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Abstract

The star formation histories (SFHs) of galaxies contain imprints of the physical processes responsible for
regulating star formation during galaxy growth and quenching. We improve the Dense Basis SFH reconstruction
method of Iyer & Gawiser, introducing a nonparametric description of the SFH based on the lookback times at
which a galaxy assembles certain quantiles of its stellar mass. The method uses Gaussian processes to create
smooth SFHs independent of any functional form, with a flexible number of parameters that is adjusted to extract
the maximum amount of information from the SEDs being fit. Applying the method to reconstruct the SFHs of
48,791 galaxies with H<25 at 0.5<z<3.0 across the five Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey fields, we study the evolution of galaxies over time. We quantify the fraction of galaxies that show
multiple major episodes of star formation, finding that the median time between two peaks of star formation is
~ -

+ t0.42 Gyr0.10
0.15

univ , where tuniv is the age of the universe at a given redshift and remains roughly constant with
stellar mass. Correlating SFHs with morphology allows us to compare the timescales on which the SFHs decline
for different morphological classifications, ranging from +

-0.60 Gyr1.54
0.54 for galaxies with spiral arms to

+
-2.50 Gyr2.25

1.50 for spheroids at 0.5<z<1.0 with 1010<M*<1010.5Me. The Gaussian process–based SFH
description provides a general approach to reconstruct smooth, flexible, nonparametric SFH posteriors for galaxies
that can be incorporated into Bayesian SED fitting codes to minimize the bias in estimating physical parameters
due to SFH parameterization.

Key words: galaxies: evolution – galaxies: fundamental parameters – galaxies: star formation – galaxies: statistics –
techniques: photometric

1. Introduction

Galaxies are massive, turbulent systems, shaped by physical
processes that regulate star formation across many orders of
magnitude in spatial and temporal scales; e.g., see White &
Rees (1978), Searle et al. (1973), Hopkins et al. (2014), and
Genel et al. (2019), as well as the reviews by Somerville &
Davé (2015) and Naab & Ostriker (2017). Despite this apparent
chaos, observations of ensembles of galaxies across cosmic
time reveal several correlations, such as the Tully–Fisher
relation (Tully & Fisher 1977), the SFR–M* correlation (Daddi
et al. 2007; Elbaz et al. 2007; Noeske et al. 2007), the black
hole mass–velocity dispersion correlation (Gebhardt et al.
2000), and the mass–metallicity correlation (Tremonti et al.
2004). Median trends constructed using these scaling relations
indicate an equilibrium mode of galaxy growth through baryon
cycling, punctuated by mergers and followed by eventual
quiescence (Davé 2008; Peng et al. 2010; Tacchella et al. 2016;
Behroozi et al. 2018). However, these trends can be
equivalently recovered through stochastic evolution (Kelson
2014) or simple parametric models with minimal physics
(Abramson et al. 2016). Given information about the present
state of a galaxy, a lot can be said about its evolutionary
history, because the gas inflow rate depends to first order on the
halo formation rate, which is driven by gravity and evolves
over approximately one Hubble time. It is important to

determine the extent to which a galaxyʼs evolution is driven
by evolving physical processes, such as baryon cycling and star
formation suppression. These processes depend on the physical
conditions of galaxies, such as their size, morphology, and
stellar mass, as opposed to the stochastic processes governing
halo and galaxy mergers and the creation and destruction of
molecular clouds that regulate in situ star formation, which
remains broadly invariant across many orders of magnitude, as
inferred from the SFR–M* correlation extending from galaxy-
wide scales (Whitaker et al. 2014; Kurczynski et al. 2016)
down to kpc scales in resolved observations (Hsieh et al. 2017).
A key observable that correlates the present state of a galaxy

with its evolutionary history is its star formation history (SFH)
—a record of when a galaxy formed its stars. The SFHs
of galaxies bear imprints from all the physical processes that
shape galaxy growth by regulating star formation. This includes
inflows and outflows of gas, mergers between galaxies, and
feedback due to supernovae and Active Galactic Nuclei (AGNs),
which leave imprints on the SFH on timescales ranging from
<1Myr to >10Gyr (Somerville et al. 2008, 2015; Inutsuka
et al. 2015; Sparre et al. 2015; Torrey et al. 2018; Behroozi et al.
2018; Matthee & Schaye 2019; Weinberger et al. 2018).
Summary statistics of the SFH allow us to calculate traditionally
estimated quantities like the stellar masses, star formation rates at
the epoch of observation, and mass- and light-weighted ages of
individual galaxies (Bell et al. 2007). Additional information
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about the shape of galaxy SFHs allows us to infer whether the
galaxy is actively forming stars, or if it formed most of its stars
in the distant past (Kauffmann et al. 2003; Brinchmann et al.
2004). Nonparametric estimates of the median SFH for a sample
of galaxies let us better understand the width and strength of
major episodes of star formation (Heavens et al. 2000; Tojeiro
et al. 2007; Pacifici et al. 2016; Iyer & Gawiser 2017), the origin
and evolution of scaling relations (Iyer et al. 2018; Matthee &
Schaye 2019; Torrey et al. 2018), mass functions (C. Pacifici
2019, in preparation), and the cosmic star formation rate density
(Leja et al. 2019b).

With the advent of large surveys and the impending arrival
of the next generation of surveys with JWST, developing more
sophisticated nonparametric techniques of recovering galaxy
SFHs will allow us to estimate galaxy properties out to higher
redshifts. More importantly, higher-precision multiwavelength
data allow us to go beyond traditional parametric forms and
estimate finer features, such as SFHs with multiple strong
episodes of star formation (Iyer & Gawiser 2017; Morishita
et al. 2018), that can be caused by violent events like mergers
or smoother events like stripping followed by inflow of pristine
gas (Kelson 2014; Boogaard et al. 2018; Tacchella et al. 2018;
Torrey et al. 2018). For example, Morishita et al. (2018) find
that even old, quiescent galaxies sometimes show evidence for
multiple episodes of star formation. Correlating these features
of the SFH with other observables, such as the metallicity of
the galaxy, evidence of recent mergers, and morphological and
environmental conditions, will allow us to test different models
that can help explain the diversity seen in SFHs at a particular
epoch.

In the observational domain, the integrated light from distant
galaxies contains a host of information about the physical
processes that shape them during their formative phases
(Tinsley 1968; Bruzual & Charlot 2003; Conroy et al. 2009;
Conroy & Gunn 2010). Because stellar populations of different
ages have distinct spectral characteristics, careful analysis of
multiwavelength spectral energy distributions (SEDs) allows
us, in principle, to disentangle these different populations
(Heavens et al. 2000; Reichardt et al. 2001; Tojeiro et al. 2007;
Dye 2008; Acquaviva et al. 2011; Pacifici et al. 2012,
2016; Smith & Hayward 2015; Domínguez Sánchez et al.
2016; Ciesla et al. 2017; Iyer & Gawiser 2017; Lee et al. 2018;
Carnall et al. 2018; Leja et al. 2019a). SED fitting allows us to
estimate the SFHs for a much larger population of galaxies, but
requires much more sophisticated analysis to avoid biases.
Assumptions of simple parametric forms for SFHs lead to
biases, as shown in Iyer & Gawiser (2017), Ciesla et al. (2017),
Lee et al. (2018), and Carnall et al. (2019). On the other hand,
more complicated parametric forms, as well as methods that
estimate the SFR in time bins, require us to estimate a much
larger number of parameters. Therefore, we are in a situation
where we would like to estimate as much information about the
SFH as possible, encoded in the smallest possible number of
estimated variables, while attempting to be as nonparametric as
possible in order to avoid biases. As Ivezić et al. (2014) states,
“nonparametric” does not imply an absence of parameters, but
rather an independence from the model structure such as a
functional form for the SFH. Ideally, the nature and number of
parameters that specify the shape of a galaxy’s SFH are flexible
and determined by the data. A nonparametric method in the
context of SFHs should avoid assuming a simple parametric
form (e.g., exponentially declining or lognormal SFHs), be

flexible enough to describe any function in SFH space, and
infer the number of parameters from the quality of the data
being analyzed.
In Iyer & Gawiser (2017), we introduced the Dense Basis

method, which uses a basis of SFHs comprised of four different
functional families and all of their combinations, determining
the optimal number of SFH components using a statistical test.
While this approach produces a basis of SFHs that is effectively
dense in SED space and was shown to minimize the bias and
scatter due to SFH parameterization, it still retains a minor
dependence on the functional families under consideration.
Additionally, it cannot be flexibly incorporated into an MCMC
or nested sampling framework, and it becomes computationally
expensive as we go to large numbers of SFH components—
making it inefficient at extracting all the SFH information
present in high-quality spectrophotometric data.
In this work, we introduce an improved version of the Dense

Basis method that uses nonparametric SFHs constructed using
Gaussian Process Regression (GPR) (also called kriging or
Wigner–Kolmogorov prediction; see Chiles & Delfiner (2009),
Wackernagel (2003), and Krivoruchko (2011)), using the
lookback times at which a galaxy assembled certain quantiles
of its overall stellar mass. Gaussian processes (Rasmussen &
Williams 2006) extend the Gaussian probability distribution to
the space of functions, allowing us to describe posteriors in
SFH space without the need for parametric forms or bins in
time. Historically, GPR developed as a method to interpolate
between noisy data points. In our case, we have two sets of
noisy data: the noisy SEDs themselves, and the noisy estimates
of physical properties (such as the SFH) estimated using them.
While Leistedt & Hogg (2017) use the former, in this paper we
exclusively use the GPR to perform interpolation in SFH space
in order to create smooth curves from sparse constraints on the
SFH determined through SED fitting. Compared to traditional
interpolation methods that require us to specify a smoothing
scale or bandwidth, Gaussian processes allow us to specify a
covariance function, also called the kernel, which defines how
SFRs separated by a time Δt are related. In combination with
constraints on the SFR at certain times from the observable
SEDs, the Gaussian process routine is used to compute the
likelihood of the SFR at every point in lookback time While
retaining all the advantages of the previous method, this has the
additional advantages of being completely independent of any
choice of functional form, scaling linearly with the number of
SFH parameters, and providing a modular framework capable
of being incorporated into any existing SED fitting routine. We
establish the robustness of the method using semi-analytic
models and hydrodynamical simulations for which the true
SFHs are known, and apply it to galaxies at 0.5<z<3.0
across the five Cosmic Assembly Near-infrared Deep Extra-
galactic Legacy Survey (CANDELS) fields in order to study
the evolution of galaxies around cosmic noon using their SFHs.
This paper is structured as follows. Section 2 describes the

methodology, including the formalism used for constructing
smooth, nonparametric SFHs and incorporating them into an
SED-fitting framework. Section 3 contains a suite of validation
tests for the methodology developed and applied in this work. In
Section 4, we introduce the CANDELS data set that we use for
the current analysis. In Section 5, we describe the SFHs
reconstructed from the CANDELS sample, including the fraction
of galaxies with multiple strong episodes of star formation, the
evolution of this fraction with time, and implications for the
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timescales of quenching followed by rejuvenation as well as for
the morphological transformation of galaxies as they approach
quiescence. Section 6 considers caveats and future directions for
applying the Dense Basis method, and Section 7 concludes.
Throughout this paper, magnitudes are in the AB system; we use
a standard ΛCDM cosmology, with Ωm=0.3, ΩΛ=0.7, and
H0=70 km Mpc−1 s−1.

2. Methodology

2.1. Star Formation Histories

The main thrust of the Dense Basis method is to encode the
maximum amount of information about the SFHs of galaxies
using a minimal number of parameters. In this respect, the
formalism used to describe SFHs in this work can be used as a
module in existing sophisticated inference methods developed
in public SED fitting codes like Bagpipes (Carnall et al. 2018),
Beagle (Chevallard & Charlot 2016), CIGALE (Noll et al.
2009), and Prospector (Leja et al. 2017) to flexibly describe
SFHs. As shown in our validation tests (Section 3), this
description minimizes the bias in estimating SFHs at all
lookback times, compared to existing parametric and nonpara-
metric methods (Lee et al. 2010; Ciesla et al. 2017; Iyer &
Gawiser 2017; Carnall et al. 2019; Leja et al. 2019a).

This subsection describes the methodology for creating
SFHs using this formalism for a given number of parameters,
and the following subsections handle the construction of the
SED fitting machinery needed to infer the optimal number of
SFH parameters corresponding to the amount of information
available in individual galaxy SEDs.

We define an SFH by the tuple: (M*, SFR, {tX}), where M*
is the stellar mass, SFR is the star formation rate at the epoch of
observation, and the set {tX} contains the N “shape” parameters
that describe the SFH. The shape parameters, {tX}, are N
lookback times at which the galaxy formed equally spaced
quantiles of its total mass (Pacifici et al. 2016; Behroozi et al.
2018). For the first few values of N, we can write

{ }
{ }
{ }
{ }

= =
= =
= =
= =

N P t
N P t t
N P t t t
N P t t t t

1
2 ,
3 , ,
4 , , , .

...

50

33 67

25 50 75

20 40 60 80

This can be seen graphically in Figure 1, where we show the
{tx} parameters with N=2, 4, 9 (vertical dashed black lines)
for a mock SFH (blue line), along with our construction of the
SFH using these parameters (black solid lines). As expected,
the shape of the mock SFH is better captured as N increases,
with multiple episodes captured using four parameters. In
practice, we find that it is possible to recover multiple episodes
of star formation with as few as three {tx} parameters. Together
with the stellar mass and SFR, this tuple describes a set of
integral constraints that describe the shape and overall
normalization of the SFH. For a galaxy at redshift z, when
the universe was tz Gyr old, the constraints are:
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The second line is a set of N equations, one for each parameter
in the set {tx} that requires that the galaxy form “x” fraction of
its total mass by time tx.
This description of a galaxy’s SFH already offers several

advantages over methods found in the literature, a few of which
are summarized below.

1. Not being restricted to a particular functional form
minimizes bias due to SFH parameterization (Iyer et al.
2018).

2. Describing an SFH using {tX} reduces the discrepancy in
S/N per parameter, in comparison to methods that
determine the SFR in bins of lookback time: for example,
t20 might be less well-constrained compared to t80, but the
overall signal depends on the shape of the SFH. For
example, the parameterization will not try to constrain the
SFR in the first year after the Big Bang unless enough
stars were formed that early to provide a discernible
signal in the SED. This can be compared to methods that
adaptively choose time bins, e.g., VESPA (Tojeiro et al.
2007).

Figure 1. Applying Gaussian process regression to create smooth approximations of a single SFH from the Santa Cruz semi-analytic model (Somerville et al. 2008;
Porter et al. 2014) at different redshifts of interest using the parameterization described in Section 2.1. The nine panels show how versatile the method is at capturing
details of the SFH using a varying number of parameters, which can be tuned based on the quality of the observations, such as rest-frame wavelength coverage or S/N.
In SFH space, this demonstrates the versatility of the method at describing arbitrary SFH shapes, with the accuracy of the approximation increasing with the number of
parameters. An advantage of the Gaussian process formalism is that it makes it possible to describe an SFH with multiple episodes using as few as three parameters.
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3. This provides a novel framework for compressing the
amount of information present in an SFH to a small set of
numbers (given a way to reconstruct an SFH from a
tuple), and hence for comparing SFHs across different
simulations and observations on the same footing.

4. The distribution of different {tX} among galaxies at a
given epoch within a simulation can be extremely useful
in defining and checking the physical assumptions of the
SFH priors during SED fitting.

Reconstructing an SFH from the tuple (M*, SFR, {tX}) can
be done in multiple ways, but we seek to minimize the
information lost in doing so, while remaining computationally
inexpensive. As with all compression methods, we approach
the true SFH as the number of parameters N in the set
{ }  ¥tX , but we would like to minimize the loss even with a
relatively small number of parameters.

Reconstructing an SFH requires quantifying the integral
constraints as points on a fractional mass (M*,tot(t))—cosmic
time (t) plane and drawing a piecewise smooth curve passing
through these points. Rescaling the mass axis and differentiat-
ing this cumulative curve would then yield the SFH as a star
formation rate at each lookback time. The simplest approx-
imation would be to connect each point such that the resulting
SFH is piecewise linear, but while this provides an acceptable
solution, it is not very physical—in the sense that taking the
derivative yields an SFR with jump discontinuities. While
generalizing to polynomials for the interpolation causes
problems with the derivative going negative in parts of the
SFH, methods such as tensioned cubic splines and piecewise-
cubic Hermite polynomial interpolation (De Boor et al. 1978;
Butt & Brodlie 1993) provide more sophisticated solutions to
this problem.

In this work, we use GPR (Rasmussen & Williams 2006;
Leistedt & Hogg 2017) implemented through the george
python package (Ambikasaran et al. 2015; Foreman-
Mackey 2015) to create a smooth SFH along with uncertainties
following a physically motivated covariance function (kernel)
for a given SFH tuple. The Gaussian process framework uses a
set of constraints, given by the set of Equation (1), along with a
covariance function (or kernel) to estimate the probability of
SFH(t) at a given time t. We use a Matern32 kernel
(Seeger 2004) in the present application, given by:

( ) ( ) ( ) ( )= + -k r r r1 3 exp 3 32 2 2

where the covariance function contains a scale length
hyperparameter (r2∝(Δt)2 that sets how much the SFR(t)
can vary from the SFR(t+Δt) separated by a time interval Δt.
The hyperparameter in the kernels essentially encodes the
amount of stochasticity in the SFHs, and is described further in
Section 3.5. In practice, this can be thought of as setting the
tension in a string that passes through all the constraints in
cumulative mass–cosmic time space, and therefore affects the
shape and amount of ringing that can happen between two
quantiles. When using a spline to reconstruct the SFH, this
ringing can sometimes cause the SFR to be negative. Our
choice of physically motivated kernel minimizes this behavior
and limits it to extreme SFH tuples (e.g., t25=0.1 Myr,
t50=10 Gyr, t75=10.1 Gyr, i.e., the SFH formed the first and
third quarters of its mass in bursts of 0.1 Myr, separated by a
long period of relative quiescence), which account for <3%

across our basis. In these cases, we set the relevant portion (i.e.,
SFR(t)<0) to 0 and check that the overall error in stellar mass
due to this is <5%. By doing so, we ensure that SFR�0 at all
times across our entire basis. Setting the SFR to 0 in cases like
this is physically motivated—stretches with SFR=0 might be
found in nature as well, as seen in SFH reconstructions of local
dwarfs (Weisz et al. 2011) or in high-resolution simulations
(Wright et al. 2019), for galaxies with very bursty SFHs.
Examples of approximating SFHs using this formalism are
shown in Figure 1. The advantage of this method is that both
parameters (M*, SFR, {tx}) and uncertainties on these
parameters can be passed as arguments while constructing the
SFH posterior. This is tested using SFHs from the Santa Cruz
semi-analytic models (SAM) (Somerville et al. 2008; Porter
et al. 2014) and the MUFASA Davé et al. (2016) simulation to
minimize loss during the reconstruction of SFHs; in both cases,
the error in approximating the true SFH decreases as we
increase the number of parameters. The Santa Cruz semi-
analytic model uses dark matter halo merger trees from the
Bolshoi-Planck simulation (Klypin et al. 2011) in combination
with analytic recipes for the radiative cooling of gas, collapse
of cold gas to form rotationally supported disks, star formation,
feedback, and chemical enrichment. The MUFASA hydro-
dynamical simulation uses the GIZMO (Hopkins 2015) mesh-
less code, including prescriptions for H2-based star formation,
chemical evolution, and kinetic outflows following scalings
from the FIRE (Hopkins et al. 2014) simulation, as well as an
evolving halo-mass–based quenching mechanism. Both simu-
lations reproduce a wide range of present-day observables,
including z∼0 mass functions and scaling relations, with
further details in Somerville et al. (2008), Porter et al. (2014),
and Davé et al. (2016).

2.2. SED Fitting

While we are primarily interested in the SFH, determining it
from the galaxy’s SED requires us to account for several other
factors, such as the chemical enrichment, stellar initial mass
function (IMF), dust attenuation model, and absorption by the
IGM. We then formulate the SFH estimation as an inference
problem given by:

( ∣ )

( ∣ ) ( )
( )
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n
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n
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The term ( ∣ )nP F A Z zSFH, , ,j V,
obs is the likelihood, given by

( )cµ - exp 22 , where
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j
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1

,
obs
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model 2
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The term ( )P A Z zSFH, , , ...V denotes the prior distribution for
the model. If we assume uncorrelated priors for all the
parameters, this can be written as ( ) ( ) ( ) ( )P P A P Z P zSFH ...V .
Here, nF j,

obs is the observed photometry being fit, in the jth
photometric filter. SFH denotes the SFH tuple (M*, SFR, {tX}),
AV is the dust model, Z the stellar metallicity, and z is the
redshift. In addition to this, we need to consider the stellar
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population synthesis models, stellar IMF, absorption by the
intergalactic medium, and a self-consistent implementation of
nebular emission lines using CLOUDY through the Flexible
Stellar Population Synthesis (FSPS) code. We adopt the
Calzetti attenuation law for the dust attenuation (Calzetti 2001),
with one free parameter (because the Calzetti law couples the
birth-cloud attenuation to that from older stars), one for stellar
metallicity, and a Chabrier IMF (Chabrier 2003) with no free
parameters. We define our SFH parameterization in Section 2.1
with N+2 parameters, where N is the number of SFH
percentiles, given by the set {tx}. We use FSPS (Conroy
et al. 2009; Conroy & Gunn 2010) to generate spectra
corresponding to the Basel stellar tracks and the Padova
isochrones. With N SFH quantiles, the model then has N+5
(M*, SFR, AV, Z, z) free parameters that need to be determined
from the data. We construct the method in such a way that N
itself is a variable that is tuned to extract the maximum amount
of information present in a galaxy’s SED. It is important to
keep in mind that these modeling choices can impose an
implicit prior on our SED fits. The effects of testing our model
assumptions and priors are further explored in Section 3, where
we find that our models and priors are suitably robust,
considering the S/N and wavelength coverage of our data set.

We implement the posterior computation numerically, using
a brute-force Bayesian approach similar to Pacifici et al.
(2012, 2016) and Da Cunha et al. (2008), with a large pregrid
of model SEDs constructed through random draws from the
prior distributions corresponding to each free parameter in
Equation (5). To ensure that the pregrid samples the priors
finely enough and is effectively dense in SED space, we
perform fits to a sample of 1000 galaxies while varying the size
of our pregrid. Using this, we estimate the optimal size of the
pregrid as the point where the improvement in median χ2 for
the sample as a function of pregrid size is negligible, leading to
a pregrid with ∼900,000 SEDs.

To construct the pregrid, we draw random values from our
prior distributions for stellar metallicity, dust attenuation, and
SFH parameters (M*, SFR, {tx}). For metallicity, we adopt a
flat prior on Z Zlog (Pacifici et al. 2016; Carnall et al. 2018;
Leja et al. 2019a), an exponential prior on dust attenuation (Iyer
& Gawiser 2017), and a Dirichlet prior for the lookback times
{tx} that specify the shape of the SFH. The Dirichlet prior is a
generalization of the Beta distribution to N variables, such that
a random draw yields N random numbers xi that satisfy
å =x 1i i . More details about this prior can be found in Leja
et al. (2017, 2019a). In practice, for a galaxy SFH at redshift z,
we generate the set {tx} by performing a random draw
multiplied by the age of the universe at that redshift, giving the
set of lookback times at which a galaxy formed various
quantiles of its stellar mass. The Dirichlet prior has a single
tunable parameter α that specifies how correlated the values
are. In our case, values of this parameter α<1 result in values
that can be arbitrarily close, leading to extremely spiky SFHs
because galaxies have to assemble a significant fraction of their
mass in a very short period of time, while α>1 leads to
smoother SFHs with more evenly spaced values that never-
theless have considerable diversity. In practice, we use a value
of α=5, which leads to a distribution of parameters that is
similar to what we find in SAM and MUFASA. This can be
seen in Figure 2. For each galaxy in our pregrid, we turn the

corresponding (M*, SFR, {tx}) tuple into an SFH via our
Gaussian process routine, assuming fiducial 1% uncertainties.
Using this SFH, in combination with the values for metallicity,
dust, and redshift, we generate a spectrum through the FSPS
stellar population synthesis routine. Multiplying this spectrum
with the appropriate filter transmission curves gives the SED
corresponding to each tuple in the pregrid.
SFH uncertainties are computed after the fit is performed,

using the posterior for each parameter describing the tuple (M*,
SFR, {tx}). For each galaxy, 100 self-consistent random draws
are performed from the posterior with the covariances between
parameters taken into account, and corresponding SFH
realizations are constructed using the Gaussian process routine.
For a given realization, if the set of parameters already exists in
the pregrid, the corresponding precomputed SFH is used to
decrease the computational cost. Figure 3 shows 20 draws from
the SFH posterior for that galaxy using this approach, depicted
as thin black lines in the SFH inset panel. The 68% confidence
intervals are then constructed by taking the 16th to 84th
percentiles of the SFR distribution at each point in look-
back time.

2.3. Nonparametric SFH Reconstruction

The Gaussian process–based SFH (GP-SFH) formalism
allows us to gain independence from having to make a choice
of functional form for the shape of the SFH, without having to
bin SFHs in lookback time. This results in smooth, effectively
nonparametric SFHs that minimize the bias and scatter in SFH
reconstruction, as seen in Section 3. However, because we
would like the method to be truly nonparametric, we require
that the number of {tx} parameters be optimized for the
amount of information present in a given noisy SED. To
implement this in practice, we generate pregrids for SFHs
with the set {tx} ranging from three to nine parameters,
because it is difficult to specify the shape of complex SFHs
with less than three parameters and it is impractical to recover
more than nine from broadband SEDs. We then fit each
observed SED with all seven pregrids, and obtain the most
appropriate number of parameters using an appropriate model
selection criterion. Ideally, the Bayesian evidence would be
used for this model selection step (Liddle 2007). However, in
practice, the numerical computation of the evidence is
expensive due to the need for a nested sampler, and cannot
be completed for the number of galaxies typically found in
large photometric surveys. Having tested the properties of the
likelihood surfaces using this method, however, we find that
while they may be multimodal, they generally do not contain
pathological features that necessitate this numerically expen-
sive procedure. In light of this, we perform our model
selection using an approximation of the evidence, given by
the Bayesian Information Criterion (BIC) (Schwarz et al.
1978; Liddle 2007), defined as

( ) ( )= - k nBIC ln 2 ln 6max

where n is the number of photometric data points, k is the
number of parameters in the SFH tuple, and  is the maximized
value of the likelihood function given by Equation (5). The
latter term in this equation is a measure of how well the model
describes the data, and the former term is a penalty for an
increased number of parameters. The results from the two
model selection criteria are equivalent when all the parameters
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Figure 2. The prior distributions of SFHs in t25, t50, t75 space for SFHs of galaxies at z∼1 from the Santa Cruz semi-analytic model and the MUFASA
hydrodynamical simulation, in addition to the basis assembled using the Dirichlet prior we adopt.

Figure 3. An illustrative example of the SED fitting method, applied to mock noisy photometry for a galaxy from the Somerville et al. (2008) and Porter et al. (2014)
semi-analytic model with more than one major episode of star formation, with the photometry simulated using the GOODS-S filter set. The top right panel shows the
simulated photometry (blue error bars) and the spectrum (solid black line) corresponding to the median parameter values. The corresponding reconstructed SFH (solid
black line) is shown in the middle right panel below it, with the true SFH (solid blue line) from the SAM shown for comparison. The thin black lines in both panels
show draws from the posterior distribution for comparison. This particular SED was determined to contain enough information to estimate six correlated SFH
parameters using the BIC model selection criterion, as shown in the inset panel (bottom right). The corner plot (left) shows the posteriors for each parameter using our
brute-force Bayesian approach, with the blue lines representing the true values used to generate the mock noisy photometry. Although redshift is formally a free
parameter, we fit galaxies at the (zbest ± 0.05) from D. Kodra et al. (2019, in preparation), finding that the redshift posterior is effectively flat within this small dynamic
range, as expected. Dashed black lines for each histogram show the median and 16–84th percentile range.
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are independent (Kass & Wasserman 1995; Szydłowski et al.
2015). However, if parameters are strongly covariant, the
volume will reflect this (because the intrinsic dimensionality is
lower than the number of dimensions describing the likelihood)
while the BIC does not. This can lead to the optimal number of
parameters estimated with the BIC�the optimal number of
parameters estimated using the evidence. Our validation tests
show that using the BIC does not cause any significant issues in
fitting an ensemble of SEDs to recover their SFHs. By finding
the minima in the BIC, we find the number of SFH parameters
that can be robustly extracted from the SED being fit. This
leads to a truly nonparametric description of the SFH, based on
the amount of information about the different stellar popula-
tions encoded in the galaxy’s SED. An example of this for a
single galaxy is shown in the bottom right plot of Figure 2. Iyer
& Gawiser (2017) used a similar nonparametric estimate of the
number of SFH components using a F-test, but it was
computationally expensive to implement as the number of
SFH components grew. Tojeiro et al. (2007) and Dye (2008)
also used nonparametric methods to estimate the optimal
number of time bins during SFH reconstruction, although this
is prone to bin edge effects, as described in Leja et al. (2019a).
Our Gaussian process SFH reconstruction method can be
summarized as follows:

1. We introduce a formalism based on Bayesian statistics to
describe the SFH, which we will express not as a
functional form but rather as N-tuples, plus M* and SFR
at the time of observation. To generate a curve SFR(t)
from the tuples, the GPR needs a covariance function or
kernel, which determines how SFR distributions at t and
t+Δt are related, i.e., how smooth the SFHs are.

2. The Bayesian likelihood is computed for each of a
sufficiently large number of model SFHs realized using
GPR, having known values of the n-tuples,M*, and SFR-
today (the pregrid) drawn from our chosen prior. By
estimating the likelihood of each basis N-tuple, we can
compute posteriors for the N-tuples (and M* and SFR-
today) along with their credible intervals and covariances.

3. The GPR is now used to interpolate between these (noisy)
estimates of the n-tuples to obtain draws from the
posterior distribution. Each of these draws is a model
SFH. The distribution of these draws at each point in time
gives the uncertainty in the SFH at that time.

4. This procedure is repeated as we vary the number of
parameters in the N-tuples, using a Bayesian model
selection criterion to evaluate the optimal number of
parameters.

2.4. Quantifying the Number of Major Episodes of Star
Formation in an SFH

Unlike simple SFH parameterizations commonly used in
SED fitting, the Gaussian process–based SFHs can have
multiple maxima, even with four or fewer tX parameters, as
seen in Figure 1. Hence, it is possible to analyze them using a
peak-finding algorithm to quantify the number of major
episodes of star formation in a galaxy’s past. For this particular
analysis, we use the best-fit SFH for each galaxy, because the
median SFH for each galaxy is biased toward smooth SFHs.
This is an effect due to our choice of kernel, which prefers

smooth solutions when the {tx} parameters are uncertain, as
seen in the left column of Figure 1. With tighter constraints on
{tx} from higher-S/N data, this problem is alleviated. As a
result, while the number of major episodes (Nep) estimated
using this method for individual galaxies is susceptible to
noise, the overall distribution is seen to be recovered without
any significant bias, as shown in Section 3.
For each SFH, we quantify the number of episodes as

follows: we first find the number of peaks in an SFH as the set
of points that satisfy dSFH/dt=0 and <d dtSFH 02 2 . To
separate multiple peaks within an overall episode of star
formation from different episodes, we impose a peak-
prominence criterion by requiring that

( ) ( )


- > +
M

M
log SFR log SFR 1.5

1.5

4
log

10
7peak min,local 8

*

where SFRmin,local is the minima between two peaks in the
SFH. This condition is shown (in Section 3) to minimize the
type-1 (overestimating Nep) and type-2 (underestimating Nep)
errors in our validation sample. It arises because the sensitivity
to star formation drops approximately logarithmically with time
(Ocvirk et al. 2006). Because more massive galaxies tend to
have older stellar populations, we found that a mass-independent
peak-prominence criterion caused a mass-dependent bias in our
estimates of the number of episodes. We correct for this effect by
requiring a more (less) stringent dip in the SFH for a massive
(low-mass) galaxy, and while this does not improve the result for
every galaxy, it accurately recovers the distribution, which is the
quantity that we are interested in.

3. Validation Tests

At each state of the method development, we perform
validation using an ensemble of galaxies from two cosmolo-
gical simulations: the Santa Cruz semi-analytic models
(Somerville et al. 2008; Porter et al. 2014) and the MUFASA
hydrodynamical simulation (Davé et al. 2016). Using two
different simulations allows us to alleviate the potential biases
induced by testing our method against a single simulation. For
the tests described in this section, we created a mock catalog
with 10,000 galaxies, sampling randomly from both simula-
tions at 0.5<z<3.0, matching our analysis sample. For each
galaxy in our mock catalog, we draw a random redshift zmock

between 0.5 and 3. We then create synthetic spectra using
FSPS with the corresponding SFH and mass-weighted
metallicity, with a Calzetti dust attenuation AV sampled from
an exponential distribution as in Iyer & Gawiser (2017).
We then multiply these spectra by the appropriate filter
transmission curves corresponding to one of the five CAN-
DELS fields, and perturb the photometry in each band by
adding realistic noise derived from the median photometric
uncertainties for the CANDELS catalog in the redshift range
[ ]- +z z0.1, 0.1mock mock . Figure 2 shows an example
following this procedure, using a galaxy with an SFH that is
not well-approximated by a simple parametric form currently
used in the literature, but is recovered well with the GP-SFH
approach. Using our mock catalog, we then perform a series of
validation experiments. In Section 3.1, we consider the
robustness of the reconstructed SFHs. In Section 3.2, we
quantify the bias and scatter in estimating stellar masses, star
formation rates, dust attenuation, and stellar metallicities. In
Section 3.3, we consider the robustness of the uncertainties on
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the reconstructed SFHs. In Section 3.4, we test the recovery of
the number of major episodes of star formation for our mock
sample, find a mass-dependent bias, and correct for it. In
Section 3.5, we test our choice of Gaussian process kernel. In
Section 3.6, we test the information loss and how well the
method compares to existing nonparametric SFH descriptions.

3.1. SFH Robustness

To quantify possible biases in our SFH reconstruction, we
plot the difference between the true and recovered SFH for our
sample of validation galaxies in Figure 4. The two panels show
the linear and logarithmic differences between the true and the
recovered SFHs, which respectively represent the difference
and ratio of the true versus predicted SFR(t). This difference is
smaller than 0.3 dex for most of the lookback time. While the
reconstructed SFHs cannot recover every short episode of star
formation, as seen in the errors for individual galaxies (thin
black lines), the overall SFH for the ensemble of galaxies is
unbiased out to nearly ∼8 Gyr. In theD log SFR error plot, the
bias blows up as we approach the Big Bang. This is because the
SFHs in the mocks can abruptly fall to 0 close to the Big Bang
while the Gaussian process SFHs smoothly decline to 0 at
t=0, leading to a one-sided error. However, the arithmetic
ΔSFR plot shows that this is, in fact, a very small difference,
exaggerated by the fact that log  -¥SFRtrue as
SFRtrue→0 close to the Big Bang.

3.2. Parameter Robustness

In addition to the SFHs, Figure 5 shows the results of
estimating traditional SED fit parameters—stellar mass, star
formation rate averaged over the last 100Myr, dust attenuation,

and stellar metallicity for the validation catalog. The stellar
masses are constrained better than the traditional scatter around
the mean of ∼0.14 dex (Mobasher et al. 2015). Star formation
rates have a larger scatter (0.29 dex) due to degeneracies with
dust attenuation (0.13 dex) and metallicity (0.32 dex). At low
stellar masses, we are prone to overestimating the overall mass
due to our choices of SFH prior dominating the fit for low-S/N
SEDs. Restricting the fits to galaxies with H<25 is found to
largely exclude these low-S/N objects, leading to more robust
estimates of these parameters.

3.3. SFH Uncertainties

As described in Section 2, SFH uncertainties are computed at
each point in lookback time for various percentiles, ranging
from the 10th (55–65th percentile bounds) to the 95th
(2.5–97.5th) percentile credible intervals of SFHs constructed
from 100 draws from the SFH posterior (M*, SFR, {tx}) using
the Gaussian process routine. To check whether these represent
true 68% uncertainties, we consider the uncertainties estimated
for each of the 10,000 galaxies in the mock catalog that we fit
and compute the fraction of the true SFH that lies within the
uncertainties for each galaxy. This is similar to the concept of a
“coverage probability” (Levasseur et al. 2017) used to evaluate
the accuracy and precision of uncertainty estimates. The
distribution of this fraction is given in the left panel of
Figure 6, which shows the fraction of the truth that lies, on
average, within a given credible interval. For an ideal method,
we expect this to lie along the 1:1 line; our method is extremely
close to this across the entire evaluated range. This indicates
that our uncertainties are robust, expanding on the tests in Iyer
& Gawiser (2017), which solely checked the 68% uncertainties.
Figure 6 shows two examples: one where the uncertainties are
representative of the truth, and another where both the
reconstruction and the uncertainties miss a relatively short
(<0.5 Gyr) episode of star formation that follows a relatively
quiescent period, due to the smoother reconstructed SFH
producing a comparable SED given the photometric noise.

3.4. Number of Episode Estimation

For each galaxy in the mock sample, we compute the
number of major episodes of star formation (Nep) using the
peak-finding algorithm described in Section 2. For the true
SFHs, we compute the number of episodes requiring a dip of

- log SFR log SFR 0.3peak min,local dex, to model the sce-
nario of a galaxy on the star-forming sequence dropping below
the sequence before rejoining it. The distribution of galaxies
with multiple strong episodes of star formation for the mock
sample is then given by the thick dashed black lines in
Figure 7. We then estimate the number of episodes for the
reconstructed SFHs with the same criterion, and find a flatter
trend than observed in the mocks. This is a combination of two
effects. (1) The S/N contributed to the overall SED by a stellar
population of a certain age decreases roughly logarithmically
with lookback time (Ocvirk et al. 2006), leading to poorer
constraints on intermediate and older stellar populations.
(2) There is a mass-dependent correlation toward older stellar
populations as galaxies grow more massive. As a result of this,
galaxies that formed most of their mass prior to an extended
period of quiescence can be erroneously classified as having
multiple episodes, because when the SFR at the time of
observation is low, it is easier to have a fluctuation of �0.3 dex

Figure 4. Comparing the ensemble of true SFHs from cosmological
simulations to SFHs reconstructed from SEDs using the Gaussian Process
Dense Basis method. Thin black lines show the difference in log SFR for
individual galaxies, with the pointwise median in time shown as a solid blue
line and the shaded blue region denoting the 16th to 84th percentiles. The left
panel shows the difference in terms of Δlog SFR, while the right panel shows
the difference in terms of ΔSFR at each point in lookback time.
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with a small variation in SFR. We find that introducing a stellar
mass-dependent threshold to determine the number of peaks given
by Equation (7) accounts for these mass-dependent effects on the
distribution, allowing us to better reproduce the true trends in Nep

with stellar mass and redshift, as seen in Figure 7. The thin lines
also show the number of overestimates and underestimates, such
that Nep,true=Nep,rec–underestimates + overestimates. Because
we are using the best-fit SFHs for this computation, we find that
our results are quite sensitive to noise for individual galaxies.
However, the distributions are estimated robustly, across a range
of stellar masses and redshifts. Additionally, the differing behavior
of the observational sample from our mock catalog is indicative of
the fact that our mass-dependent threshold does not impose an
artificial trend on the distribution. Reconciling the differences
between the two distributions would be an interesting topic for
further study.

3.5. Effect of Varying GP Kernel and Hyperparameters

To generate a curve in SFR versus lookback time space, we
use GPR to perform interpolation in cumulative mass
( ( )ò t dtSFR ) as a function of time, conditioned on constraints
given by the N-tuples (SFR, M*, {tX}), as described in
Section 2. The choice of kernel can make a significant
difference to this interpolation, because it determines the extent
to which the cumulative mass (and hence the SFR) at two times
(t and t′) are correlated (Rasmussen & Williams 2006;
Foreman-Mackey 2015). In the current implementation, we
choose to focus on kernels that are one-dimensional and
stationary, which means that the kernel only depends on the
separation between two times and not the times themselves.

This choice of kernel is physically motivated in the sense that
SFRs over short timescales are thought to be strongly
correlated, with this correlation dropping off as the time
separation increases, similar to the models explored by Kelson
(2014) and Caplar & Tacchella (2019). To determine the most
appropriate kernel from those widely used in the literature, we
consider four stationary kernels implemented in the george
Python package: the squared-exponential or Radial Basis
kernel, the Matern32 and Matern52 kernels from the Matern
class of kernels (Seeger 2004), and the Rational Quadratic
kernel, which can be thought of as adding together many
Radial Basis kernels with differing length scales. We test all of
these different kernel functions using the SFHs from our mock
catalog. An example of the reconstruction for a single SFH
using different kernel choices is shown in Figure 8. In general,
we find that the choice of kernel only makes a percent-level
difference in computing the median SFH, although the
uncertainties can be significantly different. We choose the
Matern32 kernel because it gives the best reconstructions and
most accurate uncertainties, as explored in Section 3.3. The
Matern32 kernel as implemented in the george python
package is given by the equation

( ) ( ) ( ) ( )= + -k r r r1 3 exp 3 , 82 2 2

where r2 is related to the separation between two times.
Because our kernel is one-dimensional and stationary (inde-
pendent of choice of origin), this simplifies to r2∝(t−t′)2,
where r2 is related to the separation by a scale length. This
scale length is determined directly within the george package
by minimizing the log-likelihood of the data under the

Figure 6. Validation performed to check the robustness of SFH uncertainties estimated from using the posterior from SED fitting. For our sample of 10,000 mock
galaxies, we compute the fraction of the true SFHs that lie within the 10%–95% credible intervals, shown in the left panel. For robust uncertainties, we expect a 1:1
correspondence between the fraction of truth that lies within a credible interval and the interval itself. The middle and right panels show two examples of this
computation for two galaxies in our sample: one where the majority of the true SFH lies within the uncertainties (middle), and another where a sharp peak is not
recovered by the SFH reconstruction, due to photometric noise (right).

Figure 5. Results of estimating stellar masses, star formation rates, dust attenuation, and metallicities for the ensemble of mock galaxies described in Section 3. Each
parameter is shown as a log-scale heatmap, with the adjacent color bar detailing the number of galaxies in a given bin. Bins with no galaxies are shown in black. The
dashed white line shows the 1:1 relation, and each plot title contains the overall bias and scatter around the mean for the sample.
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Figure 7. Validation tests recovering the number of major episodes of star
formation in a galaxy’s past by fitting the ensemble of mock noisy SEDs described
in Section 3. The plots show the results of our analysis for the same redshift bins
and mass range used for the main CANDELS sample. The solid lines show a
sliding median within±0.25 dex in stellar mass for each quantity, and the shaded
regions show the uncertainty for the estimates assuming Poisson noise.

Figure 8. The effect of varying the Gaussian process kernel, showing the
SFH posterior constructed using the (a) Exponential-Squared (also called
RBF), (b) Matern32 (used in this work), (c) Matern52, and (d) Rational
Quadratic kernels. For each choice of kernel, we take the same input SFH
(blue), compute the (M*, SFR, {tX}) tuple, and then reconstruct an SFH
using GPR with different kernel choices. For most well-motivated radial
kernels, the choice of kernel only contributes to percent-level changes in the
reconstructed SFH, which is a much smaller effect than the ∼0.2–0.3 dex
uncertainties due to modeling systematics found in our validation tests
(Figure 5).
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Gaussian process model. While the scale length varies with
the number of SFH percentiles (N), because there is more
information to condition the likelihood with for greater N, it is
fixed across the pregrid for a given choice of N. In Figure 9,
we test the effect of increasing and reducing the scale length
used in the Gaussian process kernel. This causes the
covariance matrix to become more (less) coupled to SFRs
separated by a given time interval. While this does not have a
major effect on the reconstructed SFH, it can cause a decrease
(increase) in the uncertainties estimated using random draws
from the SFH posterior. Taken in conjunction with our
validation of the SFH credible intervals in Section 3.3, we find
that our choice of kernel and hyperparameters robustly
reconstructs SFHs with accurate uncertainties. In addition to
the basic kernels described in this section, it is possible to
design more physically motivated kernels by computing the
covariance function of SFHs from cosmological simulations.
However, because this is subject to a wide variety of
systematics depending on resolution, simulation size, and
differing physical prescriptions, such an analysis requires a
detailed comparison of different simulations. Although this
out of the scope of the current paper, it is being actively
investigated for a follow-up paper.

3.6. Minimizing Loss of Information

We test the effectiveness of the Gaussian process–based SFH
reconstruction method in compressing data about the SFH and
encoding the information in a small number of parameters.
Because the SFH percentiles store information about the shape of
the SFHs, the accuracy of describing an arbitrary SFH should
decrease as we increase the number of parameters (N). We see this
to be the case in Figure 10, where the error in describing an
ensemble of randomly drawn SFHs from our mock catalog
decreases with increasing N. This analysis is done purely in SFH
space as a test of the loss of information in going from the full
SFH to the GP-SFH tuple. In addition to this, we compare the
method with existing nonparametric techniques of approximating
an arbitrary function using: 1) polynomial coefficients, and 2)
binning the SFH linearly in time such that the SFR in any given
bin is a constant. The latter approach and its variants—such as
binning in logarithmic lookback time or using adaptive bins—are
seen across the literature in works that explore nonparametric SFH
reconstruction (Heavens et al. 2000; Tojeiro et al. 2007; Da Cunha
et al. 2008; Dye 2008; Leja et al. 2017). While these are generally
effective, they have the disadvantages of introducing unphysical
discontinuities at bin edges. Repeating the test with these two
methods, we find that their error approaches the GP-SFH error for
large N, with the GP-SFH performing better for any given N.

Figure 9. Varying the kernel hyperparameter controlling the scale length (amount of covariance between the cumulative SFH ( ( )ò t dtSFH ) at two times (t and t′) does
not significantly influence the reconstructed SFH obtained by sampling from the predictive posterior distribution conditioned on the tuple (M*, SFR, t25, t50, t75). The
left panels show the covariance matrix between the cumulative SFH ( ( )ò t dtSFH ) at different points in time.
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Tuning the number of parameters during SED fitting therefore
optimally estimates the amount of SFH information from each
SED being fit.

4. Data

In the current analysis, we use a sample of galaxies from the
HST/F160w selected catalogs for the five CANDELS (Grogin
et al. 2011; Koekemoer et al. 2011) fields covering a total area
of ∼800 arcmin2: GOODS-S (Guo et al. 2013), GOODS-N
(Barro et al. 2019), COSMOS (Nayyeri et al. 2017), EGS
(Stefanon et al. 2017), and UDS (Galametz et al. 2013).

The GOODS-South (Guo et al. 2013) field contains 34,930
objects and covers an area of ∼170 arcmin2, with a 5σ limiting
depth of 27.4, 28.2, and 29.7 AB magnitudes in the three
overlapping survey regions (CANDELS wide, deep, and HUDF
regions). The GOODS-North field (Barro et al. 2019) contains
35,445 objects over a similar area, with a 5σ limiting depth of
27.5 AB mag (Pacifici et al. 2016). The UKIRT Infrared Deep

Sky Survey (UKIDSS) Ultra-Deep Survey (UDS) catalog
(Galametz et al. 2013) contains 35,932 sources over an area of
201.7 arcmin2 with a 5σ limiting depth of 27.45 AB magnitudes.
The Extended Growth Strip (EGS) catalog (Stefanon et al. 2017)
contains 41,457 objects over an area of ≈206 arcmin2 reaching a
depth of 26.62 AB mag. The COSMOS field (Nayyeri et al. 2017)
contains 38,671 objects covering an area of ≈216 arcmin2 with a
limiting depth of 27.6 AB mag. The catalogs select objects via
SExtractor in dual-image mode using F160w as the detection
band. The dual-image mode (Galametz et al. 2013) is optimized to
detect both faint, small galaxies in “hot” mode without over-
deblending large, resolved galaxies detected in “cold” mode. The
HST (ACS and WFC3) bands were matched using a point-spread
function to measure photometry, and TFIT (Laidler et al. 2007)
was used to measure the photometry of ground-based and IRAC
bands using the HST WFC3 imaging as a template. The SEDs in
the five fields include a wide range of UV-to-NIR measurements,
with the flux measured in 17, 18, 19, 23, and 43 photometric
bands in GOODS-S, GOODS-N, UDS, EGS, and COSMOS,
respectively. The photometric filters used for each field are
detailed in Table 1.

Figure 10. Comparison of the Gaussian process–based method to other
commonly used data compression methods, including a polynomial fit to SFHs
and approximating an SFH using linear bins in time with constant SFR in each
bin (Heavens et al. 2000; Tojeiro et al. 2007; Dye 2008). An example of this for
a single SFH and N=7 is shown in the top panel. We use a sample of 1000
randomly selected SFHs from our mock catalogs for this test, where we
approximate the known “true” SFH for each galaxy with three different
methods, and quantify the error in the approximation using the mean-squared
error (MSE) metric (middle panel) as well as the error in the SFR at the time of
observation (lower panel) vs. the number of parameters. While the error
reduces with increasing # parameters for all three methods, the GP-SFH
method consistently performs better in both metrics, yielding better
approximations of the true SFH for a fixed number of parameters.

Table 1
Collected Measurements Comprising the UV-to-NIR SEDs of Galaxies across

the Five CANDELS Fields

Field Filter Set

GOODS-S (Guo et al. 2013) Blanco/CTIO U, VLT/VIMOS U,
HST/ACS f435w, f606w, f775w, f814w,

f850lp,
HST/WFC3 f098m, f105w, f125w, f160w,
VLT/ISAAC Ks, VLT/Hawk-I Ks,
Spitzer/Irac 3.6, 4.5, 5.8, 8.0 μm

GOODS-N (Barro et al. 2019) KPNO U, LBC U,
HST/ACS f435w, f606w, f775w, f814w,

f850lp,
HST/WFC3 f105w, f125w, f140w, f160w,

f275w,
MOIRCS K, CFHT Ks,
Spitzer/Irac 3.6, 4.5, 5.8, 8.0 μm

UDS (Galametz et al. 2013) CFHT/MegaCam u, Subaru/Suprime-Cam
B, V, Rc, i′, z′,

HST/ACS f606w, f814w, HST/WFC3
f125w, f160w,

VLT/Hawk-I Y, Ks,
WFCAM/UKIRT J, H, K,
Spitzer/Irac 3.6, 4.5, 5.8, 8.0 μm

EGS (Stefanon et al. 2017) CFHT/MegaCam U*, g′, r′, i′, z′,
HST/ACS f606w, f814w, HST/WFC3

f125w, f140w, f160w,
Mayall/NEWFIRM J1, J2, J3, H1, H2, K,
CFHT/WIRCAM J, H, Ks,
Spitzer/Irac 3.6, 4.5, 5.8, 8.0 μm

COSMOS (Nayyeri et al. 2017) CFHT/MegaCam u*, g*, r*, i*, z*,
Subaru/Suprime-Cam B, g+, V, r+, i+, z+,
HST/ACS f606w, f814w, HST/WFC3

f125w, f160w,
Subaru/Suprime-cam IA484, IA527,

IA624, IA679, IA738, IA767, IB427,
IB464, IB505, IB574, IB709, IB827,

NB711, NB816,
VLT/VISTA Y, J, H, Ks, Mayall/

NEWFIRM J1, J2, J3, H1, H2, K,
Spitzer/Irac 3.6, 4.5, 5.8, 8.0 μm
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In this paper, we focus on galaxies at 0.5<z<3.0 because
we do not have multiple reliable rest-UV measurements from
the HST bands at z<0.45, leading to larger uncertainties in
SFR, and we cannot accurately constrain the 1.6 μm bump at
redshifts z>3.06, which is important for robust estimation of
stellar masses. In addition to estimating robust stellar masses
and star formation rates, it is necessary to ensure robust S/N in
the rest-optical portion of the SED, which is most sensitive to
variations in the SFH. As a proxy for the total S/N, we restrict
our sample to galaxies with H<25, where H is the HST/
WFC3 F160w band. In addition to restricting our sample to the
those with good S/N, this cut also helps alleviate inhomogene-
ities in the depths of the different fields, especially GOODS-N
and GOODS-S, which have a wedding-cake structure. After
implementing these selection cuts, we are left with a total of
48,791 galaxies. The effect of each selection effect and the total
number of galaxies used for the analysis is given in Table 2 and
Figure 11. To perform our fits, we use an updated CANDELS
photometric redshift catalog by D. Kodra et al. (2019, in
preparation) containing an increased number of spectroscopic
redshift measurements as well as photometric redshifts with
Bayesian combined uncertainties estimated by comparing the
redshift probability distributions of four different SED fitting
methods. We perform our fits using their zbest binned to the
resolution of our pregrid, with δz=0.01.

5. Results

5.1. The SFHs of Galaxies at 0.5<z<3

We now apply the Dense Basis SED fitting method as
described in Section 2 to the sample of CANDELS galaxies at
0.5<z<3.0, to reconstruct the SFH of each galaxy with
uncertainties. Figure 12 shows the distribution of the number of
SFH parameters that individual galaxies are best fit with in each
of the five fields, with a slight trend toward increasing amounts
of SFH information recovered with more photometric bands.
In Figure 13, we show the distributions of reconstructed

SFHs in the five CANDELS fields and how they evolve with
mass and redshift. The median and interquartile range are
computed at each point in time as in Pacifici et al. (2016), who
performed a similar calculation for quiescent galaxies using a
basis of SFHs derived from a semi-analytic model (De Lucia &
Blaizot 2007). In the current analysis, we have used a redshift
bin width of δz=±0.1, and a mass bin width of δM*=±0.25
dex, such that the M*∼1010Me bin includes all galaxies with
109.75<M*<1010.25Me. Dashed black lines in each panel
show the mean SFR (≡M*/tuniv), assuming constant SFR for
that redshift and mass bin, and the fsamp at the top left corner of
each panel shows the fraction of all galaxies in our sample at
that redshift that fall in a particular mass bin. Because there can
be a few galaxies that fall outside the plotted mass range, this
may not sum to unity.

Table 2
The Number of Galaxies Used in Our Analysis, and the Effect of Each Step in the Selection Process

Field All Objects Good Flagsa 0.5<z<3 H<25b c < 10red
2 Final Sample zspec

c

GOODS-S (Guo et al. 2013) 34,930 31,273 22,713 8,520 8,299 8,299 1,758
GOODS-N (Barro et al. 2019) 35,445 34,693 26,838 9,551 9,206 9,206 2,399
UDS (Galametz et al. 2013) 35,932 26,917 21,263 10,234 10,176 10,176 538
EGS (Stefanon et al. 2017) 41,457 31,714 24,444 10,554 10,261 10,261 1,671
COSMOS (Nayyeri et al. 2017) 38,671 30,070 22,092 10,883 10,849 10,849 705

Note.
a Galaxies with flags indicating no contamination by nearby objects, halos, or star spikes, as well as objects with a low stellarity classification given by the SExtractor
CLASS STAR output.
b We select galaxies brighter than 25 mag in the HST/WFC3 F160W band, to ensure sufficient S/N in the rest-optical regime of the SED necessary for accurate SFH
reconstruction.
c This column gives the number of galaxies with confirmed spectroscopic redshifts in each field for our final analysis sample.

Figure 11. The distribution of galaxies across the five CANDELS fields in HST/WFC3 F160w magnitude (left) and redshift (right). Thin black lines show the full
distribution for each field and colored lines show the sample used in the current analysis after the selection described in Table 2. While most redshifts are photometric,
the sample contains ≈7000 galaxies with spectroscopic redshifts. Gray regions show parts of the sample that we exclude in the current analysis.
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We see that the median SFH across the five CANDELS
fields are remarkably similar, as expected. There are discre-
pancies in a few of the bins, most notably at < <z2 3 and
M*∼1010Me for UDS, which could be the result of correlated
photometric noise or smearing effects in the photo-z that was
used for the calculation. In the highest redshift bin, the portion
of the SED with wavelengths greater than rest-frame 1.6 μm is
not well-sampled, leading to poorer constraints on the SFHs in
the the last row.

In general, SFHs tend to rise at high redshifts and low stellar
masses, similar to those from cosmological simulations, with a
turnover and subsequent decline as we go to higher masses and
lower redshifts. In agreement with Pacifici et al. (2012) and
Behroozi et al. (2018), massive galaxies tend to peak earlier in

their SFHs, and galaxies on average tend to move toward
quiescence at lower masses as the universe grows older, with
the threshold changing from nearly 1011.5Me at z∼3 to
1010Me at z∼0.5, without the need for any implicit
assumptions about the SFHs, such as the well-motivated
assumption of Behroozi et al. (2018) that earlier-forming halos
get lower SFRs. The additional advantage of the Dense Basis
method is that, in addition to the average SFHs, the individual
SFHs of galaxies reconstructed from the observations allow us
to explore the additional factors that drive the diversity of SFHs
at a given mass and epoch. This allows us to extend our
analysis beyond the physics encoded in the stellar mass–halo
mass relation, which gives a constraint upon the first-order
behavior of SFHs.

5.2. The Number of Major Episodes of Star Formation
Experienced by Galaxies

Most studies of galaxy SFHs focus on the overall rise and
fall of an ensemble of SFHs (Leitner 2012; Pacifici et al. 2016;
Ciesla et al. 2017; Leja et al. 2017), which has led to a well-
constrained understanding of the overall behavior seen in
Figure 13. However, with smooth, nonparametric SFHs, it is
now possible to ask questions about the second-order statistics
of an ensemble of SFHs, analyzing the departures from this
overall behavior in the form of periods of relative quiescence
between episodes of star formation.
In Figure 14, we show the fraction of galaxies with different

numbers of major episodes of star formation in a galaxy’s past
at redshifts 0.5<z<3.0. Because the number of episodes is a
discrete quantity, Poisson noise dominates the formal uncer-
tainties in an individual galaxy’s number of episodes while
calculating functions of the sample, as discussed in Section 3.
The different fields (colored lines), are in good agreement with
each other and the median of the full sample (solid black line).
We find that, at low redshifts, the fraction of galaxies with

multiple major episodes of star formation decreases as we go
up in stellar mass above 1010.5Me, in agreement with Iyer &
Gawiser (2017). In addition to this, we find a slight decrease in
the overall fraction of galaxies with multiple episodes with
increasing redshift at any given mass, with the notable
exception of M*≈1010.5Me, which does not show a notice-
able evolution with redshift. Although we have accounted for
S/N variations, the decrease at lower masses could be at least
partially due to having insufficient S/N to resolve multiple
episodes of star formation as we go to lower masses and higher
redshifts. A few explanations are possible for the behavior at
high masses: AGN feedback quenching galaxies (Weinberger
et al. 2018) could lead to SFHs that form most of their stars at
by z∼3, which could look like a single early episode of star
formation without sufficient S/N in the SEDs to resolve the
older populations at z∼1. This is made more probable by the
fact that, while most galaxies with multiple episodes are found
to lie on the SFR–M* correlation, the greatest number of
galaxies with low SFRs at the time of observation and multiple
episodes occurs at masses close to 1010.5Me. Another reason
could be the central limit theorem (Kelson 2014): massive
galaxies that grow primarily through mergers (Brinchmann
et al. 2004; Bundy et al. 2005; Pérez-González et al. 2008) at
early times could be composed of multiple progenitors. As the
number of progenitors grows with mass, by the central limit
theorem, their SFHs should look smoother than those for less-
massive galaxies. Low-mass galaxies, by comparison, should

Figure 12. Top: distributions of the number of SFH parameters estimated while
fitting the SEDs of galaxies at 0.5<z<3.0 in the five CANDELS fields, with
the vertical dashed lines showing the mean value of the distribution. Middle:
the distribution of total ( )s= å n nFS N j j j, ,

2 for the five fields, with the
vertical dashed lines showing the medians of each distribution. Bottom: the
distribution of the number of photometric bands used in fitting the SEDs in
each field. The bimodality in the EGS observations is due to partial coverage of
the field with the six NEWFIRM bands (J1, J2, J3, H1, H2, K).
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have more stochastic SFHs because they are growing most of
their mass in situ, which would be in close agreement with the
findings of Guo et al. (2016), Matthee & Schaye (2019),
Emami et al. (2018), Shivaei et al. (2015), and Broussard et al.
(2019).

If a galaxy is found to have multiple strong episodes of star
formation in its lifetime, an interesting question would be
whether the galaxy was actively forming stars and the star
formation was temporarily suppressed by a quenching attempt
(short time interval between peaks), as opposed to a galaxy that
was on its way to quiescence but restarted star formation due to
an inflow of pristine gas or merger. This is especially
interesting within the context of rejuvenation of galaxy SFRs
(Fang et al. 2012), because it sets timescales for how long a
galaxy spends off the star-forming sequence when it makes
such an excursion. To quantify this, we measure the time
interval between multiple peaks for the subsample of galaxies
with Nep>1. We plot this as a function of redshift and mass in
Figure 15, finding that although the separation does not vary
strongly with mass, it does show a strong trend with redshift.
However, upon normalizing by the age of the universe at
different redshifts, this trend is significantly decreased, leaving
us with a roughly constant timescale across which galaxy
rejuvenation occurs, given by ~D -

+t t0.42 Gyrpeak 0.10
0.15

univ ,
where tuniv is the age of the universe at the redshift of

observation. This is similar to the result by Abramson et al.
(2016), which found the transit time through the green valley
(i.e., half the time between two peaks for a rejuvenating SFH)
to be ∼0.2tuniv Gyr, roughly independent of redshift (see also
Pandya et al. (2017), which studies the transition timescales in
massive CANDELS galaxies using a statistical analysis of their
number densities). This is also related to the results of Pacifici
et al. (2016), who that found that the width of the SFH for
quiescent galaxies is roughly constant across stellar mass and
redshift when the age of the universe is factored out, as well as
those of Muzzin et al. (2014), who found that the post-starburst
spectra of galaxies at z∼1 are fit well with a quenching
timescale of -

+0.4 Gyr0.3
0.4 . Fang et al. (2012) identify a

subsample of galaxies at z∼0.1 that could linger in the green
valley for (Gyr). The astute reader may wonder how
significant it is to find that two episodes are typically separated
by roughly half the age of the universe at the time of
observation, as this also corresponds to the median period of a
generic sine wave possessing two peaks without that interval.
Given the present data quality, it is difficult to test this further
by investigating the separation between the earliest two star
formation episodes in galaxies whose SFHs show 3–5 major
episodes of star formation, but such a test should be done with
higher-S/N spectrophotometry. At present, we can compare the
fit for separation between episodes against the predictions of

Figure 13. The median star formation histories (SFHs) of galaxies in the five CANDELS fields in bins of stellar mass (horizontal) and redshift (vertical), showing how
galaxies evolve with cosmic time as they grow in stellar mass. Solid colored lines show the median SFH for each field separately, showing a remarkable similarity
across the different fields in the majority of the bins. The shaded regions show the 16th–84th percentiles in the SFHs, highlighting the diversity in SFHs as a function
of stellar mass and epoch. The dashed black line shows the mean SFR (≡M*/tuniv) assuming constant SFR for that redshift and mass bin, and the fsamp at the top left
corner of each panel shows the fraction of all galaxies in our sample at that redshift that fall in a particular mass bin. In good agreement with cosmological simulations,
as well as semi-analytical and empirical models, galaxy SFHs tend to rise with time at low masses and high redshifts, then start to turn over at high masses, with the
turnover mass decreasing as we go to lower redshifts. However, in addition to the average SFH behavior, we also have access to the individual SFH for each galaxy,
which now opens up the possibility of repeating this analysis to trace the evolution of SFHs with quantities like t50, metallicity, morphology, central density, size,
environment, and other probes of galaxy evolution.
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galaxy formation models, finding similar trends albeit with a
slightly smaller value of ≈0.3±0.15tuniv Gyr. The consis-
tency of our result with a variety of similar results across a
range of redshifts summarized above is an additional reassuring
check. In Behroozi et al. (2018), galaxy rejuvenation is a
generic feature of a population, with the timescale depending
on the mode by which a halo is accreting mass, whether
through mergers, accretion from another halo, or infall. In this
scenario, rejuvenation occurs more often when the quenched
population evolves more slowly than the halo dynamical time,
during which it can switch between modes of accretion,
increasing or decreasing the SFR as a result. This results in
estimates of the fraction of galaxies with past rejuvenation as a
function of mass, decreasing as redshift increases and showing
a trend in stellar mass that is consistent with our results. Our
result seems to indicate that the rejuvenation timescales remain
relatively constant over cosmic time. It is important to note that
the scatter in this quantity is quite large, and the evolution in
the quenched fraction happens most rapidly at redshifts
0<z<0.5 (Muzzin et al. 2013; Behroozi et al. 2018; Donnari
et al. 2019; Hahn et al. 2019), so extrapolation to that regime
needs to be tested with further data.

5.3. The Different Demographics of Galaxies

In keeping with the finding of Pacifici et al. (2016) that the
widths of the SFHs of passive galaxies are roughly constant
upon factoring out the age of the universe, and our similar
finding for the time interval between two peaks of star
formation, we consider galaxy SFHs binned in t50. We bin

Figure 14. The fraction of galaxies that show multiple major episodes of star
formation in their SFHs as a function of stellar mass at various redshifts for
galaxies in the five CANDELS fields. The solid line shows a running median
within a bin of ±0.25 dex in stellar mass, and the shaded regions show the
uncertainty for the estimates assuming Poisson noise.

Figure 15. The separation between multiple peaks of star formation, as a
function of mass and redshift for the subsample of galaxies that have Nep>1.
The redshift bins are the same as Figure 14, and the solid line and shaded
region show the median and 16–84th percentiles, respectively. The top panel
shows the distribution across stellar mass at different redshifts. The bottom
shows the same, but divided by the age of the universe at that epoch.
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galaxies in four bins, 0.1tuniv<t50<0.3tuniv, 0.3tuniv<
t50<0.5tuniv, 0.5tuniv<t50<0.7tuniv, and 0.7tuniv<t50<
0.9tuniv, at different redshifts. We show the results in
Figure 16. As in Figure 13, each panel lists the fraction of
the sample in a particular bin. However, in this case, the
fractions are no longer tracing the mass function of galaxies.
Instead, the four bins in time serve as proxies for galaxy SFHs
at different stages of their lifetimes. This enables us to identify
different populations of galaxies, including starbursting galaxies,
late bloomers (Dressler et al. 2016), star-forming galaxies, post-
starburst or green-valley galaxies (Fang et al. 2012), and quiescent
galaxies, using different redshift-dependent t50 cuts, either
independently or in combination with other factors like t25, t75,
size, and morphology. To further interpret these SFHs, Figure 17
displays the positions of the galaxies within each panel in
Figure 16 on the SFR–M* plane. We find that the left (right)
columns in both figures select star-forming (quiescent) galaxies
that lie on (off) the star-forming sequence. At intermediate values
of t50, the populations are a combination of star-forming and
quiescent galaxies, with the selection gradually shifting from star-
forming to quiescent galaxies. The intermediate t50 panels also
show an excess of galaxies with multiple strong episodes of star
formation (Nep> 1). While this is an intuitive result, because
galaxies that have assembled most of their mass recently or those
that have long since shut off their star formation are not very
likely to contain multiple episodes of star formation, it has

important implications for analyses that assume galaxies evolve
along smooth SFH trajectories (Leitner 2012) or are described by
simple parametric forms (Dressler & Abramson 2014; Ciesla et al.
2017; Lee et al. 2018).

5.4. Correlation with Morphology

The morphologies of galaxies are seen to strongly correlate
with their stellar masses and redshifts (Conselice 2014), as well
as sSFR (Whitaker et al. 2015). While this is a combined effect
of the different processes that regulate star formation within
galaxies, including mergers, gas accretion through inflows, and
stellar and AGN feedback (Boselli & Gavazzi 2006; Hopkins
et al. 2008, 2014; Anglés-Alcázar et al. 2017; Weinberger et al.
2018), it is difficult to observationally disentangle the relative
strengths of these effects. However, the different timescales
that these processes act on enable us to discriminate between
the relative effects of these processes, if we can observationally
constrain the timescales on which morphological transforma-
tion occurs across a population of galaxies—as was done for
groups in, e.g., Kovač et al. (2010). The reconstructed SFHs of
galaxies provide a direct probe of these timescales by
correlating the morphologies of galaxies with their SFHs as
compared to indirect measurements of timescales through the
frequencies of different morphologies, which are subject to a
variety of systematics and selection effects.

Figure 16. SFHs split into linearly increasing bins of t50, the lookback time at which a galaxy assembled 50% of its stellar mass, from 0.1tuniv<t50<0.3tuniv (formed
recently), 0.3tuniv<t50<0.5tuniv, 0.5tuniv<t50<0.7tuniv, and 0.7tuniv<t50<0.9tuniv (formed earliest), in four bins of redshift. The plotting scheme and colors are
the same as Figure 13. In each bin, the SFHs are normalized to the same mass because we are most interested in the diversity of SFH shapes for the entire
demographic. Vertical dashed black lines show the t50 bounds for each panel. We see that the SFHs in a bin broadly tend to describe one of four demographics of
galaxies: starbursting galaxies at high redshifts and late bloomers at z∼0.7 (Dressler et al. 2016) can be found in the first column from the left, star-forming galaxies
contribute to the median SFH in columns 1–3, post-starburst or green-valley galaxies (Fang et al. 2012) in columns 2–3, and quiescent galaxies in columns 3–4. The
fsamp at the top left of each panel shows the fraction of galaxies at each redshift that fall into each demographic. In conjunction with the UVJ diagram and position on
the SFR–M* plane, the SFHs of galaxies allow for additional diagnostics regarding its evolutionary phase.
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We use the CANDELS wide morphology catalogs by
Kartaltepe et al. (2015) to study the SFHs of galaxies with
different morphological features at 0.5<z<1.0. We limit our
redshift range to avoid the effects of small number statistics of
classifications as we go to higher redshifts. The morphology
catalogs contain visual classifications for over 50,000 objects
spanning 0<z<4 with f160w<24.5, which gives a large
overlap with our sample. The catalogs contain flags for main
morphology class (disk, spheroid, peculiar/irregular, point

source/compact, and unclassifiable), a class for mergers and
other interactions, and structure flags for bars, tidal features,
spiral arms, and more. For each class and flag, the catalog
reports the fraction of classifiers who were confident about the
existence of that feature.
We use this to analyze the SFHs of six classes of galaxies,

described as follows.

1. Disk: ( fdisk> 0.9) AND ( fsph, firreg< 0.1). This includes
the set of all galaxies classified as disky.

Figure 17. Positions on the SFR–M* plane for the galaxies shown in each panel of Figure 16. The underlying gray heatmap shows the full sample at a given redshift,
and blue points show all galaxies satisfying 0.1tuniv<t50<0.3tuniv (formed recently), 0.3tuniv<t50<0.5tuniv, 0.5tuniv<t50<0.7tuniv, and 0.7tuniv<t50<0.9tuniv
(formed earliest) within a redshift bin. The black crosses are a subset of the blue points that are identified as having more than one major episode of star formation
during their lifetimes (Nep > 1), with this fraction of galaxies given in the bottom right corner. Black contours are used where there are more than 100 galaxies with
Nep>1 in a given panel.
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2. Disk-dominated galaxies: ( fdisk dom> 0.9). Disks with a
central bulge where the disk dominates the structure.

3. Bulge-dominated galaxies: ( fbulge dom> 0.9). Disks with
a central bulge where the bulge dominates the structure.

4. Spheroid: ( fsphk> 0.9) AND ( fdisk, firreg< 0.1). This
includes the set of all galaxies classified as spheroidal.

5. Galaxies with spiral arms: ( farms> 0.9).
6. Mergers and interactions: galaxies that either appear to

have undergone a merger, as evidenced by tidal features,
structures such as loops, or highly irregular outer

isophotes ( fmerger> 0.9), or are interacting with a
companion galaxy within the segmentation map from
SExtractor ( fint1> 0.9).

The results of this analysis are shown in Figure 18. The
Figure contains six sets of panels, one for each subsample of
galaxies. The top panel shows where the galaxies lie on the
SFR–M* correlation, and the bottom panel shows the median
SFH for the subsample of these galaxies at M*ä[1010, 1010.5]
Me. This is useful to test feedback-driven models of quenching

Figure 18. The star formation histories of galaxies at 0.5<z<1.0 with different morphological features identified in Kartaltepe et al. (2015). For each class, the top
panel shows the position of the galaxies under consideration (colored points) in the SFR–M* plane, with the full population shown as black dots. The bottom panel
shows the median SFH (blue solid line) and diversity (16th to 84th percentile; shown as a shaded blue region) of all the galaxies with M*ä[1010, 1010.5] Me that
satisfy a particular morphological criterion, except for the last bin, where we have chosen a lower mass bin due to insufficient statistics. The second and third panels
show galaxies that have both a disk and bulge component, which are then broken down into disk-dominated versus bulge-dominated galaxies.
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that posit a correlation between bulge–total ratios and SFH
shape (Zolotov et al. 2015; Belfiore et al. 2016; Tacchella et al.
2016; Abramson et al. 2018). While the SFHs of our pure disk
population at M*∼1010.25 Me seem to actively form stars
throughout their lifetime, with the maximal peak in their SFHsʼ
maximum SFR close to the time of observation, the galaxies
containing a disk and bulge component seem to show a
downward trend in their median SFHs, with disk-dominated
galaxies peaking earlier on average than pure disks without a
bulge, followed by a decline in SFR. This trend continues to
bulge-dominated galaxies and spheroids, showing an evolution
in timescales that can be tested with simulations implementing
different models for quiescence. For each population, we
consider the time since the SFH of each galaxy peaked (tfall)
and use this distribution to quantify the timescale on which
galaxy SFHs began their decline. For each morphologically
distinct population, we find the median and 68% of the tfall
distribution for galaxies at 0.5<z<1.0 and 1010<M*<
1010.5Me, given by the following.

1. Mergers: +
-t : 0.00 Gyrfall 0.39

0.00 .
2. Galaxies with spiral arms: +

-t : 0.60 Gyrfall 1.54
0.54 .

3. Disks: = +
-t 0.81 Gyrfall 2.56

0.80 .
4. Disk-dominated galaxies: +

-t : 0.70 Gyrfall 2.73
0.38 .

5. Bulge-dominated galaxies: +
-t : 2.15 Gyrfall 3.07

1.55 .
6. Spheroids: +

-t : 2.50 Gyrfall 2.25
1.60 .

In the absence of a bulge component, we also see that
galaxies with spiral arms inhabit the high-stellar-mass, high-
SFR portion of the SFR–M* plane, continuing to actively form
stars until they lose rotational support or start forming bulges.
We also see that mergers and interactions show a noticeable
increase in recent SFR, over timescales within the last
∼0.5 Gyr of their SFHs. The timescales for these morpholo-
gical transformations can be further constrained by determining
the resolved SFHs of individual galaxies using IFU surveys
like SDSS-IV MaNGA and CALIFA (Delgado et al. 2014;
Belfiore et al. 2016).

6. Discussion

6.1. Improvements from Better Data Sets, Models, and Priors

Because nonparametric methods make no explicit assump-
tion about the form of SFHs, they are only as good as the data
being used for SED fitting. In this regard, there are three main
avenues for data-driven improvement: better wavelength
resolution, better wavelength coverage, and better S/N.
Spectroscopy contains more information about stellar popula-
tions of different ages and metallicity, as compared to
broadband photometry, but often suffers from wavelength-
dependent flux calibration issues that need to be accounted for
prior to fitting. Panchromatic SEDs allow us to test models of
dust attenuation and re-emission to better constrain dust effects
while estimating the SFHs of galaxies.

The SFH reconstructions we obtain are also subject to
several modeling uncertainties: Stellar Population Synthesis
models can introduce systematics into the mapping between
physical parameters and observed photometry (Conroy &
Gunn 2010; Han & Han 2019). Differences in dust models can
introduce systematics into the measurement of recent SFR,
which would then propagate into differences in the SFH.
C. Pacifici et al. (2019, in preparation) compares the results
from 14 different SED fitting codes applied to the same sample

of CANDELS/GOODS-S galaxies at z∼1. This allows us
to examine the effects of intercode variability and model
assumptions for dust, IMF, SFH, and SPS models, including
the effects of binary populations. Additionally, Han & Han
(2019) tested multiple SPS models, SFH assumptions and
dust models using a comprehensive Bayesian formalism that
allowed them to estimate the Bayesian evidence in comparing
different models.
Finally, the choices of prior assumed during SED fitting are

extremely influential in the estimates of physical parameters
and their covariances. While we have tried to be agnostic about
the priors in this work, it is important to note that an
informative prior could be especially useful while fitting noisy,
low-S/N data with limited wavelength coverage. Predictive
checks could be put in place to ensure that the priors do
not introduce significant biases into the estimates, or cause
artificially tight correlations due to regression to the mean.
These informative priors could be developed by studying the
distributions of physical quantities at a particular epoch from a
small subset of high-S/N observations, scaling relations, and
mass functions, as well as semi-analytic or empirical models
that encode the physics that lead to these observables, explicitly
quantifying the covariance between star formation, chemical
attenuation, and dust enrichment and destruction histories.

6.2. SFHs as a Probe to Higher Redshifts

The SFHs of galaxies allow us to probe the behavior of mass
functions and scaling relations out to higher redshifts than is
currently possible. At low to intermediate redshifts, this can be
used as a consistency check, to ensure that the reconstructed
SFHs are not biased due to noise or prior assumptions. At high
redshifts, this can be a powerful tool to increase observational
statistics and push measurements out to redshifts higher than
those directly accessible through observations. Because we can
only measure the SFH summed over all progenitors, it is
important to consider the effects of mergers while propagating
galaxies backward in time for periods longer than the typical
merger timescale (Mantha et al. 2017; Duncan et al. 2019) at a
given redshift and stellar mass.
Iyer et al. (2018) propagated galaxies backward in time

along their SFHs in the form of trajectories in SFR–M* space,
to probe the high-redshift low-stellar-mass regime of the
SFR–M* correlation. They found that the projected correlation
at intermediate redshifts matches the observed distribution
well, and extended it by nearly two orders of magnitude, out to
z∼6, where observations are extremely faint. C. Pacifici et al.
(2019, in preparation) implements a validation test by
reconstructing the stellar mass function using galaxies at lower
redshifts and comparing them to the stellar mass function
obtained through direct fits. Leja et al. (2019b) use SFHs to
probe the cosmic SFRD using galaxies at low redshifts, finding
that the apparent mismatch between the mass functions and star
formation rate functions is alleviated by using nonpara-
metric SFHs.

6.3. Galaxy Evolution Studies Enabled by SFH Reconstruction

The smooth, nonparametric SFHs obtained with the
improved Dense Basis method offer a window into the pasts
of different galaxy populations. While interesting in itself, this
insight has the potential to be combined with a variety of
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ancillary data to probe a wide range of previously inaccessible
quantities, some of which we briefly describe below.

1. Higher-S/N observations or spectrophotometric data
would help obtain better SFH constraints, allowing us
to better constrain the number of major episodes of star
formation and the timescales on which rejuvenation,
starbursts, and quiescence occur at different epochs.
While current observations studying the separation
between multiple major episodes or transition timescales
(this work; Abramson et al. 2016; Pandya et al. 2017)
show a flat trend with mass and a linear one with the age
of the universe, it is an interesting problem to understand
the physical mechanisms responsible for this trend and
the dispersion of ∼0.25tuniv Gyr using simulations.

2. Spatially resolved SFHs computed using IFU data from
surveys like SDSS-IV MaNGA and CALIFA allow us to
better understand the correlation between the SFH and
morphology and discriminate between inside-out versus
outside-in scenarios for galaxy growth and quenching
(Goddard et al. 2016), better examine the connection
between the physical properties of individual regions
within galaxies and their SFHs (Rowlands et al. 2018),
and test scaling relations at different regimes (Hsieh et al.
2017). Care needs to be exercised in interpreting these
results because we only see where the stellar populations
are today. Additional kinematic information would help
alleviate this problem to a certain extent.

3. Correlating SFHs with environment, size, kinematics,
central density, and morphology in addition to stellar
mass, SFR, and redshift could help build a unified picture
of how galaxies evolve, with the SFHs providing a link
between galaxy populations of different types and their
earlier progenitors. Although this approach is similar to
empirical models (Behroozi et al. 2018; Moster et al.
2018), it has the advantage of much richer observational
constraints from the individual SFHs of galaxies. A
comparison of SFH distributions between simulations
and observations would allow us to qualify additional
factors that are not directly accessible.

4. The Gaussian process–based parameterization can also be
used as a general compression method for compressing
and storing PDFs from all kinds of codes, similar to Malz
et al. (2018).

6.4. Caveats in SED Fitting and SFH Reconstruction

While we have performed an extensive range of validation
tests (Section 3) to ensure that all the quantities reported in this
work are robust, there are some caveats to keep in mind while
extending the SED fitting to different data sets or the analysis
beyond what is performed here.

1. SFHs are not mass accretion histories. The SFH is a
record of when the stars present in a galaxy at the time of
observation were formed, as opposed to the mass
accretion history, which is a record of when those stars
entered the galaxy. These two quantities are the same for
stars formed in situ, but differ when the stars were
brought in through mergers. This needs to be taken into
account in certain kinds of analysis; for example, when
using a mass- and redshift-dependent merger fraction to

correct for mass functions calculated by propagating
galaxies backward in time along their SFHs.

2. Lack of sensitivity to the shortest timescales. The smooth
SFHs reconstructed using SED fitting in this work cannot
capture starbursts that can happen on extremely short
timescales of ( )~ 10 Myr. While fitting galaxies from
the semi-analytic model that contain such starbursts, we
generally find that the overall stellar mass is well-
recovered, but the starburst is smeared out over larger
timescales, depending on when it occurred. This needs to
be accounted for in the uncertainty budget; for example,
while calculating the scatter along the SFR–M* correla-
tion using galaxies propagated backward in time along
their SFR–M* trajectories.

3. Non-uniform sensitivity to variations in SFH. SED fitting
is more sensitive to recent star formation than it is to star
formation older than a few Gyr. As we go back in time,
our SFH reconstruction transitions from being likelihood-
dominated to being prior-dominated; while we show that
this does not cause biases in our SFH reconstruction in
Section 3, it does mean that we are less sensitive to sharp
variations in SFH at large lookback times than when
closer to the time of observation.

4. Correlation with chemical enrichment histories: While we
have considered the problem of estimating the SFHs of
galaxies in this work, in practice they are highly
correlated with the chemical enrichment histories of
galaxies. Although metallicity is poorly constrained in
our current observations, when working with higher-S/N
data or spectra, the analysis should include a joint model
for SFR(t) and Z(t), which can be achieved through joint
priors on the metallicity given by Z(M*, {tx}), informed
using simulations.

7. Conclusions

Studying the SFHs of galaxies lets us better understand the
timescales on which different physical processes shape galaxy
growth. High-S/N multiwavelength observations from current
and upcoming galaxy surveys make it possible to reconstruct
the SFHs for large ensembles of galaxies with suitably
sophisticated analysis techniques.
We update the Dense Basis SED-fitting method (Iyer &

Gawiser 2017) using a flexible SFH parameterization described
by the tuple (M*, SFR, {tx}), whereM* is the stellar mass, SFR
is the star formation rate averaged over the past 100Myr, and
the set {tx} contains the lookback times at which a galaxy
formed N equally spaced quantiles of its stellar mass. These
parameters, representing a set of integral constraints and SFHs
corresponding to a particular tuple, are constructed using GPR
in cumulative mass versus time, which creates smooth curves
that satisfy these constraints and are completely independent of
the choice of a functional form. We reconstruct the SFHs of
galaxies with uncertainties using a brute-force Bayesian
approach with a large pregrid of model SEDs. To make the
method fully nonparametric, we determine N on an SED-to-
SED basis using a BIC-based selection. Using the recon-
structed SFHs and a peak-finding algorithm, we determine the
number of major episodes of star formation in a galaxy’s past.
Our method provides the following advantages.

1. This method encodes a maximal amount of SFH
information in a minimal number of parameters.

21

The Astrophysical Journal, 879:116 (23pp), 2019 July 10 Iyer et al.



2. Being independent of the choice of a functional form, it
does not suffer from the traditional biases associated with
simple parametric assumptions for the SFH shape.

3. This method also circumvents the pitfalls associated with
the traditional nonparametric approach of describing
SFHs as fixed bins in lookback time with constant SFR
within a bin, such as artifacts due to bin edges, and
reduces uneven S/N distribution across different
parameters.

4. The parameters used to describe SFHs are physically
interpretable and allow easy comparison between differ-
ent data sets from observations and simulations.

5. Informative priors can be constructed by studying these
parameters in cosmological simulations, which can be
used while fitting low-S/N data or SEDs with partial
wavelength coverage.

6. The method is computationally fast, able to fit ∼34
galaxies/minute/core on a 2.9 GHz Intel processor, and
is capable of being adapted to most data compression
problems.

We apply the method to a sample of 48,791 galaxies across
the five CANDELS fields with HST/WFC3 F160W<25 and
0.5<z<3.0.

We use the reconstructed SFHs to study galaxy evolution
across stellar mass and redshift, and to quantify the fraction of
galaxies at each epoch that have multiple strong episodes of
star formation. For the galaxies that show multiple strong
episodes of star formation, we find that the timescale separating
two peaks in the SFH is roughly constant with mass, and
increases linearly with the age of the universe as

‐ ‐ ~ -
+t t0.42 Gyrpeak to peak 0.10

0.15
univ . We also find that classifying

galaxies by t50 is a robust way of selecting for star-forming
galaxies at a given epoch.

Using the Kartaltepe et al. (2015) morphology catalog, we
can examine the SFHs for subsets of galaxies with particular
morphological features, finding the expected correlation
between the SFHs of galaxies and morphological features. In
addition, we quantify the timescale on which the SFH declines
as a function of morphology, finding that this increases from
~ +

-0.60 Gyr1.54
0.54 for galaxies with spiral arms to +

-2.50 2.25
1.60 Gyr

for spheroids.
The SFH formalism presented here is broad in scope and can

be incorporated into any SED fitting code, can be used to
compress and store SFHs in simulations, and can be used as a
common parameterization to compare SFHs across different
observations and simulations.
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