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Abstract

Comets are thought to have information about the formation process of our solar system. Recently, detailed
information about comet 67P/Churyumov–Gerasimenko was found by Rosetta. It is remarkable that its tensile
strength was estimated. In this paper, we measure and formulate the tensile strength of porous dust aggregates
using numerical simulations, motivated by a porous dust aggregation model of planetesimal formation. We
perform three-dimensional numerical simulations using a monomer interaction model with a periodic boundary
condition. We stretch out a dust aggregate with a various initial volume filling factor between 10−2 and 0.5. We
find that the tensile stress takes the maximum value at the time when the volume filling factor decreases to about
half of the initial value. The maximum stress is defined to be the tensile strength. We take an average of the results
with 10 different initial shapes to smooth out the effects of initial shapes of aggregates. Finally, we numerically
obtain the relation between the tensile strength and the initial volume filling factor of dust aggregates. We also use
a simple semi-analytical model and successfully reproduce the numerical results, which enables us to apply a wide
parameter range and different materials. The obtained relation is consistent with previous experiments and
numerical simulations about silicate dust aggregates. We estimate that the monomer radius of comet 67P has to be
about 3.3–220 μm to reproduce its tensile strength using our model.
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1. Introduction

Planetesimal formation is one of the most important and
unsolved issues of planet formation theory. In protoplanetary
disks, submicrometer-sized dust grains are believed to
coagulate, settle to the disk midplane as they grow, and form
kilometer-sized planetesimals. There are several scenarios for
planetesimal formation, such as gravitational instability (e.g.,
Goldreich & Ward 1973), streaming instability (e.g., Youdin &
Goodman 2005; Johansen et al. 2007, 2011), and direct
coagulation. In the direct coagulation scenario, dust grains
grow larger by pairwise collisions. Recently, it has been
proposed that dust grains become not compact but porous by
pairwise collisions, and the properties of these fluffy dust
aggregates have been investigated theoretically and experi-
mentally (e.g., Kozasa et al. 1992; Ossenkopf 1993; Dominik
& Tielens 1997; Blum & Wurm 2000; Wada et al. 2007, 2008;
Suyama et al. 2008). The submicrometer-sized constituent
grains are called monomers. Finally, it is found that
planetesimals form via direct coagulation (e.g., Okuzumi
et al. 2012; Kataoka et al. 2013a).

In recent years, the physical properties of comets have been
investigated by observation and exploration. Comets are the
most primitive bodies in our solar system and are thought to be
leftover planetesimals. In 2014, Rosetta reached comet 67P/
Churyumov–Gerasimenko (hereafter 67P). This mission pio-
neered orbiting and landing on a comet. 67P has many
unexpected results (e.g., Fulle et al. 2016), and it is especially
remarkable that its tensile strength was estimated. The tensile
strength of the surface of 67P is 3–150 Pa (Groussin et al. 2015;
Basilevsky et al. 2016), while that for the bulk comet is
10–200 Pa (Hirabayashi et al. 2016). This tensile strength
depends on the composition and formation process of comets,
i.e., planetesimals.

There are several experimental studies about the tensile
strength of dust aggregates. Blum & Schräpler (2004) directly
measured the tensile strength of dust aggregates whose volume
filling factors are 0.2 and 0.54. They used dust aggregates
consisting of monodisperse silica (SiO2) spheres with a
0.76 μm radius. In their experiments, a millimeter-sized dust
aggregate was attached to two plates at its top and bottom, and
then the two plates were pulled apart. Blum et al. (2006)
conducted the same experiments using dust aggregates with
volume filling factors of 0.23, 0.41, and 0.66. In addition to the
monodisperse spherical silica monomers, they used irregularly
shaped diamond monomers with a narrow size distribution and
irregular silica monomers with a wide size distribution.
Meisner et al. (2012) used dust aggregates consisting of quartz
(crystallized SiO2) monomers with a size range from 0.1 to
10 μm and measured the tensile strength using the Brazilian
disk test (e.g., Li & Wong 2013). Gundlach et al. (2018) also
performed the Brazilian disk test to measure the tensile strength
of dust aggregates composed of polydisperse spherical ice
(H2O) monomers and monodisperse spherical silica monomers.
They used silica monomers whose radii are 0.15, 0.50, and
0.75 μm to investigate the monomer radius dependence.
Moreover, they succeeded in measuring the tensile strength
of ice dust aggregates whose monomer radius is 2.4 μm on
average.
On the other hand, there is only one numerical study about

the tensile strength of dust aggregates. Seizinger et al. (2013)
performed three-dimensional simulations to reproduce the
experimental results by Blum & Schräpler (2004) and Blum
et al. (2006). They used dust aggregates whose volume filling
factor ranges from 0.15 to 0.6 and monomers are silicate
spheres with 0.6 μm radius. In their simulations, a micrometer-
sized cubic aggregate was attached to two plates, which is the
same as previous experiments except for the size of dust
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aggregates; a millimeter-sized dust aggregate was used in the
previous experiments. The interaction between two monomers
is mainly based on Dominik & Tielens (1997). In addition, they
introduced the rolling and sliding modifiers to make numerical
simulations correspond with experimental results (Seizinger
et al. 2012). To avoid monomers being peeled off the plate,
they also used an artificial adhesion force as a “gluing effect.”
Although their results correspond well with the laboratory
result, the influence of their artificial adhesion force and small
aggregates should also be checked. They also obtained a fitting
formula for the tensile strength as a function of the filling factor
of dust aggregates. However, their formula does not include the
dependence on the monomer size and material.

In this work, we numerically investigate the tensile strength
of dust aggregates composed of single-sized spherical mono-
mers. In previous works, a dust aggregate was attached to two
plates, and then they were pulled apart (Blum & Schrä-
pler 2004; Blum et al. 2006; Seizinger et al. 2013). The size of
the used dust aggregates ranges from micrometers to
millimeters, while planetesimals are kilometer-sized. To
unravel the planetesimal formation mechanism, it is important
to investigate the tensile strength of dust aggregates that are
larger than kilometers. Therefore, we use the periodic boundary
condition to remove the effects of plates. Moreover, we
perform simulations using dust aggregates whose volume
filling factors are lower than those of the previous works. Then,
we find a power-law relation between the tensile strength and
initial volume filling factor of dust aggregates whose filling
factors range from 10−2 to 0.5. We will also construct a
theoretical model to explain the power-law dependence. This
model reproduces the dependence on all material parameters in
our simulations.

This paper is organized as follows. In Section 2, we describe
the settings of our simulations, which include the model of
monomer interactions, initial dust aggregates, the periodic
boundary condition, how to measure the tensile strength
without plates, and an overview of our simulations. Then, we
summarize our results of fiducial runs and the investigation of
parameter dependence in Section 3. There are three numerical
parameters: the number of monomers, boundary velocity, and
the strength of the damping force. There are four physical
parameters: the initial volume filling factor, monomer radius,
surface energy, and the critical rolling displacement. We also
find an analytical expression of the tensile strength of dust
aggregates, compare our results with previous experiments
(Blum & Schräpler 2004; Blum et al. 2006; Gundlach et al.
2018) and numerical simulations (Seizinger et al. 2013), and
apply the analytical expression 67P in Section 4. Finally, we
provide conclusions and discuss future works in Section 5.

2. Simulation Settings

We perform three-dimensional numerical simulations to
measure the tensile strength of dust aggregates consisting of
spherical monomers. In this section, we describe the settings of
our simulations. First, we introduce the monomer interaction
model based on Dominik & Tielens (1997) and Wada et al.
(2007) in Section 2.1. In Section 2.2, we explain the damping
force in the normal direction. The initial conditions of our
simulations are statically and isotropically compressed dust
aggregates investigated by Kataoka et al. (2013b), which is
described in Section 2.3. At the boundaries of the calculation
box, we set moving periodic boundaries in the x-axis direction

and fixed periodic boundaries in the y- and z-axis directions,
which is explained in Section 2.4. Thus, we can simulate one-
direction stretching of dust aggregates. The details of the
calculation method of tensile stress, which is the same as
molecular dynamics, are summarized in Section 2.5. In
Section 2.6, we describe an overview of our simulations.

2.1. Monomer Interaction Model

We calculate interactions of each connection between two
monomers using the theoretical model by Dominik & Tielens
(1997) and Wada et al. (2007). Based on the JKR theory
(Johnson et al. 1971) and the following studies by Dominik &
Tielens (1995, 1996), Dominik & Tielens (1997) carried out
two-dimensional simulations of monomer interactions. To
expand into three-dimensional simulations, Wada et al.
(2007) tested their recipe, and then Wada et al. (2008)
conducted three-dimensional simulations of dust aggregate
collisions. In the model, there are four kinds of interactions:
normal (sticking and breaking), sliding, rolling, and twisting.
The material parameters needed to describe the interactions are
the monomer radius r0, material density ρ0, surface energy γ,
Poisson’s ratio ν, Young’s modulus E, and the critical rolling
displacement ξcrit. These parameters of ice and silicate are listed
in Table 1. To compare our results with those by Seizinger
et al. (2013), we set the same values for silicate.
If a rolling displacement exceeds the critical one, ξcrit, a

monomer begins to roll inelastically. The critical rolling
displacement has different values between the theoretical one
(ξcrit=2Å, Dominik & Tielens 1997) and the experimental
one (ξcrit=32Å, Heim et al. 1999). We adopt ξcrit=8Å as a
fiducial value and investigate the dependence of our results on
ξcrit in Section 3.3.
The rolling energy Eroll needed to rotate a monomer around

its connection point by 90° is described as
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where R is the reduced monomer radius (Wada et al. 2007).
The reduced radius R of monomer radii r1 and r2 is defined as
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Table 1
Material Parameters of Ice (Israelachvili 1992; Dominik & Tielens 1997)

Material Ice Silicate

Monomer Radius r0 (μm) 0.1 0.6
Material Density ρ0 (g cm−3) 1.0 2.65
Surface Energy γ (mJ m−2) 100 20
Poisson’s Ratio ν 0.25 0.17
Young’s Modulus E (GPa) 7 54
Critical Rolling Displacement ξcrit (Å) 8 20

Note. The parameters of silicate are selected according to Seizinger et al.
(2013).
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Here, the reduced monomer radius is R=r0/2 because we
assume no size distribution of monomers.

In our simulations, the maximum force needed to separate
two sticking monomers (breaking) is

pg
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2.2. Damping Force in Normal Direction

The force in the normal direction induces oscillation at each
connection between two monomers. In reality, the oscillation
would attenuate because of viscoelasticity or hysteresis of
monomers (Greenwood & Johnson 2006; Tanaka et al. 2012).
Therefore, we add an artificial damping force in the normal
direction (Paszun & Dominik 2008; Suyama et al. 2008;
Seizinger et al. 2012; Kataoka et al. 2013b). The dependence of
our results on the damping force is investigated in Section 3.2.

We describe the damping force as follows. In the case in
which two contacting monomers have their position vectors x1
and x2, and velocities v1 and v2, respectively, the contact unit
vector nc is defined as

=
-
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(Wada et al. 2007). The damping force applied to each
monomer is introduced as
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where kn is the damping coefficient, m0 is the monomer mass, tc
is the characteristic time, and vr is the relative velocity (Kataoka
et al. 2013b). When we calculate the damping force
experienced by the monomer (x v,1 1), = -v v vr 2 1 is the
relative velocity of the other monomer (x v,2 2). We adopt
kn=0.01 as a fiducial value.

The characteristic time is given by Wada et al. (2007) as
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In our simulation, the Young’s modulus E1=E2=E and the
Poisson’s ratio ν1=ν2=ν are uniform.

2.3. Initial Dust Aggregates

The initial dust aggregates are statically and isotropically
compressed ballistic cluster–cluster aggregations (BCCAs)
investigated by Kataoka et al. (2013b). We set these initial
conditions to simulate the planetesimal formation mechanism.
The calculation boundary is treated periodically, thus we do not
have to consider the aggregate radius.

2.4. One-direction Stretching by Moving Boundaries

We set moving boundaries in the x-axis direction and fixed
boundaries in the y- and z-axis directions to measure the tensile
strength of dust aggregates. The initial calculation box is a cube
whose length on each side is L0. The length in the y- and z-axis
directions does not change, while the length in the x-axis
direction Lx increases. Therefore, the coordinates in the x-, y-,
and z-axis directions are - < <L x L2 2x x ,
- < <L y L2 20 0 , and - < <L z L2 20 0 , respectively.

The velocity at the boundary in the x-axis direction >v 0b
has to be constant and less than the effective sound speed of
dust aggregates for static stretching. We investigate the
dependence on the velocity in Section 3.2. The effective sound
speed of dust aggregates cs,eff is described as

r
~ ( )c

P
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where P and ρ are the pressure and mean internal density of
dust aggregates, respectively. Because the initial dust aggre-
gates are statically and isotropically compressed, their pressure
is given as
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(Kataoka et al. 2013b). From Equations (8) and (9), we can
obtain the effective sound speed of dust aggregates as
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where f=ρ/ρ0 is the volume filling factor of dust aggregates.
Since vb is independent of time t, the length in the x-axis
direction Lx can be written as

= + ( )L L v t2 . 11x 0 b

We treat the coordinates and velocity of a monomer across a
periodic boundary as follows. When a monomer passes the
moving periodic boundary at x=Lx/2, its position x and
velocity vx are converted as

 - ( )x x L , 12x

 - ( )v v v2 . 13x x b

On the other hand, in the case of the moving periodic boundary
at x=−Lx/2, its position and velocity are converted as

 + ( )x x L , 14x

 + ( )v v v2 . 15x x b

At y=±L0/2 and z=±L0/2, the coordinates of a monomer
are converted similarly, but its velocity is not changed.

2.5. Tensile Stress Measurement

We calculate tensile stress in the same way as Kataoka et al.
(2013b) because we have no walls. This is different from
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Seizinger et al. (2013), who measured the tensile stress
considering the force exerted on walls.

The tensile stress is calculated only in the x-axis direction as
follows. At first, we assume a virtual box, which is the same as
the calculation box. The equation of motion of the monomer i
in the x-axis direction is described as

= + ( )m
d x

dt
W F , 16i

x i x i0

2

2 , ,

where Wx,i is the force exerted from the walls of the virtual box
on the monomer i and Fx,i is the total force from other
monomers on the monomer i. We multiply Equation (16) by xi
and take a long-time average with the time interval τ. The left
side of Equation (16) becomes
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The first term on the right side of Equation (17) becomes zero
when t  ¥. Here, we define the long-time average as áñt and
take a summation of all monomers of Equation (16). Then,
Equation (16) can be written as
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which is the time-averaged kinematic energy in the x-axis
direction of all monomers. The first energy term on the right
side of Equation (18) is related to the tensile stress in the x-axis
direction Px. Since the virtual box is the same as the calculation
box, we obtain

å = =
=
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where =V L Lx 0
2 is the volume of the calculation box.

Therefore, Equation (18) gives an expression of the tensile
stress Px as
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The total force from other monomers on the monomer i can be
described as

å=
¹

( )F f , 22x i
j i

x i j, , ,

where fx,i,j is the force from the monomer j on the monomer i in
the x-axis direction. Thus, Equation (21) can be written as
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because of the relation that fx,i,j=−fx,j,i. Equation (23) is
different from that of Kataoka et al. (2013b) because we
consider the tensile stress only in the x-axis direction.

We take an average of the tensile stress Px for every 10,000
time steps, at least. In some simulations, the tensile stress
fluctuates, thus we take a longer time average to smooth it (see
Section 3.1 for details). One time step in our simulation is

= ´ -t0.7 1.9 10c
11 s, and therefore 10,000 time steps corre-

sponds to ´ -1.9 10 7 s.

2.6. Overview of Our Simulations

The overview of our numerical simulations is as follows.
First, we randomly create a BCCA to change the initial
condition. Next, we compress it statically and isotropically
(Kataoka et al. 2013b). The compression of a BCCA
corresponds to the formation of a planetesimal. It is necessary
for the BCCA to be attached to all boundaries so that we can
stretch it. Then, we stop compression and define this volume
filling factor as the initial one finit. Finally, we stretch it
statically and one-dimensionally. Figure 1 shows the overview
of our simulations.

3. Results

We perform 10 simulations with different initial dust
aggregates for every parameter set. First, we perform fiducial
runs to investigate what occurs in our stretching simulations in
Section 3.1. Then, we show that the results do not depend on
any numerical parameters, such as the number of particles N,
boundary velocity vb, and the damping coefficient kn in
Section 3.2. Finally, in Section 3.3, we investigate the
dependence on physical parameters: the initial volume filling
factor finit, monomer radius r0, surface energy γ, and the
critical rolling displacement ξcrit.

3.1. Fiducial Run

We measure the tensile stress of 10 runs for the fiducial
parameter set. The fiducial values are N=16384,

= -v 10 cm sb
1, kn=0.01, finit=0.1, r0=0.1 μm,

γ=100 mJ m−2, and ξcrit=8Å. Figure 2 shows three snap-
shots of a fiducial run. Each particle represents a 0.1 μm radius
ice monomer. The light gray monomers are in the calculation
box with periodic boundaries, while the dark gray monomers
are in the neighbor boxes. The box with white lines shows the
final state of the calculation box. By stretching the dust
aggregate, the chain-like structure appears.
Figure 3 shows the time evolution of tensile stress of 10

fiducial runs averaged for every 10,000 time steps (left) and
200,000 time steps (right). The volume filling factor at each
time step is calculated as

f
p

=
( ) ( )r N

V

4 3
240

3

and the tensile stress is calculated according to Equation (23).
We choose the number of time steps when the rate of change of
the volume filling factor does not exceed 10%. As tensile
displacement increases, the volume filling factor f decreases
and the tensile stress Px increases. The maximum value of
tensile stress is called the tensile strength. To calculate the
tensile strength for every parameter set, we find 10 maximum
values of the obtained tensile stress and take an average
of them.
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3.2. Numerical Parameter Dependence

To investigate the dependence on the number of particles N,
we plot tensile stress when N=210=1024, N=212=4096,
N=214=16384, and N=216=65536 in Figure 4(a).
Changing N corresponds to changing the size of the calculation
box. Obviously, the tensile strength has no dependence on N.
Because of the smoothness of the tensile stress plot and
calculation costs, we set N=16384 as the fiducial value.

Figure 4(b) shows tensile stress when boundary velocity
vb=1, 10, and 100 cm s−1. All boundary velocities are less
than the effective sound speed of dust aggregates cs,eff
(Equation (10)). There is no difference among the three

boundary velocities. Therefore, we can conclude that dust
aggregates are stretched statically. We set vb=10 cm s−1 as
the fiducial value considering sampling rates of tensile stress
and calculation costs.
Tensile stress with various damping coefficients is plotted in

Figure 4(c). No damping force corresponds to kn=0. We
change the strength of damping force from weak damping
(kn=0.01) to strong damping (kn=1). Undoubtedly, there is
no dependence on the damping force in this range. We use
kn=0.01 for all the other simulations.

3.3. Physical Parameter Dependence

We measure the tensile strength of dust aggregates that have
various initial volume filling factors as shown in Figure 5. The
calculated tensile strength is proportional to finit

1.8 from the
fitting. The tensile strength Px,max can be described with the
initial volume filling factor finit as

f= ( )P P , 25x,max 0 init
1.8

where ~ ´P 6 10 Pa0
5 in this case. The analytical interpreta-

tion of Equation (25) is discussed in Section 4.1.
To investigate the dependence of tensile strength on the

monomer radius, we perform simulations in the case of ice
monomers whose radii are 0.3 and 0.9 μm. Figure 6 shows the
summary of the monomer radius dependence. The plotted
dashed lines are based on Equation (31), which is an analytical
expression of tensile strength (see Section 4.1). It is confirmed
that the tensile strength is in inverse proportion to the monomer
radius.
To clarify the surface energy dependence, we calculate the

tensile strength when γ=50 and 25 mJ m−2 and plot it in
Figure 7. The other parameters are the same as the fiducial
values. The dashed lines represent Equation (31) (see
Section 4.1). Obviously, the tensile strength is in proportion
to the surface energy.
Finally, we investigate the dependence of tensile stress on

the critical rolling displacement ξcrit in Figure 8. The critical
rolling displacement is changed from x = Å2crit (e.g., Dominik
& Tielens 1997) to x = Å32crit (e.g., Heim et al. 1999). Tensile
stress has a marginal dependence on ξcrit because the main
mechanism of displacement is rolling (see Section 4.1). On the
other hand, tensile strength, which is the maximum value of
tensile stress, has no difference. We can conclude that the
tensile strength is almost the same even if the critical rolling
displacement has uncertainty. Therefore, we fix x = Å8crit in
our simulations.

Figure 1. Overview of our simulations. Each picture shows a BCCA (left), a compressed aggregate (center), and a stretched aggregate (right). Each aggregate contains
16,384 ice monomers whose radius is 0.1 μm. In the center and right panels, the box with white lines shows the calculation box with periodic boundaries.

Figure 2. Snapshots of a fiducial run when N=16384, = -v 10 cm sb
1,

kn=0.01, finit=0.1, r0=0.1 μm, γ=100 mJ m−2, and ξcrit=8 Å. The
calculation times are =t 0 s (top), = ´ ~ ´ -t t2.49 10 4.7 10 s5

step
6 (cen-

ter), and = ´ ~ ´ -t t4.98 10 9.5 10 s5
step

6 (bottom), where
= = ´ -t t0.7 1.9 10 sstep c

11 represents one time step. Each particle represents
a 0.1 μm radius ice monomer. The light gray monomers are in the calculation
box with periodic boundaries, while the dark gray monomers are in the
neighbor boxes. The box with white lines shows the final state of the
calculation box. We omit the boxes in front, behind, above, and below the
calculation box for simplicity.
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4. Discussions

Now, we discuss the obtained physical parameter depend-
ence of the tensile strength of dust aggregates (Section 3.3) and
apply our results to previous studies of experiments, numerical
simulations, and comet 67P. In Section 4.1, we find an
analytical expression of the tensile strength using material
parameters: the initial volume filling factor, monomer radius,
and the surface energy. Then, we compare our results with
previous experiments and numerical simulations about silicate
dust aggregates (Blum & Schräpler 2004; Blum et al. 2006;
Seizinger et al. 2013; Gundlach et al. 2018) in Section 4.2.
Finally, we apply our interpretation to comet 67P in
Section 4.3.

4.1. Semi-analytical Model of Tensile Strength

The relationship between Px,max and finit can be derived by
considering the maximum force needed to separate two sticking
monomers Fc and the radius of a dust aggregate ragg. When the
tensile stress has a maximum value, the force Fc is applied on a
connection between two monomers of a dust aggregate. This
means that

µ ( )P
F

r
. 26x,max

c

agg
2

The radius of a dust aggregate is given as

µ ( )r N r , 27D
agg agg

1
0

where D and Nagg are the fractal dimension and the number of
monomers of a dust aggregate, respectively. The initial volume
filling factor is described as

f =
⎛
⎝⎜

⎞
⎠⎟ ( )N

r

r
, 28init agg

0

agg

3

and then the radius of a dust aggregate is obtained as

fµ - - ( )( )r r . 29D
agg 0 init

1 3

From Equation (26), the tensile strength can be written as

f~ - ( )( )P C
F

r
, 30x

D
,max

c

0
2 init

2 3

where C is a constant. The fractal dimension D of BCCAs is
∼1.9 (Mukai et al. 1992; Okuzumi et al. 2009).
Using the fitting result of Equations (3) and (25), we obtain

g

m
f

~ ´

´

-

-
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⎞
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0.1 m
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5

2

0
1

init
1.8

In the case of an ice monomer with a radius of 0.1 μm, we find
C=0.12±0.01.
We confirm Equation (31) from the perspective of energy

dissipation. All energy dissipations, which are caused by the
normal, sliding, rolling, twisting, and damping force in the
normal direction, are plotted in Figure 9. The curves in Figure 9
run time-wise from right to left and arise during the stretching
of a dust aggregate. The main energy dissipation mechanism is
the rolling, which corresponds to the ξcrit-dependence of tensile
stress (Section 3.3). The energy dissipation by the normal arises
when the tensile stress has a maximum value. This energy
dissipation is caused by connection breaking between two
contacting monomers. For this reason, tensile strength is
determined by the connection breaking, i.e., Fc.
To confirm that D∼1.9 on a small scale of a dust aggregate

in our simulations, we calculate the number of monomers
inside the radius rin for five snapshots of a fiducial run and plot
it in Figure 10. We take the snapshots during the continuous
strain of the dust aggregate. The parameters of the fiducial run
are N=16384, = -v 10 cm sb

1, kn=0.01, finit=0.1,
r0=0.1 μm, γ=100 mJ m−2, and ξcrit=8Å. The method
to count the number of monomers N(r<rin) is as follows. At
first, we set a monomer in the calculation box as the center and
count N(r<rin) including monomers outside the periodic

Figure 3. Tensile stress Px of 10 fiducial runs averaged for every 10,000 time steps (left) and 200,000 time steps (right) when N=16384, = -v 10 cm sb
1, kn=0.01,

finit=0.1, r0=0.1 μm, γ=100 mJ m−2, and ξcrit=8 Å. The yellow dashed lines show the compressive strength (Equation (9)) investigated by Kataoka et al.
(2013b).
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boundaries. Next, we take an average of N(r<rin) for all
monomers in the calculation box.

Also, we plot N(r<rin) as a function of r rin 0 when D=2
and D=3 in Figure 10. This relationship is derived by
Equation (27) as

< µ
⎛
⎝⎜

⎞
⎠⎟( ) ( )N r r

r

r
. 32

D

in
in

0

On a small scale that <( )N r r 20in , all snapshot results
mostly correspond to the relationship when D=2. When the
scale becomes large enough, dust aggregates have a fractal
dimension of three.

4.2. Comparison with Previous Studies

To compare our results with previous experiments and
numerical simulations, we perform simulations with the
parameters of silicate listed in Table 1 and summarize the

results in Figure 11. Both results by experiments (Blum &
Schräpler 2004; Blum et al. 2006; Gundlach et al. 2018) and
simulations (this work; Seizinger et al. 2013) correspond very
well. This means that there is little influence from the artificial
adhesion force introduced by Seizinger et al. (2013) and small
aggregates whose sizes range from micrometers to millimeters.
The right panel of Figure 11 is derived by Equation (31), i.e.,

µ -P rx,max 0
1.

Gundlach et al. (2018) measured the tensile strength of ice
aggregates with the monomer radius of m2.38 1.11 m, which
is shown in Figure 12. We do not know which monomer radius
determines the tensile strength of dust aggregates when the
monomer radius has a size distribution. Therefore, we plot
dashed lines derived with Equation (31) when r0=1.27 μm,

m=r 2.38 m0 , and m=r 3.49 m0 . The experimental value is
lower than the theoretical lines. From their low value of the
tensile strength, Gundlach et al. (2018) inferred that the specific
surface energy of ice, gice, has a value of = -0.02 J m 2 at low
temperatures (150 K). However, Gundlach & Blum (2015)

Figure 4. Tensile stress Px with different numbers of particles N (left), different boundary velocities vb (center), and different damping coefficients kn (right). The
fiducial values are N=16384, = -v 10 cm sb

1, kn=0.01, finit=0.1, r0=0.1 μm, γ=100 mJ m−2, and ξcrit=8 Å.

Figure 5. Tensile strength Px,max as a function of initial volume filling factor
finit when N=16384, = -v 10 cm sb

1, kn=0.01, r0=0.1 μm,
γ=100 mJ m−2, and ξcrit=8 Å. The blue and yellow dashed lines show
the best fit for the tensile strength (Equation (25)) and the compressive strength
(Equation (9)), respectively. The error bar corresponds to the standard
deviation of 10 runs.

Figure 6. Tensile strength Px,max as a function of initial volume filling factor
finit when N=16384, kn=0.01, γ=100 mJ m−2, and ξcrit=8 Å. The
monomer radii are r0=0.1 μm (blue), m=r 0.3 m0 (orange), and

m=r 0.9 m0 (green). The error bar corresponds to the standard deviation of
10 runs. The dashed lines represent Equation (31).
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also estimated g = -0.19 J mice
2 from the constant sticking

threshold velocity of ~ -10 m s 1 for <T 210 K in their ice
impact experiments. The reason for low tensile strength in
Gundlach et al. (2018) is thus unknown. We also confirm that
the experimental value is higher than the compressive strength
theoretically expected by Kataoka et al. (2013b) (Equation (9)).

4.3. Application to Comet 67P

We can estimate the monomer radius of comet 67P using
Equation (31) as follows. From the exploration of 67P, it was
found that the microporosity of 67P is 0.75–0.85 (Kofman et al.

2015), while the surface porosity is 0.87 (Fornasier et al.
2015). In other words, the volume filling factor of 67P is about
0.13–0.25. The averaged nucleus bulk density of 67P was
estimated to be 0.533 -g cm 3 (Pätzold et al. 2016). In
consideration of the high dust-to-water mass ratio of 67P
(e.g., Fulle et al. 2016), its main material is not H2O ice, but
silicate. Assuming that the bulk density is 0.533 -g cm 3 and the
material density is 2.65 -g cm 3 (Table 1), we can estimate that
the volume filling factor of 67P is about 0.20, which is
consistent with the values of 0.13–0.25. Substituting

= -P 3 200x,max Pa (see Section 1), g = -20 mJ m 2, and

Figure 7. Tensile strength Px,max as a function of initial volume filling factor
finit when N=16384, kn=0.01, r0=0.1 μm, and ξcrit=8 Å. The values of
surface energy are γ=100 mJ m−2 (blue), γ=50 mJ m−2 (orange), and
g = -25 mJ m 2 (green). The error bar corresponds to the standard deviation of
10 runs. The dashed lines represent Equation (31).

Figure 8. Tensile stress Px with different critical rolling displacements ξcrit
when N=16384, = -v 10 cm sb

1, kn=0.01, finit=0.1, r0=0.1 μm, and
γ=100 mJ m−2. The critical rolling displacements are ξcrit=2 Å (blue),
x = Å4crit (orange), ξcrit=8 Å (green), x = Å16crit (magenta), and
ξcrit=32 Å (brown).

Figure 9. Energy dissipations of a fiducial run when N=16384,
= -v 10 cm sb

1, kn=0.01, finit=0.1, r0=0.1 μm, γ=100 mJ m−2, and
ξcrit=8 Å. The energy dissipation mechanisms are the normal (orange),
sliding (green), rolling (magenta), twisting (brown), damping (purple), and the
total of all energy dissipations (blue). The vertical gray line represents the
volume filling factor when tensile stress has a maximum value.

Figure 10. Number of monomers inside the radius rin as a function of r rin 0

when N=16384, = -v 10 cm sb
1, kn=0.01, finit=0.1, r0=0.1 μm,

γ=100 mJ m−2, and ξcrit=8 Å. Five snapshots are represented by blue
(f f= = 0.1init ), orange (f = 0.08), green (f = 0.06), magenta (f = 0.05),
and brown (f = 0.04) lines. The blue and red dashed lines show the
relationship when D=2 and D=3, respectively.
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f = 0.20init in Equation (33), we find that the monomer radius
of 67P has to be 3.3–220 μm. To explain the low tensile
strength of 67P using only our model, we have to consider a
larger radius than that of interstellar materials.

Another idea to decrease the tensile strength is assuming an
aggregate of aggregates (e.g., Blum et al. 2014, 2017) instead
of a simple aggregate of monomers as discussed in this paper.
The aggregate-of-aggregate model may explain the low
strength with small monomers, but this is beyond the scope
of this paper.

5. Conclusions

We investigated the tensile strength of porous dust
aggregates whose initial volume filling factors finit are from
10−2 to 0.5. We performed three-dimensional numerical
simulations with periodic boundary condition to measure the
tensile stress of dust aggregates. The monomer interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). The initial dust aggregates are statically and isotropi-
cally compressed BCCAs investigated by Kataoka et al.
(2013b). At boundaries of the calculation box, we set moving
periodic boundaries in the x-axis direction and fixed periodic
boundaries in the y- and z-axis directions. The method used to
calculate the tensile stress is the same as that used in the
molecular dynamics. In our simulations, we created a BCCA at
first, compressed it three-dimensionally, and then stretched it
one-dimensionally. For every parameter set, we conducted 10
stretching simulations with different initial dust aggregates,
found 10 maximum values of the obtained tensile stress, and
took an average of them, which is called the tensile strength.
Our main findings of the tensile strength of porous dust
aggregates are as follows.

1. As a result of numerical simulations, we found that the
tensile strength Px,max can be written as

f

g

m
f

~

~ ´

´

-

-
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⎞
⎠

⎛
⎝⎜
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⎠⎟ ( )
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F

r

r
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6 10
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Pa, 33
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c

0
2 init
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5
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0
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init
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where Fc is the maximum force needed to separate two
sticking monomers, finit is the initial volume filling
factor, r0 is the monomer radius, and γ is the surface
energy.

2. We analytically confirmed the dependence in
Equation (33). It is found that the tensile strength is

Figure 11. Tensile strength Px,max of silicate dust aggregates of this work and previous studies, which contain various initial volume filling factors finit and monomer
radii r0 (left), and that scaled to a monomer radius of 0.6 μm (right). The filled circles show our simulation results when N=16384 and kn=0.01. Other material
parameters of silicate are listed in Table 1. The error bar corresponds to the standard deviation of 10 runs. The dashed lines represent Equation (31), while the dotted
line represents Equation (2) of Seizinger et al. (2013). The experimental results are denoted by open squares (Blum & Schräpler 2004), open circles (Blum et al. 2006),
and open triangles (Gundlach et al. 2018). The monomer radii are 0.15 μm (magenta), 0.5 μm (green), 0.6 μm (blue), 0.75 μm (brown), and 0.76 μm (orange).

Figure 12. Tensile strength Px,max of ice dust aggregates of this work and the
previous study. The dashed lines represent Equation (31). The experimental
result when m= r 2.38 1.11 m0 is denoted by the open triangle with error
bars (Gundlach et al. 2018). The monomer radii are 1.27 μm (orange), 2.38 μm
(blue), and 3.49 μm (green).
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determined by monomer connection breaking. This is
consistent with the fact that Px,max is proportional to Fc,
as shown in Equation (33).

3. It is confirmed that the energy dissipation during a
stretching simulation supports the dependence in
Equation (33). The energy dissipation caused by mono-
mer connection breaking arises when the tensile stress has
a maximum value. Also, the dependence on the initial
volume filling factor corresponds to the fractal dimension
of BCCAs, which is about 1.9 (Mukai et al. 1992;
Okuzumi et al. 2009).

4. Equation (33) is consistent with the previous exper-
imental (Blum & Schräpler 2004; Blum et al. 2006;
Gundlach et al. 2018) and numerical (Seizinger et al.
2013) studies of silicate dust aggregates, while it is
inconsistent with the previous experimental study of ice
dust aggregates (Gundlach et al. 2018).

5. We estimated that the monomer radius of comet 67P has
to be 3.3–220 μm using Equation (33). Assuming that the
main material of 67P is silicate and its volume filling
factor is about 0.20, we obtained the monomer radius to
reproduce its tensile strength of 3–200 Pa.

From the point of view of planet formation, the conclusion
that the monomer radius of 67P has to be 3.3–220 μm is
inconsistent with the typical radius of dust monomers in the
interstellar medium: submicrometer. To reduce the monomer
radius of 67P, other mechanisms, such as sintering (e.g., Sirono
& Ueno 2017), to decrease the tensile strength of dust
aggregates, are needed.

We thank Satoshi Okuzumi for fruitful discussions.
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