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Abstract

The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining
stellar properties (“labels,” i.e., physical parameters and elemental abundances). However, traditional spectroscopic
methods that utilize stellar models struggle to reproduce cool (<4700 K) stellar atmospheres due to an abundance
of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small,
cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing
precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a
data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer spectra of 141
cool (<5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for
small (<1 R.) stars of spectral types K and later with accuracies of 68 K in effective temperature (Teg), 5% in
stellar radius (R,), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral
resolutions (R < 5000). As M dwarfs are the focus of many future planet-detection surveys, this work can aid
efforts to better characterize the cool star population and uncover correlations between cool star abundances and
planet occurrence for constraining planet formation theories.
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1. Introduction

Precise determination of stellar properties (e.g., masses,
radii, effective temperatures, and elemental abundances) is a
challenging, yet essential component of stellar and planetary
astrophysics. Accurate measurements of masses (M), radii
(R4), and temperatures (T.¢) are crucial for vetting models of
stellar structure and evolution, and the chemical compositions
of stellar photospheres reflect formation histories and can link
stars to their parent molecular clouds, providing a window into
galactic chemical evolution. The burgeoning field of exoplanets
also calls for robust methods of determining stellar properties
as characterization of planets is predicated on thorough
characterization of their stellar hosts.

Stellar spectroscopy has a rich history, beginning with Annie
Jump Cannon and her colleagues at Harvard College
Observatory who developed the current stellar classification
system based upon visual inspection of spectral features.
Modern spectroscopic methods involve matching information-
rich portions of empirical spectra to benchmark or synthetic
spectra generated from model stellar photospheres. Two
commonly used spectral modeling tools are SME and MOOG
(Sneden 1973; Valenti & Piskunov 1996), both of which have
undergone significant evolution since their inception (e.g.,
Valenti & Fischer 2005; Valenti et al. 2009; Deen 2013;
Brewer et al. 2015; Piskunov & Valenti 2017). However,
current model photospheres are limited by an incomplete
knowledge of the physics behind stellar attributes; they suffer
from poorly constrained atomic and molecular opacities, often
assume local thermodynamic equilibrium (LTE), and inaccu-
rately model dynamical effects such as convection or stellar
winds, if at all. While three-dimensional hydrodynamic models
have been created that allow for non-LTE conditions, they still
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suffer from the other aforementioned drawbacks and are
computationally expensive. Laboratory studies have refined
atomic and molecular data and improved line lists, but
departures from solar type atmospheres still present significant
modeling challenges.

Stars of spectral types K4 (T < 4700K) and later are
particularly difficult to model with synthetic spectral techniques
as their optical and NIR spectra feature dense clusters of
molecular lines that lack reliable opacity data. In the optical
regions of K and M dwarf spectra, TiO and VO bands are
prominent, as well as hydride bands such as MgH, CaH, and
FeH. The NIR regions of M dwarf spectra often feature H,O
(e.g., Rojas-Ayala et al. 2012). Characterization of late-type
stars such as M dwarfs is important because they are common,
representing ~75% of stars in the solar neighborhood (Henry
et al. 2006). Small, cool stars are also popular targets for
exoplanet surveys as their low M, and R, result in deeper
transit signals and larger Doppler shifts, increasing the
probability of detecting and characterizing small planets.

Empirical methods offer alternative routes for predicting K and
M dwarf parameters and abundances. Common proper motion
pairs of M dwarfs and F-, G-, and K-type stars of known
metallicities ([Fe/H]) can be used to calibrate M dwarf metallicities
with equivalent widths (EWs) of NIR spectral features (Mann et al.
2014; Newton et al. 2014). Similarly, temperatures (7,¢) and stellar
radii (R,) can be calibrated with EWs of K and M dwarf NIR
spectra (Newton et al. 2015), and parallaxes can provide further
constraints on stellar properties (Mann et al. 2015, 2017).
Empirical as opposed to synthetic spectral libraries composed of
touchstone stars with well-measured properties are also capable of
predicting accurate parameters for stars of mid-K spectral types
and later (Yee et al. 2017).

Another promising method for modeling cool stars is offered
by The Cannon, a data-driven approach to modeling spectro-
scopic data (Ness et al. 2015). In brief, The Cannon predicts
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stellar parameters and elemental abundances from spectro-
scopic data via a two-step process: a “training step” where the
spectra for a set of reference objects with well-determined
parameters and/or abundances are used to construct a
predictive model of the flux, and a “test step” where the model
is used to infer those of objects given their spectra. Unlike
traditional spectroscopic modeling methods, The Cannon
makes no use of physical stellar models, and does not require
an accompanying library of synthetic spectra for reference.
Here, we modify The Cannon to optimize parameter and
elemental abundance predictions for K and M dwarfs with
High Resolution Echelle Spectrometer (HIRES) spectra.
Throughout this work, we refer to stellar parameters and
elemental abundances (Teg, Ry, and [Fe/H]) as “labels” to be
consistent with previous literature on The Cannon (e.g., Ness
et al. 2015; Casey et al. 2016; Ho et al. 2017) and to adhere to
machine learning /supervised methods terminology. We eval-
uate The Cannon’s ability to predict stellar labels in our cool
star sample with cross-validation experiments. Cross-validation
was carried out by dividing a reference set of cool stars with
well-determined labels into training and validation sets. The
reference set is pulled from a library compiled by Yee et al.
(2017; see Section 2 for more details). Performance was
evaluated by examining how well Cannon-predicted labels for
the validation set matched those reported in the library. In
Section 3, we present The Cannon, and outline our imple-
mentation and its performance on our cool star sample in
Section 4. We find that The Cannon can predict labels with
precisions of 68 K in Teg, 5% in Ry, and 0.08 in [Fe/H] (dex).
Discussion of the results is presented in Section 5.

2. Cool Star Sample

Our spectral library was compiled by Yee et al. (2017)
and consists of 404 touchstone stars originating from several
source catalogs that span the spectral types ~M5-F1 (Toy =
3000-7000 K, R, =~ 0.1-16 R..). The stars have spectra obtained
from HIRES at the Keck I 10 m telescope (Vogt et al. 1994) as
part of the California Planet Search (CPS). For more details on
CPS, see Howard et al. (2010). The HIRES spectra are high-
resolution (R =~ 60,000) and high signal-to-noise ratio (S/N >
40/pixel, with ~80% having S/N > 100/pixel). The spectra
originate from the middle HIRES detector CCD chip and contain
16 spectral orders. The HIRES blaze function has been removed
and the spectra registered onto a common wavelength scale (A =
4990-6410 A) uniform in AlogA to ensure that linear velocity
shifts correspond to linear pixel shifts (Yee et al. 2017). We
confined the wavelength range to 13 orders (A = 4990-6095 A)
to avoid redder portions of the middle HIRES CCD chip that are
more affected by tellurics.

To isolate a cool star sample composed of K and M dwarfs,
we employed radius and temperature cuts of T.¢ < 5200 K and
R, < 1R, leaving 141 stars. These cool stars are primarily
drawn from the catalog described in Mann et al. (2015) with
Tetr, Ry, and [Fe/H] determined from a combination of
spectrophotometry, SED modeling, Gaia parallaxes, and EW
empirical relations (quoted uncertainties of 60K, 3.8%, and
0.08 dex, respectively). A smaller subset originate from the
catalog compiled by von Braun et al. (2014), and have
interferometrically determined R, (quoted uncertainties of
<5%). Many of the early K dwarfs in the sample have T.g
and [Fe/H] determined from LTE spectral synthesis carried out
by Brewer et al. (2016) with SME (quoted uncertainties of 60 K
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Figure 1. Domain of T, R, and [Fe/H] for our reference sample of 141 cool

stars pulled from the library outlined in Yee et al. (2017). The cool stars have
temperatures and radii that satisfy T < 5200 K and R, < 1 R..

and 0.05 dex, respectively), while the sample mid to late K
dwarfs have T.p Ry, and [Fe/H] determined from a
combination of spectrophotometry, SED modeling, parallaxes,
and SME analysis carried out by Yee et al. (2017) (quoted
uncertainties of 5%, 7.4%, and 0.1 dex, respectively). Because
most of these catalogs do not provide a complete set of Tegr, Ry,
and [Fe/H] values, Yee et al. (2017) conducted an isochrone
analysis using Dartmouth stellar models (Dotter et al. 2008) to
obtain a homogeneous label set, and took uncertainties as the
S5th and 95th percentiles of the MCMC distributions that
resulted from fitting to the stellar model grids. The T, Ry, and
[Fe/H] domain of the cool star sample is illustrated in Figure 1.
For more details on any of the library catalogs or the isochrone
analysis procedure, see Yee et al. (2017).

3. The Cannon
3.1. Preparing HIRES Spectra for The Cannon

To prepare the spectral library for The Cannon, we must
ensure that the spectra satisfy certain conditions; the spectra
must share a common wavelength grid, be shifted onto the rest
wavelength frame, share a common line-spread function, and
be continuum-normalized via a method independent of S/N
(Ness et al. 2015). The first two conditions are already satisfied
for the library spectra, and we can assume that they effectively
share a line-spread function, though there may be negligible
variation due to variable observation seeing conditions. To
carry out normalization, we applied error-weighted, broad
Gaussian smoothing with

Zj(fj o wi(Xo)
2@ W)

where f; is the flux at pixel j of the wavelength range, o; is the
uncertainty at pixel j, and the weight w; (\o) is drawn from a
Gaussian:

fo) = ey

Qo-A)?

Wj(/\o) =e 1z , 2)

where L was chosen to be 3 A. If larger L values are chosen for
HIRES spectra, continuum-normalization begins to remove
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Figure 2. HIRES spectrum of a reference sample star (HD 100623) before and after normalization. The top panel shows the prenormalized spectrum overlaid with the
Gaussian-smoothed version of itself in red, while the bottom panel shows the normalized spectrum after the Gaussian-smoothed signal was divided out. The displayed
wavelength region (A = 5400-5600 A) is a subset of the full wavelength range and was chosen for better visualization of the spectrum and accompanying Gaussian-

smoothed curve.

high-resolution features. For reference, Ho et al. (2017) used
a width of L = 50 A to normalize low-resolution Large Sky
Area Multi-Object Fibre Spectroscopic Telescope (LAMOST)
spectra (R ~ 1800). The Gaussian smoothing procedure is
illustrated in Figure 2.

3.2. Training Step

We used The Cannon 2, the second implementation of The
Cannon developed by Casey et al. (2016). Hereafter, we will
refer to The Cannon 2 simply as The Cannon. This version
builds upon the original with additional features that are
designed to aid prediction of a larger label set including
elemental abundances that go beyond bulk metallicity ([Fe/
H]), such as regularization.

As outlined in Section 1, in the training step, The Cannon
uses a set of reference objects with well-determined labels to
construct a predictive model of the flux at every pixel of the
wavelength range that is a function of the stellar labels. Model
construction is based on two assumptions: that continuum-
normalized spectra with identical labels look identical at every
pixel, and that the flux at every pixel in a spectrum changes
continuously as a function of the stellar labels. While The
Cannon can be trained on any set of empirical spectra and their
labels, the resultant model will only be capable of predicting
labels for spectra with properties that are represented in the
training set. In other words, The Cannon is not able to
accurately extrapolate outside the training set parameter space,
so the training set spectra must be representative of the test set
spectra in order to predict accurate label values. It is also
important to note that the Cannon-predicted labels will only be
as accurate as those of the training set.

The flux model f;, for a spectrum n at pixel j can be written as

fu =) - 6+ ¢ 3)

where 0; is the set of spectral model coefficients at each pixel j
and v(l,) is a function of the label list /, that is unique for each
spectrum n. The function v(l,) is referred to as the “vectorizer”
which can accommodate functions that are linear in the
coefficients 6;, but not necessarily simple polynomial expan-
sions of the label list /,. The noise term is described by e;, and
can be taken as sampled from a Gaussian with zero mean and
variance a?n + sj2 where a%n is the uncertainty reported on the
input HIRES spectra (flux variance) and sf is the intrinsic
scatter of the model at each pixel j. This intrinsic scatter can be
likened to the expected deviation of the model from the
spectrum at j.

To determine the optimal model labels (Bj,s_,-z), we can relate
the flux model to a single-pixel log-likelihood function:

[f — v(l) - OF
it s

—In(o3, +5) — AQO), 4

Inp(f;,16;, (L), s7) = —

where A is a regularization parameter and Q(0) is a
regularizing function that encourages the model coefficients
0; to take on zero values, resulting in a simpler model that is
less prone to overfitting. In the case of L1 regularization
implemented within The Cannon, the regularizing function
takes the form

J—1
ORI &)

J=0

L1 regularization was chosen because The Cannon is designed for
predicting large sets of elemental abundances, and it is reasonable
to assume that only one or a few elemental abundances will affect
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Figure 3. Synthetic spectra generated via SpecMatch-Syn under the same T, log g, and [Fe/H] conditions (Ter = 4000 K, logg = 4.5 cm s 2, [Fe/H] =

1 —1

0.2 dex) but with varying amounts of additional broadening. From top to bottom, the spectra have v sini = 0-10 km s~ in increments of +2 kms™ .

the flux at a single pixel of the wavelength range. For more details
on regularization or the model itself, see Casey et al. (2016).

In the training step, the log-likelihood is maximized via the
Broyden—Fletcher—Goldfarb—Shanno algorithm to derive the
best-fit model coefficients 6; and intrinsic scatter s7:

N—1
6;, s; < argmax [Z Inp(f;,16;, v(ly). s})]. (6)

0.s; n=0

Plugging in the explicit form of the log-likelihood
(Equation (4)) leads to

Z_

0;, s? — argmax 5 5
n=0 Jjn + Sj

7]
B,S,'

lNl [fi — v(L) - OF

N—1
— > In(o3, + 57) — AQ(G)]. )
n=0

3.3. Test Step

In the test step, we set the model labels (6;, sz) to the
optimized values determined during the training step at every
pixel j, and fit for the label list /, for each star » that minimizes
the log-likelihood:

I, < argmin
1

2, - 2

=1 [f, — vl - 61
fj—z ) (8)
j=0 Tjn + 5j

n

Optimization of the log-likelihood in the test step is carried out
via weighted least squares.

4. The Cannon Performance
4.1. Building Intuition with Synthetic Spectra

Before running The Cannon on our cool star sample, we
sought to establish a measure of baseline performance. We did
this by constructing a sample of synthetic spectra that mimics
the cool star sample: 141 “stars” with the same label values as
the true cool sample. Because the labels of the synthetic
spectra, by definition, lack uncertainty, they can provide a
sense of how well The Cannon performs under perfect
conditions. The synthetic spectra are generated from the
publicly available code SpecMatch-Syn, which fits five

regions of optical spectra by interpolating within a grid of
model spectra from the library described in Coelho et al.
(2005). For more details on SpecMatch-Syn, see Petigura
(2015). See Figure 3 for examples of synthetic spectra.

We tested the validity of Cannon-predicted labels through a
bootstrap leave-one-out cross-validation scheme where we
trained the spectral model on all objects in the synthetic
spectral sample but one, and predicted labels for the object that
was left out. We carried out this scheme iteratively to pass
through the entire sample and predict labels for every object.
Following the work of Ness et al. (2015) and Casey et al.
(2016), we began with a spectral model in which the label list /,,
was quadratic in the labels, resulting in the following label list:

L, = [1, Tur, Ry, [Fe/HI, Tay, Teir - Ry,
Tor - [Fe/HI, R}, Ry - [Fe/H], [Fe/HP]. ©)

Where 1, the first element in the label list, is there to allow for a
linear offset in the fitting (Ness et al. 2015). We found that
modeling the projected rotational velocity vsini as a fitted-for
parameter in addition to Teg, Ry, and [Fe/H] resulted in more
accurate label predictions; a second-order model without v sin i
achieves accuracies of 40 K in T, 13% in R, and 0.06 dex in
[Fe/H], while a second-order model with vsini achieves
accuracies of 32 K in Ty, 13% in Ry, and 0.03 dex in [Fe/H].

Using a third-order rather than second-order (quadratic-in-
label) model with vsini further improves label predictions; a
third-order model achieves accuracies of 22 K in T, 8% in R,
and 0.03 dex in [Fe/H]. Thus, these tests with synthetic spectra
motivate a third-order Cannon model with v sin i included as a
label. The third-order model results in a label list composed of
additional third-order cross terms, bringing the total number of
terms up to 20.

4.2. Cool Star Sample

To run The Cannon on the cool star sample, we employed
the same bootstrap leave-one-out cross-validation scheme. As
in the case of synthetic spectra, the cool star HIRES spectra are
best described by a third-order model, which is unsurprising
given their resolution of R ~ 60,000 (~3 times the resolution
of APOGEE spectra). The more flexible model may also better-
describe our more diverse training set, composed of stars with a
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Figure 4. Spectrum of GL896A overlaid with the Cannon model before
augmenting the library with broadened copies of the spectra (top), and after
(bottom). The true spectrum is plotted in black while the Cannon models are
plotted in blue.

wider T range (APOGEE stars are confined to T =
3500-5500 K). A third-order model fitting for T.g, Ry, and
[Fe/H] achieves precisions of 80K in T, 6% in Ry, and
0.1 dex in [Fe/H].

We found that The Cannon predicted anomalously poor label
values for one source (GL896A). Upon inspection, we found
that the spectrum of GL896A exhibits significantly broader
features than any other source in our sample. Because GL896A
is not well-represented in the training set, The Cannon is unable
to construct a model that well-describes GL896A (Figure 4, top
panel). While such fast rotators are rare among K and M
dwarfs, the presence of this target indicates that our
implementation of The Cannon must still take them into
consideration. We modified our implementation by augmenting
and diversifying the training set; we created x copies of each
spectrum in the cool star sample (exploring different values of x
to see which resulted in the best performance), and applied
differential values of artificial broadening to simulate faster
stellar rotation. Artificial broadening was carried out by
convolving the spectra with a rotational-macroturbulent broad-
ening kernel described in Hirano et al. (2011).

In order for this scheme to work, v sin i must be specified as
a fitted-for label as in the tests with synthetic spectra. This is
problematic because more than half of the cool stars do not
have reported v sin i values. We dealt with this by assigning all
sources in the augmented sample a new label that describes
general broadening, taken to be the FWHM of a Gaussian fitted
to the spectral autocorrelation peaks (Figure 5). This resulted in
better flux predictions for the spectrum of GL896A (Figure 4),
and better label predictions overall. The most precise labels are
achieved when the cool star sample is augmented by x = 5
(five copies generated for each spectrum), and the copies are
artificially broadened by 0-5kms~ ' as the cool star sample
does not appear to include any significantly rapid rotators
(vsini > Skms '). We ultimately achieved precisions of 68 K
in Teg, 5% in Ry, and 0.08 dex in [Fe/H] (Figure 6, left panel,
and verified that these label predictions vary within the reported
precisions for different Cannon runs. While it may seem
surprising that The Cannon achieves better predictions in R,
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for empirical spectra compared to synthetic spectra (5% versus
8% in R,), it should be noted that the synthetic spectra may not
accurately reflect the input R, values as a conversion to log g
was required, which in turn required M,. We do not have M,
values for the cool star sample, and instead assumed a linear
relationship between R, and M, (Myx/M. = R«/R:) to obtain
mass estimates. This is a valid approximation for the main
sequence, but is not perfect.

Because of the large number of terms in our model, we
considered overfitting to be a potential issue. That is, overly
precise modeling of the training set flux may lead to less
accurate label predictions. To address this, we added regulariza-
tion to our Cannon model and assessed whether label prediction
improved. We explored a grid of regularization strengths from
A =10"°to A = 10% uniform in log space. We found that no
matter the regularization strength, adding regularization to the
model always resulted in less precise label predictions. It is
possible that regularization does not lead to better predictions for
the three labels (7.4 Ry, and [Fe/H]) we are considering
because all of these labels affect the flux at each wavelength
point. Thus, we do not benefit from regularization that
encourages sparsity (L1, encourages the model coefficients to
go to zero). L1 regularization may lead to better label predictions
if we expand our label set to include elemental abundances, but
that is beyond the scope of this study.

4.3. Performance at Low S/N

To investigate the effect of photon shot noise on the
precision of label predictions made with The Cannon, we
carried out the same procedure employed by Yee et al. (2017)
for the empirical spectroscopic tool SpecMatch-Emp; we
isolated a subset of 20 stars from the cool star sample with
S/N > 160/pixel and degraded their spectra by injecting
Gaussian noise to simulate target S/N values of 120, 100, 80,
60, 40, 20, and 10 per pixel. We generated 20 S/N-degraded
spectra for each spectrum in the subset and S/N target value,
then compared the precision of the Cannon label predictions
for the degraded spectra with those of the original S/N > 160/
pixel spectra, which we took as ground truth. The results are
summarized in Figure 7.
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these linear trends are much lower than those of residuals from labels predicted via techniques that make use of empirical spectral libraries (Yee et al. 2017).

As expected, lower S/N leads to larger median scatter in
label predictions made with The Cannon. However, the median
scatter at S/N = 10/pixel is still low, with 3.5 K in Teg, 0.4%
in Ry, and 0.006 dex in [Fe/H]. This demonstrates that The
Cannon is quite robust, even at low S/N values. This
performance is better than that achieved by SpecMatch-
Emp, which has median scatter values at S/N = 10/pixel of
10.4K in Teg, 1.7 % in R, and 0.008 dex in [Fe/H] (Yee et al.
2017), though it should be noted that SpecMatch-Emp
conducted this test with stars spanning the HR diagram while
our sample is Tog-limited.

Motivated by the small observed scatter in [Fe/H], we
attempted to estimate the minimum change in [Fe/H] that is
theoretically detectable. To do so, we considered the difference
between two spectra corresponding to stars with slightly
different metallicities (A[Fe/H]). We defined a quantity S that
relates three quantities: A[Fe/H]; the derivative of the
spectrum with changing metallicity, §f /6 [Fe/H]; and the flux
uncertainty o S can be thought of as analogous to S/N. For
the jth pixel, the relation is

(MFC/H]) A[Fe/H]

i =

(10)
91,

This equation can be rewritten as

(é[Fe/H]) A[Fe/H]

¢ (oy)
where (o) is the average flux uncertainty and ¢; is directly

related to the blaze function. The total S (summing over pixels)
of the metallicity measurement can be written as

S= \/W
(s o]

A[Fe/H]
{a7)

Rearranging terms to solve for the minimum theoretically

detectable change in metallicity yields

of

A[Fe/H] =S<qf)/\/z[(5[Fe/H])/c] . (13)

A metallicity change is detectable at 1o if S = 1. For an
S/N = 10/pixel as considered above, i.e., (o7) = 0.1, we find
A[Fe/H] = 0.001 dex. This is much smaller than the median

J —

) (1)

(12)
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Figure 7. Log—log plots showing the median scatter of Cannon-derived labels
as a function of both S/N and resolution. Each colored block within the
subplots represents the median rms difference in T, (top), R, (middle), and
[Fe/H] (bottom) predictions from the cool star subset with spectra satisfying
S/N > 160/pixel when degraded to lower S/N and resolution. The median
rms difference is also explicitly provided within each block in units of K (T¢),
solar radii (R,), and dex ([Fe/H). The median scatter increases as the S/N and
resolution decreases, which is representative of the effect photon shot noise and
lower resolution would have on the precision of Cannon label predictions for
HIRES spectra.

scatter in [Fe/H] predictions made with The Cannon at S/N =
10/pixel (0.006 dex). Therefore, the sensitivity of The Cannon
lies within theoretical bounds.

4.4. Performance at Low Spectral Resolution

While HIRES spectra are observed at R ~ 60,000, many
large spectroscopic surveys are observed at lower spectral
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resolutions. Thus, it is valuable to quantify how spectral
resolution affects the accuracies of label predictions with The
Cannon. We expected performance to decrease as spectral
resolution decreases because lines will blend together, resulting
in less spectral information for The Cannon to work with.

To investigate spectral resolution dependence, we followed
the same procedure used for the S/N degradation test; we used
the same subset of 20 stars with S/N > 160 and simulated
lower resolution by convolving their spectra with a Gaussian
kernel. We again treated the label predictions of the original
high-resolution (R =~ 60,000) spectra as ground truth. We
simulated spectra with target resolution values of R = 50,000,
40,000, 30,000, 20,000, 10,000, 7500, and 5000. The results
are summarized in Figure 7, which also illustrates how the
precisions of label predictions are affected when both S/N and
resolution are degraded.

As in the case of degraded S/N, the accuracy of Cannon label
predictions decrease with spectral resolution. At R = 30,000,
median scatter in the labels is 6.7 K in T, 0.2% in R, and
0.009 dex in [Fe/H]. This performance is better than that of
SpecMatch-Emp’s at equivalent resolution, with median
scatter values of 10.1K in T, 1.3% in R, and 0.014 dex in
[Fe/H] (Yee et al. 2017).

The Cannon also exhibits a much slower reduction in label
accuracy as resolution continues to decrease; at R = 5000, the
median scatter in Cannon predictions is 24.1 K in T, 4.7% in
R,, and 0.026 dex in [Fe/H], while SpecMatch-Emp’s is
962 K in Tegr, 228% in Ry, and 0.094 dex in [Fe/H] (Yee et al.
2017). This suggests that The Cannon would be a favorable
method for predicting labels for spectra from many large, lower
resolution spectroscopic surveys (e.g., SEGUE (Beers et al.
2006), R ~ 2000, RAVE (Steinmetz et al. 2006), R ~ 7000,
LAMOST (Newberg et al. 2012), R ~ 1800).

4.5. Performance with Label Errors

To investigate the effect of errors in the library labels on
predictions made with The Cannon, we followed the same
procedure used for the S/N and resolution degradation tests;
we used the same subset of 20 stars with S/N > 160 and
injected Gaussian noise into the labels to simulate additional
uncertainty up to 1x the achievable precisions (68 K in T,
5% in stellar radius R, and 0.08 dex in [Fe/H]). We found that
the labels are quite robust to realistic random noise in the
library labels; adding 1x uncertainty leads to an increase in
label prediction uncertainties of 22 K in T, 4% in R, and
0.06 dex in [Fe/H]. The results are summarized in Table 1.

It is worth noting that the scatter in Cannon-predicted values
of T is lower than the original label uncertainty by more than
50%, suggesting that in the limit of a very large library with
labels containing a certain amount of random noise, The
Cannon can derive a model that yields a higher T precision
compared to that of the library spectra. We note that this result
is insensitive to zero-point offsets; it is not possible to bootstrap
to higher label precisions using The Cannon.

5. Discussion

We evaluated how well The Cannon, a data-driven spectro-
scopic tool, is able to predict stellar labels for cool stars
(Teie = 3000-5200 K) given high-resolution spectra. With
adjustments to the spectral training set, it achieves precisions
of 68K in Ty, 5% in Ry, and 0.08 dex in [Fe/H]. Unlike
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Table 1
Median rms Scatter in All Cannon-derived Labels after Adding 1 x the Amount
of Uncertainty to All Labels

Added Uncertainty o(Tetp) (A Ry/Ry) o([Fe/H])
(Tess, Ry, [Fe/H]) K % dex
68 K 22 2 0.02
5% Ry 17 4 0.02
0.08 dex 10 1 0.06

traditional spectroscopic modeling techniques, The Cannon
does not rely on stellar models that struggle to reproduce the
complexities of cool star spectra. Rather, as a data-driven
method, The Cannon’s performance improves as the input
spectra become more information-rich.

In the case of spectra with perfect labels (no uncertainty) as
simulated with synthetic spectra, The Cannon achieves label
accuracies of 22 K in T, 8% in Ry, and 0.03 dex in [Fe/H].
The Cannon generally makes better label predictions for
synthetic spectra because the labels of real spectra include
uncertainties that are endemic to the catalogs from which the
cool star sample originates. These catalogs are described in von
Braun et al. (2014), Mann et al. (2015), Brewer et al. (2016),
and Yee et al. (2017), and present labels derived from a
combination of modified SME (Brewer et al. 2015), photo-
metry, parallaxes, interferometry, and empirical relations
between the labels and EWs of spectral features. Each of these
techniques have associated uncertainties, resulting in less
precise label predictions with The Cannon when compared to
the case of spectra with perfect labels.

Compared to current synthetic spectral techniques (SME,
MOOG, etc.), The Cannon is better suited for predicting the
labels of cool stars. While the latest iterations of spectral
synthesis codes model cool stars more successfully than initial
versions with additions such as more accurate radiative transfer
algorithms, equations of state, and larger line lists, they still
lack complete sets of molecular line opacities and sufficient
constraints to fully disentangle the effects of T.g, logg, and
abundances (e.g., Bean et al. 2006; Piskunov & Valenti 2017).

It is more appropriate to compare The Cannon to other
data-based techniques such as SpecMatch-Emp, a label-
predicting spectroscopic tool developed by Yee et al. (2017)
that utilizes an empirical spectral library. While SpecMatch-
Emp achieves accuracies of 70K in T, 10% in R,, and
0.12 dex in [Fe/H] for stars of spectral types ~K4 and later,
these label predictions are slightly worse than those achieved
by The Cannon. In addition, the residuals from label
predictions with SpecMatch-Emp display linear trends
where residuals are more negative for larger values in the
label space, and more positive for smaller values in the label
space (Yee et al. 2017). These trends are partly explained by
considering that the empirical spectral library spans a finite
region (convex hull of the label values), and is inclined to pull
spectral predictions at the edge of the region toward the center.
While the residuals from label predictions with The Cannon
also display slight linear trends, they are less pronounced and
constitute a smaller source of systematic error (Figure 6, right
panel). This is because the choice of flux model coefficient
values allows for some extrapolation outside the finite region
spanned by the training set.

While The Cannon is a powerful tool for spectroscopic
characterization, it has a number of drawbacks. For example,
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by individually treating each pixel within the spectral
wavelength range, it assumes no covariance between flux
values of any pixels. However, multiple spectral features can be
affected by a single label, such as a particular elemental
abundance or ionization state. This motivates converting The
Cannon into a fully Bayesian framework through the inclusion
of priors such as line lists to address covariance of different
spectral features, or known correlations between labels such as
the Stefan—Boltzman relation.

Although L1 regularization does not improve cool star label
predictions for Teg, Ry, and [Fe/H], L2 regularization may be
better suited to such cases where labels do not include large
sets of elemental abundances as L2 regularization does not
encourage model coefficients to go to zero as rapidly.
However, we are also interested in eventually using The
Cannon to predict elemental abundances, in which case L1
regularization may become a useful feature. For example, we
are interested in comparing the C/O ratios of K and M dwarfs
to the characteristics of planets they host as such volatile ratios
can probe planet formation histories. Ultimately, we will use
The Cannon to conduct large demographic studies of cool stars
with HIRES spectra with the goal of establishing correlations
between small, cool stars such as K and M dwarfs and the
planets they host. This work has wide potential application
given that many future exoplanet surveys are focused on cool
stars such as M dwarfs.

We thank Andrew Casey (Monash U.), Anna Ho (Caltech),
and Melissa Ness (MPIA) for many useful discussions
regarding The Cannon. A.B. acknowledges funding from the
National Science Foundation Graduate Research Fellowship
under grant No. DGE1745301.
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