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Abstract

We present a comprehensive study of the applications of the pixel color–magnitude diagram (pCMD) technique for
measuring star formation histories (SFHs) and other stellar population parameters of galaxies, and we demonstrate
that the technique can also constrain distances. SFHs have previously been measured through either the modeling
of resolved-star CMDs or of integrated-light spectral energy distributions, yet neither approach can easily be
applied to galaxies in the “semi-resolved regime.” The pCMD technique has previously been shown to have the
potential to measure stellar populations and SFHs in semi-resolved galaxies. Here we present Pixel Color–
Magnitude Diagrams with Python (PCMDPy), a graphics processing unit (GPU)-accelerated package that makes
significant computational improvements to the original code and includes more realistic physical models. These
advances include the simultaneous fitting of distance, modeling a Gaussian metallicity distribution function, and an
observationally motivated dust model. GPU acceleration allows these more realistic models to be fit roughly
7×faster than the simpler models in the original code. We present results from a suite of mock tests, showing that
with proper model assumptions, the code can simultaneously recover SFH, Fe H[ ], distance, and dust extinction.
Our results suggest the code, applied to observations with Hubble Space Telescope-like resolution, should
constrain these properties with high precision within 10Mpc and can be applied to systems out to as far as
100Mpc. pCMDs open a new window to studying the stellar populations of many galaxies that cannot be readily
studied through other means.
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1. Introduction

The mass build-up of galaxies is sensitive to many physical
processes. Mergers, active galactic nucleus activity, supernova
feedback, and the accretion of pristine gas from cosmological
filaments will all affect a galaxy’s star formation history (SFH)
and chemical enrichment, and it is a major goal of modern
astrophysics to constrain their relative impacts. Hydrodynami-
cal simulations (e.g., Hopkins et al. 2014; Vogelsberger et al.
2014) are one powerful way to study the evolution of galaxies,
but their results require reliable observational constraints on the
diversity of SFHs and stellar populations observed in the
universe.

To date, measurements of stellar populations and SFHs
largely rely on two distinct techniques, each with limitations on
the systems they can be applied to and the robustness of the
results. These approaches can be considered in a single
framework through considering the typical number of stars
per resolution element, Npix (van Dokkum & Conroy 2014;
Conroy & van Dokkum 2016).

The first technique, resolved-star photometry, typically
requires N 10pix

1 -( ) in order to fully resolve each
individual star in a system. The fluxes of these stars in at least
two bands are converted into a color–magnitude diagram
(CMD), and the stellar populations are derived from fits to
stellar evolution models (e.g., Dolphin 2002; Weisz et al. 2011;
Lewis et al. 2015; Williams et al. 2015). As long as stars down
to the oldest main-sequence turnoff are resolved, this method
recovers highly precise and robust measurements of the SFH
and is considered the gold standard.

In practice, the number of systems where the oldest main-
sequence turnoff can be resolved is small, even with the

resolution of Hubble Space Telescope (HST)ʼs Advanced
Camera for Surveys (ACS). Several dozen dwarf galaxies in
the Local Group have sufficiently low stellar densities to allow
well-measured SFHs (e.g., Weisz et al. 2011, 2014). But even
our nearest massive neighbor, M31, is so crowded that only
rare, massive main-sequence stars (Lewis et al. 2015) can be
individually resolved in most fields, limiting SFH recovery to
relatively recent star formation. In the inner regions of M31,
with N 10pix

1~ ( ), SFH can be measured using the resolved
red giant branch or red clump stars, but the results are subject to
significant systematics due to disagreement between models of
these phases of stellar evolution (Williams et al. 2017), with the
oldest ages the most uncertain. The inner bulge of M31 is so
crowded that not even red giant branch (RGB) stars can be
resolved with HST, making any SFH measurement impossible
with this technique.
The second well-established method, spectral energy

distribution (SED) modeling, analyzes the integrated light of
all stars in a (typically entirely unresolved) galaxy. The
broadband photometry and spectra are modeled using stellar
population synthesis techniques to recover stellar populations
and SFHs (e.g., Walcher et al. 2011; Conroy 2013). These
methods typically assume a fully populated initial mass
function (IMF), ignoring Poisson fluctuations of rare, evolved
stars. Such a regime requires N 10pix

6 ( ), usually a valid
approximation for distant, unresolved galaxies.
Yet even if such fluctuations can be ignored, the light from

the oldest, lowest-mass main-sequence stars is usually dwarfed
by the light of rare, evolved stars, an effect known as
“outshining,” which can lead to an underestimate of the total
stellar mass and oldest ages of star formation (Maraston et al.
2010; Pforr et al. 2012; Sorba & Sawicki 2015). The SFHs
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recovered from SED modeling are also highly dependent on the
underlying stellar evolution models (e.g., Conroy 2013; Hunt
et al. 2019), with systematic uncertainties much larger than for
resolved-star SFHs. Carnall et al. (2019) and Leja et al. (2019)
also study the prior bias introduced from assuming various
functional forms for the SFH.

In between the realm of resolved stars and integrated light,
there is a substantial volume of the universe in the so-called
semi-resolved regime (van Dokkum & Conroy 2014; Conroy &
van Dokkum 2016). This regime can be defined loosely as

N10 101
pix

6  ( ) ( ), where stars cannot be individually
resolved because of crowding, but surface-brightness fluctua-
tions due to Poisson sampling of rare, bright stars in each pixel
cannot be ignored. This semi-resolved regime extends from
∼1Mpc out to nearly 100Mpc for massive galaxies observed
with HST.

The surface-brightness fluctuation (SBF; Tonry & Schneider
1988) distance technique is one example of a method for
studying galaxies in the semi-resolved regime. In this approach,
distances to a galaxy are estimated by measuring the scale of
the pixel-to-pixel surface-brightness fluctuations, studied in
Fourier space in order to isolate the instrumental point-spread
function (PSF). The underlying stellar populations are largely
treated as nuisance parameters and accounted for through
calibration. Other examples include the “disintegrated” light
analysis of stellar halos (Mould 2012), fluctuation spectroscopy
(van Dokkum & Conroy 2014), and pixel-level time variability
(Conroy et al. 2015).

A third technique for measuring SFHs and stellar popula-
tions, specifically applicable to semi-resolved galaxies, was
introduced in Conroy & van Dokkum (2016). The pixel color–
magnitude diagram (pCMD) method measures the fluxes in
multiple (typically two) photometric bands within every pixel
in an image, plotting the resulting magnitudes in a CMD. The
surface-brightness fluctuations across the image represent real
variations in the number of rare, bright stars at each pixel.
Therefore, the distribution of these pixel fluxes (the pCMD)
holds important information about the underlying stellar
populations. Critically, as we show in this work, pCMD
distributions show distinct sensitivities to many key physical
parameters, including metallicity, SFH, distance, and dust
content. With a proper accounting of important observational
artifacts, including PSF convolution, sky subtraction, and shot
noise, these key parameters can be inferred through a forward-
modeling procedure.

The pCMD technique can therefore be considered a
generalization of SBF, as in this work we demonstrate that
both distances and stellar populations can be simultaneously
measured using the fluctuations in multiple bands of well-
aligned photometry. SBF is still an important rung on the
distance ladder to this day, used to derive distances to nearby
dwarf galaxies (Cohen et al. 2018; Carlsten et al. 2019) and
massive galaxies alike (Greene et al. 2019). SBF also remains
the best distance estimator to the host galaxy of GW170817,
the first binary neutron star merger detected in gravitational
waves (Cantiello et al. 2018). Modeling the pCMDs of systems
such as these offers the prospect of constraining (rather than
assuming) their stellar populations, while more robustly
accounting for their uncertainties in deriving distances.

This work presents the first results from Pixel Color–
Magnitude Diagrams with Python (PCMDPy), an open-source
package developed to fully implement the pCMD fitting

method and allow for modeling pCMDs with more realistic,
flexible physical models. The package extends significantly the
original framework outlined in Conroy & van Dokkum (2016),
allowing for a variety of metallicity, dust extinction, and SFH
models, and for the first time extends the pCMD method to
simultaneously fit for galactic distances. The package is written
in Python and hosted on GitHub,3 and posterior estimation
is implemented with the dynamic nested sampling
code dynesty (J. S. Speagle 2019, in preparation).4 The
computationally challenging simulation procedure has been
accelerated using graphics processing units (GPUs), allowing
for more accurate and complex models to be generated more
rapidly and for fits to converge in less time.
This paper is outlined as follows. In Section 2 we provide an

outline of the PCMDPy code. In Section 3 we describe a suite of
mock tests where simulated pCMDs generated with the code
are then fit to study the code’s constraining power, and we
conclude the paper in Section 4.

2. Pixel Color–Magnitude Diagrams with Python (PCMDPy)

We describe here the procedure for generating and modeling
a pCMD. Section 2.1 discusses the general approach and
primary assumptions made, while Section 2.2 details the
physical models implemented in PCMDPy, including metalli-
city, SFH, distance, and dust extinction. Section 2.3 demon-
strates that each free parameter in these models has a unique
effect on pCMD distributions. In Section 2.4 we describe the
computational architecture of the code. Section 2.5 describes
our likelihood model for comparing pCMDs and the nested
sampling approach for fitting model posteriors over these free
parameters.

2.1. Overview of the pCMD Technique

A pCMD (Conroy & van Dokkum 2016) represents the
distribution in pixel-by-pixel photometry of a galaxy or galactic
region, projected onto magnitude space. A pCMD is generated
by measuring the flux in each pixel of two bands of photometric
images and converting those fluxes to apparent magnitudes,
representing their distribution in color–magnitude space as a
Hess diagram. When doing so, we are necessarily discarding any
spatial correlations between the pixels. This contrasts with the
SBF method, where the Fourier transform preserves spatial
information and can therefore isolate the effect of the PSF. The
distribution of the pCMD is thus shaped both by the physical
properties (stellar populations) of the stars residing in the image
and by the dust extinction and the optical properties of the
telescope, such as the PSF and photometric noise.
The pCMD technique endeavors to constrain the underlying

stellar populations through a forward-modeling approach:
given a model for stellar photometry and our knowledge of
the telescope’s optical properties, we can create a simulated
pCMD derived from a specified set of populations and compare
it to real data. This procedure is summarized visually in
Figure 1. Comparing simulated pCMDs over a range of stellar
populations allows us to infer the most likely populations to
have generated in the data, as long as our stellar and
observational models are reasonable approximations of the
truth.

3 https://github.com/bacook17/pcmdpy; final API and documentation are
still in the development stages.
4 https://github.com/joshspeagle/dynesty
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In practice, the possible combinations of stars residing in a
given image are limitless, requiring us to make simplifying
assumptions for the problem to be tractable. We adopt a
probabilistic approach: we assume there is a global underlying
distribution of stars within the image, from which each pixel
represents a unique random realization. Therefore, we care only
about the overall distribution of stellar populations and pixel
magnitudes (the pCMD), not about matching each specific
pixel to a model of the stars it contains.

Specifically, we assume that the number of stars in a pixel is
drawn from a Poisson distribution, with the mean number of
stars constant across the image and equal to the free parameter
Npix. Therefore, the surface-brightness fluctuations across
pixels are a true signal, representing the Poisson noise in stars
per pixel, the magnitude of which is determined by Npix and the
stellar populations. Thus, Npix can be estimated from the
column density Ncol of stars, the observed spatial resolution θ,
and the distance d to the source and is approximately

N
N d

6
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. 1pix
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»
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The representative values above assume a galaxy with average
stellar density of one star per cubic parsec and a thickness of
1 kpc (Ncol= 103 pc−2) and observations with the spatial
resolution of HST-ACS.

To determine the properties of those Npix» stars in each
pixel, we assume a model for the distribution of their ages (the
SFH model), metallicities (given as iron abundance, Fe H[ ]),

and initial masses (an IMF). This is shown in panel (A) of
Figure 1.
In our approach, we divide the age– Fe H[ ]–mass space into

discrete bins, assigning each point a weight according to the
models above and normalizing the weights to equal Npix. For
every pixel in the simulated image (of size N Nim im´ pixels),
we randomly draw the number of stars in each bin according to
a Poisson distribution with the given weights.5 We then derive
the absolute magnitudes of each star in the observed filters from
stellar evolution models (isochrones), although this could also
be implemented with well-calibrated observational catalogs.
This is shown in panel (B) of Figure 1.
The intrinsic fluxes of each star are attenuated by dust

extinction, potentially by both foreground (Milky Way) and
source (host galaxy) dust, requiring reddening curves and an
assumed model for the dust abundance. The stellar magnitudes
are converted to fluxes according to the distance to the host
galaxy and are summed into their respective pixels. These steps
are panels (C) and (D) of Figure 1.
Finally, the telescope and instrumental signatures must be

accounted for (panel (E) of Figure 1). The raw images are
convolved with models for the PSF in each filter.6 Sky flux can
be added at this stage. Poisson shot noise is added, assuming
the data are in electrons, such that noise = counts . The

Figure 1. Overview of the pCMD modeling procedure. (A) Metallicity and SFH models are chosen (for demonstration purposes, a single stellar population and
corresponding isochrones are drawn from MESA Isochrones & Stellar Tracks (MIST; Choi et al. 2016). (B) Stars are randomly sampled from the isochrones for each
pixel in the simulated image, with the mean number of stars in a pixel equal to Npix. (C) The fluxes of each star are reddened by dust extinction and adjusted by the
distance modulus of the model. (D) The simulated images are generated, with each pixel flux equal to the sum of fluxes from all stars residing in that pixel, as shown in
the top left pixel. Here, images in two filters are shown. (E) The simulated images are convolved with the PSF models, and sky and shot noise are added. (F) The pixel
color–magnitude diagram is computed by converting pixel fluxes to magnitudes. The original isochrone track is shown for reference.

5 Given many Poisson-distributed numbers ni with weight parameters λi, the
sum N ni i= å is also Poisson distributed, with weight parameter i il l= å .
6 The PSF convolution breaks the assumption that each pixel represents an
independent draw from an underlying distribution, because the fluxes in
neighboring pixels are highly correlated. This makes writing down an exact
likelihood or computing it using probabilistic programming intractable.
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resulting pCMD is computed by converting the pixel counts to
magnitudes (panel (F) of Figure 1).

We additionally note that it is possible to both measure and
simulate pCMDs in any arbitrary number of photometric bands.
In this work we only consider the case of two filters, primarily
due to the challenge of comparing pCMD distributions in more
than two dimensions.

2.2. PCMDPy Model Choices

The PCMDPy physical model for a region contains four primary
model components: a metallicity model, an SFH model, a dust
extinction model, and a distance model. When fitting a pCMD, the
free parameters of the fit all correspond to one of these four
components, and we assume flat priors over each. Each component
(with the exception of distance) could be modeled in a variety of
complex ways, and we detail here the implementations available in
PCMDPy. The functional forms included here may not necessarily
be adequate representations of the true shapes of the distributions
of interest in particular galaxies, but they are designed to provide
reasonable approximations. In Section 3.4, we discuss the effects
of incorrect model assumptions.

All of these physical model components are summarized in
Table 1. All other parameters or constants assumed in the
model are considered hyperparameters and are held fixed
throughout the fit. These are summarized in Table 2.

Three metallicity models are available, which specify the
metallicity distribution function (MDF, in terms of Fe H[ ]) of
the stars in each pixel:

Single [Fe/H]: all stars have the same metallicity, equal to
the single free parameter Fe H[ ].
Gaussian MDF (fixed width): stellar metallicities are drawn
from a Gaussian distribution, with one free parameter
corresponding to the mean ( Fe H[ ]). The standard deviation
( Fe Hs[ ]) is a hyperparameter and is held fixed.
Gaussian MDF: as in M2, but Fe Hs[ ] is a second free
parameter.

We adopt the nonrotating isochrones of the MIST project,
v1.2 (Choi et al. 2016). The metallicities provided in the MIST
isochrones are discretized to a grid with spacing 0.25 dex. For
model M1, we interpolate the isochrones between these grid
points to recover metallicities not on the grid. For models M2
and M3, we use only the metallicities on the grid and weight
their abundances by the specified Gaussian distribution. Grid
points with weights less than 1% are removed, resulting in 5 to
10 metallicity points for most Gaussian models.
Five SFH models are implemented, which specify the

distribution of stars as a function of age. The number of stars
per pixel Npix is either an explicit free parameter of the model or
computed as the sum of the SFH.

Single stellar population (SSP): all stars are the same age.
The two free parameters are the age of stars (in log years)
and Npix.
Constant star formation rate (SFR): assumes constant SFR at
all times. The one free parameter is Npix, to which the total
SFH sums.
Tau SFH: an exponentially falling SFR (SFR∝e− t/ τ). The
two free parameters are τ (in Gyr) and Npix.
Delayed-tau SFH: a linearly rising SFR followed by an
exponential falloff ( teSFR tµ t- ). The two free parameters
are τ (in Gyr) and Npix.
Nonparametric SFH: the SFH is binned into several (by
default five) independent bins, within which the SFR is
constant. The free parameters are log SFHi{ }, the logarithm
of total star formation in each bin, in units of stars per pixel.
The number and edges of the bins are hyperparameters.

With the exception of model S1, stellar ages are discretized
using a grid of ages. By default, the grid uses 21 equally spaced
bins in log age from 1Myr to 14 Gyr, but this is a
hyperparameter Nage that can be adjusted. The age points are
taken as the midpoints of each bin (106.1, 106.3, K, 1010.1 yr),
and the SFR is assumed to be constant within the bin.
When simulating complex models represented by many

metallicity and age points (ex: M2+S3), we downsample the
MIST isochrones in mass by a factor of five (a hyperpara-
meter). This downsampling factor improves computation time
dramatically while not significantly affecting the resulting
pCMDs, as confirmed through internal tests.
In the current implementation of PCMDPy, SFH and metal

abundance are modeled independently: the metallicity of a star
does not depend on its age. In reality, the abundances of stars
are known to evolve with age as previous generations enrich
the interstellar matter (ISM) out of which stars form. Future
work could model both jointly, but this is outside the scope of
the current work.

Table 1
Modeling a pCMD Requires an Assumed Physical Model for Metallicity, Star

Formation History, Dust Extinction, and Distance

No. Model Name Free Parameters Hyperparameters

Metallicity Models

M1 Single Fe H[ ] Fe H[ ]
M2 Gaussian MDF (Fixed

Width)
Fe H[ ] Fe Hs[ ]

M3 Gaussian MDF Fe H[ ], Fe Hs[ ]

Star Formation History Models

S1 Single Stellar
Population

log Npix, logage

S2 Constant SFR log Npix

S3 Tau Model log Npix, τ

S4 Delayed-Tau Model log Npix, τ

S5 Nonparametric SFH log SFH , log SFH ,0 1 NSFH, Bin Edges

Dust Extinction Models

E1 Fixed dust screen E B Vlog -( ) Fdust

E2 Log-normal Dust
Screen (Fixed Width)

E B Vlog -( ) Fdust, dusts

E3 Log-normal Dust
Screen

E B Vlog -( ), dusts Fdust

Distance Models

D1 Fixed Distance dm
D2 Variable Distance dm

Note.The physical model implementations in PCMDPy and their parameters
are listed here. Free parameters are fit to data, while hyperparameters are set
prior to fitting.
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We adopt a Salpeter IMF (Salpeter 1955) by default, but a
Kroupa IMF (Kroupa 2001) is also implemented in PCMDPy.
In addition to determining the distribution of stars by mass,
the IMF also determines the conversion from Npix to Mpix, the
stellar mass formed in each pixel. The total stellar mass in the
image, Må, requires a solution for SFH to account for stellar
mass loss from post-MS stellar evolution.

Three dust extinction models are implemented, which
determine the dust extinction in units of the reddening
parameter, E B Vlog -( ). We adopt the framework of
Dalcanton et al. (2015), who studied dust extinction in M31.
See their Section 3 for details.

Constant dust screen: all pixels have a constant amount of
extinction, equal to the one free parameter: E B Vlog -( ).
Log-normal dust screen (fixed width): the dust extinction in
each pixel is drawn from a log-normal distribution, with one
free parameter: the median extinction E B Vlog -( ). The
dimensionless width parameter dusts is a hyperparameter and
is held fixed.
Log-normal dust screen: as in E2, except dusts is an additional
free parameter.

Each dust model assumes a single thin screen of dust. The
geometry of the screen is specified by a hyperparameter Fdust,
which determines the fraction of stars that are reddened by dust.
Here, F 1.0dust = represents a foreground screen of dust (all stars
are reddened), while our default choice of F 0.5dust = corre-
sponds to a midplane disk of dust, with half the stars reddened
and half unobscured. This model assumes that in practical
applications, any foreground dust from the Milky Way can be
accounted for in data reduction. Future work could extend to
more complex dust geometries, as preliminary tests indicate
neither of these models may be sufficient to model the complex
and dense dust-lane structures found in disk galaxies at the scale
of interest. We convert E B Vlog -( ) to magnitudes of
extinction in each optical band using the RV=3.1 reddening
law from Schlafly & Finkbeiner (2011, their Table 6).

The final physical model component is distance. We implement
two distance models, simply representing whether or not distance
(in units of distance modulus, dm ) is included in the fit:

Distance fixed: distance is assumed known; dm is a fixed
hyperparameter.
Distance free: dm is a free parameter.

A physical model is specified with one of each of these
model components. We will occasionally refer to the entire
model used to simulate a pCMD using the alphanumeric codes

above. For example, our “fiducial-τ” model (Section 3.1) is
described as M2+S3+E2+D2. This translates to a Gaussian
MDF (with fixed Fe Hs[ ]), a tau SFH, a log-normal dust screen
(with fixed dusts ), and distance free.
A major hyperparameter of the fitting technique is Nim, the 1D

size of the simulated image plane (the total number of pixels in
the simulated pCMD is therefore Nim

2). Note that Nim does not
have to match the size of the data being fit, as we can compare
the relative number of pixels in the pCMD. Larger simulated
images are more computationally expensive but reduce the
inherent stochasticity of the likelihoods (see Section 2.5) by
providing more samples of the rare fluctuations in surface
brightness. We choose a default image size of N 512im = , which
we find to be the optimal size for reducing stochasticity while
allowing for convergent fits in a reasonable time.
We must match the observational conditions under which the

data were taken as closely as possible, requiring several well-
calibrated hyperparameters representing each observed filter.
This includes the exposure time in each filter, the photometric
zero points, and a model for the PSF. We have specifically
modeled observations with the HST-ACS camera, but the
model can be generally applied to ground-based observations
as well. The exposure time is taken from the FITS header of the
imaging data. Zero points are computed using the PySynphot
(Lim et al. 2015) package, as detailed in the ACS Handbook.7

PSF models are taken from the Tiny Tim (Krist et al. 2011)
web interface.8 To simulate subpixel PSF effects, we subdivide
each image into a 4×4 grid and apply to each a different PSF
convolution, shifted by fractions of a pixel. Tests showed our
approach is a reasonable approximation to the effects of truly
subsampling each pixel and applying a subpixel PSF model,
and it is substantially faster.

2.3. Sensitivity of pCMDs to Model Parameters

In Figure 2, we show that the detailed structures of pCMDs are
sensitive to each of the physical parameters of interest, in ways
that allow constraints on each from only two bands of semi-
resolved photometry. In each panel, we show a simulated pCMD
for a “baseline model” in gray, with a comparison for a model
with one physical parameter changed superimposed in black. The
baseline model has a single- Fe H[ ] metallicity model (M1,
Fe H 0.5= -[ ] ), a tau SFH (S3, N 10 , 3pix

3 t= = Gyr), a
constant dust screen (D1, E B Vlog 0.5- = -( ) ), and a distance
of 1Mpc ( 25dm = ).

Table 2
Global Hyperparameters of the PCMDPy Modeling Procedure

Parameter Name (Default) Number of Parameters Description

Filters Nbands Specify which observational filters to simulate. Includes zero points and PSF models.
Nim (512) 1 Size of simulated image plane (Nim pix×Nim pix)
Nage(21) 1 Number of isochrones to draw from in an SFH

IMF (Salpeter) 1 Stellar initial mass function
Sky Level (0) Nbands Level of background sky noise to add to each band
Exposure Time Nbands Exposure time of each image (important for modeling shot noise)
Downsampling (5) 1 Factor to downsample isochrone points
Hess Binning (0.05, 0.05) 2 Width of Hess bins used to compute log-likelihood

Note.These parameters remain fixed throughout fitting. This does not include parameters of the sampling algorithm (see dynesty documentation).

7 http://www.stsci.edu/hst/acs/analysis/zeropoints
8 http://www.stsci.edu/hst/observatory/focus/TinyTim
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Figure 2. Sensitivity of the pCMD distribution to the various model parameters. The baseline model, shown in thin gray, is a fiducial-τ model (see Section 3.1). The
contours show the bounds within which 39%, 87%, 99%, and 99.9% of the points lie (the 1σ, 2σ, 3σ, and 4σ contours, respectively). Varying each model parameter,
shown in dark black, has significant effects on the shape and location of the pCMD. In the top two rows, the changes in Npix and dm were chosen such that the average
flux is equal in each row.
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Of particular interest are the effects of Npix (proxy for stellar
surface density) and distance. The upper left column of
Figure 2 shows that in addition to changing the average
luminosity, Npix also affects the dispersion of the pCMD
distribution, due to the increase in Poisson surface-brightness
fluctuations. We compare this to variations in distance modulus
in the upper right column, which simply shifts the distribution
in the vertical (luminosity) direction, with no effect on color.
We show variations in Npix and dm that each result in the same
average luminosity; the dispersion of the distribution can be
used to break the degeneracy between luminosity and distance.
This represents a reformulation of the SBF method: as the same
physical system is moved toward larger distance, surface
brightness remains constant but the magnitude of fluctuations
decreases as Npix rises. This hints at the utility of pCMDs to
simultaneously recover distances and stellar populations for
galaxies in the semi-resolved regime. We demonstrate this
conclusively in Section 3.

Varying metallicity shifts the peak of the distribution and has
a notable effect on the slope of the upper-right wing. The pixels
in that region contain RGB stars, and the pCMD is therefore
sensitive to the metallicity-dependent slope of the RGB (Choi
et al. 2016). The effects of increasing dust broaden the overall
distribution but leave the slope of the RGB feature relatively
intact. As we show in Section 3.2, the model is able to
constrain dust and Fe H[ ], although there remains a slight
degeneracy between the two.

Changing the age parameter, τ, has significant effects on the
blue wing of the pCMD. This represents the relative abundance
of young, massive main-sequence stars. These hot stars are
only abundant when there has been recent star formation
(high τ), while only the old main-sequence and RGB stars
contribute when recent star formation is suppressed (low τ).

2.4. Computational Infrastructure

Even when downsampling the isochrones by a factor of five,
simulating a pCMD with the simplest SSP model requires

108( ) random Poisson calls for a 512×512 image.
Increasing the complexity and realism of a model by
incorporating more age and metallicity points increases the
computation time nearly linearly with the number of iso-
chrones. With 21 age points and about five metallicity points,
the more realistic physical models described in Section 2.2
require 1010( ) Poisson draws and quickly become computa-
tionally infeasible on a traditional CPU.

PCMDPy includes an optional GPU-accelerated backend,
which dramatically reduces the computational time required to
simulate a pCMD. Given the isochrones representing a
particular physical model, each GPU thread independently
samples the stars from those isochrones into an individual
pixel. This accelerates the simulation time of an individual
model pCMD by a factor of ∼30×compared to the CPU
implementation. Figure 3 shows the computation time required
to simulate a pCMD of an SSP (model M1+S1) as a function
of Nim. The CPU tests were run on an Intel Xeon E5-2620
processor (2.1 GHz) and the GPU tests on an Nvidia Tesla
K20Xm.9

The original code of Conroy & van Dokkum (2016)
simulated an N 256im = pCMD for a relatively simple physical

model (M1+S2+E1+D1) in 1» s. The same computation in
PCMDPy takes only ≈0.25 s on an Nvidia Tesla K20Xm. For
our preferred model with a Gaussian MDF and 21 age bins (see
Section 3.1), PCMDPy simulates a pCMD with N 512im = in
≈2 s. GPU acceleration allows for simulating both more
complex (realistic) physical models and larger image sizes (less
stochasticity in likelihoods; see Section 2.5) than would be
feasible with CPUs alone.

2.5. Likelihoods and Posterior Sampling

We evaluate the likelihood of a pCMD given a model with a
binned Hess diagram and Gaussian statistics. With this
approach, we create a binned 2D histogram of pixels in the
pCMD and compare the relative number of counts in the two
distributions, normalized to the total number of pixels. We
choose bins of width 0.05 mag in each dimension, a width
chosen to be roughly equivalent to the observational uncer-
tainties, but we show in Section 3.2 that the resulting posteriors
are fairly insensitive to this choice. We compute the log-
likelihood  using the counts of data pixels di and model pixels
mi in each Hess bin, as follows:
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where the uncertainty σi is approximated by the square root of
the number of Hess bin counts, added in quadrature:

d mmax , 2 . 3i i i
2 2s = +( ) ( )

We apply a floor to the uncertainty to down-weight very rare
bins in the Hess diagram, where differences in simulated and
data image sizes may unintentionally bias the likelihood. This
is one aspect of a general problem of evaluating likelihoods in
Hess diagram space: how to handle data points when there are
no (or very few) model points. For instance, a Poisson
likelihood model would return zero likelihood if the model
predicts zero pixels in a bin with even a single data pixel.

Figure 3. Computation time for drawing an SSP model pCMD is shown for the
CPU and GPU-accelerated versions of the code, as a function of the simulated
image size. For our fiducial model size of N 512im = , the GPU-accelerated
code results in nearly 30×speedup, and it could be 4×larger still with more
modern GPU chips.

9 These are the default GPUs available to us. The latest generation of Nvidia
GPUs (the Tesla V100) could lead to an additional ∼4×speedup.
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We add an additional likelihood term, corresponding to the
difference in mean color C and magnitude M between the two
distributions, with error of 0.05 mag:

C C M M

2 0.05 2 0.05
. 4d m d m

2

2

2

2
 = -

-
-

-( )
( )

( )
( )

( )

Without this term, two pCMDs that do not overlap at all
(d i m0 s.t. 0i i= " ¹ ) are equally poor fits regardless of
whether they are offset by an average of 1 or 10 mag. The
addition of this term gives slight preference to models where
the center of the distributions roughly aligns with the data,
without substantially affecting best-fit estimates because the
relative magnitude of the term is quite small.

We sample the posterior using a new Python package for
dynamic nested sampling, dynesty (J. S. Speagle 2019, in
preparation). Nested sampling (e.g., Skilling 2004; Feroz et al.
2009, 2013; Handley et al. 2015) is an approach similar to the
commonly used Markov chain Monte Carlo (MCMC)
technique, representing the posterior through a collection of
samples from the distribution. Unlike MCMC, nested sampling
efficiently computes the Bayesian evidence (also called
marginal likelihood), allowing for principled model compar-
isons. Nested sampling algorithms also allow for sophisticated
handling of multimodal distributions. See the references above
for more details on nested sampling.

Throughout this work, parameter estimates are reported as
the median of the marginalized posterior probability function,
and error bars are reported as the 68% equal-tailed credible
interval, unless otherwise stated.

The pCMD likelihoods are stochastic, meaning that
recalculating the likelihood multiple times for the same input
parameters will result in a different log-likelihood. This
presents a statistical challenge for any posterior sampling
algorithm, and without proper accounting it leads to an
underestimate in uncertainties (see, however, the pseudomar-
ginal MCMC approach; Andrieu & Roberts 2009). We discuss
this further in Appendix A and detail a method for
postprocessing the results to recover reasonable posteriors.

Fitting a pCMD with models of size N 512im = takes
∼100 GPU hours for most cases. This is a speedup of a factor
of 7×compared to the original code of Conroy & van Dokkum
(2016), which required around 700 CPU hours to fit a posterior
using N 256im = . This was largely due to the need to combine
the posteriors of 10 independent MCMC runs to overcome
the stochasticity of the likelihoods. The larger simulated image
sizes allowed by GPU acceleration decrease the inherent
stochasticity of the likelihoods, making combining multiple fits
unnecessary.

3. A Suite of Mock Tests

3.1. Mock pCMD Models

To evaluate the capability of the code to recover model
parameters, we run a series of mock tests where we fit models
to simulated pCMDs generated from the code. In most cases,
we fit models with the same physical components (i.e., same
metallicity, SFH, and dust model) and hyperparameters as used
to generate the data. We model observations in the F814W
(I814) and F475W (g475) bands of ACS, use a mock image size
of N 256im = and model image size of N 512im = , and assume
no sky noise. Exposure times for F814W and F475W are set to

3235 and 3620 s, respectively, corresponding to the typical
values of data from the PHAT survey (Dalcanton et al. 2012).
The fiducial model we frequently study, which we denote the

“fiducial-τ” model, has a fixed-width Gaussian MDF, tau-SFH,
and fixed-width log-normal dust screen, and the distance is
allowed to vary (components M2+S3+E2+D2; see Section 2.2
for details). Unless otherwise specified, the free parameters used
to generate the mock pCMDs are set to Fe H 0.25= -[ ] ,

E B Vlog 0.5- = -( ) , N 10pix
2= , 3 Gyrt = , and dm =

26.0. The width of the MDF is set to 0.2Fe Hs =[ ] , and the
width of the log-normal dust model is set to 0.1dusts = .
We also study a “fiducial-nonparametric” model, where the

SFH is fit with a five-bin nonparametric model (S5). The five
SFH bins correspond to the following ages:

1. SFH0: 1–100Myr
2. SFH1: 100Myr–1 Gyr
3. SFH2: 1–3 Gyr
4. SFH3: 3–10 Gyr
5. SFH4: 10–14 Gyr

Unless otherwise specified, the same free parameters are used
to generate mock pCMDs as above, with the exception of the
SFH, which is a constant-SFR model with N 10pix

2= .
In both models, we assume flat priors over all parameters. In

most cases, we assume Fe H 0.5, 0.25Î - +[ ] [ ], E B Vlog - Î( )
1, 0-[ ], Nlog 2, 5pix Î [ ], 0.1, 8.0t Î [ ]Gyr, and 22, 26dm Î [ ].

In the case of the nonparametric SFH, we assume flat priors in
log SFH, of width±1 dex around the true underlying SFH.

3.2. Recovery of Nonparametric SFHs

Figure 4 shows the posterior probability distribution for a
fiducial-nonparametric model fit and demonstrates that
PCMDPy can simultaneously recover the input model para-
meters well. The metallicity, dust content, distance, and total
Npix (computed as the sum of all SFH bins) are all recovered to
within 1σ, as shown in the marginalized histograms. There is a
notable degeneracy between Npix and dm , but the distance
modulus is still constrained to within 0.1 dex.
The oldest bins of SFH (bins 3 and 4) are somewhat

degenerate, but the total star formation older than 3 Gyr is fairly
well constrained, as shown in the marginalized contours of
those two bins. Figure 4 also shows the derived constraints on
the SFR in each pixel, as a function of age. Compared to the
original prior bounds allowed (±1 dex in each bin), the model
has recovered reasonably tight constraints on the SFH.
We also examine the recovered SFH for various input SFHs.

The results are shown in Figure 5, for constant-SFR and
τ=3 Gyr models and increasing Npix from 102 to 105. Each
model is able to recover the underlying SFH, with the true SFH
contained within the 68% credible interval in nearly all cases.
In constant-SFR models, the oldest ages of star formation have
the largest uncertainties, while the relatively higher SFR in the
τ models is easier to constrain precisely.

3.3. Evaluation of Model Choices

We use the suite of mock tests to evaluate the effect of
various hyperparameter choices and model families on the
recovered parameters. For simplicity, these tests are performed
using the fiducial-τ model, and the results are shown in
Figure 6. These findings may not generalize fully to all models
or regions of parameter space (especially higher Npix), and we
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caution all users of PCMDPy to think carefully about all
hyperparameter choices before fitting.

The first column of Figure 6 shows the effect of fitting
distance as a free parameter (D1 versus D2). We find we can
recover the distance modulus to ±0.1 mag. With the exception
of Npix (which is slightly degenerate with dm ), estimates of other
parameters are just as well constrained regardless of whether
distance is included in the fit.

The second column shows the effect of fitting for the width
of the MDF and dust distributions (simple: M2+E2; complex:
M3+E3). We find the model is unable to constrain these
widths, which leads to a small bias and inflated uncertainties
in the estimates of other parameters. We therefore recom-
mend against fitting for these width parameters, unless
available information suggests a fairly informative prior is
warranted.

Figure 4. Recovered posterior probability distribution from a mock test, using a five-bin nonparametric SFH model to fit a constant star formation rate model. Here,
Nlog pix is a quantity derived from the five SFH bins. The 1σ, 2σ, and 3σ contours are shown. The upper right panel shows the recovered posterior estimates of star

formation rates as a function of time. The true values used to generate the mock pCMD are shown with red lines. The full model is specified in Section 3.1 (fiducial-
nonparametric model). Every input parameter is recovered within the 68% credible interval.
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In the third column, we vary the model image size Nim.
Smaller image sizes (N 256im = ) lead to inflated uncertainties,
despite taking just as long to fit as the default size of
N 512im = . The additional stochasticity in the likelihoods at
small Nim leads to more severe drops in sampling efficiency
(see Appendix A). Larger image sizes (N 1024im = ) take

significantly longer to fit, requiring fewer nested sampling live
points to converge in a reasonable time (fewer than 300 GPU
hours), which results in underestimated errors.
The final column shows various choices for the width of the

Hess bins used to evaluate likelihoods. The bin size has no
significant effect on the recovery of the posterior, although we

Figure 5. Recovered SFH for several input models, as a function of Npix. The input SFH is shown in red, while the posterior estimates (median and 68% credible
interval) are shown in gray. The prior, shown as a dotted outline, is assumed flat within ±1 dex of the true SFH. Top: the input SFH has a constant star formation rate.
Bottom: a tau-SFH model with τ=3 Gyr.

Figure 6. Error in best fit (posterior median) and 68% credible interval in each parameter for several mock tests with various modeling choices. The baseline model
assumed is specified in Section 3.1 (fiducial-τ). Column 1: distance is held fixed in the first model. Column 2: the simple models correspond to M2+E2, while the
complex models correspond to M3+E3 (the widths Fe Hs[ ] and dusts are fit as free parameters). Column 3: the size of the model image, Nim. Column 4: the widths of
the likelihood Hess bins are either 0.02 dex (narrow), 0.05 dex (default), or 0.1 dex (wide).
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note that this may not hold true at higher Npix, when the pCMD
distribution is more compact.

In Figure 7, we study the ability of PCMDPy to model
galaxies as a function of distance. At larger distances, the
magnitude of surface-brightness fluctuations decreases (since
Npix is larger), making the models less sensitive to the
underlying stellar populations. In addition, the same physical
size region will correspond to far fewer pixels, and gradients in
surface brightness and stellar populations will make the
modeling assumptions invalid over too many pixels.

To simulate these effects, we begin with a fiducial-τ model
with N 10pix

2= , modeled at distance of 1Mpc, roughly
equivalent to the disk of a galaxy like M31 (Conroy & van
Dokkum 2016; see also B. A. Cook et al. 2019, in preparation).
The mock pCMD for this system is generated with
N 2048im = , corresponding to a region 500pc on a side with
total mass M M108

 » . We then approximate the effects of
observing the same physical system at larger distance and
correspondingly higher Npix, while decreasing Nim of the mock
pCMD to keep the physical size and total mass constant. Five
such mock data sets (from 1 to 100Mpc) are fit to the same
model (with simulated N 512im = ).

The fits from this experiment are in excellent agreement with
the true models until D10Mpc (N 10pix

4 ), at which point
the uncertainty rises sharply. But even out to 100Mpc, the true
parameters remain within the 68% credible interval.

The pCMD method should therefore provide interesting
constraints of stellar populations and distance out to large

distances and may serve as a useful complement to the existing
SED modeling technique.
To test the stability of the results, we run eight fits on

different realizations of pCMDs generated with the same
underlying model. The scatter in the estimates of each fit
should fall within the typical uncertainty, or else the
uncertainties are likely underestimated. Figure 8 shows the
results of this test. For all parameters, the scatter (standard
deviation) in median estimates is significantly less than the
typical uncertainty. This suggests that the model uncertainties
are likely overestimated by a factor of roughly 2×. It could be
possible to correct for this with a more careful selection of

max , defined in Appendix A, but we are comfortable with
overestimating our uncertainties, given the relatively loose
method for dealing with the stochastic likelihoods detailed in
the appendix.

3.4. Model Mismatch Tests

We investigate the effect of fitting a pCMD with a different
model than used to generate the data in Figure 9. First, we show
fits where the physical model is incorrect. Incorrectly modeling
the metallicity distribution function may lead to a minor
systematic bias in Fe H[ ] and τ, but for Fe Hs[ ] on the order of a
few tenths of a dex, the effects are small and within the
uncertainties.
Slight biases also arise from incorrectly modeling the SFH or

the structure of the dust. We fit a model with F 1.0dust = to data
generated with F 0.5dust = , effectively ignoring that half of the
stars should lie above the screen of dust. This results in an
underestimate of the dust content, as well as bias in τ and Npix.
Accurately accounting for the geometries of stars relative to the
dust is therefore important to recovering accurate measurements.
We also show the effect of modeling a τ-SFH with a

nonparametric model. For comparison to the τ models, we
compute the average age of the inferred SFHs and convert to an
effective τ. The nonparametric model appears slightly biased
toward preferring old ages (lower τ). This results in slight
positive bias in Npix and dm in order to result in the same total
luminosity. The age bias could be mitigated by increasing the
number of SFH bins modeled, but this becomes computation-
ally demanding. Incorrectly specifying the physical model can
lead to subtle systematic biases, and it is not always easy to

Figure 7. Same as Figure 6, where the same physical system is modeled at
increasing distance. Here, Npix increases with distance, while Nim of the mock
pCMD is decreased to keep the simulated mass enclosed ( M108

» ) constant.
The model recovers highly precise estimates of all parameters out to ≈10 Mpc,
but the true results remain within the errors at distances as large as 100 Mpc.

Figure 8. The scatter in posterior median estimates of each model parameter is
shown for eight mock tests, evaluated on different realizations of the input
model and normalized by the median uncertainty in each parameter. The fact
that all values are below 1.0 implies slightly overestimated uncertainties.
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diagnose such a mismatch. One possible approach could be to
compare the Bayesian evidence (computed through the nested
sampling algorithm) for multiple model choices, or alterna-
tively by studying the residual patterns in Hess diagram space.
In future work, we additionally intend to study the effect of
different SFH priors, such as those suggested by Leja et al.
(2019).

Other possible mismatches between data and model include
errors in the calibration of the observational data. If the
exposure time of images is overestimated (the model shown
overestimates the true exposure by 2×), the model greatly
overpredicts the age parameter τ, and most other parameters are
also biased from their true values. When extracting pCMDs
from observations, it is important to properly understand the
observing conditions and whether multiple exposures were
coadded to produce the final photometry.

The final two examples showcase the complex effects of
poor PSF calibrations. If both PSF models are too wide
(FWHM overestimated by 10%), best-fit models are strongly
biased in all parameters. Yet if only one PSF model is
miscalibrated (here, the F814W filter), many of the biases go in
the opposite direction. We investigate this effect more fully in
upcoming work (B. A. Cook et al., 2019, in preparation) when
we discuss the important practical challenges in selecting
observational data to analyze with the pCMD technique.

4. Conclusions

We have presented a study of the application of pixel color–
magnitude diagrams (pCMDs) for studying galaxies in the
semi-resolved regime, as first introduced by Conroy & van
Dokkum (2016). We developed the open-source, GPU-
accelerated Python package PCMDPy and detailed its primary
modeling assumptions and physical models implemented. We
also presented the results of a suite of mock tests that
demonstrate the potential for using PCMDPy to constrain
important physical parameters of galaxies.
The main results of this work are as follows:

1. We have developed the new package PCMDPy for
modeling pCMDs and inferring the physical properties
of galaxies. It contains a number of improved physical
models compared to the original code of Conroy & van
Dokkum (2016), including a Gaussian MDF and a log-
normal dust extinction model, and allows for simulta-
neous fitting of distance modulus. The code uses GPU
acceleration to allow the modeling of pCMDs with these
complex models and larger simulated image sizes in
significantly less time. Posteriors are sampled using the
dynamic nested sampling code dynesty, and fitting a
model requires about one-seventh as much computational
time as the original code.

Figure 9. Same as Figure 6, for mock tests where there is a mismatch between the models used to generate the mock pCMD and to fit it. Column 1: there is no model
mismatch. Column 2: cases where the physical model assumed is incorrect. The white box shows the approximate τ derived from the nonparametric SFH. Column 3:
cases where observational hyperparameters are miscalibrated.
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2. We demonstrated that pCMDs are sensitive to the
distance to a galaxy and that our code can simultaneously
recover accurate estimates of distance, SFH, metallicity,
and dust content.

3. We show that highly precise measurements of distance
and stellar populations should be recoverable for massive
galaxies at least to 10Mpc with HST-like resolution, and
reasonable constraints are possible out to 100Mpc.

4. The model is relatively robust against small biases in the
assumed metallicity distribution function. Mischaracter-
ized dust or SFH models can lead to small systematic
biases in recovered parameters. Additionally, it is crucial
to have good estimates of optical properties such as
exposure time and well-calibrated PSF models. Future
work will discuss other important considerations for
selecting observational data to fit with PCMDPy.

5. The effects of the stochastic likelihood model present
challenges for traditional sampling methods. The larger
images that can be simulated using GPUs reduce this
burden somewhat, but additional steps must be taken to
account for the bias toward positive-likelihood fluctua-
tions. Our chosen approach may result in overestimating
the derived uncertainties by a factor of order 2×.

We thank Aaron Dotter and Jieun Choi for helpful
discussions around the details of the MIST models.
B.C.acknowledges support from the NSF Graduate Research
Fellowship Program under grant DGE-1144152. This work is
supported in part by HST-AR-14557. The computations in this
paper were run on the Odyssey cluster supported by the FAS
Division of Science, Research Computing Group at Harvard
University.
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physics Data System, as well as the following software
packages: PyCUDA (Klöckner et al. 2012), Dynesty (J. S.
Speagle 2019, in preparation), NumPy (van der Walt et al.
2011), Matplotlib (Hunter 2007), IPython (Pérez & Granger
2007), Jupyter (Kluyver et al. 2016), SciPy (Jones et al. 2001),
Pandas (McKinney 2010), and Astropy (The Astropy Collabora-
tion et al. 2013, 2018).

Appendix A
Stochastic Likelihoods

The forward-modeling procedure for generating pCMDs is
stochastic, and therefore so are our likelihoods. The simulated
pCMD is a random realization of the underlying model, and
therefore evaluating the likelihood of the same point in
parameter space multiple times will produce different results.
Our tests indicate that the distribution of likelihoods, given
fixed model parameters, has a well-defined center but a long
positive tail, essentially resulting from “overfitting” to the noise
in the data. Larger simulated image sizes Nim produce pCMDs
that average over the many rare fluctuations, and therefore
decrease the inherent stochasticity.

Any level of stochasticity poses significant problems for
nested sampling or MCMC, because a positive fluctuation in
likelihood will result in a model point being given larger
weight than it truly deserves. In either MCMC or nested
sampling, this has the detrimental effect of significantly
decreasing sampling efficiency. The sampling algorithms will
take longer to find a comparably good fit, resulting in decreased
sampling efficiency and a cascading effect where most

subsequently sampled points are also drawn from the
positive-fluctuation tails.
Our tests have identified two other detrimental effects of

nested sampling in a stochastic likelihood model. The weights
assigned to the sampled points are biased toward only
weighting the largest fluctuations, often resulting in only a
single point being assigned a nontrivial weight. Since nested
sampling integrates toward increasing likelihood, the final
many points returned by the algorithm, and those assigned
highest weight, almost all represent positive likelihood
fluctuations, rather than actually better models.
Furthermore, the autostopping criterion used by many

algorithms, including dynesty, relies on ZlnD , the estimated
evidence remaining (e.g., Feroz et al. 2009). This value is biased
high by the positive fluctuations, leading the algorithm to
continue sampling longer than would be desired. Combined with
the decrease in sampling efficiency, our dynesty fits often
become stuck, taking thousands of likelihood calls to return a
new sample.10 In practice, we stop the model fit after a fixed
number of iterations. As discussed below, we find that we can
later account for the bias in likelihoods, and when we do so the
fits are almost always well converged by the ZlnD criterion.
We show the effect of this likelihood bias in Figure 10. The

blue line shows the measured log-likelihood of the dynesty
samples from a mock test. The upturn at the final points
shows extreme positive fluctuations: using the results straight
from dynesty, the final point has 99% of the weight,
producing an implausibly peaked posterior. To demonstrate
that these points all represent positive likelihood fluctuations,
we recomputed the likelihood of several of the points in
parameter space, and we show the measured distribution of
likelihoods as error bars.
It is clear that the likelihoods returned by dynesty are

biased high from the average likelihood for each model. We
can estimate what the maximum realistic likelihood should be,
by computing many realizations of the “true” model used to
generate the pCMD and evaluating the fits. This is shown in the
gray band. As should be expected, all of the mean likelihoods
for the resampled points lie roughly within this band. We
therefore have a means for estimating which likelihoods are
trustworthy and which are likely biased high by fluctuations.
We use this insight to adopt a postprocessing procedure to

account for this likelihood bias. At the completion of each
dynesty run, we recompute the likelihood of the best-fit
model 100 times and then adopt the median value as a
likelihood threshold, max . Any likelihoods above that thresh-
old are capped to that value, and we recompute the weights and
convergence statistics using the updated likelihoods.
We find that this approach is successful at eliminating the

bias from likelihood fluctuations, by down-weighting the final
handful of samples that are most subject to this stochastic bias.
Figure 11 shows the mean and uncertainties in model
parameters recovered as a function of this max . When max
is too high, the mean estimates vary sharply, as only one or a
few sampled points are given all of the posterior weight. Using
our adopted max ceiling, we are averaging over sufficiently
many sampled points to recover stable means and reasonable
uncertainties. When the remaining-evidence criterion is

10 An example of this principle, for a simplified case of a stochastic
likelihood, is included as a demonstration in the Dynesty repository:
https://github.com/joshspeagle/dynesty/blob/master/demos/Examples%
20–%20Noisy%20Likelihoods.ipynb.
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recomputed using the adjusted likelihoods, the fits are almost
always extremely well converged by standard stopping
criteria ( Zln 0.01D ).

This method for handling the stochastic likelihoods is a
rough, heuristic approach, so the exact statistical uncertainties
must be treated cautiously. The mock tests shown in this work
are therefore important for validating that the approach
recovers reasonable errors. As shown in Figure 8, the scatter
in mean estimates between multiple independent trials is

smaller than the typical uncertainty, indicating that if anything
this relatively ad hoc procedure is somewhat overly con-
servative in the model uncertainties.

Appendix B
Cloud Computing and GPUs

The PCMDPy GPU acceleration is written in CUDA, a
proprietary language that only operates on Nvidia-brand GPUs.

Figure 11. Marginalized mean estimates (solid line) and uncertainties in each parameter as a function of the maximum log-likelihood ceiling applied. The solid black
line shows the adopted threshold: the median log-likelihood of the best-fit model recomputed 100×against the data. The dashed lines show the true parameters.

Figure 10. Demonstration of the bias induced by sampling from a stochastic likelihood function. The blue line shows the log-likelihood reported for each nested
sampling point of a mock test as a function of iteration. The blue error bars show the distribution of log-likelihood from recomputing the log-likelihood of the same
points in parameter space 10 times. The distribution of log-likelihoods computed using the true (known) model parameters is shown in black, and any log-likelihood
above that range is simply a rare positive fluctuation that is overfitting the stochastic effects.
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This limits the systems that can utilize the GPU-accelerated
version of PCMDPy. Most personal computers and laptops
(especially Macs) do not have Nvidia cards; Intel and AMD are
common competitors, but CUDA code cannot be compiled to run
on their architecture. However, the GPUs installed in most
computer clusters hosted at research institutions are Nvidia, and
cloud computing offers an alternative option for obtaining GPU-
accelerated computational resources.

To make PCMDPyʼs GPU capabilities more broadly applic-
able, we have also developed a Docker container architecture
for fitting pCMDs in the cloud using AWS-Batch. Using this
framework, pCMD models can be fit by renting GPU-enabled
instances on demand, with the benefit of having practically
limitless scaling potential (large numbers of jobs can be run
simultaneously). As of this writing, such instances are available
for around $1/GPU hour (with faster GPUs available for higher
cost, in nearly linear proportion to their speedup). As PCMDPy
typically takes around 100 GPU hours to fit a model, this
translates to around $100 per model fit. Full details and
examples will be detailed later with the public PCMDPy code
release paper. For a detailed example on using AWS in
astronomical research, see Williams et al. (2018).
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