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Abstract

Amorphous solid water (ASW) is found on icy dust grains in the interstellar medium (ISM), as well as on comets
and other icy objects in the outer solar system. The optical properties of ASW are thus relevant for many
astrophysical environments, but in the ultraviolet–visible (UV–vis), its refractive index is not well constrained.
Here, we introduce a new method based on UV–vis broadband interferometry to measure the wavelength-
dependent refractive index n(λ) of amorphous water ice from 10 to 130 K, i.e., for different porosities, in the
wavelength range of 210–757 nm. We also present n(λ) for crystalline water ice at 150 K, which allows us to
compare our new method with literature data. Based on this, a method to calculate n(λ, ρ) as a function of
wavelength and porosity is reported. This new approach carries much potential and is generally applicable to pure
and mixed ice, both amorphous and crystalline. The astronomical and physical–chemical relevance and future
potential of this work are discussed.
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1. Introduction

Water ice is ubiquitous both in the solar system and in the
interstellar medium. Unless it has been heated above
temperatures of roughly 130 K, it resides in the form of
amorphous solid water (ASW). In our solar system, water ice
has been detected on Kuiper Belt objects (Baragiola 2003;
Stern et al. 2015; Raponi et al. 2018), comets (Mumma &
Charnley 2011; Raponi et al. 2016), and icy moons such as
Europa, Ganymede, and Enceladus (Calvin et al. 1995; Porco
et al. 2006; Dalton et al. 2010) as well as in Saturn’s rings. The
study of water ice on the outer solar system objects is
particularly interesting because it provides an understanding of
the chemical history of our solar system and holds the potential
to explain the origin of water on Earth. Beyond the solar
system, observations in the infrared have shown us that ice is
residing on cold dust particles throughout the interstellar
medium (van Dishoeck et al. 2013; Boogert et al. 2015 and
refs. therein). The Infrared Space Observatory (ISO; Gibb et al.
2004), Spitzer telescope, as well as several ground-based
observatories revealed that these ices comprise predominantly
H2O but also contain other species including CO2, CO, CH4,
NH3, and CH3OH (Boogert et al. 2008; Öberg et al. 2011).
These ice-covered dust grains provide a surface area for solid-
state reactions that result in the formation of larger complex
organic molecules (Linnartz et al. 2015; Ligterink et al. 2018
and refs. therein). Many of these are building blocks of matter
considered to be important for the origin of life (Ehrenfreund
et al. 2002; Herbst & van Dishoeck 2009). Water, as the most
abundant component of the ice, largely determines the chemical
and physical properties of the ice mantle.

Most of our information of ice beyond the Earth comes from
spectroscopic studies of light interacting with the ice. In the
solar system, the surface of the icy objects is studied by
analyzing reflected sunlight (Calvin et al. 1995; Baragiola 2003;
Stern et al. 2015). In the interstellar medium, water ice is
mostly observed by infrared absorption features in the light
from reddened stars. To interpret and quantify the constituents

in the observational spectra of water ices, the optical constants
of water ice (ASW or crystalline) are required. One also needs
these same numbers to calculate the absorption, transmission,
reflection or scattering of light in ice or ice containing clouds in
planetary atmospheres. The refractive index of water ice is also
used in radiative transfer models of molecular clouds (Pollack
et al. 1994), accretion/circumstellar disks (Tilling et al. 2012)
and recently to constrain the abundance and grain size of water
ice on comet 67P/Churumov–Gerasimenko (Raponi et al.
2016). In these models, the optical constants of water were
taken from Warren (1984), who reported the values for fully
dense crystalline water in the UV–vis range. However, the
water ice in molecular clouds, accretion/circumstellar disks,
and on the surface of many outer solar system icy objects is
predominantly amorphous and expected to be porous. Using
the values for (fully dense) crystalline ice, therefore, is likely to
result in less accurate predictions.
The optical properties of pure water ice are described by its

refractive index, a complex function consisting of two
parameters. The imaginary index, k, describes the attenuation
or absorption of the medium and the real refractive index, n, is
the ratio of the velocity of light in the medium with respect to
the vacuum speed of light. Both k and n are wavelength
dependent. In the UV–vis range, wavelength-dependent values
of n are only reported for crystalline, and thus fully dense,
water ice (Warren 1984; Warren & Brandt 2008), for liquid
water, and for steam (Schiebener et al. 1990; Harvey et al.
1998). To the best of our knowledge, no prior laboratory
measurements exist of the wavelength-dependent refractive
index values for ASW in the UV–vis range.
ASW is a meta-stable form of water ice with no long-range

ordering. Most ice under Earth’s atmospheric conditions is
(hexagonal) crystalline, but in astronomical environments,
ASW is most often found (Smith et al. 1989; Boogert et al.
2015), although crystalline ice, thought to be a product
of thermal processing of ASW, has been detected as well
(Terada & Tokunaga 2012). ASW is formed when water is
deposited or chemically formed at temperatures below 130 K
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(Brown et al. 1996; Baragiola 2003; Dohnálek et al. 2003;
Ioppolo et al. 2008; Cuppen et al. 2010; Dulieu et al. 2010;
Jing et al. 2011) or when liquid water is rapidly cooled.
Amorphous ice can crystallize in an exothermic (energy
releasing) and irreversible process (Bossa et al. 2012).
Crystallization has a significant barrier and the rate follows
a Boltzmann-like dependence on temperature, resulting in
very low rates at lower temperatures (see, e.g., Jenniskens &
Blake 1996; Maté et al. 2012). The structural organization of
water ice can be clearly distinguished when its absorption
spectrum is studied in the infrared between 3500 and
3000 cm−1 (2.85 and 3.3 μm). The absorption of ASW shows
one broad peak in this range, while crystalline ice appears as a
combination of three bands (e.g., Hudgins et al. 1993).

The density of crystalline ice is 0.94 g cm−3, but in ASW,
the density is variable. Laboratory studies revealed that vapor-
deposited ASW at sample temperatures below ∼130 K is
porous with a large specific surface area (Westley et al. 1998;
Dohnálek et al. 2003; Clements et al. 2018). The porosity level
depends on the growth conditions of the ice, such as the
temperature, and in the laboratory deposition angle and
deposition rate. A lower deposition temperature, higher
deposition angle, and higher deposition rate favor a higher
degree of porosity (Dohnálek et al. 2003; Maté et al. 2012).
Infrared spectra of porous ASW formed in the laboratory show
two weak absorption bands at 3696 and 3720 cm−1 caused by
unbound or dangling OH (dOH) bonds. The band strength of
the dOH absorption features is positively related to the
porosity. Spectroscopic searches for dOH band features in
dense clouds did not result in unambiguous identifications
(Keane et al. 2001), which has led to the interpretation that ice
processing in space ultimately results in compaction
(Palumbo 2006; Raut et al. 2007; Accolla et al. 2011; Clements
et al. 2018). However, a lack of dOH does not necessarily rule
out the presence of partially porous ASW, as Bossa et al.
(2015) demonstrated that dOH bonds are not detectable for
such ices. The porosities of water ice on ISM dust grains and
on many solar system objects are still being debated.

In Section 2, we give an overview about the state-of-the-art
of the work focusing on the refractive index of water ice in the
UV–vis range. We then explain our new experimental approach
and subsequently show the data processing procedures in
Section 3. In Section 4, we present the new values for the
refractive index of ASW from 210 to 757 nm and for
temperatures from 10 to 130 K. Also a measurement for
crystalline ice at 150 K is presented. These measurements are
combined to derive a function that describes n(λ, ρ) as a
function of the wavelength and porosity, using the specific
refraction. Finally, in Section 5, we discuss the future potential
of the new method introduced here.

2. Materials and Methods

2.1. Refractive Index of Water Ice

The refractive index n can be measured during the deposition
of water vapor on a reflective or transparent surface. For
volatile species, this is usually done on the tip of a liquid
nitrogen or closed cycle helium cryostat placed inside a
vacuum chamber (e.g., Goodman 1978; Brown et al. 1996;
Dohnálek et al. 2003).

As the thickness increases during the ice growth, periodical
fluctuations in the intensity of the transmitted or reflected light

appear. These fringes occur due to constructive and destructive
interference arising from a difference in the path length of light
reflecting internally in the ice and light transmitting directly.
The refractive index of the sample is related to the period of the
fringes and the thickness d by

d
m

n2 cos
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l
l q

=
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where m is the total number of fringes observed at wavelength
λ (in nm), n(λ) is the wavelength-dependent refractive index,
and θ is the angle of incidence with respect to the surface.
Interference is commonly measured in reflection (e.g., Baratta
& Palumbo 1998; Fulvio et al. 2009) but can also be observed
in transmission. Interference measurements are typically
performed using a monochromatic light source, such as a
helium–neon laser. The strength of our new approach is that we
simultaneously record the interference for all wavelengths
covered by a broadband light source. The details are given in
Section 2.2.
Warren (1984) and Warren & Brandt (2008) reported n(λ) of

crystalline water ice between 200 and 400 nm at a resolution of
50 nm, and between 400 and 800 nm at a resolution of 10 nm.
In these cases, discrete wavelengths are measured in separate
experiments, placing practical limits on the full wavelength
coverage and resolution and ultimately limiting the precision of
n to how well the experiments are reproduced. In the case of
ASW, n is predominantly measured using helium–neon lasers,
and therefore reported at a wavelength of 632.8 nm (Brown
et al. 1996; Westley et al. 1998; Dohnálek et al. 2003;
Romanescu et al. 2010). Bouilloud et al. (2015) provided an
overview of known values of the refractive index for a number
of other astrophysically relevant ices, including H2O, CO2, CO,
CH4, and NH3.
The refractive index depends on the density (porosity) of the

solid. Vacuum deposition of crystalline ice results in a constant
density, but for ASW, the porosity increases at lower
deposition temperatures (see, e.g., Brown et al. 1996; Westley
et al. 1998; Dohnálek et al. 2003). The porosity and the
refractive index are related via the Lorentz–Lorenz equation:
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Here, R(λ) is the specific refraction (in units of cm3 g−1) and ρ

is the density of the ice. We adopt R(632.8)=0.2072 cm3 g−1

(Brown et al. 1996) at a density of 0.93 g cm−3 and assume that
R is constant at a given wavelength, regardless of the
morphology of the ice.3 We will verify the latter assumption.
In order to determine the refractive index of porous ASW, one
needs to determine or assume the level of porosity. For this
study, we rely on the ASW densities reported as function of the
deposition temperature by Dohnálek et al. (2003). Using
Equation (2) together with the adopted R-value yields the
refractive index.

3 0.93 g cm−3 is slightly off from the density of crystalline ice (0.94 g cm−3),
but as 0.93 g cm−3 is reported with the R-value for the calculations of the
refractive index, this value is used.
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2.2. Experimental Setup

The experiments were done using a recently constructed setup,
described in detail in Kofman et al. (2018). We will briefly
describe the experimental features that are relevant to this study.
The setup is a high vacuum system with a base pressure in
the order of 5×10−8 mbar. Residual gas in the chamber is
dominated by water. At the center of the chamber, a BaF2 sample
window is mounted onto the cold-finger of a closed cycle helium
cryostat. The temperature of the sample is measured using a
chromel-Au/Fe thermocouple and controlled with resistive
heating. Temperatures between 10 and 320 K are accessible
with an absolute accuracy better than 2 K. For these experiments,
water ice is grown using background deposition, the same
method as used by Dohnálek et al. (2003). We use a precision
dosing valve, which results in a constant deposition rate with
less than 3% variation in the pressure over the entire deposition
time, and also allows reproducible water partial pressures inside
the chamber between different experiments, ensuring that the
conditions of separate experiments are comparable.

During water deposition, the chamber pressure is 2.6×
10−6 mbar, corresponding to a deposition rate of about
0.3 nm s−1 or roughly 1 mono-layer per second. Experiments
were performed with sample temperatures of 10, 30, 50, 70, 90,
110, 130, and 150 K. Only in the latter case does this result
in the formation of crystalline ice; all other experiments
concern ASW.

UV–vis spectra are continuously recorded during the
deposition. For the work performed here, the spatially filtered
light of a broadband Xe-arc lamp, emitting in the range of
180–1100 nm, is guided through the sample that is positioned
perpendicular to the light beam. Light is dispersed by an Andor
303i Shamrock spectrometer equipped with a 10 μm slit and
collected on a thermo-electrically cooled CCD (Andor iDus
DV420 OE). We record data from 210 to 757 nm at a spectral
resolution of 0.56 nm, and at a time resolution of 4.3 s. The
broadband spectroscopy applied allows us to measure inter-
ference fringes over the full wavelength range during the
deposition. From the interference fringes, n can be determined
as a function of λ in one experiment, something not possible
when only monochromatic light sources are used.

3. Results and Analysis

We demonstrate the data processing procedures on UV–vis
signals recorded during the deposition of ASW at 90 K and
10 K in detail. The other experiments are analyzed following
the same procedure. The analysis is performed in three steps.
First, we determine the refractive index at each wavelength
separately. Subsequently, these values are used as starting
points to fit a continuous function for n(λ). The data sets are
finally combined to derive one equation for the refractive
index, n(λ, ρ), as a function of wavelength and porosity using
the Lorentz–Lorenz equation.

3.1. Fitting the Period of the Interference

The use of background deposition causes ices to grow on
both the front and back side of the window. In the ideal case,
the ratio of the deposition rates on each side of the sample
would be unity (i.e., 11

2
=f

f
, with fi being the deposition rate at

the respective side). In practice, this ratio varies between 0.91
and 0.96 in the experiments performed in this study. Measuring
the interference pattern monitors the cumulative effect of

similar but not fully identical growth processes on both sides of
the window. As will be shown below, the effect of asymmetric
deposition can be corrected by taking into account the
empirically determined 1

2

f
f
-value. As the light propagates

through the growing ice on both sides of the deposition
window, the absolute light intensity I at wavelength λ
fluctuates as a function of the time t. When the deposition
rates at both sides are equal, the signals can be described by a
single periodic function:

I A
P
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P(λ) is the wavelength-dependent period, and A is the magnitude
of the oscillation. Several studies focus on the absolute values of
A, and we refer the reader to these reports for a full description of
the amplitude of the signal (Goodman 1978; Dohnálek et al.
2003; Romanescu et al. 2010). Note that as in our experiments
the light progresses at a normal incidence, the cos q term in
Equation (1) equals unity and is left out.
In the case of asymmetric deposition, two cosine terms, one

for each side of the window with a corresponding period P(λ)
and amplitude A, are required to reproduce the observed
interference pattern.
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Note that we cannot discriminate which part of this equation
describes which side of the window. In order to determine the
period from the experimental signals, we take A1=A2= A;1

2
i.e., both sides of the window contribute equally to the
amplitude of the signal. This allows us to fit a single value of A,
which significantly reduces the complexity of the fitting
routine. Similarly, the period is fit with a single value for both
signals in the first iteration. Subsequently, we introduce the 1

2

f
f

factor in the second cosine, substituting P2(λ) with 1

2

f
f

P1(λ).
This comes from the fact that the period P(λ) is directly related
to the deposition rate f (see Equation (6)). The 1

2

f
f

factors are
constrained manually for each experiment and are included in
the final fits that start from the best-fit solution of the first
iteration. Table 1 shows the values of 1

2

f
f

used for the fits of all
the experimental temperatures. As the occurrence of the
interference minima (see below) is fully determined by 1

2

f
f
,

we can constrain 1

2

f
f

quite accurately. Based on this, we estimate

the error on the value for 1

2

f
f

in the order of 1%.
The experiments at 90 and 10 K represent two different cases

of asymmetric deposition, with 1

2

f
f
=0.96 and 0.94, respec-

tively. Figure 1 shows the interference signal measured during
the deposition at a few selected wavelengths throughout the
recorded range. The seven wavelengths are picked at intervals
of 80 nm across the entire measured range. The left panel
shows the deposition at 90 K, and the right panel at 10 K. The
resulting fits using Equation (4) are also shown. The effect of
the asymmetric deposition rates is seen in the decrease in the
amplitude of the interference signal after roughly 10 periods in
the left panel and after 6 periods in the right panel. Note that
this lapse in intensity is persistently seen after the same number
of periods at the different wavelengths. Currently, we do not
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have a full explanation for the difference in the deposition rates
at the two sides of the sample, but we intend to make this the
subject of an upcoming study. Finally, note that the signal
becomes more noisy at wavelengths above 400 nm, an effect of
small intensity fluctuations in the spectral energy distribution of
the xenon light source.

3.2. Deriving the Refractive Index Using the Experimentally
Determined P(λ)

In order to calculate the refractive index from the period, we
substitute d=fmP(λ) in Equation (1). This comes from the
fact that the thickness of the ice is equal to the deposition rate
f, multiplied by the total deposition time, mP(λ).

This yields:

mP
m

n2
f l

l
l

=( )
( )

and after reordering:

n
P2

. 5l
l
l f

=( )
( )

( )

We use this equation to express ne(λ), with the subscript e
indicating that these values are obtained from the experiments,

as a ratio to n(632.8):

n

n

P

P632.8 632.8
. 6e 632.8l l
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We determine n(632.8) from the Lorentz–Lorenz equation
(Equation (2)), and we use the specific refraction R=
0.2072 cm3 g−1 and the density ρ of background-deposited
ice from Dohnálek et al. (2003), using their Figure 8 and fitting
a linear function for the densities derived between 22 and
140 K. We follow Dohnálek et al. (2003) in their assumption
that the level of porosity depends linearly on the deposition
temperature (for the range studied). The densities and the
resulting refractive indices are shown in Table 1.
Using Equation (6) and the periods from the fits of the UV–

vis signal recorded during the ice deposition, the values of ne(λ)
are obtained. The left panel of Figure 2 shows ne(λ) obtained
from the signal recorded during the deposition of ASW at 90K.
The figure shows that ne(λ) increases at shorter wavelengths.
Between 400 and 760 nm, the refractive index exhibits
oscillations of the order of 1% of the n-value, likely due to the
lower signal-to-noise ratio at these wavelengths. We can
reproduce the fringes and the overall interference pattern seen
in the experimental signals when we substitute the period in
Equation (4) and calculate the amplitude I on a wavelength-time

Figure 1. The measured light intensity at selected wavelengths during growth of water ice at 90 K (left panel) and 10 K (right panel). The fits of Equation (4) are
shown using black dashed lines. Signals are offset for clarity.

Table 1
Density of Background-deposited ASW Reported by Dohnálek et al. (2003), the Total Thickness d, 1

2

f
f
, σfit, Which is the Standard Error on the Refractive Index from

the Fit of Equation (7) and Best-fit Values for B1 and B2 from Section 3.3

Temperature (K) ρ d (nm)
1

2

f
f n(632.8)±σfit B1 B2

10 0.585±0.010 1703.6±6.0 0.94±0.01 1.190±0.004 0.309 0.098
30 0.636±0.010 1659.3±9.7 0.94±0.01 1.208±0.007 0.374 0.099
50 0.688±0.010 1559.8±4.3 0.94±0.01 1.226±0.003 0.331 0.164
70 0.740±0.010 1481.7±2.2 0.94±0.01 1.244±0.002 0.377 0.164
90 0.791±0.010 1436.1±5.9 0.95±0.01 1.262±0.003 0.280 0.291
110 0.843±0.010 1343.2±3.2 0.96±0.01 1.280±0.003 0.400 0.220
130 0.895±0.010 1317.6±2.2 0.96±0.01 1.299±0.002 0.417 0.258
150 0.925±0.010 1177.6±5.7 0.92±0.01 1.310±0.006 0.496 0.190
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grid, simulating the UV–vis interference pattern. This gives a
qualitative impression of the performance of the fitting routines.
In the middle panel of Figure 2, we show the simulated
interference pattern, with the right panel showing the recorded
UV–vis interference pattern. We see that the fitting routine
reproduces the experimental signals well. Figure 3 shows the
same panels for the experiment at 10 K. At 10 K, the destructive
interference clearly results in a low-amplitude band after six
periods, starting at roughly 2000 s at 200 nm, and falling outside
of the experimental time range at wavelengths longer than
600 nm. This same pattern can be seen in Figure 1. The
experimental signal also shows vertical bands, indicating
fluctuations in the total lamp flux, which already were noticed
at longer wavelengths in Figure 1.

3.3. Fitting of the Refractive Index Using the Sellmeier
Equation

In the previous section, the refractive index derived from the
experimental interference patterns showed relatively small and

non-physical oscillations above 400 nm. By using a continuous
function for n(λ), we can eliminate these artifacts. The
wavelength dependency of the refractive index can be
approximated by using the Sellmeier dispersion equation
(Sellmeier 1871):

n
B

C

B

C
1 , 7S

2 1
2

2
1

2
2

2
2

l
l

l
l

l
= +

-
+

-
( ) ( )

where each term in the summation represents an absorption
resonance of strength B at wavelength C , and nS(λ) is labeled
with the subscript S to indicate these values are derived using
the Sellmeier equation. We use two sets of parameters to
describe nS(λ), corresponding to absorption maxima at 71 and
134 nm ( C1 and C2 ), the vacuum UV absorption maxima of
ASW (Cruz-Diaz et al. 2014). This relates back to the fact that
the real and imaginary refractive indices are connected. We
assume that the electronic absorption maxima do not change
significantly when changing from amorphous to crystalline

Figure 2. Left panel: the wavelength-dependent refractive index from fitting the entire interference pattern using Equation (4). Middle panel: simulated two-
dimensional interference pattern based on P(λ) and Equation (4). Right panel: experimental data showing the UV–vis signal recorded during the deposition of ASW
at 90 K.

Figure 3. Left panel: the wavelength-dependent refractive index from fitting the entire interference pattern using Equation (4). Middle panel: simulated two-
dimensional interference pattern based on P(λ) and Equation (4). Right panel: Experimental data showing the UV–vis signal recorded during the deposition of ASW
at 10 K.
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water ice, an assumption we later verify. B1 and B2 are fit using
a least-squares approach with a linear cost function. The best-fit
values for B1 and B2 are reported in Table 1. Note that although
we adopted the refractive index at 632.8 nm to calculate ne(λ),
we do not force the Sellmeier fit through this value.

A conservative estimate of the relative error of the resulting
function for nS(λ) can be obtained by calculating the difference
between the experimental fit of the period and the Sellmeier fit.

The difference between nS(λ) and the experimental ne(λ)
provides a measure for the uncertainty at this wavelength. The
error, σλ, is calculated by taking the root mean square error of
the two values of n at wavelength λ. The average is shown as
σfit in Table 1.
In Figure 4, we show the refractive index from the period

(from Section 3.1), together with the fit of Equation (7) for all
the temperatures, including the 10 and 90 K measurements

Figure 4. The different experiments are presented in pairs of two plots. The left plots show the refractive index of the different experiments as determined by the fitting
of the periodic signals (ne(λ), in blue) plot together with the fit to the Sellmeier equation (nS(λ), in orange). The deposition temperatures are indicated in the headers.
The right plots show the experimental data recorded at the corresponding temperature.
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already shown in Figures 2 and 3. The experimental UV–vis
patterns are shown as well. The graphs are shown in pairs of
two, where the left panel shows ne(λ) and nS(λ), and the right
panel shows the experimental signal. Clearly, the fit based on
Equation (7) removes the oscillations still visible when using
Equation (4).

3.4. Using the Lorentz–Lorenz Equation to Derive a General
Function for the Refractive Index

Although the Sellmeier fits in Figure 4 are generally well
constrained, we see disagreements between the experimentally
determined values for ne(λ) and nS(λ) in some wavelength
domains, particularly in the cases of the 30 and 150 K experiments
above 600 nm. Here, the interference patterns are relatively noisy,
and as a result, the standard error σfit on the fits is larger for these
two experiments. The uncertainty in the resulting nS(λ) values can
be further decreased by using the Lorentz–Lorenz equation and
producing RT(λ) for each temperature, where the subscript T
indicates the deposition temperature, and using the average of the
eight measurements to provide one set of values for Ra(λ). This in
turn allows us to derive a general function for n(λ, ρ) as a function
of wavelength and porosity, which has the advantage that we can
calculate the refractive index for any ice porosity. Note that for
this, we assume R632.8=0.2072 cm3 g−1 and Ra to be indepen-
dent of temperature, and that the electronic absorption features of
ASW and crystalline ice are not significantly different. The
respective curves of RT(λ) in Figure 5 for the amorphous and
crystalline experiment indicate that this assumption is valid within
the uncertainty of the experiments: the largest outlier in this figure
is the R90(λ) curve, and the R150(λ) curve agrees closely with
those from the other experiments. This indicates that the porosity
is the governing factor in the refractive index and that the ordering
of the water molecules in the solid phase (i.e., ASW or crystalline
ice) is less important. Note that the use of the specific refraction to
determine the refractive index of ASW is widely used in the
literature (e.g., Brown et al. 1996; Dohnálek et al. 2003, and
implicitly in the subsequent work adopting the refractive index
from these studies). Here, we provide the proof that this approach
is indeed valid.

A continuous function for n(λ, ρ), i.e., explicitly using the
density ρ and based on the derived Ra(λ) curve, is obtained by

rewriting Equation (2) into:
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where C1 and C2 are the same absorption maxima as used in the
fitting of Equation (7). Equation (9) is fit to the curves in
Figure 5, yielding the best-fit parameters D1=0.8416 and
D2=1.0592. We scaled the values of RT(λ) to intersect
R(632.8)=0.2072 cm3 g−1, as any deviation from this value is
due to errors in the period determined in Section 3.1.
Subsequently, Equation (9) and the Lorentz–Lorenz relation
(Equation (2)) were used to calculate the n(λ) for different
temperatures and the corresponding densities (as listed in
Table 1). The resulting n(λ) curves are shown in Figure 6.
These curves all show a similar wavelength behavior, with a
nonlinear increase in n for shorter wavelengths. The curves
differ with 0.018 for temperature steps of 20 K, resulting from
the linear increase in the density as a function of temperature
(Dohnálek et al. 2003). Table 2 summarizes a selected set of

Table 2
Selected Specific Refraction (RSM(λ)) and Refractive Index (n(λ)) Values Over the Studied Wavelength Range

λ (nm) RSM(λ) n10(λ) n30(λ) n50(λ) n70(λ) n90(λ) n110(λ) n130(λ) n150(λ)

210.8 0.2545±0.0061 1.2346 1.2568 1.2793 1.3022 1.3254 1.3489 1.3728 1.3869
250.1 0.2361±0.0035 1.2167 1.2371 1.2577 1.2786 1.2998 1.3213 1.3431 1.3559
300.2 0.2248±0.0020 1.2057 1.2250 1.2445 1.2643 1.2842 1.3045 1.3250 1.3370
350.2 0.2187±0.0012 1.1999 1.2186 1.2375 1.2566 1.2759 1.2955 1.3153 1.3270
400.2 0.2150±0.0008 1.1964 1.2147 1.2332 1.2520 1.2709 1.2901 1.3095 1.3209
450.2 0.2126±0.0005 1.1940 1.2121 1.2304 1.2489 1.2676 1.2866 1.3057 1.3170
500.2 0.2109±0.0003 1.1924 1.2104 1.2285 1.2468 1.2654 1.2841 1.3031 1.3142
550.2 0.2097±0.0002 1.1913 1.2091 1.2271 1.2453 1.2637 1.2823 1.3012 1.3122
600.2 0.2088±0.0001 1.1904 1.2081 1.2261 1.2442 1.2625 1.2810 1.2997 1.3107
650.2 0.2081±0.0000 1.1897 1.2074 1.2252 1.2433 1.2615 1.2800 1.2986 1.3096
700.2 0.2075±0.0001 1.1892 1.2068 1.2246 1.2426 1.2608 1.2792 1.2978 1.3087
750.2 0.2071±0.0001 1.1888 1.2063 1.2241 1.2420 1.2602 1.2785 1.2971 1.3080

Note. For brevity, the errors on the values for n(λ) are not shown.

(This table is available in its entirety in machine-readable form.)

Figure 5. Derived RT(λ) curves for different deposition temperatures ranging
from 10 to 150 K. The black curve shows the fit using Equation (9). The dot at
632.8 nm represents the assumed specific refraction of 0.2072 cm3 g−1.
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RSM(λ) and nT(λ) values for the investigated wavelength range.
The full list with numbers is available from the supplementary
information.

3.5. Comparison of the n(λ) 150 K Experiment with Literature

Figure 6 shows the refractive index of ASW, with the
corresponding densities in the wavelength range between 210
and 757 nm. Also shown is n(λ) of crystalline water ice at 150K.
The values of n(λ) are calculated from RSM(λ) as derived in
Section 3.4. A comparison of n(λ) from our crystalline ice
deposited at 150 K with literature values of the refractive index as
were reported by Warren & Brandt (2008) shows that these
reproduce the literature values well. All of the values for n shown
in this figure are available in Table 2.

3.6. Imaginary Refractive Index

With the experimental derivation of the real part of the
refractive index, it is possible, in principle, to also derive the
imaginary part, i.e., the parameter that describes the absorption
properties, using the Kramer–Kronig relation. However, as
already noted by Warren (1984), in the UV–vis, the imaginary
refractive index is several orders of magnitude smaller than n,
and as a direct result, in our experiments the accuracy of n is
insufficient to constrain relevant imaginary refractive index
values.

4. Astrophysical Implications

In the introduction, the relevance of measuring refractive
indices for interstellar ices was already mentioned. In most
cases, only data for specific wavelengths exist and in the few
cases larger wavelength domains have been studied, the
resolution is quite low. For this reason, many of the solar
system ice and interstellar ice studies rely on refractive index
values of crystalline ice reported at moderate resolution. We
demonstrated that the refractive index of ASW and crystalline
ice shows a similar dependence on the wavelength, but that for
the exact values, the porosity is required. In the cases where
amorphous, and likely porous, ice is expected to be present, the
results from our study improve the fidelity of the simulations,
and this should help interpreting astronomical ice studies.

In laboratory studies of astronomical ice analogues, accurate
optical constants improve the ability to quantify the solids
under investigation. One should consider that all solid-state
infrared band strength determinations ultimately rely on
quantifying the solid using lasers in the UV–vis. The
uncertainty of infrared band strengths is typically of the order
of 20% and improvements in the quantification of solids will
result in better constrained infrared band strengths. In order to
study the refractive index of species for which no specific
refraction is available, an alternative approach to determine
absolute values of n(λ) can be applied. If one measures the
interference at different angles simultaneously (Browell &
Anderson 1975; Romanescu et al. 2010), R can be determined
by analyzing both signals. We intend to implement an
additional helium–neon laser path and use this method,
yielding the essential calibration point that will allow us to
determine refractive index over the full UV–vis wavelength
range. In this way, the n(λ, ρ) values for astronomically
relevant ice mixtures, such as H2O:CO2, can be determined.

5. Conclusions

We demonstrate the use of a new method to determine the
refractive index of amorphous water ice between 10 and 130 K
and crystalline ice at 150 K in the 210–757 nm range, with a
wavelength resolution of 0.56 nm, and derive a continuous
function to calculate the refractive index based on the porosity
and wavelength. The results also indicate that in the UV–vis,
crystalline ice, and ASW show the same wavelength
dependency, but that the absolute refractive index is a function
of the density of the ice. The availability of this data will assist
in the interpretation of observations where porous amorphous
water ice is involved. With the new method, it is possible to
measure the refractive index (and the specific refraction) of any
ice or ice mixture using only a single calibration point. In the
future, this method may be applied to other ices or ice mixtures,
obtaining the refractive index over the full UV–vis range of
other astronomically relevant ice constituents. In the astro-
physical laboratory, it will help improve quantification of solids
and ultimately result in more accurate infrared band strengths.
Considering the new range of telescopes that will be available
in the coming years (e.g., the James Webb Space Telescope or
the ELT in the UV–vis), such information will be very useful.

Figure 6. Wavelength-dependent refractive index of water ice grown at 150 K (in gray), compared with literature values from Warren & Brandt (2008), reported as
blue crosses. The reference values at 632.8 are shown as solid circles. The other curves represent ASW for which only one reference value at 632.8 nm (indicated by
solid circles) exists.
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