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Abstract

The details of the physical mechanism that drives core-collapse supernovae (CCSNe) remain uncertain. While
there is an emerging consensus on the qualitative outcome of detailed CCSN mechanism simulations in 2D, only
recently have high-fidelity 3D simulations become possible. Here we present the results of an extensive set of 3D
CCSN simulations using high-fidelity multidimensional neutrino transport, high-resolution hydrodynamics, and
approximate general relativistic gravity. We employ a state-of-the-art 20M☉ progenitor generated using Modules
for Experiments in Stellar Astrophysics, and the SFHo equation of state. While none of our 3D CCSN simulations
explode within ∼500 ms after core bounce, we find that the presence of large-scale aspherical motion in the Si and
O shells aid shock expansion and bring the models closer to the threshold of explosion. We also find some
dependence on resolution and geometry (octant versus full 4π). As has been noted in other recent works, we find
that the post-shock turbulence plays an important role in determining the overall dynamical evolution of our
simulations. We find a strong standing accretion shock instability (SASI) that develops at late times. The SASI
produces transient shock expansions, but these do not result in any explosions. We also report that for a subset of
our simulations, we find conclusive evidence for the lepton-number emission self-sustained asymmetry, which
until now has not been confirmed by independent simulation codes. Both the progenitor asphericities and the
SASI-induced transient shock expansion phases generate transient gravitational waves and neutrino signal
modulations via perturbations of the protoneutron star by turbulent motions.
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1. Introduction

At the ends of their lives, stars more massive than about
8–10M☉ develop inert, neutrino-cooled iron cores in their
centers. The iron core in such stars builds up over a period of
days due to core silicon burning and, ultimately, silicon shell
burning until it reaches the effective Chandrasekhar mass,
which in general depends on the electron fraction, Ye, and
entropy of the core (Woosley et al. 2002). Once the iron core
reaches this critical mass, gravitational collapse ensues. The
collapse of the core is accelerated by electron captures onto
nuclei and protons, the rates of both of which increase as the
collapse drives the densities, and therefore the electron
chemical potential higher and higher. The collapse accelerates
to an appreciable fraction of the speed of light. The inner
0.5M☉ of the core is in sonic contact and collapses
homologously while the remaining outer core collapse super-
sonically. Electron-type neutrinos produced by the rapid
electron captures are eventually “trapped” in the inner core
once densities exceed about 1012 g cm−3. When the collapsing
core reaches nuclear densities the residual strong force, also
known as the nuclear force, between the nucleons starts to
dramatically resist the force of gravity. This halts the collapse
of the inner core, which then elastically rebounds and launches
a pressure wave that quickly steepens into the supernova shock.
The supernova shock propagates out into the still-infalling
outer core leaving in its wake a hot protoneutron star (PNS).
Energy losses from neutrino emission in the hot layers of the

PNS and from the dissociation of the iron-group nuclei at the
shock cause the shock to initially stall and become an accretion
shock. At this time, the beginnings of neutrino-driven
convection in the neutrino-heated, convectively unstable layers
behind the supernova shock break the spherical symmetry that
has otherwise dominated the evolution so far. These multi-
dimensional instabilities are thought to be the crucial piece of
the puzzle that assists the canonical explosion mechanism, the
neutrino mechanism (Bethe & Wilson 1985), to reenergize the
supernova shock and drive the supernova explosion.
Tremendous progress in the theoretical study of the core-

collapse supernova (CCSN) mechanism has been made in
recent years. This progress has been spurred largely by the
advent of high-fidelity fully 3D simulations that can both
capture the crucial hydrodynamic instabilities that form soon
after core bounce and model the detailed neutrino transport that
drives the thermodynamic evolution of the PNS and the shock-
heating layers. (Hanke et al. 2013; Lentz et al. 2015; Melson
et al. 2015b, 2015a; Roberts et al. 2016; Ott et al. 2018; Summa
et al. 2018). Three-dimensional simulations also allow for the
ability to directly simulate precollapse progenitor asphericities.
At the point of collapse and outside of the iron core, there are
shells of lighter elements. Immediately outside the iron core
there is typically silicon shell that is undergoing nuclear
burning that may or may not be convective at the point of core
collapse, depending on the preceding evolution (e.g., Chieffi &
Limongi 2013; Sukhbold & Woosley 2014), above this silicon
shell is an oxygen shell that is also typically convective.
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Convection in these shells imprints nonspherical density
structure and velocity motions on the progenitor. These are
thought to be crucial for not only correctly simulating the core-
collapse evolution, but perhaps needed in order to obtain
explosions themselves. Evidence of this was seen as early as
the 2D work of Burrows & Hayes (1996), but Couch & Ott
(2013) were the first to show definitively on the basis of 3D
simulations that nonspherical structure in the shells surround-
ing the collapsing iron core could qualitatively alter the
outcome of CCSN simulations. Müller & Janka (2015) also
showed, using parameterized precollapse perturbations in 2D
simulations, that progenitor asphericities can play a strong role
in the development of turbulence and lateral kinetic energy in
the gain region, which boosts the effectiveness of neutrino
heating, supports a larger shock radius, and helps drive
explosions. Going beyond parameterized, artificially imposed
perturbations, Couch et al. (2015) simulated the final few
minutes of evolution through iron core collapse in a 15M☉ star,
directly calculating several convective turnover times in the Si-
burning and O-burning shells. The resulting CCSN mechanism
simulations with this 3D progenitor model showed a modest
increase in the strength of the explosion, though not the strong
qualitative impact found by Couch & Ott (2013). Subsequently,
Müller et al. (2016) simulated a longer period of evolution
through core collapse in an 18M☉ star, finding substantial
large-scale nonspherical motion in the O-burning shell. CCSN
mechanism simulations with this progenitor (Müller
et al. 2017) showed a dramatic impact from the realistic 3D
progenitor, yielding a successful explosion for a case in which
the comparable 1D progenitor failed.

In this work, we contribute new FLASH, high-resolution, full
3D, energy-dependent, three-species neutrino-radiation-hydro-
dynamic simulations of a 20Me zero-age main sequence
(ZAMS) mass progenitor star evolved using the Modules for
Experiments in Stellar Astrophysics (MESA; Paxton et al.
2011, 2013, 2015, 2018; Farmer et al. 2016) software. In our
eight 3D simulations, we explore not only the 3D evolution of
this progenitor, but we also explore the impact of progenitor
asphericities, resolution, octant/full 3D symmetry, dimension-
ality, and variations in the evolution due to the neutrino
transport physics. We do not obtain explosions in any of our
3D simulations, however we are able to quantitatively
comment on the impact of each of the above aspects on the
explosion mechanism. Our precollapse progenitor asphericities,
particularly those in the silicon shell, are very effective at
driving the development of turbulence in the post-shock layers.
While only transitory in nature, this leads to larger average
shock radii, more neutrino heating, and stronger turbulence. In
the majority of our full 3D simulations we see the presence of
the standing accretion shock instability (SASI). While this
arises only once the supernova explosion is seemingly failing,
we note that the growth of the SASI at late times can lead to
epochs of shock reenergization. Unfortunately, these excur-
sions are never large enough to drive an explosion in the time
we have simulated. We see an imprint of the SASI motion on
the neutrino luminosities. In one of our full 3D simulations we
find a strong presence of the lepton-number emission self-
sustained asymmetry (LESA). The LESA was first seen in
Tamborra et al. (2014), but until now, has yet to be confirmed
by other simulation codes. Lastly, we report on the gravita-
tional wave signatures from all of our full 3D simulations. We
find that the accretion of progenitor asphericities excite the

PNS and lead to the temporary growth of the gravitational
wave strength, as does the collapse of SASI spiral waves. The
presence of such features in an observation of a nearby CCSNe
may be a unique signal to the presence of strong transient
turbulence in the accretion flow.
This paper is organized as follows. In the next section,

Section 2, we introduce the FLASH code and describe the
hydrodynamics, gravity, and neutrino transport. We also
discuss our initial conditions and the parameterization we use
for our precollapse progenitor asphericities. In Section 3, we
first present an overview of our eight 3D simulations,
contrasting them against each other. We explore in detail the
nature of the presence of the SASI and the LESA. We also
present the neutrino and gravitational wave signals from our
simulations. We discuss and conclude in Section 4.

2. Methods

2.1. Hydrodynamics and Gravity

We make use of the FLASH hydrodynamics framework
(Fryxell et al. 2000; Dubey et al. 2009) that we have outfitted
for CCSNe in Couch (2013a, 2013b), Couch & O’Connor
(2014), and more recently, have included both multidimen-
sional, energy-dependent neutrino-radiation transport based on
the moment formalism and effective general relativistic gravity
in O’Connor & Couch (2018). For these simulations we use
FLASHʼs unsplit hydrodynamic solver, which makes use of the
piecewise parabolic method (Colella & Woodward 1984) and
the hybrid HLLC Riemann solver, which reduces to HLLE in
the presence of shocks. During each FLASH timestep, we solve
for the new hydrodynamic state (the (n+ 1) state) before the
neutrino transport step. We refer the reader to previous works
for a summary of the hydrodynamics and gravity methods
(Couch 2013a, 2013b; Couch & O’Connor 2014; O’Connor &
Couch 2018) and instead focus on a presentation of the
multidimensional neutrino transport.

2.2. Neutrino Transport

Neutrinos play a critical role in CCSNe. First and foremost,
they provide a tremendous cooling channel for the newly
formed PNS, they also are a source of heat in the shocked
layers above the PNS, the so-called gain region. This heat
source is thought to be critical for the development of the
explosion. Following the evolution of the neutrinos from the
core of the PNS out through the gain region requires a complex
treatment of neutrino-radiation transport. Furthermore, since
the opacity of the matter has a strong dependence on the
neutrino energy, this transport must be done in an energy-
dependent way. In FLASH, we have implemented a multi-
dimensional, multispecies, energy-dependent two-moment
(with an analytic closure) neutrino-radiation transport scheme.
It is based on the work of O’Connor (2015), Shibata et al.
(2011), and Cardall et al. (2013). We have outlined our FLASH
implementation in great detail in O’Connor & Couch (2018).
For the majority of our 3D simulations presented here, we
ignore the velocity dependence of the neutrino transport
equations (i.e., we set v and its derivatives to 0). We also
ignore the gravitational redshift term that moves neutrinos
between energy bins, although we keep the overall source term
from the gravitational redshift. These approximations are due to
not having fully implemented this physics prior to beginning
our 3D simulations. For comparison purposes, we do perform
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two simulations with full velocity and gravitational redshift
dependence, which were started after these improvements were
made to our neutrino transport code. For completeness, we
show the form of our moment evolution equations here and
refer the reader to the Appendix of O’Connor & Couch (2018)
for implementation details. The coordinate frame, energy-
dependent, neutrino energy density (E; zeroth moment)
evolution equation in Cartesian coordinates is given as
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and the coordinate frame, energy-dependent, neutrino momen-
tum density (F i; first moment) evolution equation is
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where in these equations, v is the matter velocity (with the
associated Lorentz factor of W); a f= ( )exp is the lapse (with
f being the gravitational potential), ν and ∂ν denote the
neutrino energy and the energy-space derivative; κa, κs, and η

are the matter absorption opacity, scattering opacity, and
emissivity, respectively; P ij is the second moment of the
neutrino distribution function, that we use an analytic closure
for; L ij and N ijk are higher moment tensors used in the energy-
space flux determination; and J and Hi are the fluid-frame
zeroth and first moments that can be expressed in terms of E,
F i, and P ij,
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These equations are energy and species dependent. We use 12
energy groups and three neutrino species (νe, n̄e, and n =x

n n n n+ + +m m t t{ ¯ ¯ }). This amounts to 144 evolution
equations. Since we perform the spatial flux and energy flux
calculations explicitly, these differential equations are only
coupled within an energy group and spatial zone. We perform
the resulting 4×4 matrix inversions analytically.

The neutrino-matter interaction coefficients, κa, κs, and η
are also energy and species dependent. They also depend on
the matter density, temperature, and electron fraction. We use
NuLib (O’Connor 2015) to generate a three-dimensional table
(in density, temperature, and electron fraction), which we then
tri-linearly interpolate, for each energy group and species, on
the fly using the +( )n 1 -state matter variables from the
hydrodynamic step. For the underlying neutrino interactions,
we use isotropic scattering on nucleons, alpha particles, and
heavy nuclei following Bruenn (1985) and Burrows et al.
(2006), with corrections for weak magnetism and recoil from
Horowitz (2002). For emission and absorption processes
involving electron-type neutrinos and antineutrinos, we employ
charged current interactions on neutron, protons, and heavy
nuclei, specifically,

n+ « ++ ¯ ( )n e p , 6e

n+ « +- ( )p e n , 7e

n+ « - +-( ) ( ) ( )A Z e A Z, , 1 , 8e

from Bruenn (1985) using weak magnetism and recoil
corrections from Horowitz (2002). Finally, for thermal pair
processes we use both electron–positron annihilation and
nucleon–nucleon bremsstrahlung following Burrows et al.
(2006) as implemented in O’Connor (2015). We only include
these processes for heavy-lepton neutrinos.

2.3. Initial Conditions

For our suite of 3D simulations, we adopt the 20Me, solar
metallicity progenitor model from Farmer et al. (2016)
produced using a non-equilibrium 204 isotope nuclear network
with MESA (Paxton et al. 2011, 2013, 2015, 2018). We use the
SFHo nuclear equation of state (EOS) (O’Connor & Ott 2010;
Hempel et al. 2012; Steiner et al. 2013) everywhere. We
simulate the collapse phase and early (first 15 ms) post-bounce
phase using GR1D (O’Connor 2015) and then transition to
FLASH. We use the same EOS table and neutrino interactions
as well as the same description of gravity (i.e., using a general
relativistic (GR) effective potential instead of full GR). We do
interpolate from the 18 energy groups used in GR1D to the 12
energy groups used in the 3D FLASH simulations. We see a
very smooth transition between the codes with little to no sign
of transients that could impact the future evolution.
It is worth discussing the MESA 20Me progenitor and

comparing it to another model frequently used in the literature.
The 20Me MESA model (referred to as MESA20) is fairly
similar to the 20Me model from Woosley & Heger (2007)
(referred to here as s20). The compactness (ξM; O’Connor &
Ott 2011) of the two 20Me models are also similar:
x ~ 0.691.75

MESA20 and x ~ 0.751.75
s20 . The silicon–oxygen interface,

where a sharp drop in density occurs (∼50% is both models), is
located at a radius of ∼2400 km and ∼2600 km for MESA20
and s20, respectively. The baryonic mass coordinates of these
interfaces are ∼1.75Me and ∼1.8Me, respectively. In
summary, the similarity of these properties results in a
qualitative and quantitatively similar evolution of the mass
accretion rate onto the PNS throughout the post-bounce phase.
We simulate the post-bounce phase in 3D using a Cartesian

grid with adaptive mesh refinement. Our smallest grid zones
are ∼488 m. The adaptive mesh refinement would ensure that
all of the post-shock region is fully refined, however, for our
baseline simulations we limit the refinement so as to only
maintain a minimum effective angular resolution of Δx/r
0.009 or Δx/r0°.53. This restriction leads to a reduction in
resolution from Δx∼488 m to Δx∼1 km at r∼108 km,
and further reduction by a factor of 2 at r∼216 km. We refer
to this as our standard resolution. We also have lower
resolution simulations (denoted by LR in the model name)
where we still take the smallest Δx=488 m, but only enforce
Δx/r0.015 or Δx/r0°.88. This leads to the first
resolution decrement at r∼65 km, and subsequent decrements
at r∼130 km, r∼260 km, etc. Our baseline simulations are
full 3D (4π), however we perform some simulations in octant
symmetry (denoted by oct in the model name). For two of our
simulations we use an improved neutrino transport that
includes full velocity dependence. We denote these simulations
with a v in the model name. Finally, in two of our simulations
we introduce velocity perturbations into the silicon and oxygen
shell at the time of mapping to FLASH (denoted by pert in
the model name). We describe the details of these perturbations
below. For the simulations without progenitor perturbations we
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do not impose any seed perturbations to the simulations,
instead, we let the Cartesian grid seed deviations from spherical
symmetry.

In total, we perform eight 3D simulations. Our flagship
simulations, mesa20 and mesa20_pert, use our standard
resolution. We also perform these simulations at lower
resolution: mesa20_LR and mesa20_LR_pert. We include
velocity dependence in mesa20_v_LR. Finally, we do three
octant simulations mesa20_oct, mesa20_LR_oct, and
mesa20_v_LR_oct. We also perform a collection of 1D
and 2D simulations in order to address the dimensional
dependence.

2.3.1. Progenitor Perturbations

For two of our simulations we impose three-dimensional
precollapse velocity asphericities onto the matter at the
beginning of the simulations. We base the strength of the
perturbations off of the convective velocities in the original
20Me progenitor model Farmer et al. (2016). Our model has
two regions of interest that are convective at the point of core
collapse. The silicon shell and the oxygen shell. Since we do
the collapse in 1D and map to our 3D code at 15 ms after
bounce, we must wait to apply the perturbations. We then
assign the perturbations based on the mass coordinate of the
convective zones in the progenitor model. We use the methods
of Müller & Janka (2015) to determine the perturbations to the
velocity field. We include only perturbations in vr and vθ and
keep δvf=0, though we do include a sinusoidal f dependence
in the perturbed velocities. At the time of mapping, the silicon
shell is located between rmin=1.25×108 cm and rmax=1.
99×108 cm. In the notation of Müller & Janka (2015), for the
silicon shell we take n=1, ℓ=9, and m=5. For the overall
scaling factor, we take C=10.5×1030g s−1. For the
convective oxygen shell we take = ´r 2.23 10 cmmin

8 and
rmax=6.5×108 cm, n=1, ℓ=5, and m=3, and an overall
scaling factor of C=8.4×1030 g s−1. To extend the
equations of Müller & Janka (2015) to 3D, we keep the f
dependence in the spherical harmonic functions of their
Equation (7) and opt to use the real part of their Equation
(8). These factors give maximum Mach numbers of 0.3 and 0.2
for the lateral motions in both the silicon and oxygen shells,
respectively. The perturbations in the radial velocities have a
similar magnitude (i.e., d ~∣( ) ∣v c0.2r s, but are placed on the
background velocity field, which has a infalling Mach number
of ∼0.8 in the silicon shell and ∼0.4 at the base of the oxygen
shell.

3. Results

3.1. Overview

Our suite of eight 3D simulations, which all use the same
progenitor model, nuclear EOS, and neutrino opacities, span a
number of interesting parameters, including resolution, geo-
metry, inclusion of progenitor perturbations, and inclusion of
neutrino-transport velocity dependence. We have done this in
order to be able to test the sensitivity of our 3D simulations to
each of these aspects. In this section we present an overview of
all our of 3D results and discuss each of these conditions
in turn.

We discuss each of 3D simulations below with the help of
Figure 1 through Figure 5. In each of these figures we will
show four basic quantities, which we describe here. (1) The

mean shock radius rsh; (2) the lateral kinetic energy in the gain
region Tgain

lat , which is the sum of all non-radial kinetic energy in
the gain region; (3) the ratio of the advection timescale through
the gain region to the heating timescale in the gain region,

t
t

=
˙

∣ ∣ ˙ ( )
M M

E Q
, 9adv

heat

gain

gain heat

where Mgain is the mass of the gain region, Ṁ is the accretion
rate outside the shock, Egain is the energy of the matter in the
gain region (gravitational + kinetic + internal [relative to free
neutrons]), and Q̇heat is the rate of energy injection via neutrino
heating; and (4) the heating rate in the gain region, Q̇heat. The
ratio, τadv/τheat, gives a quantitative measure of how close a
simulation is to an explosion, especially when directly
comparing models with the same underlying progenitor model
and EOS. Empirically it has been found that when this ratio
reaches 1 an explosion is expected (Marek et al. 2009;
O’Connor & Couch 2018). Physically, τadv/τheat=1 means that
the time it takes to change the energy of the matter in the gain
region by of order itself via neutrino heating is equal to the time it
takes to accrete through the gain region. In this time the matter can
be heated and unbound before settling onto the PNS.

3.1.1. Impact of an Aspherical Progenitor

To begin, we discuss our two flagship simulations: mesa20
and mesa20_pert. These differ in the inclusion of progenitor
perturbations in the silicon and oxygen shell as presented in
Section 2.3. In Figure 1, we show the four basic quantities
described above, rsh (top left), Tgain

lat (bottom left), τadv/τheat (top
right), and Q̇heat (bottom right). Also in this figure we show the
low-resolution variants of each of these simulations,
mesa20_LR and mesa20_LR_pert, which will be primarily
discussed in the following section. We show volume renderings
at ∼150, ∼190, ∼220, and ∼260 ms (from left to right) in
Figure 2 for both the mesa20 (top) and mesa20_pert
(bottom) simulations to aid our discussion. Immediately we can
see the impact of the aspherical progenitor in mesa20_pert
and mesa20_LR_pert. Starting as early as ∼100 ms after
bounce we see the first signs of the imposed asphericity in the
silicon shell impacting the post-bounce dynamics. The amount
of lateral kinetic energy in the aspherical models is diverging
from and significantly exceeding the spherical models. The
impact on the shock radius and the neutrino heating is not
appreciable at this time. The mass accretion rate is high at this
time, and the turbulent motions that do form are quickly
accreted out of the gain region. It is not until later, ∼180 ms,
that we see an impact on these other measures. Since this time
is well before when the interface between the silicon and
oxygen shells accretes through the shock (at ∼250 ms), the
behavior seen at this time is still due to the perturbations
imposed on the silicon shell. At this time, we see a dramatic
rise in the lateral kinetic energy (∼7× 1048 erg s−1 for
mesa20_pert compared to ∼2× 1048 erg s−1 for mesa20
at 220 ms), the shock recession temporarily ceases, and the
neutrino heating rate is enhanced, 7.5×1051 erg s−1 in
mesa20_pert compared to ´5 1051 erg s−1 in mesa20 at
∼220 ms. We note that the increase in the lateral kinetic energy
is not because there is significantly more lateral kinetic
energy accreting through the shock in the aspherical models
(there is not), but rather that the non-radial velocities entering
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the post-shock region are much more effective at seeding the
convective instabilities that drive turbulence.

The quantitative impact of the progenitor asphericity is clear
in the graph of the τadv/τheat. During the phase where the
silicon shell perturbations are accreting through the gain region
both the gain region itself is larger (giving a long advection
time) and the neutrino heating rate is higher (giving a smaller
heating timescale). We note that the longer advection time
dominates the contribution to the larger τadv/τheat. After
the silicon–oxygen shell interface accretes through the shock
the perturbations from the silicon shell cease and are quickly
accreted through the gain region and onto the PNS. We find
that the perturbations imposed on the oxygen shell do not have
the same qualitative impact as those from the silicon shell. We
see no significant excess of lateral kinetic energy during this
phase and the evolution of the mesa20_pert simulation
begins to qualitatively match that of mesa20. The shock
radius quickly recedes, and the lateral kinetic energy and the
neutrino heating drop. τadv/τheat also drops from its peak value
of ∼0.7 to ∼0.45.

3.1.2. Impact of Reduced Resolution

From Figure 1, we can also assess the impact of resolution. For
our flagship simulations, mesa20 and mesa20_pert, we also
perform lower resolution simulations with and without progenitor
perturbations: mesa20_LR and mesa20_LR_pert. These lower
resolution simulations have the same central zone size (∼488m)
but we enforceΔx/r0.015 (or Δx/r0°.88) outside of 60 km
instead of Δx/r0.009 (or Δx/r0°.53) outside of 90 km. The
lower resolution grid seeds strong numerical perturbations when
the shock passes our fixed refinement levels. This gives rise to

earlier turbulence (and increased lateral kinetic energy) in the
low-resolution simulation compared to the standard resolution.
As a result, the lower resolution simulations also give slightly
larger shock radii, ∼5 km or 3%, when they eventually stall at
∼100 ms after bounce and begin to recede. Not until the
standard resolution simulations experience strong SASI motions
at ∼300 and ∼350ms for mesa20 and mesa20_pert, respe-
ctively, does the shock overtake that of the lower resolution
simulations. This is discussed further in Section 3.2.
The early time differences between the two resolutions follows

closely the results from Roberts et al. (2016), who also perform
3D neutrino-radiation transport simulations with two different
resolutions. In the lower resolution simulations here, and in
Roberts et al. (2016), turbulence develops earlier and is most
likely responsible for the slightly larger initial shock radius. After
the turbulence becomes fully developed, both the simulations here
and in Roberts et al. (2016) see very little difference in the
turbulent nature of the two simulations with different resolutions.
The various components of the Reynolds stress show no
systematic differences with resolution, except at the earliest times.
Both the low- and high-resolution, full 3D, simulations in Roberts
et al. (2016) are successful, however the low-resolution one
always maintains a larger radius and explodes earlier than the
high-resolution simulation. While none of our simulations
explode, the lower resolution simulations are quantitatively closer
to explosion as seen in τadv/τheat from Figure 1. We note that our
low-resolution simulation (Δx∼ 2 km between ∼130 km and
∼260 km) lies between the high- and low-resolution simulations
of Roberts et al. (2016) and our high-resolution simulation is
higher (Δx∼ 1 km between ∼110 km and ∼220 km) than that of
Roberts et al. (2016).

Figure 1. rsh (top left), Tgain
lat (bottom left), τadv/τheat (top right), and Q̇heat (bottom right) vs. post-bounce time for models mesa20 (blue), mesa20_pert (red), and

their low-resolution variants mesa20_LR (green) and mesa20_LR_pert (pink). The striking difference is the impact of the progenitor perturbations (from the
silicon shell) at ∼200 ms after bounce. These perturbations give an increased shock radius, increased lateral kinetic energy, and increased neutrino heating around this
time. The mesa20_pert and mesa20_LR_pert simulations are quantitatively closer to explosion.
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3.1.3. Impact of Octant Geometry

In Figure 3, we show the effect of imposing octant symmetry
on our simulations. We show our main simulation, mesa20
(blue), as well as its low-resolution variant mesa20_LR
(green). For each of these, we show variants, mesa20_oct
(red) and mesa20_LR_oct (pink), where we restrict the

motion to the first octant by imposing reflecting boundary
conditions on each of the main axis. In the early evolution,
prior to ∼100 ms, we see very little impact of the octant
symmetry. Until ∼200 ms, difference that do arise are smaller
than the difference observed between the standard and low-
resolution simulations. For mesa20_oct, we see a small
decrease in the lateral kinetic energy and well as the neutrino

Figure 2. Volume renderings of mesa20 and mesa20_pert with focus on the entropy variations in the gain region for four post-bounce times of ∼150, ∼190,
∼220, and ∼260 ms. The supernova shock is denoted by the thin cyan surface, and the PNS is denoted by the opaque magenta sphere in the center (not always
visible). These renderings show the impact of the imposed progenitor perturbations that accrete through the shock starting around 180 ms and have a maximal effect
around 220 ms. By 260 ms, these perturbations have accreted out of the gain region and the simulations become more similar.

Figure 3. rsh (top left), Tgain
lat (bottom left), τadv/τheat (top right), and Q̇heat (bottom right) vs. post-bounce time for models mesa20 (blue), mesa20_LR (green), and

their octant variants mesa20_oct (red) and mesa20_LR_oct (pink). Note, the lateral kinetic energy and the neutrino heating from mesa20_oct and
mesa20_LR_oct have each been multiplied by 8 in order to account for the octant symmetry.
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heating, shock radius, and τadv/τheat. This is similar to the
effect seen in Roberts et al. (2016) who also perform octant
simulations. Since the octant symmetry prevents the growth of
the largest scale modes that help support the shock, after
∼100 ms both the octant simulations of Roberts et al. (2016)
and the octant simulations presented here have marginally
smaller average shock radii and neutrino heating. For both the
standard and low-resolution simulations we note that the
increased noise for the quantities from the octant simulations in
Figure 3 is due to the smaller number of zones that we average
over (by a factor of 8).

After 200 ms, the difference between the full 3D simulations
and the octant variants becomes more interesting. Due to the
octant symmetry, global modes are suppressed. As a result, our
octant simulations behave much like failed 1D models. While
the full 3D simulations experience repeated episodes of SASI
growth accompanied by excursions of the mean shock radius,
the shock radii in the octant models are rapidly receding. The
heating is also notably reduced, at times up to ∼25% lower,
from the full 3D models, consistent with the smaller shock
radii. From the ratio of τadv/τheat, the octant simulations are
quantitatively the farthest from explosion.

3.1.4. Impact of Velocity-dependent Transport

We also perform simulations using a velocity-dependent variant
of our neutrino transport. Unlike the other simulations presented
here, these simulations fully account for velocity-dependent
effects in the transport, gravitational redshift of the neutrinos
as they stream out of the gravitational well, as well as advection
of neutrinos with the fluid flow when they are trapped. We
perform two low-resolution simulations with velocity dependence,
one in full 3D, mesa20_v_LR and one in octant symmetry
mesa20_v_LR_oct. We show the results of these simulations in
Figure 4, where we also include the non-velocity-dependent

simulations mesa20_LR and mesa20_LR_oct. We find that
including velocity dependence has several effects on the
evolution.
In the velocity-dependent results, there appears to be slightly

less overall heating (∼10%) in the gain region before ∼200 ms
after bounce. This is due to, unfortunately, slightly different
definitions of the energy exchange term in our two simulations
that cannot be corrected with post-processing, but is purely a
bookkeeping difference. In the velocity-dependent simulations,
our matter exchange term is recorded as the rate of total energy
exchange with the matter. While in the non-velocity-dependent
simulations we record the rate of internal energy exchange with
the matter. The difference between these two rates is the energy
change due to momentum absorption of the neutrinos, which in
the case of the gain region, acts to reduce the kinetic energy of
the matter (hence why this rate is lower). We note that in both
cases we properly take into account the energy exchange due to
momentum absorption for the hydrodynamic source term. In
1D simulations we observe that the heating rate derived from
the rate of total energy exchange in both the velocity-dependent
and non-velocity-dependent simulations are very similar. This
similarity is naively not what one would expect, but is a
coincidental cancellation of two effects that seemingly equally
impact the amount of neutrino heating with opposite signs. The
first effect is from the gravitational redshift, which reduces the
energy of the neutrinos, hence the effectiveness of neutrino
capture in the gain region. A competing effect is that the
background flow of the material in the gain region is against
the neutrino flow so that in the frame of the fluid, the neutrinos
are boosted to higher energies.
One of the more visible impacts of the added velocity

dependence seen in Figure 4 is the evolution of the shock
radius. With velocity dependence, the mean shock radii of the
simulations mesa20_v_LR and mesa20_v_LR_oct reach

Figure 4. rsh (top left), Tgain
lat (bottom left), τadv/τheat (top right), and Q̇heat (bottom right) vs. post-bounce time for models mesa20_LR (blue), mesa20_LR_oct

(green), and their octant variants mesa20_v_LR (red) and mesa20_v_LR_oct (pink). Note, the lateral kinetic energy and the neutrino heating from
mesa20_LR_oct and mesa20_v_LR_oct have each been multiplied by 8 in order to account for the octant symmetry.
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∼10 km further out at ∼100 ms after bounce and then recede
more slowly such that after ∼250 ms they are ∼30 km (or
∼30%) further out compared to mesa20_LR and mesa20_L-
R_oct. This larger shock radius coincides with an increased
PNS radius. Since such a dramatic difference in both the PNS
radius and the shock radius is not seen in our 1D models of this
progenitor, we attribute the difference, as least in part, to the
presence of strong PNS convection, which is effectively
supporting the PNS and allowing it to maintain a larger radius
and therefore a larger shock radius. This effect, in relation to its
impact on the heavy-lepton neutrino luminosities, has been
noted in several recent multidimensional studies of CCSNe,
including O’Connor & Couch (2018) and Radice et al. (2017),
but note that other multidimensional simulations see a smaller
impact, e.g., Buras et al. (2006). We discuss this further when
we discuss the neutrino luminosities from our simulations in
Section 3.3. Related to this is the observation that in the one
full 3D simulation with velocity dependence we see no
presence of the SASI. In part, we attribute this to the large
shock radius discussed above. A consequence, as can be seen
from Figure 4, after 200 ms after bounce there is a larger
(30% more) turbulent kinetic energy present in the gain
region of mesa20_v_LR when compared to mesa20_LR.
This can lead to a suppression of the growth of the SASI (e.g.,
Foglizzo et al. 2007; Fernández et al. 2014).

3.1.5. Impact of Dimensionality

For completeness, we examine the dimensional dependence
of this progenitor model. We perform a 1D, 2D (with and
without progenitor perturbations), and include our two 3D
simulations with and without progenitor perturbations in this
comparison. We show these results in Figure 5. Our 2D
simulations do successfully explode, but only after a post-
bounce time of ∼1 s and ∼1.4 s for mesa20_2D_pert and
mesa20_2D, respectively. We note several interesting effects.

First, it is clear that numerical perturbations from the
computational grid allow for the earlier growth of lateral
kinetic energy, which acts, at least initially, to support a larger
shock radius. For the two 3D simulations, this growth starts at
∼70 ms after core bounce, the same time as the mean shock
radius deviates from the 1D result. In 2D, this is delayed until
∼90 ms. The difference is due to the Cartesian grid, particularly
the prescribed mesh refinement boundaries, which trigger
convective growth. Differences in the block sizes, and the
added dimension, cause these numerical perturbations to trigger
at different times. Soon after, as early as ∼140 ms after bounce,
the 2D lateral kinetic energies, show dramatic growth beyond
the 3D equivalent. In part, this is expected because the nature
of turbulence in 2D, which tends to drive kinetic energy to
large scales. This alone does not explain the increased values
we see, however, when coupled in a CCSN simulation, these
large-scale features also tend to drive shock expansion, which
has a nonlinear, but positive effect for the neutrino mechanism,
i.e., increased neutrino heating and a greater gain-region mass.
As was the case in 3D, the 2D simulation with progenitor

perturbations is qualitatively and quantitatively closer to
explosion, especially during the epoch when the perturbations
from the silicon shell are accreting through the shock. At this
time, there is a larger mean shock radius, larger neutrino
heating, more lateral kinetic energy, and a higher τadv/τheat. As
a cautionary note, due to the ubiquity of large-scale structures
(see above), 2D simulations of CCSNe can be very stochastic
in nature and large deviations in the evolution (even qualitative
ones) can occur for small deviations in the initial conditions.

3.2. SASI and Angular Momentum

We see characteristic signs of the SASI in most of our full
3D models. Using the spherical harmonic decomposition
analysis presented in Couch & O’Connor (2014), we compute
the spherical harmonic components of the shock radius

Figure 5. rsh (top left), Tgain
lat (bottom left), τadv/τheat (top right), and Q̇heat (bottom right) vs. post-bounce time for models mesa20 (blue), mesa20_2D (green),

mesa20_pert (red), mesa20_2D_pert (pink), and mesa20_1D (black).
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decomposition as a function of time for all of the full 3D
simulations, mesa20, mesa20_LR, mesa20_pert, mesa20_
LR_pert, and mesa20_v_LR. Based on the shock decomposi-
tion, the SASI is clearly present in models mesa20, mesa20_LR,
and mesa20_pert, to a lesser extent in model mesa20_LR_
pert, and not discernable in model mesa20_v_LR. In Figure 6,
we show the individual components of the ℓ=1 spherical
harmonic, = á ñ á ñ- /a a z r1 1 0 0 sh sh , = á ñ á ñ/a a y r1 0 0 0 sh sh , and

= á ñ á ñ/a a x r1 1 0 0 sh sh , where á ñxi,sh denotes the mean value of
the Cartesian coordinate xi={x, y, z} of the shock front and á ñrsh

is the mean radius of the shock front. We also show the total
relative power in the ℓ=1 mode, ~ å∣ ¯ ∣ /a a am m1 1

2
0 0 as the

solid black line. The peak amplitudes reach ∼0.15–0.2 for the
strongest three models, and ∼0.05 in mesa20_LR_pert. Most
of the SASI-dominated phases are predominantly spiral modes
where one expects a constant total power rather than for a sloshing
mode where one would expect an oscillatory total power (at twice
the frequency). At times there are clear, but small, oscillatory
features on top of the total power (at twice the spiral mode
frequency) that are due to a relatively smaller sloshing mode
component. For example, from ∼250–325ms in model

mesa20_LR, as discussed in detail below, as a quintessential
example.
Spiral SASI modes, like the one seen from ∼250–360ms in

model mesa20_LR, redistribute angular momentum so that the
PNS is counter-rotating with the spiral mode, even in zero net-
angular momentum configurations (Blondin & Shaw 2007;
Blondin & Tonry 2007; Hanke et al. 2013; Guilet & Fernandez
2014). We observe this redistribution in our models. In Figure 7,
we show the enclosed angular momentum as a function radius for
18 times between 240 and 410ms, in 5ms increments. At all
times, there is net-angular momentum inside the PNS (from
∼10–25 km) due to PNS convection. However, for the most part,
this cancels itself out near the edge of the PNS convection zone.
Outside of ∼25 km, at early times (yellows and light greens) there
is little net enclosed angular momentum. As the SASI spiral mode
grows, starting around∼280ms, we begin to see the redistribution
of this angular momentum (dark greens toward black). By
∼360ms (black dashed line), where there is a peak of the ℓ=1
power, ∣ ¯ ∣a1 , the angular momentum redistribution is reaching a
maximum. Inside∼40 km, the PNS is counter-rotating against the
spiral mode with an enclosed angular momentum of ∼1.5×
1045 g cm2 s−1. There is an equal, but opposite amount trapped in

Figure 6. Spherical harmonic decomposition of the shock in the mesa20, mesa20_LR, mesa20_pert, mesa20_LR_pert, and mesa20_v_LR simulations,
from the top to the bottom, respectively. We show the individual ℓ=1 components of the shock decomposition, relative to the ℓ=0 (mean shock radius) value,
a10/a00 (blue), -a a1 1 00 (green), a11/a00 (orange), which correspond to á ñysh , á ñzsh , and á ñxsh , respectively. Additionally, we show the square root of the total relative
power in the ℓ=1 mode compared to the ℓ=0 mode as the solid black line.
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the SASI spiral wave outside of ∼40 km, so that the net-angular
momentum of the system is zero. After ∼360ms, we see the
spiral SASI rapidly disrupts. The angular momentum in the gain
region accretes onto the PNS rather than being sustained in the
gain region. This process takes place over an accretion timescale

~˙M M 30gain ms. The amount of kinetic energy that is
ultimately dissipated at the surface of the PNS during this time is
∼1048 erg. Even if this was to be completely transformed into heat
over ∼30ms, the additional heating would be much less than the
steady-state neutrino heating at this time.

Complementary to Figure 7, we show slices along the SASI
plane in Figure 8 (animation available online showing the spiral
mode buildup and then the destruction; otherwise we show the
frame at ∼360 ms) of the angular velocity of the material in this
plane. Positive values (purples) are rotating counterclockwise
while negative values (greens) are rotating clockwise. The
spiral SASI wave is rotating counterclockwise, the triple point
is located near the right side of the figure. Zones that are tagged
as shocks are shown as transparent gray. In the core we see the
buildup of clockwise rotating material (green) on the surface of
the PNS, while the bulk of the gain region is rotating
counterclockwise (purple).

Just prior to ∼360 ms when the spiral SASI mode peaks in
amplitude, at around ∼350 ms, the shock starts a rapid
expansion (see Figure 1). This is coincident with an increase
in the lateral kinetic energy and an increase in the neutrino
heating, likely as a result of the shock expansion. After this
time the spiral SASI wave is disrupted. These dynamics
suggest that the SASI mode becomes highly nonlinear,
disrupts, and subsequently leads to a transient reenergization
of the shock. This is quantitatively demonstrated via the
increase in the ratio τadv/τheat. Clearly, this transient reenergi-
zation is not enough to launch as explosion, but it shows a
potential way for the SASI to lead to an explosion. This
phenomena is seen in other simulations present in this work
(e.g., the peaks of the SASI mode in mesa20 at ∼400 and
∼470 ms, and mesa20_pert at ∼370 and ∼510 ms). It is
important to note that not all transient shock expansions seen in
Figure 1 are followed by a collapsed SASI wave, nor is it the
case that all SASI wave collapses follow a rapid shock

expansion, yet there does seem to be a high correlation between
these phenomena.
Provided an explosion was launched during such an event, it

may well be the case that the PNS retains the distributed
angular momentum after the explosion as suggested in
(Blondin & Shaw 2007; Blondin & Tonry 2007; Guilet &
Fernandez 2014). Assuming the neutron star ends up with a
total angular momentum of 1.5×1046 g cm2 s−1, and a
gravitational mass of ∼1.6Me (based on the baryonic mass
of the PNS at 360 ms of ∼1.8Me and the SFHo EOS) and
therefore a moment of inertia of ∼1.7×1045 g cm2, the final
period would be ω=8.8 rad s−1, or ∼700 ms. This is roughly
a factor of 5 faster than the prediction of Guilet & Fernandez
(2014),

*k
~

-

´
D

-

-


⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠˙ ( )

P I
P

r r

v

M

M r

r

r

290
10

50 ms

120 km

3000 km s

0.3 s 150 km

3
ms, 10

45
SASI

sh

sh
1

1

sh

2
sh

2

where for our case, κ∼9, PSASI∼13 ms, rsh∼110 km,
r*∼40 km, vsh∼8000 km s−1, Me∼0.3, and D ~r rsh

~∣ ¯ ∣a2 0.21 , leading to a prediction of P∼3500 ms. This
difference could be due to any number of differences between
the idealized models of Guilet & Fernandez (2014) and the
work here. In particular, our SASI spiral wave is confined to a
much smaller radius as the mean shock radius is only 110 km,
compared to the typical value of 150 km in Guilet & Fernandez
(2014). Also, the more massive PNS (1.8Me), and the smaller
mean shock radius, gives a larger typical radial velocity behind
the shock (8000 km s−1 compared to 3000 km s−1. There could
be nonlinear effects associated with the large deviations from
the assumed values and scalings in Guilet & Fernandez (2014).

Figure 7. Radial profiles of the enclosed angular momentum, ∣ ∣L , for 18 post-
bounce times between 240 and 410 ms in the mesa20_LR simulation. The
dashed-black lines denote the time when the SASI ℓ=1 mode has the highest
amplitude, ∼360 ms. Green shades show the distribution as the SASI spiral
mode is building up, while blue shades show distribution after the spiral SASI
model is disrupted and the distributed angular momentum is isotropized near
the PNS core.

Figure 8. Slice through the plane aligned with the plane of the SASI spiral
mode in the mesa20_LR simulation between the post-bounce times of ∼240
and ∼370 ms. The colors denote the angular velocity ( fv

SASI) of the material in
the plane, purple shave are rotating counterclockwise while the green shades
are rotating clockwise. The direction of the spiral SASI wave is counter-
clockwise. Zones tagged as shocks are shown as transparent gray. An
animation is available. The video begins at t=0.235821 s and ends at
t=0.385821 s. The duration is 18 s.

(An animation of this figure is available.)
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3.3. Neutrinos

We show the neutrino luminosities produced by each one of
our five full 3D simulations in Figure 9. For clarity, we divide
them into our standard resolution (left) and the low resolution
(right). The solid lines show the electron neutrino luminosity,
the dashed lines denote electron antineutrino luminosity, and
the dashed-dotted lines show the luminosity of a single heavy-
lepton neutrino species. The simulations begin at 15 ms after
bounce. In the beginning of the non-velocity-dependent
simulations there is a sharp spike in the luminosities due to
the transition from the velocity-dependent transport in GR1D
and the transport in FLASH. This spike is much smaller in the
velocity-dependent FLASH simulations. Since the underlying
progenitor is the same for each simulation we do not expect
large variations in the predicted neutrino signals between
simulations. That being said, we do see several noteworthy
differences that we will explicitly mention. As the system
evolves we see the rise of both the n̄e and νx luminosities and
the fall of the νe luminosity as the remaining iron core accretes
onto the PNS. The electron-type luminosities plateau at
∼65× 1051 erg s−1, while the νx luminosity plateaus at
∼33× 1051 erg s−1. At a post-bounce time of ∼220 ms we
begin to see the dramatic drop in luminosity that is a result of
the mass accretion rate drop associated with the accretion of the
silicon–oxygen interface through the shock. We do notice a
difference between the simulations with and without the
imposed progenitor perturbations. The mesa20_pert and
mesa20_LR_pert simulations (shown in orange) have a
shallower drop in luminosity. It starts earlier and ends later.
This is not due to differences in the mass accretion rate onto the
shock, but rather due to a longer advection time through the
gain region and therefore a slower (for a short time) mass
accretion rate into the cooling region. The longer advection
time is due to the additional support provided to the shock by
the turbulence motions seeded by the progenitor perturbations.
We see a similar phenomena at later times, when collapsing
spiral SASI waves trigger increased turbulence activity (see
Section 3.2), increased advection time, and small drops in the
neutrino luminosity. For example, at ∼370 ms in mesa20_LR,

∼400 ms in mesa20_pert, and ∼410 and ∼480 ms in
mesa20.
The luminosities presented in Figure 9 are spherically averaged.

However, since our transport code is multidimensional, we can
easily examine the variation of the neutrino signal over the
emission direction. We perform the same spherical harmonic
decomposition on the individual neutrino signals (extracted at
500 km) as we applied on the shock surface. However, for
neutrinos it is convenient to consider the decomposition in the
form of (Tamborra et al. 2014; Melson 2016)

q~ +n n n ( )L L L cos , 11monopole dipole

where the monopole component is related to the ℓ=0
decomposition, =n ( )L amonopole

00
2 1 2, the dipole component is

related to the ℓ=1 decomposition, = ´ ån =-( )L a3 i i
dipole

1
1

1
2 1 2,

and q( )cos is the cosine of the angle between the observer and
the direction of the dipole at any given time. We do find
a nonspherical (i.e., dipole) component that is highly cor-
related with the SASI motions. For νe and n̄e we find

= ~n n n n n n∣ ¯ ∣¯ ¯ ¯L a L3 0.03dipole
1

monopole
e e e e e e

. The νx signal also has a
directional variation. However, it is roughly four times smaller,
i.e., = ~n n n∣ ¯ ∣L a L3 0.008dipole

1
monopole

x x x
. As the spiral SASI wave

rotates around, so to does the dipole component of the neutrino
luminosities. Over the course of one SASI period, the neutrino
luminosities as seen by an observer viewing the spiral SASI wave
edge on would have a trough-peak variation of ∼6% (∼1.5%) for
νe and n̄e (νx). This is smaller than seen in Tamborra et al. (2013),
where peak-trough variations of order ∼25% were seen for some
spiral SASI waves. The phase of the neutrino modulation is
interesting. After taking into account the light travel time from the
PNS where the neutrinos are emitted and at 500 km where they
are measured, we find that the νe and n̄e luminosities peak in the
direction opposite the average shock position, i.e., they lag the
direction determined by the á ñxi,sh by 180◦. The νx luminosities
generally peak at a different time than the νe and n̄e neutrinos. We
attribute this to a variation in the location of the peak values of

Figure 9. Sky-average neutrino luminosities for all three species (νe, n̄e, and a single νx) as a function of post-bounce time for the five, full 3D models explored in this
article. In the left panel we show the luminosities from mesa20 and mesa20_pert, while in the right panel we show the luminosities from mesa20_LR,
mesa20_LR_pert, and mesa20_v_LR.
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the density and temperature within the spiral SASI plane as a
function of radius. The electron-type neutrinos and antineutrinos
are emitted at a much larger radius than the heavy-lepton
neutrinos. The accretion waves take longer to reach the deeper
radii where the heavy-lepton neutrinos are emitted. The exact
phase difference between the neutrino types smoothly varies
with time.

Finally, we remark on the largest difference seen in Figure 9.
As discussed in Section 3.1.4, when we include velocity
dependence into our simulations, i.e., in the mesa20_v_LR
and mesa20_v_LR_oct simulations, we see an increased
level of PNS convection. This dramatically increases (by
upwards of ∼30% compared to the non-velocity-dependent
simulations) the heavy-lepton neutrino luminosity starting from
∼100 ms after bounce. The convection brings hotter material
from deeper down to larger radii where emitted neutrinos can
more easily escape. This also increases the radii of the heavy-
lepton emission region, giving a larger effective area and
therefore a larger luminosity. As mentioned in Section 3.1.4,
this effect has been noted in several recent multidimensional
studies of CCSNe, including O’Connor & Couch (2018) and
Radice et al. (2017). There is tension regarding the total
expected enhancement due to multidimensional effects as we
note that other multidimensional simulations see a smaller
impact (Buras et al. 2006).

3.4. LESA

The LESA phenomena was first reported in Tamborra et al.
(2014). The LESA is characterized by a spatial asymmetry in
the total electron number emission via a strong dipole
component. The LESA can be described with a monopole
and dipole component,

q- = +n n ( )¯N N A A cos , 12monopole dipolee e

where q = n( ) ˆ · ˆr rcos dipole. In some cases reported in Tamborra
et al. (2014), the dipole component was comparable to or larger
than the monopole component. The consequence is that in the
direction of - nr̂dipole, the net lepton-number emission was
negative, i.e., more electron antineutrinos were emitted then
electron neutrinos. Such a situation may have dramatic
consequences for neutrino oscillations, neutrino detection
(parameter inferences), and nucleosynthesis, to name a few.

Since Tamborra et al. (2014), the LESA has been reported in
all 3D models from the Garching Collaboration using the
PROMETHEUS-VERTEX code (Janka et al. 2016) but has
never been conclusively demonstrated by an independent
source. In addition to being only observed by one simulation
code, another large criticism of the LESA instability is that the
neutrino transport scheme employed made use of the ray-by-
ray approximation. Our neutrino transport scheme is comple-
tely independent of PROMETHEUS-VERTEX. Importantly, it
does not make the ray-by-ray approximation but rather solves
the multidimensional transport of the neutrinos directly. For
these reasons, a search for LESA in our simulations is
warranted.

We search our simulations for evidence of LESA. We extract
from our simulations the net lepton-number flux through a
sphere with radius 500 km. In Figure 10, we show the
relative net lepton flux - á - ñn n n n W( )¯ ¯N N N Ne e e e from the
mesa20_v_LR simulation for two times (330 and 440 ms
after bounce). The presence of a dipole is clear, located at

f∼90° (∼15°) and θ∼−20° (∼−15°) for tpb=330 ms
(440 ms). At 1 ms time intervals, we decompose the net lepton-
number flux ( -n n̄N Ne e) sky map into spherical harmonics.
Recall from Section 3.3, this decomposition gives both

= ( )A amonopole 00
2 1 2 and = ´ å =-( )A a3 i idipole 1

1
1
2 1 2, where

alm are the spherical harmonic decomposition components
(Couch & O’Connor 2014). This notation is such that if
the monopole and dipole term are equal in amplitude (and the
dipole term is positive), then an observer located along the
dipole direction sees twice the average net lepton-number flux
and an observer along the anti-dipole direction sees zero net
lepton-number flux. In model mesa20_v_LR we see a strong
presence of LESA, as expected based on the sky maps seen in
Figure 10. In the top panel of Figure 11, we show Amonopole and
Adipole for model mesa20_v_LR. The dipole component
begins to grow at ∼200 ms after bounce and reaches an
appreciable fraction of the monopole component (at times
∼50%) by ∼300–400 ms after bounce. In addition to having a
large ratio of the dipole to monopole component, we also see
that the LESA is stable (but migratory) in its position. In the
bottom panel of Figure 11, we show, in blue, the θ (solid) and f
(dashed) values of the dipole direction, nr̂dipole, determined from
the individual spherical harmonic components a1m of the net
lepton-number flux. Prior to 200 ms the dipole strength is very
low and therefore the dipole direction is not well constrained.
We exclude this time from the figure for clarity. We also show
the simultaneous position of an asymmetry in the electron
fraction near the PNS convection zone, r̂dipole

Ye . We evaluate the
direction of this dipole between the radii of 25 and 30 km
(where the PNS convection is strongest) as

å= á ñ á ñ
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ( )/r x Y x Y . 13i e

j
j edipole

Y

1,2,3

2

1 2

e

The direction of this dipole is remarkably similar to nr̂dipole. In
fact, as shown in the inset of the bottom panel in Figure 11, the
dipole direction in Ye slightly precedes the dipole direction in
the net lepton-number flux. This lag time is roughly ∼2 ms, and
is due to the light travel time between the location of the Ye
dipole and the sphere at which the neutrino number fluxes are
measured. To make this more clear, in the inset we show both
the true (solid orange line) and a shifted version (dotted orange
line; shifted by 500 km/c=1.67 ms) of the r̂dipole

Ye . The
alignment of these dipoles is not unexpected. The asymmetry in
Ye is directly responsible for the asymmetry in the net lepton-
number flux. The matter in the direction of r̂dipole

Ye is on average
more electron rich and therefore emits relatively more electron
neutrinos compared to electron antineutrinos. Unlike the
asymmetry in the net lepton number, the asymmetry in the
electron fraction can be seen earlier than 200 ms. However, its
position is less stable at this time. Although not shown, we also
see a small dipole component to the total νx flux that is anti-
aligned with the dipole direction (i.e., anti-aligned with the
excess flux of the νes and aligned with the excess flux of the n̄e

s). This amplitude of this νx dipole component is ∼25% of the
amplitude of the νe and n̄e dipole components, which is in
agreement with Tamborra et al. (2014).
The cause of the asymmetry in Ye is not yet clear. Tamborra

et al. (2014) propose a self-sustaining mechanism where the
increase of electron antineutrinos in the hemisphere of - nr̂dipole
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(and the decrease in the hemisphere of nr̂dipole) leads to relatively
stronger neutrino heating, a larger shock radius, and conse-
quently funneled accretion onto the opposite hemisphere (i.e.,
near the direction of nr̂dipole). This accretion of predominately
electron-rich material sources the imbalance of the lepton
emission, and according to Tamborra et al. (2014) excites the
enhanced PNS convection. Our simulations lend support to this
idea. We show in Figure 12 the relative difference in the shock
radius, neutrino heating, and mass accretion rate (measured
between 55 and 65 km) as measured in the two hemispheres

defined by the direction determined via the Ye asymmetry.
Specifically, we show

D =
-

+

+ -

+ -( )
( )X X

X X
, 14

1

2

where the + denotes the hemisphere defined with >· ˆr r 0dipole
Ye

and − denotes the hemisphere where <· ˆr r 0dipole
Ye . We see a

significant (upward of ∼30% at times) higher mass accretion
rate in the hemisphere aligned with r̂dipole

Ye , and therefore with
nr̂dipole. Near the time when the LESA is strongest (between
∼300 and ∼450 ms), we also see lower average shock radii and
neutrino heating rates (upward of ∼2%–3%) in the hemisphere
aligned with r̂dipole

Ye . The sign of each of these relative ratios,
agree with the observations of Tamborra et al. (2014).
Furthermore, for the most similar progenitor used in Tamborra
et al. (2014), s20, the magnitudes of these differences roughly
correspond to each other. Interestingly, the mass accretion rate
asymmetry begins to form early (before 200 ms) before
significant asymmetry forms in the shock radius, neutrino
heating, or even net lepton-number emission. This suggest that
although asymmetric heating via a LESA dipole may funnel
mass accretion into the opposite hemisphere and thereby

Figure 10. Relative net lepton-number flux passing through 500 km for two snapshots of the mesa20_v_LR simulations. A value of 1 in these figures represents the
spherical average of net lepton flux, positive values denote an excess of positive lepton number (i.e., more electron neutrinos), and negative numbers denote a an
excess of negative lepton number (i.e., more electron antineutrinos). Since the PNS is deleptonizing, we expect a significant excess of lepton number.

Figure 11. LESA properties for model mesa20_v_LR. We show the first two
components of the lepton-number emission distribution as a function of post-
bounce time (top panel) and the evolution of the dipole component directions
(bottom panel). In the bottom panel we also show the direction of a Ye dipole,
r̂dipole

Ye , as defined in Equation (13), and an inset showing more clearly the slight
time lag, roughly equivalent to the light travel time of the neutrinos to the
500 km sphere where they are measured.

Figure 12. Relative difference between the average shock radius, neutrino
heating, and the mass accretion rate on the PNS as measured in the hemisphere
aligned with the LESA dipole and as measured in the hemisphere anti-aligned
with the LESA dipole. According to the proposed mechanism from Tamborra
et al. (2014), in the direction opposite the LESA dipole there is more neutrino
heating and therefore a larger shock radius, which funnel accretion into the
hemisphere aligned with the LESA dipole.

13

The Astrophysical Journal, 865:81 (17pp), 2018 October 1 O’Connor & Couch



closing the self-sustaining cycle, there may be other mechan-
isms that cause the mass accretion asymmetry in the first place
in order to initiate the growth of the LESA dipole.

In the full 3D models without velocity dependence,
(mesa20, mesa20_pert, mesa20_LR, and mesa20_LR_
pert) we do not see any conclusive evidence for LESA. As
discussed in Tamborra et al. (2014) and explored above, PNS
convection is clearly critical for the LESA to develop as the
neutrino lepton-number asymmetry stems from the asymmetry
in the electron fraction distribution near and below the
neutrinospheres as shown above. We do not attribute the
presence of LESA in the mesa20_v_LR simulations to
the explicit inclusion of the velocity dependence in the
transport equations themselves, rather, we suggest that it is
due to the effect of the improved neutrino transport on the PNS
convection. With the included velocity dependence, neutrinos
are able to advect with the flow. We see an earlier onset of PNS
convection in the mesa20_v_LR simulation (at ∼100 ms after
bounce) compared to, for example, the mesa20_LR simulation
(which does not have equivalent PNS convection until
∼200 ms after bounce). Furthermore, at a given time, the
PNS convection is stronger (and the region is wider) in the
velocity-dependent simulation compared to the simulations
without velocity dependence. Evidence for this conclusion is
also provided by an examination of the 3D models from Couch
& O’Connor (2014). In these simulations we see the presence
of a strong asymmetry in the electron fraction distribution in
the PNS core and the expected effect on the neutrino emission.
Due to the low fidelity of the neutrino transport (i.e., neutrino
leakage), we find this inconclusive evidence for the LESA.

However, and important for this discussion, these models did
show signs of strong PNS convection (even stronger than seen
in mesa20_v_LR).

3.5. Gravitational Waves

Using the quadrupole formula (Reisswig et al. 2011), we
estimate the gravitational wave (GW) signal from our 2D and
3D simulations by computing the first time derivative of the
reduced mass-quadrupole tensor via

ò d= + -( ) ( )
dI

dt
x v x v x v dm2 3 , 15

jk j k k j jk i i

and numerically taking the second time derivative during a
post-processing step. In Figure 13 we show the plus
polarization of the GW as seen from an observer on the
equator ( +h ;eq this is the only nonzero component of the
gravitational waves from axisymmetric simulations) for
mesa20, mesa20_pert, mesa20_2D, and mesa20_2D_
pert along with the GWs from our low-resolution simula-
tions, mesa20_LR, mesa20_LR_pert, and our simulation
with velocity dependence in the neutrino transport,
mesa20_v_LR.
The first observation is that due to the symmetries imposed

in 2D, the gravitational wave signal is between 10 and 20 times
the strength of the 3D signal. Note the scale difference, of a
factor of 10, for the top two panels of Figure 13 compared to
the bottom three panels. Gravitational waves are generated
from large coherent matter motions in the turbulent gain region
and near the PNS surface. In 2D, the axisymmetric assumption

Figure 13. Gravitational wave signals (h+ × D) as measured by an observer located on the equator for various 2D and 3D simulatons. This is the only nonzero signal
in 2D and is representative of the various possible 3D signals. In the top two panels we compare 2D vs. 3D GWs, with and without perturbations. In the bottom three
panels we compare 3D simulations: perturbations vs. no perturbations, standard resolution vs. low resolution, and velocity dependance vs. no velocity dependance.
The small glitches in the 3D data visible at ∼50 ms are due to the shock crossing the mesh refinement boundaries. The 2D GWs have a significantly higher amplitude
than the 3D GWs.
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leads to an artificial enhancement of this coherent motion. This
is in addition to the consequences of the reverse turbulent
cascade in 2D, which also generates large-scale structures not
seen in 3D simulations. This observation is in agreement with
other analyses (Mueller & Janka 1997; Andresen et al. 2017),
although other comparisons between the gravitational wave
signature in 2D and 3D find much less of a suppression in 3D
(Yakunin et al. 2017).

In the third and fourth panels of Figure 13 we compare the
standard (third panel) and low (fourth panel) resolution
simulations with and without the imposed perturbations. The
most striking impact of the perturbations is the strong period of
GW emission soon after 200 ms. At this time the perturbations
at the top of the silicon shell are being accreted through the
shock and amplifying the turbulent motions in the gain region.
In addition to boosting the pressure support behind the shock
and, at least temporarily, increasing the shock radius (see also
Section 3.1.1) these increased turbulent motions give rise to
strong GW emission. This effect is also visible in the 2D
simulations that include perturbations (second panel versus first
panel of Figure 13). To locate the source of this enhanced
emission we compute spectrograms of the GW signal. We
show these in Figure 14 for the mesa20 (left panel) simulation
and mesa20_pert (right panel) simulation. The spectrograms
generally behave similarly. There is no appreciable GW signal
until ∼100 ms after bounce when the flow becomes turbulent.
There are two distinct sources of GWs seen. First, there is a
component that begins at ∼300 Hz and grows with time. This
component has been associated with the contracting (but mass-
gaining) PNS (Marek et al. 2009; Müller et al. 2013; Kuroda
et al. 2017). The frequency we observe is slightly higher (by
∼20% at 450 ms) than expected based on the analytic
predictions in Müller et al. (2013) because our gravitational
wave predictions arise from Newtonian hydrodynamics and
therefore are not either time dilated or redshifted. The other
visible component is the low frequency (∼50–200 Hz) GW
emission, which is arising from the convective and turbulent
region behind the shock. The main difference in the GW
spectrograms between the mesa20 and the mesa20_pert
simulations is the excess emission near 200 ms. These
spectrograms imply that the primary frequencies of this
enhanced emission in mesa20_pert are close to ∼600 Hz,
which at this time is the characteristic frequency of the PNS.

After the perturbations accrete through the shock and stimulate
the growth of turbulence, they then accrete onto the PNS,
excite it, and lead to the production of GWs. Since we use only
monopole gravity, we have been cautious in interpreting our
GW signals. To ensure that the presence of this excess emission
associated with the imposed presupernova perturbations is not a
result of the monopole gravity assumption, we have also
performed 2D simulations using ℓmax=16 in our monopole
gravity solver. All of the gravity moments higher than
ℓ=0 are based on the Newtonian gravitational potential. We
also see the excess gravitational wave emission due to
progenitor perturbations in these simulations.
In addition to the bursts of GWs around 200 ms due to the

imposed progenitor perturbations, we also see bursts of GW
emission associated with the collapse of spiral SASI waves. In
particular, the increased emission at ∼360 ms in mesa20 and
at ∼400 ms in mesa20_pert. While not shown, we see a
similar feature in mesa20_LR at ∼370 ms. The emission is
concentrated at the peak PNS frequency, but does contribute
power to other frequencies as well. In terms of the dynamics,
both the accretion of progenitor perturbations and the
collapsing spiral SASI waves are very similar. They both
excite turbulence in the gain region marked by an increase in
the lateral kinetic energy (see Figure 1).
Finally, we compare mesa20_LR and mesa20_v_LR.

During the first ∼300 ms we see broad agreement in the GW
signal between these two simulations. Starting at ∼350 ms,
coincident with the increased SASI activity, the power in the
GW signal of mesa20_LR grows while mesa20_v_LR stays
roughly constant. This is in agreement with our previous
observations, which show reduced SASI motions in the
mesa20_v_LR simulation due to the larger shock radius and
slower recession of the PNS core (see Figure 4).

4. Discussion and Conclusions

In this study, we have presented the first suite of 3D
simulations using the FLASH hydrodynamics framework with
energy-dependent, multidimensional, M1 neutrino transport.
We perform eight 3D simulations exploring the impact of
imposed progenitor perturbations, resolution, octant symme-
tries, dimensionality, and velocity dependence in the transport
equations. For these simulations we use the same progenitor
with a ZAMS mass of 20Me produced using the MESA stellar

Figure 14. Gravitational wave spectrograms for simulations mesa20 (left) and mesa20_pert (right). For each time, the gravitational wave signal is multiplied by a
Hanning window with a width of 50 ms. After the data is Fourier transformed, we calculate ++ ´[∣ ˜ ∣ ∣ ˜ ∣ ]h hlog10

2 2 (where the signal are those seen by an observer on the
equator) and normalize to the same global maximum (across both plots) to allow for a direct comparison.

15

The Astrophysical Journal, 865:81 (17pp), 2018 October 1 O’Connor & Couch



evolution package. We find no explosions in any of our 3D
simulations.

We have presented a thorough analysis of each of the above-
mentioned variations. The impact of imposed progenitor
perturbations is clear. We find that the velocity perturbations
we place in the silicon shell, particularly those located near the
top of the shell, are very efficient at seeding turbulence in the
post-shock flow. We find an enhancement of the lateral kinetic
energy when these perturbations accrete through the shock, a
corresponding increase in the neutrino heating, shock radius,
and a quantitive measure of how close the simulation is to
explosion. Ultimately we aspire to use progenitors evolved in
full 3D (for as long as possible before collapse) in order to get a
more physical set of initial conditions. We expect (following
Couch & Ott 2015; Müller et al. 2017, and as we see here) that
these precollapse asphericity are crucial in helping an explosion
develop. Lower resolution, which leads to larger numerical
seeds, slightly raises the level of turbulence as well and gives a
slightly larger shock radius, and a higher measure of the
closeness to explosion, however, this effect is smaller than that
observed from the imposed perturbations. Overall, the low-
resolution simulations behave qualitatively similar to the higher
resolution simulations. Imposing octant symmetry places
restrictions on the development of global instabilities, particu-
larly the SASI. It is these lowest order modes that can play an
important role in helping to support the shock at larger radii,
which can increase the neutrino heating. These simulations,
which lack these low-order modes are quantitatively further
from explosion. We have explored, though a limited number of
simulations, the impact of improved neutrino transport
methods. The largest difference of these simulations, compared
to the simulations performed without these improvements, is
the presence of stronger PNS convection. The effect is a larger
shock radius (by 30% at 300 ms), increased lateral kinetic
energy, and an increased heavy-lepton neutrino luminosity. We
discuss additional differences below.

We also explore in detail the SASI. We observe this
phenomenon in all of our simulations without velocity
dependence. We mainly observe spiral SASI modes, although
there are nonzero, nonspiral components as well. Coincident
with the SASI modes are correlated variations in the neutrino
signals, showing at most a ∼5% variation on top of the baseline
signal. In many cases, the spiral SASI modes buildup, become
nonlinear, and collapse. This triggers a burst of turbulence that
increases the neutrino heating and helps support and push the
supernova shock to larger radii. None of these events leads to a
successful explosion, however, each of these events tempora-
rily brings the core-collapse event quantitatively closer to
explosion. We suggest that such SASI-driven explosions may
be one way the supernova shock can be reenergized. In such an
event, the spiral SASI wave will have imparted a nonzero
angular momentum to the core, even for progenitors with little
or no initial rotation. We find that the typical final neutron star
spin period for the spiral SASI waves in our simulation is ∼1 s.
This relatively slow period is in part due to the small shock
radii at the times when we see strong SASI activity. This limits
the amount of angular momentum that can be built-up in the
spiral SASI wave. Bearing in mind that we have only
performed one full 3D simulation with velocity dependence
(and it was performed at our lower resolution), we suggest that
a consequence of the increased PNS and shock radii in that
simulation is a lack of the presence of the SASI. This will take

further exploration with more full 3D models with the full
neutrino transport and our standard resolution.
While the one full 3D simulation with velocity dependence

does not exhibit SASI motions, it does show conclusive
evidence for the LESA phenomena that was first reported in
Tamborra et al. (2014). The work presented here is the first
reported independent confirmation of the LESA and the first to
demonstrate that LESA is not an artifact of the ray-by-ray
method. In this simulation we find a substantial dipole
component in the total electron lepton-number emission, which
grows starting at ∼200 ms after bounce and reaches a
maximum at ∼300–400 ms after bounce. This dipole is stable,
yet migratory, in direction. It shows excellent alignment with a
dipole of the electron fraction in the convective PNS core. We
confirm many of the observations seen in Tamborra et al.
(2014), including hemispheric excess of neutrino heating and a
larger average shock radius in the direction anti-aligned with
the lepton-number dipole direction, and a larger mass accretion
rate onto the PNS in the hemisphere aligned with the lepton-
number dipole direction. It still remains unclear the mechanism
from which this instability is initially generated and sustained.
We conclude that the reason for seeing this only in the one
simulation performed with velocity dependence is not the
explicit presence of this improvement in the neutrino transport,
but rather the impact of the improvement on the strength of
PNS convection in the core. A stronger PNS convection
appears to be conducive to the appearance of the LESA.
We also investigate the GW signal from our simulations. We

see a large impact of the imposed progenitor perturbations on
the GW signal. At the time when we see the largest impact on
the dynamics, when the outermost layers of the silicon shell
accrete through the shock, we see a large enhancement of the
GW signal, with an amplitude approximately four to five times
greater than the signal from the unperturbed simulation. Most
of the excess power is at frequencies that are associated with
oscillations of the PNS. When the aforementioned spiral SASI
waves undergo collapse, we also see bursts of GWs. These
bursts are coincident with increased turbulent activity in the
gain region.
In summary, our suite of simulations reveals a plethora of 3D

dynamics that altogether play a role in CCSNe. We show,
through several mechanisms, that increased turbulent activity,
however it arises, can play a crucial role in the shock dynamics
by providing additional pressure support, facility increased
neutron heating, and quantitatively bring the system closer to
the point of explosion. While we see no explosions in the work
presented here, we are confident that that simulation framework
we have developed and assessed in this article will be
extremely useful for our future explorations of 3D simulations
of CCSNe.
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