the limitations imposed by a numerical
grid, such as instabilities involving the large gradients that are
typically encountered at shocks. It is shown in Appendix B that
the SDEs produce appreciably similar results to a finite-
difference approach in reproducing ESP events for the same
parameter set. Furthermore, as opposed to finite-difference
schemes, the SDE model introduced in this study can
seamlessly be expanded to a larger number of computational
dimensions (e.g., Pei et al. 2010) as required to study particle
acceleration at more complicated shock geometries.

Figure 3. Top: transition of the fixed-frame SW flow speedVsw¢ as a function of
heliocentric distance r with the shock centered at Earth, that is, rsh=1 au.
Bottom: absolute value of the gradient of Vsw¢ corresponding to the profile
shown above. L (=0.005 au) and Δ xsh are as defined for Equations (4) and (5),
respectively.
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4. Spectral Features and Diffusion Dependence of Shock-
accelerated Particles

The most distinctive characteristics of shock-accelerated
particles are observed in their energy spectra, which are
considered here at the time the shock passes an observer, e.g., a
spacecraft, near Earth. Implementing the model configuration
discussed in Sections 2 and 3, and scaling the diffusion
coefficient by varying the value of λ0 in Equation (12), the
dependence of shock-accelerated spectral features on this
transport process is investigated. The resultant spectra are
shown in Figure 4.

Qualitatively, the typical DSA-associated features are
evident: a power-law distribution at lower energies transition-
ing to an exponential-like decrease at higher energies (Ellison
& Ramaty 1985). This distribution can be described using a
simple function in the form of

j j
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where j0 is a differential intensity defined at some reference
energy E0, Ecut is the cutoff (or rollover) energy above which
the distribution begins to decrease exponentially, and

s

s

2

2 2
24sg =

+
-

( )

is the spectral index (for E = Ep) associated with the
compression ratio s of the shock (see also Ellison et al. 1990).
For s=3, as specified for these solutions, it is therefore
expected that γs=−1.25. However, not all of the spectra in
Figure 4 appear to follow an E−1.25 power law. This is
accentuated in Figure 5, which shows spectral indices for
solutions with smaller λ0-values actually varying with energy
even before the exponential decreases ensue. To describe this
behavior, it is useful to generalize Equation (23) as follows:
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This describes a function transitioning between power-law
indices γa and γb about Etr, with ξ specifying the smoothness of
this transition, and which rolls over into an exponential
decrease above Ecut. Note that if γa=γb, this expression
simplifies to the form of Equation (23). Setting γb=γs, where
γs=−1.25 for s=3, and choosing ξ=0.8, the function
given in Equation (25) is fitted to the solutions in Figure 4 with
parameters as presented in Table 2.
Both γa and Ecut respond to varying the value of λ0, affecting

both the hardness of the spectra and the energies up to which
they are accelerated. The behavior of these two sets of features
and the underlying physics are discussed separately in the
subsections below.

4.1. Fractional Compression Sampling: On Shock Widths and
Diffusion Length Scales

Classically, the spectral index associated with a DSA-
produced spectrum is a function of the shock compression ratio
alone. The behavior observed in Figure 4, where shock-
accelerated spectra become softer, displaying smaller spectral

Figure 4. Modeled energy spectra at Earth (r=1 au) at the time of the shock
passage for different values of λ0. Step-like lines represent SDE solutions,
while the smooth solid lines are corresponding fits of Equation (25) using the
parameters listed in Table 2. Also included are the heated κ-distribution
(dashed gray line), specified as a source function on the shock, and the E−1.25

power law associated with a shock compression ratio of s=3 (dotted line).

Figure 5. Spectral indices for the corresponding fits of Equation (25) shown in
Figure 4. The spectral index γs=−1.25 for a shock with s=3 is also shown.
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indices for smaller diffusion coefficients, is therefore not
theoretically expected. Note, however, that the solutions for
λ0�0.035 au do follow the theoretically predicted power law
of E−1.25 for s=3. Figure 5 shows the spectral indices of the
solutions presented in Figure 4. Here spectral indices are also
shown to be equal to −1.25 for large λ0-values at low energies.
Indices become progressively smaller for smaller λ0-values but
increase toward higher energies. Consider that particles with
λ00.035 au may be sampling only a fraction of the total
compression of the shock. The spectra harden toward higher
energies because the MFPs themselves increase with energy
and progressively greater fractions of the total compression are
sampled.

This effect is illustrated in Figure 6. Recall from
Equation (11) that κrr∝λrr, which is scaled using λ0. Since
κrr does not have dimensions of length, when comparing to
other length scales it is useful to define the diffusion length
scale κrr/Vsw, which is often expressed as the sum of the down-
and upstream values at the shock (e.g., Steenberg &
Moraal 1999). That is,
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where (κrr)1=(κrr)2=κrr, since κrr is assumed not to change
across the shock, with subscripts 1 and 2 denoting up- and
downstream values, respectively. Here V V V1 sh 1= - ¢ and
V V V s2 sh 1= - ¢( ) are the up- and downstream flow speeds
in the shock frame. This quantity is plotted as a function of
energy in Figure 6, along with the shock width, calculated
using Equation (5) for L=0.005 au. Note that for λ0=0.06
and 0.1 au, for which spectra are aligned with E−1.25, the
diffusion length scales are greater than the shock width for all
energies in the considered domain. Those particles therefore
sample the full compression ratio, and hence their energy
distributions display the power law associated with s=3. A
similar effect is reported for the heliospheric termination shock
(e.g., Arthur & le Roux 2013). For λ0<0.06 au, particles
sample fractional compression ratios up to the energies where
their respective diffusion length scales begin to exceed the

shock width. Indeed, the energies at which κrr/Vsw and the
shock width intersect provide good estimates for Etr in Table 2.
Since the prediction of DSA given in Equation (24) is only

observed where κrr/Vsw is larger than the width of the shock,
these results are in agreement with the length scale hierarchy of
κrr/Vsw ? λrr ? Δxsh required for classical DSA to be valid
(Blandford & Ostriker 1978; Jones & Ellison 1991). Given the
L-dependence of the variable time step (Equation (19)), to limit
computation times, the shock width in this study is chosen to be
much broader (L=0.005 au) than typical IP shock widths
(L∼10−6 au; e.g., Sapunova et al. 2017). Nevertheless, the
results of the model should remain valid as long as the
aforementioned length scale hierarchy is observed.

4.2. Finite Time Acceleration and the Termination of Shock-
accelerated Spectra

The second set of features considered entails the highest
energies attained by shock-accelerated spectra before intensi-
ties begin to decrease exponentially. Figure 4 illustrates that
spectra for smaller λ0-values are accelerated to higher energies
before terminating. These energies, represented by Ecut, are
listed in Table 2. Since they notably respond to varying λ0, it
seems reasonable to expect that this spectral transition also
occurs as a result of κrr/Vsw attaining some characteristic
length. Shock-accelerated spectra have previously been
reported to roll over owing to diffusion length scales becoming
comparable to system sizes or some related length of the shock
geometry (Ellison & Ramaty 1985; Steenberg & Moraal 1999).
Indeed, Figure 6 shows that the diffusion length scales
corresponding to each of the cutoff energies of the solutions in
Figure 4 are reasonably similar, distributed between 0.1 and

Table 2
Parameters Used to Fit Equation (25) to the Corresponding Model Solutions

Shown in Figure 4

λ0 (au) γa Etr (MeV) Ecut (MeV)

0.005 −2.5 1.5 30.0
0.01 −2.4 0.5 11.0
0.02 −2.0 0.2 5.0
0.035 −1.25 0.08 2.5
0.06 −1.25 L 1.5
0.1 −1.25 L 0.9

Note.The λ0-values are constants used to scale the MFPs in Equation (12). Etr

and Ecut are energies at which spectra transition to power-law indices
associated with the full shock compression and roll over into exponential
decreases, respectively. γa is the spectral index for E<Etr. Note that Etr-values
are omitted for the two largest λ0-values, because γa=γb=−1.25, which
reduces Equation (25) to the form of Equation (23).

Figure 6. Diffusion length scales at the shock, calculated using Equation (26)
and corresponding to the solutions shown in Figure 4. Varying λ0-values scales
the energy profiles of κrr/Vsw uniformly. Markers indicate the values of κrr/
Vsw at the corresponding cutoff energies (Ecut) listed in Table 2. Arrows
indicate the energies Etr (also listed in Table 2) at which the respective κrr/Vsw

profiles are equal to the shock width (dashed horizontal line), which is
calculated using Equation (5).
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0.4 au. However, these do not resemble any obvious length
scale either in the physical system or within the numerical
model. Simulations where the positions of modulation
boundaries were varied yielded negligible effects on energy
spectra, suggesting that system size is not the limiting factor in
this instance.

Another instructive quantity that is related to the diffusion
length scale is the acceleration time (Drury 1983; Ellison et al.
1990), which is the time required to accelerate particles from a
particular energy (or equivalent momentum) to another at a
planar shock. This is expressed in terms of the diffusion length
scale as

V V V V

dp

p
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, 27a
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where V1 and V2 are as defined for Equation (26) and pinj is the
momentum equivalent to Einj. Note that momentum is generally
related to kinetic energy according to p=(1/c) E EE2 p

2 +
(for protons), with Ep the proton rest-mass energy.
Equation (27) is used in Figure 7 to approximate the time
required to accelerate spectra up to different energies for each
of the length scale profiles shown in Figure 6. Also shown in
Figure 7 as symbols are the times required to accelerate spectra
up to the observed cutoff energies listed in Table 2 for each
respective κrr/Vsw profile. Similar to the diffusion length scales
corresponding to the cutoff energies, the associated accelera-
tion times also have similar values. These τa-values also
compare well to the total duration of the simulation, which is
equal to the time taken by the shock to travel from near the Sun
to Earth at 2400 km s−1, that is, ∼17.3 hr. This suggests that for
each of the spectra presented in Figure 4 Ecut is the highest

energy that could be attained in the available time (see also
Channok et al. 2005). At E>Ecut, the rate of escape of
particles from the shock begins to exceed the acceleration rate,
which leads to the observed exponential intensity decreases. In
this context, smaller λ0-values, and consequently smaller
diffusion coefficients, serve to better confine particles near
the shock. This, in turn, reduces the time required to accelerate
particles up to a particular energy, or, stated differently, allows
particles to be accelerated to higher energies within the
available time frame.

4.3. Spectral Features and Acceleration Efficiency

The preceding discussions reveal that the characteristics of
shock-accelerated spectra are sensitive to the value of diffusion
length scales in two opposing ways: Diffusion length scales
should exceed shock widths for spectra to display DSA-
predicted power-law indices, but accelerated spectra terminate
at lower energies for larger diffusion length scales. The top
panel of Figure 8 illustrates this dichotomy. The energies above
which κrr/Vsw exceeds the shock width, that is, Etr, become
smaller with increasing λ0-values, implying greater overall
spectral hardening, while similarly decreasing Ecut-values
imply that spectra terminate at lower energies. Harder spectra
yield larger intensities of energetic particles, but so do higher
cutoff energies. Yet, with regard to diffusion properties, they
are attained in opposite ways. Neither of these therefore
necessarily provides meaningful measures of acceleration
efficiency on its own.
To evaluate which combination of spectral features yields

greater intensities of energetic particles, it is useful to consider
particle fluences. These are calculated by integrating

Figure 7. Acceleration time as a function of kinetic energy, calculated using
Equation (27), for the corresponding diffusion length scale profiles shown in
Figure 6. Markers indicate the time required to accelerate spectra up to the
corresponding cutoff energies (Ecut) listed in Table 2. The simulation time
(horizontal line) is the time taken by the shock to travel from near the Sun to
Earth at 2400 km s−1.

Figure 8. Top: energies Etr and Ecut at which spectra for different values of λ0
transition to power-law indices associated with the full compression and roll
over into exponential decreases, respectively. Bottom: energy-integrated
distributions for different values of λ0 as a measure of how efficiently DSA
produces particles above the injection energy and 1 MeV, respectively.
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differential intensities over energy as follows:
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This integral converges, since j fortuitously always decreases as
E  ¥. Equation (28) is evaluated for each of the spectra
shown in Figure 4 with two different lower limits, namely,
El=Einj and 1MeV. The resulting energy-integrated inten-
sities are shown in the bottom panel of Figure 8. The total
intensity for all particles with E>Einj peaks at λ0∼0.035 au,
where the power-law segments of spectra have reached, or
nearly reached, their maximum hardness. Ecut becomes more
important when considering higher-energy particles. For
intensities integrated upward from 1MeV, fluences peak
between λ0=0.02 and 0.035 au and notably decrease for
larger λ0-values owing to spectra rolling over at lower energies.

It is revealed that both spectral hardness and the maximum
energies spectra attain contribute appreciably to the number of
energetic particles the DSA process is able to produce. Of
course, the energies up to which spectra extend become
increasingly important for the intensities of higher-energy
particles.

5. Strong Shocks versus Fast Shocks: Which Is the More
Efficient Particle Accelerator?

Fast-moving CME shocks with large compression ratios are
reported to be more efficient at accelerating energetic particles
(Lario et al. 2005b; Mäkelä et al. 2011; Giacalone 2012). How
conducive each of these shock properties is to producing large
numbers of high-energy particles, especially as opposed to each
other, raises an interesting subject for investigation. Both the
shock speed Vsh and the compression ratio s affect how particle
distributions evolve, and often in contradicting (or even self-
contradicting) ways. Prior to injection, both properties affect
the heating of the SW, while the hardness of shock-accelerated
spectra is already shown to depend on the compression ratio.
To explore and compare the effects of these two parameters,
they are varied in three different ways: Vsh and s are each varied
separately with the other remaining fixed, and they are varied
together such that the factor by which the fixed-frame flow
speed jumps across the shock remains constant. For ease of
reference, these three sets of parameter configurations are
shown in Table 3, along with the corresponding downstream
flow speeds in both the fixed frame and the shock frame,
denoted V2¢ and V2, respectively.

Varying Vsh and s affects the shock transitions of the SW
flow speed, number density, and temperature and thereby also
influences how the energy distribution of SW particles changes
during the passage of the shock. Each of the aforementioned
parameters’ shock transitions are shown in Figure 9 for the
configurations listed in Table 3. The fixed-frame flow speed,
that is, the flow speed as viewed by an observer stationed at
Earth, increases with both Vsh and s when each is varied
separately. The results, as shown in the top row of Figure 9,
yield larger jumps in flow speed should either Vsh or s be
increased. As intended, when Vsh and s are varied together, the
downstream flow speed remains constant in the fixed frame.
Hence, the factor by which the flow speed increases is the same
for these instances. The corresponding shock transitions of the
number density and temperature in Figure 9 follow from
Equations (6) and (8). Figure 10 shows how the SW energy

distributions change in response to these shock transitions. It
appears that the SW energy distribution is heated by
comparable amounts for varying shock speeds and strengths.
However, jκ appears marginally more sensitive to changes in
temperature, which in turn is affected most appreciably by
changes in Vsh. Therefore, it can be argued that Vsh contributes
more toward heating the SW distribution, as opposed to s,
considering the large shifts in energy and broadening of jκ that
follows from varying it.
The heated SW distributions discussed above essentially

serve as input spectra, from which particles are injected into the
DSA process at the shock for E>Einj. The shock-accelerated
spectra obtained by solving the SDEs of Section 3.1 for each of
the configurations in Table 3 are presented in Figure 11. The
analyses of these spectra are analogous to those of spectra
presented in Figure 4, while the discussions that follow draw on
concepts introduced in Section 4. Accordingly, functions are
fitted to the SDE solutions and the parameters tabulated for
each configuration in Table 4. The value of λ0 is chosen as
0.06 au throughout this section. With reference to Figure 6, this
implies that the diffusion length scale exceeds the shock width
for all considered energies and that the full compression ratio is
sampled. It is therefore sufficient to fit the single power-law
function of Equation (23), with spectral indices as predicted
by DSA.
The shock-accelerated spectra presented in Figure 11 share

the same general features as those encountered before: a power-
law segment extending from near the injection energy up to
where it rolls over into an exponential decrease. The following
discussion considers how these features change as a result of
varying the shock speed and compression ratio. First, varying
Vsh, while keeping the compression ratio fixed at s=3,

Table 3
Configurations Used throughout Section 5, in which the Shock Speed and

Compression Ratio Are Varied

Vsh s V2 V2¢ V V2 1¢ ¢
(km s−1) (km s−1) (km s−1)

1: 3000 3 800 2000 3.67
2800 3 733 2067 3.44
2600 3 667 1933 3.22
2280 3 560 1720 2.87
2200 3 533 1667 2.78

2: 2400 2 900 1500 2.5
2400 2.2 818 1581 2.64
2400 2.5 720 1680 2.8
2400 3.5 514 1886 3.14
2400 4 450 1950 3.25

3: 3000 2 1200 1800 3
2800 2.2 1000 1800 3
2600 2.5 800 1800 3
2280 3.5 480 1800 3
2200 4 400 1800 3

ref: 2400 3 600 1800 3.0

Note.Here, (1) the shock speed Vsh is varied, (2) the compression ratio s is

varied, and (3) Vsh and s are varied together such that V V2 1
¢ ¢/ remains constant.

V 6001¢ = km s−1 and V V s V s12 sh 1¢ = - + ¢( ( ) ) are the fixed-frame flow
speeds up- and downstream of the shock, respectively. V V V s2 sh 1= - ¢( ) is
the downstream flow speed in the shock frame. The last line contains the
reference configuration.
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produces spectra as shown in the left column of Figure 11.
They are power law distributed with a spectral index of −1.25,
as illustrated in the accompanying frame below. This is the
index expected from DSA for s=3 (see Equation (24)). The
sizable differences in the intensities of these three spectra are
due in large part to the heated SW spectra, which themselves
are notably affected by varying Vsh. When varying s instead
and keeping the shock speed fixed at Vsh=2400 km s−1 as
shown in the right column of Figure 11, intensities differ
mostly as a result of changes in the power-law indices of
shock-accelerated spectra. These indices, shown in the
accompanying frame below as −2, −1.25, and −1, correspond
to those expected from Equation (24) for s=2, 3, and 4,
respectively.

The middle column of Figure 11 illustrates the case where
both Vsh and s are varied so thatV V 32 1¢ ¢ = . It is worth drawing
attention to the fact that the spectral indices these spectra
display are not the index associated with V V 32 1¢ ¢ = , even
though this would be the jump factor in the flow speed
observed by spacecraft during the passage of the shock. The
power-law indices of all shock-accelerated spectra are
consistently those associated with s. The observed factor by
which flow speeds change across a shock should not be
confused with the actual compression ratio, which is the factor
by which either the density or the flow speeds in the shock
frame change across the shock. This is important when
calculating the power-law index of the DSA-predicted
spectrum for comparison against an observed energy spectrum.

The spectra shown in the left and right columns of Figure 11
extend to higher energies for both faster and stronger shocks,
where Vsh and s are each varied separately with the other held
constant. Spectra extend up to similar energies where Vsh and s
are varied together. This is also illustrated in Figure 12, where
the cutoff energies of the aforementioned spectra are plotted
against both Vsh and s, showing almost no response to changing
shock conditions. Similar to Section 4.2, the acceleration times
corresponding to each of the spectra in Figure 11 are calculated
and compared to the simulation times, as shown in Figure 13.
As before, the maximum attainable energies for shock-
accelerated spectra are determined predominantly by the shock
transit time.

5.1. Acceleration Efficiency: Strong versus Fast Shocks

The preceding sections analyze the collated effects of
varying Vsh and s during the complete acceleration process,
including the heating of the SW energy distribution and the
subsequent shock acceleration. It can be argued that the shock
speed has the largest effect, since varying Vsh yields
pronounced changes both in the heated SW distributions and
in reducing acceleration times, thereby extending spectra to
higher energies. On the other hand, the most notable effect of
varying s is the changes in the power-law indices displayed by
shock-accelerated spectra, which also affects energetic particle
intensities considerably.

Figure 9. Similar to the left panels of Figure 2, the profiles above are shown for some of the configurations of Table 3, where the shock speed Vsh and compression
ratio s are varied both separately, as shown in the left and right columns, respectively, and together, as shown in the middle column. Note that profiles representing the
reference configuration are shown in black.
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Implementing the same technique used in Section 4.3,
particle fluences are calculated using Equation (28). The
resulting energy-integrated intensities are shown in the top
frames of Figure 14 as functions of both Vsh and s. To constrain
the intensities resulting solely from DSA and not including
those of the input spectra, fluences are also calculated for the
heated SW distributions (Ikappa) and subtracted from those
calculated for the shock-accelerated spectra (Itotal). These two
additional sets of energy-integrated intensities, namely, Ikappa
and IDSA=Itotal−Ikappa, are also shown in Figure 14. Note
that Ikappa is roughly an order of magnitude smaller than Itotal on
average, with comparably weak dependences on Vsh and s. IDSA
therefore closely resembles Itotal. Considering particle fluences
as functions of Vsh and s, where each is varied alone, it is
apparent that both faster and stronger shocks yield greater
numbers of energetic particles, whether considered for E>Einj

or for E>1MeV. Since compression ratios for shocks in the
SW do not typically exceed 4, and there is no hard limit on the
speed shocks can attain, faster shocks arguably have greater
potential as particle accelerators.

It is insightful to consider fluences for the configurations
where Vsh and s are varied together, since this is essentially
comparing the acceleration efficiencies of strong slower-
moving shocks against weaker fast-moving shocks. For these
cases, fluences remain fairly constant for all combinations of
Vsh and s for E>Einj. However, if only the number of higher-
energy particles is considered, that is, for E>1MeV, the
results are more interesting: as a function of compression ratio,
the fluences increase as shocks become stronger, despite
simultaneously becoming slower. As a function of the shock
speed, these fluences become smaller for faster shocks for
which the accompanying compression ratios are smaller. This
implies that strong slower-moving shocks are able to produce a
greater number of energetic particles than weak fast-moving
shocks, at least within the parameter ranges considered and for
shocks with V V 32 1¢ ¢ = .

6. From the SW to ESPs

In this section, the development of particles injected from the
suprathermal SW into energetic particles associated with ESP
events is considered in greater detail. The underlying question
of how SW particles can be accelerated to the much higher
energies at which ESPs are observed is visually represented in
Figure 15. The intensities observed during the Halloween ESP
event of 2003 October 29 are shown as an example of typical
energy spectra observed during such events. Note that this
particular spectrum is reproduced well by the power law
associated with s=4 (e.g., Giacalone 2015).
The acceleration process is initiated with the heating of the

SW energy distribution, where the κ-function describing it is
allowed to change in response to changes in flow speed,
density, and temperature across the shock as shown in
Section 2. The importance of this initial heating cannot be
understated: consider, first, a spectrum shock-accelerated from
the original, undisturbed SW distribution. It would likely not
extend up to the energies of observed ESPs because of the
limited time available for acceleration. Second, assuming that
the injection threshold for DSA is much larger than thermal
energies, the larger intensities associated with the heated SW
could allow shock-accelerated intensities to reproduce those of
typical ESPs. Indeed, the bottom panel of Figure 15 illustrates
that the heated SW distribution increases intensities of potential
DSA seed particles by up to a factor of 104, while increasing
suprathermal tail intensities a hundredfold at least. Interest-
ingly, observations suggest that peak fluxes during ESP events
display some dependence on CME sheath temperature (Dayeh
et al. 2018), while the broadening of SW distributions (which
influence eventual intensities of shock-accelerated particles) is
predominantly dictated by temperature changes across the
shock.

Figure 10. Heating of the SW energy distribution at Earth in response to the shock transitions of the plasma parameters shown in Figure 9. These distributions are
shown for the same shock speed and compression ratio configurations used in the corresponding columns of Figure 9. The dotted lines represent the SW energy
distributions from before the shock passage.
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Figure 11. Top: modeled shock-accelerated energy spectra at Earth at the time of the shock passage for some of the configurations listed in Table 4 and with the
corresponding SW distributions of Figure 10 specified as input spectra. Step-like lines represent SDE solutions, while the smooth solid lines are corresponding fits of
Equation (23) using the parameters listed in Table 4. Bottom: corresponding spectral indices for spectra shown above.

Table 4
Parameters Used to Fit Equation (23) to the Solutions of Figure 11 and

Corresponding to the Configurations of Shock Speed Vsh and Compression
Ratio s Introduced in Table 3

Vsh (km s−1) s γ(s) Ecut (MeV)

1: 3000 3 −1.25 2.0
2800 3 −1.25 1.9
2600 3 −1.25 1.8
2280 3 −1.25 1.4
2200 3 −1.25 1.35

2: 2400 2 −2.0 1.4
2400 2.2 −1.75 1.5
2400 2.5 −1.5 1.5
2400 3.5 −1.1 1.7
2400 4 −1.0 1.7

3: 3000 2 −2.0 1.65
2800 2.2 −1.75 1.6
2600 2.5 −1.5 1.6
2280 3.5 −1.1 1.65
2200 4 −1.0 1.55

ref: 2400 3 −1.25 1.5

Note.Here γ(s) is the spectral index associated with s as given by
Equation (24) and Ecut is the energy at which spectra roll over into exponential
decreases. The last line contains the reference configuration.

Figure 12. Cutoff energies, where spectra roll over into exponential decreases,
as functions of shock speed Vsh and compression ratio s, for configurations
where Vsh and s are varied both separately and together as specified in Table 4.
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6.1. Injection from the Heated SW Distribution

In the simplest terms, the injection threshold for DSA can be
considered the energy at which particles should at least
propagate upwind in order to make repeated shock crossings.
This injection energy can be inferred by matching theoretically
expected shock-accelerated spectra with observations (e.g.,
Neergaard Parker & Zank 2012). It can also be estimated using
the argument that the particle anisotropy must be small in order
for DSA to be valid (Giacalone & Jokipii 1999; Zank et al.
2006). For the typical values implemented in this study (V1¢=
600 km s−1, s=3), injection energies are on the order of a few
keV for parallel shocks, for which injection from an unheated
Maxwellian seed particle distribution would indeed be possible
(Neergaard Parker & Zank 2012). However, for quasi-
perpendicular shocks, and in the absence of magnetic field
line wandering, it is estimated that Einj0.1MeV (see also
Li 2017). The prior heating of the SW distribution becomes
especially useful in this situation. See also the simplified
method used by Hu et al. (2017) to estimate injection energies.

The halo CME shocks considered in this study are mostly
quasi-parallel if a Parker (1958) spiral is assumed for the
magnetic field. Here Einj is varied between 10 and 60 keV,
spanning an energy domain extending from the thermal peak to
the suprathermal tail of the heated SW distribution, and
bounded by the aforementioned estimates for parallel and
quasi-perpendicular shocks. The effects of these varied
injection thresholds on shock-accelerated spectra are shown in
Figure 16. As before, Equation (25) is fitted for each case and
the parameters listed in Table 5. The reference configuration as
specified in Table 3 is used, with λ0=0.06 au,
Vsh=2400 km s−1, and s=3. The standard features are
visible: the spectra are distributed according to E−1.25 as
expected for s=3 and roll over exponentially at higher
energies. Spectra appear to terminate at similar energies for the

injection thresholds considered, as this is presumably governed
by the acceleration time.
It can be seen from Figure 16 that injecting particles from the

heated SW distribution yields high intensities in the energy
domain typically associated with ESPs. In the case of
Einj=60 keV, the shock-accelerated intensities are quite
similar to those observed for the ESP event included in
Figure 16 as an example. Should the injection speed be defined
as the minimum possible speed a particle needs to stay ahead of
the shock, while following a Parker field line with a 45° angle
ahead of the shock nose, the injection speed can be written
from focused transport theory as v V V cos 45inj 1 sh= ¢ - ∣ ∣ ( ).
For a fast halo CME shock with Vsh=2400 km s−1 and a more
typical upstream flow speed of 400 km s−1, the injection speed
at 1 au in the upstream flow frame is vinj=2828 km s−1, which
corresponds to an injection energy of Einj∼50 keV. This is
reasonably similar to the 60 keV injection energy required to fit
the presented observations using the heated κ-distribution as a
source.
Note that the presented simulations are not intended to

reproduce observations exactly, nor is it posited that the
spectrum observed during the presented ESP event is the
unambiguous result of particles accelerated from the SW. The
aforementioned results do, however, demonstrate that the prior
heating of the SW plasma and energy distribution complements
the shock acceleration process well and might even be
necessary when considering shocks with large injection
energies.

6.2. The Evolution of Shock-accelerated Distributions during
the Shock Passage

Particles of sufficient energy can be injected into the DSA
process at any time during a CME shock’s passage between the
Sun and Earth. However, ESP events entail the local
enhancement of particle intensities as viewed by spacecraft at

Figure 13. Acceleration times similar to Figure 7 for each of the configurations of Vsh and s corresponding to the spectra shown in Figure 11. Markers indicate the time
required to accelerate spectra up to the corresponding cutoff energies (Ecut) listed in Table 4. The total simulation times (indicated as dashed horizontal lines)
correspond to configurations represented in the same color and indicate the travel times of the shock moving at Vsh between the Sun and Earth.
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Earth. The largest enhancement is naturally expected when the
shock reaches Earth. Solving the time-backward SDEs for the
reference configuration and different starting positions of the
shock, the energy spectra and intensity profiles of shock-
accelerated particles are simulated for the approach and
aftermath of the shock’s passage at Earth. These are shown in
Figures 17 and 18, respectively.

The time evolution of energy spectra during the approach of
the shock is considered first. From Figure 17, the most
recognizable aspect is of course the power-law form of the
spectrum at the time of the shock’s arrival at Earth, that is,
where rsh=1 au, followed by a cutoff at higher energies.
However, this spectrum appears notably different when the
shock is just 0.01 au away, which for Vsh=2400 km s−1 is a
few minutes before its arrival at Earth. The differences, which
become starker for larger distances between the shock and
Earth, include lower overall intensities and a downturn in the
spectrum at low energies. The progressively lower intensities
follow merely as a result of the source of energetic particles (
i.e., the shock) being further away. The low-energy downturns
are more severe when the shock is far from Earth but manifest
as flattened spectra for smaller distances from Earth. This likely
follows because shock-accelerated particles are adiabatically
cooled in the expanding SW while they propagate ahead of the
shock toward Earth. These steep spectra with positive power-
law indices at lower energies are known spectral characteristics
of adiabatic energy losses (e.g., Moraal & Potgieter 1982;
Strauss et al. 2011).

A particularly interesting feature visible in Figure 17 is the
flattening of spectra during the approach of the shock. Similar
flattening has recently been reported in observations of proton
spectra between 50 keV and 1MeV prior to the passage of an
IP shock at Earth (Lario et al. 2018). It is conceivable that this

is the result of the competing effects of shock acceleration and
adiabatic cooling of particles. Whereas shock acceleration
tends to distribute particles according to E sg , where γs=−1.25
for s=3 according to Equation (24), cooling tends to force
protons into a characteristic E+1 spectrum at Earth. When the
shock is nearer to Earth, the shock-accelerated component
dominates, whereas particles transported from the shock while
it is still further upwind have been cooled to a greater extent.
Where these effects balance, the spectrum flattens. As a result
of progressively stronger cooling, Figure 17 shows that the
flattened segments narrow and move to higher energies for
larger distances between the shock and Earth. Figure 18 shows
intensity profiles similar to how the observations of Lario et al.
(2018) are presented. The flat energy spectra can be discerned
from the coinciding intensity profiles of 0.25–1MeV particles.
This energy range can be broadened in the simulations by
specifying a lower injection energy or assuming a stronger
shock, e.g., s=4, for which the shock-accelerated spectrum
will be less steep. These flat segments are visible for shock
positions up to at least 0.15 au away from Earth, that is, for
nearly 3 hr prior to its arrival. Note that the shock speed of
2400 km s−1 implemented in these simulations is very fast. If a
more typical shock speed of, e.g., 1000 km s−1 (e.g., Mäkelä
et al. 2011) is assumed, this effect would be visible for a longer
time prior to the shock’s arrival at Earth.
The intensity profiles shown in Figure 18 largely resemble

that of typical ESP events: a large onset of particle intensities
over a relatively short time is visible before the arrival of the
shock, followed by a more gradual decline of intensities after it
has passed. Note that the peaks of the simulated profiles,
corresponding to the arrival of the IP shock at Earth, are not as
sharp as observed intensities tend to show. These peaks are
often associated with large anisotropies (e.g., Lario et al.

Figure 14. Energy-integrated intensities (or fluences) of energetic particles above the injection energy (Einj) and 1 MeV, represented by diamonds and circles,
respectively, as functions of shock speed Vsh and compression ratio s. Itotal, Ikappa, and IDSA represent fluences for shock-accelerated spectra, heated SW distributions,
and those resulting from DSA alone, where IDSA=Itotal−Ikappa. Vsh and s are varied both separately and together for configurations as specified in Table 3.
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2005a), which can be more appropriately modeled using
focused transport models (Zuo et al. 2011; le Roux &
Webb 2012). The TPE in this study is solved for an
omnidirectional distribution function (as discussed in
Appendix A) and describes only the near-isotropic particle
component.

6.3. Seed Particle Energies and Initial Positions

It only remains to be investigated where and from which
energies SW particles contributing to any given observational
point are accelerated. To do this, the binning technique
discussed in Section 3.1 is implemented. First, pseudo-particles
are traced time-backward from the observational point (robs,
Eobs)=(1 au, 1 MeV), whereafter the average particle ampli-
tudes are calculated for each (r, E)-bin at t′=0. As before, the
simulation is run for the reference parameters listed in Table 3.
The result is shown as a color-scaled plot in Figure 19.

This plot essentially maps the relative contributions of
particles from different initial positions and energies to the
intensities of 1 MeV particles at Earth’s position at the time of
the shock’s passage. As such, they reveal a great deal of insight
into the probable original energies and locations of seed
particles. Figure 19 shows the undisturbed distribution (that is,
before the departure of the shock from near the Sun) of SW
particles that would eventually contribute to 1MeV intensities
at Earth. It is illustrated that the largest contributions are from

particles initially located upwind from Earth and accelerated
from energies ranging from tens to a few hundred keV. The
lower limit of this range corresponds to the 60 keV injection
energy implemented in this study. The contributions of
particles either cooled to 1MeV from higher energies or
convected to Earth without incurring energy changes are
minuscule by comparison. During the shock transit, the
distribution of contributing particles will move closer to the
observational point, until, at the time of the shock passage at
Earth, only that point will be populated on the plot.
The much larger relative contribution of particles accelerated

to Eobs from lower energies illustrates that DSA at the traveling
IP shock is the chief contributor to intensities during the
simulated ESP event.

Figure 15. Top: undisturbed and heated SW energy distributions at Earth, with
the latter corresponding to the time at which the shock passes Earth’s position.
For reference purposes, the intensities observed by ACE/EPAM LEMS30/120
during an energetic particle event on 2003 October 29 are also shown. These
observed intensities can be fitted with the E−1 power law associated with a
strong shock of s=4. Bottom: intensity ratios of the heated and undisturbed
SW distributions shown above.

Figure 16. Modeled shock-accelerated spectra at Earth at the time of the shock
passage for different injection energies. Step-like lines represent SDE solutions,
while the solid lines are fits of Equation (25) with parameters as listed in
Table 5. The dashed gray line represents the heated SW distribution. The ESP
observations are the same as shown in Figure 15.

Table 5
Parameters Used to Fit Equation (23) to the Solutions of Figure 16 for Different

Injection Energies Einj

Einj (keV) γa Etr (keV) Ecut (MeV)

10 −2.0 30 0.7
30 −1.8 30 1.0
60 −1.25 L 1.5

Note.All quantities are as described for Table 2.
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7. Discussion and Conclusions

In this study, the acceleration of SW particles at halo CME-
driven IP shocks is investigated. The thermal and suprathermal
components of the SW velocity (or equivalent energy)
distributions are collectively described using κ-functions.
Furthermore, these SW distributions are transformed in
response to simulated shock transitions in plasma properties
upon which they depend, such as the flow speed, number
density, and temperature. These transformed (or heated)
distributions are consequently specified as source spectra, from
which particles with sufficient energy can be injected into the
DSA process at the shock. To model this acceleration process,
SDEs equivalent to the Parker TPE are solved in a time-
backward fashion. Using the combined approach of the pre-
injection heating of the SW distribution and DSA, simulations
reveal a number of noteworthy results with regard to the
particle acceleration at IP shocks and particularly of SW
particles.
The simulations are shown to produce the classical spectral

features of DSA. However, in cases where diffusion length
scales are small relative to the shock width, shock-accelerated
spectra do not display the spectral indices associated with the
full compression ratio. Such situations may arise in the case of
high levels of magnetic turbulence, which can decrease
diffusion length scales, or in the case of broader compressions
in the SW (e.g., Giacalone et al. 2002). At any rate, the softer
power-law distributions that are attained as a result notably
reduce the overall intensities of shock-accelerated particles.

Figure 17.Modeled shock-accelerated spectra at Earth at different times during
the approach of the shock. Step-like lines represent SDE solutions, dashed lines
indicate flat segments, and the thick solid lines indicate power-law segments
that are distributed as E−1.25 as expected from a shock with s=3.

Figure 18. Profiles of energetic particle intensities at different energies as
viewed by an observer at Earth during the passage of the shock. The vertical
dotted line represents the moment of the shock’s arrival at Earth. The shaded
region accentuates where energy spectra are approximately flat.

Figure 19. Initial radial and kinetic energy distribution of SW particles
contributing to 1 MeV intensities at Earth during an ESP event. The color scale
indicates the average particle amplitudes at each (r, E)-point, where the
maximum amplitude has been normalized to unity. The observational point,
from where pseudo-particle trajectories are traced in a time-backward fashion,
is shown as a marker at the intersection of vertical and horizontal dashed lines
indicating Earth’s position and 1 MeV, respectively. The associated animation
shows the evolution of this plot as the shock progresses toward Earth, where
the position of the shock front is indicated using a solid vertical line. The
duration of the video is 20 s.

(An animation of this figure is available.)
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Furthermore, it is shown that the highest attainable energies of
shock-accelerated spectra are limited by the transit time of the
shock. Reduced diffusion length scales may serve to better
confine particles near the shock, thereby allowing spectra to be
accelerated to higher energies within the available time.
Intensities of higher-energy particles (E>1MeV) are shown
to be particularly sensitive to this time limit.

The dependence of the acceleration process on shock
properties such as its speed and compression ratio is also
investigated. Fast shocks contribute appreciably to the heating
of the SW distribution. While fast-moving shocks have shorter
associated transit times, allowing less time for particle
acceleration, larger shock speeds have a net positive effect on
particle acceleration. Through their contribution to larger flow
speeds they reduce diffusion length scales, improving particle
confinement at the shock. They also reduce the time required
for acceleration: since larger shock speeds imply larger
differences of flow speeds across the shock, a particle scattered
across it experiences a larger mean energy gain per crossing;
the scattering centers can also be thought of as converging on
the shock at a higher rate for fast shocks.

The compression ratio, as a measure of shock strength, also
affects the magnitude of flow speed transitions across the
shock, providing the actual factor by which both the shock-
frame flow speed and number density change across the shock.
In particular, larger compression ratios increase intensities of
the SW distribution across the shock, since the κ-function is
normalized to the number density. While it has a more modest
effect on acceleration times than the shock speed, its effect on
overall particle intensities is significant, since the spectral
indices of the shock-accelerated spectra depend directly on the
compression ratio. When strong and fast shocks are compared
as particle accelerators, it is found that strong slower-moving
shocks produce larger numbers of energetic particles than weak
fast-moving shocks. The compression ratio, being directly
associated with the steepness of accelerated energy distribu-
tions, is therefore identified to be the greater limiting factor
between these two shock properties.

With regard to simulating ESP events, the prior heating of
the SW distribution during the shock passage is found to
complement the DSA process well: it provides greater
intensities of potential seed particles for DSA, especially
where large injection energies are considered, and allows
shock-accelerated spectra to achieve large enough intensities at
sufficiently high energies to reproduce typical ESP events. This
result is consistent with observations reporting larger peak
particle fluxes during ESP events for warmer CME sheath
temperatures (Dayeh et al. 2018). Furthermore, simulations of
shock-accelerated intensities at Earth reveal significant flatten-
ing of spectra forming ahead of the shock during its approach.
This is found to result from shock-accelerated particles
experiencing adiabatic cooling in the expanding SW while
propagating toward Earth ahead of the shock. This provides a
potential explanation for similar features recently reported in
observations (Lario et al. 2018).

Finally, taking advantage of the time-backward tracing of
phase-space density elements, with their flux contributions
weighted according to particle amplitude, it is revealed that
most SW particles contributing to intensities during a simulated
ESP event are transported to Earth from upwind and are
accelerated from energies ranging from tens to a few hundred
keV. Due to the outsized fraction of particles accelerated to

1MeV from lower energies, it can be concluded that DSA is
indeed a chief contributor to intensities at Earth during ESP
events.
It is ultimately concluded that with the combination of prior

heating and shock acceleration, energetic particles can be
accelerated from the suprathermal SW at IP shocks, and that
these particles may make appreciable contributions to inten-
sities during observed ESP events. Also, the reproduction of
the observed flat energy spectra ahead of shock passages (Lario
et al. 2018), resulting from the competing processes of DSA
and adiabatic cooling, illustrates the advantage of studying
particle acceleration in association with more general transport
processes. It is furthermore demonstrated that the SDE
approach, while shown in Appendix B to yield comparable
results to finite-difference methods, can be used to reveal
unique physical insights with regard to particle transport and
acceleration at IP shocks. Along with its computational
advantages, the SDE model developed in this study can be
expanded to include more spatial dimensions, providing a
means to explore more complicated shock geometries. Further
research using this SDE approach may also include more
refined characterizations of transport coefficients, the solution
of focused TPEs to study large-anisotropy events, and the
reproduction of various shock-related particle events, such as
the acceleration of particles associated with corotating interac-
tion regions.

P.L.P. and R.D.S. acknowledge the financial support of the
South African National Research Foundation (NRF). Opinions
expressed and conclusions arrived at are those of the authors
and are not necessarily to be attributed to the NRF.

Appendix A
Counting Particles

The following sections review how the distribution function
used in the TPE is used to represent particle abundances.
Specifically, it is shown how it relates to the particle number
density, differential intensity (in terms of which spacecraft
observations are often presented), and the standard κ-function
used to represent the SW velocity distribution.

A.1. The Distribution Function and Number Density

Consider a number of particles d in a small volume d3x at
a position x x y z, ,= ( ) and with momentum in d3p around
p p p p, ,x y z= ( ) as illustrated in Figure 20 (left). The distribu-
tion function x pf t, ,( ) is introduced such that

x pd f t d x d p, , . 293 3 = ( ) ( )

This can be related to the ordinary number density n by
integrating over all momentum space

x pn f t d p, , . 303ò= ( ) ( )

The above volume integral can be rewritten by considering a
momentum coordinate system as shown in Figure 20 (right).
Assuming the gyro-center at the origin and the magnetic field
line about which the particle gyrates along pz, that is, B Bz= ˆ,
the azimuthal angle f represents the particle’s gyrophase and
the polar angle θ its pitch angle.
This allows the momentum-space volume element to be

expressed in spherical coordinates as d3p=p2dΩ dp, where

18

The Astrophysical Journal, 878:144 (22pp), 2019 June 20 Prinsloo, Strauss, & le Roux



d d dsin q q fW = is a solid-angle element about p and
pp = ∣ ∣ is the particle’s scalar momentum. Noting that p

can hence be expressed in terms of the coordinates (p, f, θ),
Equation (30) can be rewritten as

x

x

n p f p t d d dp
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where òW represents the integral over all solid angles. However,
since particle detectors typically cannot resolve statistically
significant numbers of particles incident from only one
particular direction, the average number of particles per unit
solid angle in momentum space is considered. Accordingly, the
omnidirectional distribution function (that is, averaged over all
directions in p-space for a fixed p) is defined as
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p p

W
. Note that xf p t, ,0 ( )

is the distribution function solved for in the Parker (1965) TPE.
Note furthermore from Equation (32) that x pf t, ,( ) can be
taken out of the integral over solid angle if it is assumed to be
gyro- and isotropic, that is, independent of both f and θ. In this
case it follows that x p xf t f p t, , , ,0=( ) ( ). From
Equations (31) and (32) the number density can be expressed as

xn p f p t dp4 , , 33
0

2
0ò p=

¥
( ) ( )

xU p t dp, , , 34p
0ò=
¥
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where x xU p t p f p t, , 4 , ,p
2

0p=( ) ( ) is known as the differ-
ential number density. Here Up represents the number density
between two spherical shells in p-space with radii of p and
p+ dp, respectively. While spacecraft cannot resolve volume

densities, Up does prove useful to relate quantities they measure
to those introduced above.

A.2. Toward the Differential Intensity

Spacecraft essentially measure the flux of particles observed
for a particular viewing direction within a particular momentum
(or energy) band. This is known as the differential intensity jp
and is the number of particles detected per momentum interval
per unit time per unit area of observed space per unit solid
angle. Dimensionally, this can be attained by the product of the
differential number density and the speed at which particles
move toward the detector through a surface perpendicular to
their motion, averaged over all solid angles. That is,
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which, in turn, relates the differential intensity to the
distribution function. It is furthermore useful to express the
differential intensity in terms of kinetic energy to compare with
spacecraft observations. The conversion of jp, expressed per
momentum interval dp, to jE, expressed per interval of kinetic
energy dE, is carried out by noting that jp dp=jE dE owing to
the conservation of particles. It hence follows that

j j
dp

dE
. 36E p= ( )

Note that since p E E cT
2 2

0
2 2= -( ) , where ET=E+E0 with

ET, E, and E0 denoting the total, kinetic and rest-mass energies,
respectively, it follows that

dp
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E E
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, 37T0
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where γ is the Lorentz factor and m0 is the rest mass. Then,
using Equation (36), jE can be related to the distribution

Figure 20. Left: Representations of volumes in real and phase space, d3x and d3p, for which the distribution function is defined according to Equation (29). d3x
contains all the particles at position r with a momentum p in d3p. Right: spherical momentum coordinate system, where pz is along the magnetic field line and the
particle momentum p is defined in terms of the scalar momentum p, gyrophase angle f, and pitch angle θ.
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function as follows:
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A.3. On Kappa Velocity Distribution Functions

The normalization constant Aκ of the standard κ-function
introduced in Equation (1) is obtained by setting its integral
over all phase space equal to the number density of the SW.
Assuming an omnidirectional (or three-dimensional) κ-func-
tion, averaged as per Equation (32), the expression given in
Equation (33) can be used to calculate the normalization
constant. Note, however, that because fκ is often expressed as a
function of velocity instead of momentum, the analogous
expression in velocity coordinates, namely,

n v f v dv4 , 39
0

2ò p= k

¥
( ) ( )

is used to calculate the number density. Bear in mind that for
use in the TPE, e.g., when specifying fs in the source function,
the conversion f f ms p

3= k applies because

p f dp m v f d m v v f dv4 4 4s p s p
2 2 2ò ò òp p p= º k( ) ( ) . Here,

only the proton rest mass mp is used, since this study is
concerned with SW protons with kinetic energies typically
much smaller than their rest-mass energy. A nonrelativistic
description is therefore applicable. Note furthermore that
Equation (39) is also known as the zeroth-order velocity
moment of fκ and that it can be cast into a more general form
for the nth-order moment, namely,

v v f v dv4 , 40n n
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which, upon substituting Equation (1), becomes
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from which the normalization constant Aκ can be calculated.
The integral in Equation (41) is evaluated by applying the
transformation v v :2 2k hk( ) , which allows the expression to
be rewritten as

v A v d2 1 .
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Note that the integral is now in the form of the β-function,
given by

x y d
x y

x y
, 1 . 43x x y

0

1òb h h h= + =
G G
G +

¥
- - +( ) ( ) ( ) ( )

( )
( )( )

Recognizing that x=(n+3)/2, y=κ−(n+1)/2, and
x+y=κ+1, the integral in Equation (42) can be solved by
invoking the identity given in Equation (43), so that

v A v
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2
3 2 1 2
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from which the normalization constant can be determined as

A
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by setting v nn 0
swá ñ == , yielding the same expression given in

Equation (3). The standard kappa function is hence given by
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Appendix B
Equivalence of SDE and Finite-difference Numerical
Methods: Application to an Event during the 2003

Halloween Epoch

In a similar study, where DSA is also assumed as an
acceleration mechanism in simulating ESP events, Giacalone
(2015) utilizes a finite-difference numerical scheme to solve the
Parker (1965) TPE in a single spatial dimension for a strong
fast-moving shock (Vsh=1900 km s−1, s=4). In that study,
the energetic particle event, or Halloween event, of 2003
October 29 is considered as an application for which observed
energy spectra and temporal profiles are reproduced. To
demonstrate their equivalence as numerical methods, the SDE
approach of this study is implemented to reproduce particle
intensities for the same event using a similar parameter
configuration to that of Giacalone (2015). The source function
in that study is bound to a numerical grid, which does not exist
in the SDE approach. For the purposes of this application, the
source function is instead specified at the shock as a very soft
power law in momentum (p−7), where simulated intensities are
retroactively normalized to observed intensities. Furthermore,
the diffusion coefficient is implemented as specified in that
study, that is, of order 1019 cm2 s−1 near the Sun and with a
momentum dependence of ∼p1.5 (refer to Giacalone 2015, for
further details).
The resultant energy spectra and time profiles of energetic

particle intensities are shown in Figure 21. Overall, the finite-
difference and SDE solutions are similar. Recall that the SDEs
must be solved for a large number of pseudo-particles for each
energy, position, or point in time at which intensities are
sought. The resolution of SDE solutions therefore merely
depends on the number of times the simulation is repeated and
how the observational points are distributed, as opposed to the
fixed grid resolution of finite-difference schemes. For example,
in Figure 21, a greater number of more tightly spaced
observational points are chosen in energy than in time, as
shown in the left and right panels, respectively. Note that the
SDE solutions tend to undershoot the finite-difference solutions
where steeper gradients exist. This follows because there is no
passage of information between pseudo-particles and their
associated observational points as would exist between
adjacent points in finite-difference schemes. The SDEs
typically yield less gradual intensity gradients as a result. This
is useful to bear in mind when fitting functions to shock-
accelerated spectra simulated using these two different
approaches, since the high-energy cutoff is likely to be more
abrupt for the SDEs than for finite-difference solutions.
Note, as an aside, that simulated intensities of either method

reproduce observations better near the shock than away from it.
This follows since the only source of particles in the
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simulations is situated on the shock itself, while the observed
intensities include contributions from other sources. In any
event, the comparison of the simulations generated using the
two different numerical methods demonstrates the equivalence
of their results.
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