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Abstract

We study particle acceleration at the termination shock of a striped pulsar wind by integrating trajectories in a
prescribed model of the magnetic field and flow pattern. Drift motion on the shock surface maintains either
electrons or positrons on “Speiser” orbits in a ring-shaped region close to the equatorial plane of the pulsar,
enabling them to be accelerated to very high energy by the first-order Fermi mechanism. A power-law spectrum
results: dN de eg gµ a , where αe lies in the range −1.8to−2.4 and depends on the downstream turbulence level.
For sufficiently strong turbulence, we find αe;−2.2, and both the photon index and the flux of 1–100 keV X-rays
from the Crab Nebula, as measured by NuSTAR, can be reproduced. The particle spectrum hardens to αe;−1.8 at
lower turbulence levels, which may explain the hard photon index observed by the Chandra X-ray Observatory in
the central regions of the Nebula.
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1. Introduction

The photon index, Γ=2.1, of the Crab Nebula in
1–100 keV X-rays (Madsen et al. 2015) is very close to that
predicted for electrons accelerated by the first-order Fermi
process at a relativistic shock front (Bednarz & Ostrowski 1998;
Kirk et al. 2000; Achterberg et al. 2001). Is this just a
coincidence? On the one hand, this mechanism is known to be
inhibited at perpendicular shocks (Begelman & Kirk 1990;
Sironi & Spitkovsky 2009; Summerlin & Baring 2012), such as
that separating the pulsar wind from the Crab Nebula. The
reason is that the magnetic field sweeps particles away from
the shock in the downstream region, thereby preventing the
multiple, stochastic shock crossings that characterize the Fermi
process. On the other hand, the toroidal magnetic field
transported through the shock into the Nebula is expected to
change sign across the rotational equatorial plane of the pulsar
(for reviews, see Amato 2014; Porth et al. 2017), giving rise to
a broad current sheet, in which the Fermi process might still
operate. To answer the question posed above and determine the
relevance of this process, we study particle acceleration in the
equatorial sheet using a detailed model of the magnetic field
there. We find that stochastic crossings and recrossings of the
shock front are indeed responsible for acceleration, and that
shock-induced drifts play a crucial role in focusing leptons of
one sign of charge into the acceleration zone. Our main result is
that both the photon index and the flux of X-rays can be
reproduced by the combination of Fermi acceleration and drifts,
if one assumes a turbulent amplitude B 200 Gdd m> and an
average toroidal field at higher latitudes of B=1 mG.

Recent, state-of-the-art phenomenological modeling of the
morphology of the Crab Nebula places significant constraints
on the possible sites of particle acceleration. In particular, the
X-ray to soft gamma-ray emission appears to originate from a
torus-shaped region lying in the rotational equator of the Crab
Pulsar and is located at a radius where the ram pressure of the
pulsar wind roughly equals that in the Nebula (Porth
et al. 2014; Olmi et al. 2015). Furthermore, these models give
insight into the global structure of the magnetic field and the
degree to which it is turbulent, making it possible to construct
diffusion coefficients for energetic particles propagating in the

outer Nebula (Porth et al. 2016). However, close to the
relativistic termination shock (TS) that forms the inner edge of
the Nebula, the energetic particle distribution is necessarily
anisotropic (Kirk & Schneider 1987), so diffusion coefficients
cannot be used to model the transport process. Instead, we
build a simplified, explicit model of the magnetic field and flow
pattern in the equatorial region of the TS, based on the results
of MHD simulations, and we follow the trajectories of particles
injected at the shock as they cross and recross it. Finally, we
compute the radiation they emit when cooling in the Nebula,
after leaving the shock.
The magnetic field model, injection prescription, and method

of computing the radiation are described in Section 2, and the
results found by analyzing particle trajectories are presented in
Section 3. A discussion of the application to the Crab Nebula is
presented in Section 4.

2. Description of the Model

2.1. Regular Magnetic Field

Magnetohydrodynamic models of the Crab Nebula suggest
that it is powered by a radially propagating pulsar wind,
whose luminosity per unit solid angle is concentrated toward
the rotational equator. The particle component, which we
assume to be electrons and positrons, carries only a small
fraction of the power close to launch, most of it being in the
form of Poynting flux. However, the wind is thought to be
striped (Coroniti 1990; Michel 1994); in other words, the
magnetic field has a component that oscillates at the rotation
frequency of the pulsar, as well as a phase-averaged or direct
current (DC) component. MHD models assume complete
dissipation of the oscillating component before the plasma
enters the Nebula downstream of the TS (Del Zanna
et al. 2018). Whether this occurs somewhere in the wind or
at the shock itself has no influence on the downstream
parameters, provided it proceeds without significant radiation
losses (Lyubarsky 2003). The remaining phase-independent
magnetic field is carried into the Nebula and reverses its sign
across the rotational equator. Thus, an equatorial current sheet
is formed, whose thickness depends on the latitude distribu-
tion of the oscillations, which, in turn, is determined by the
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inclination angle between the magnetic and rotation axes of
the pulsar. The TS itself is oblate: in the equatorial region, it is
approximately spherical with radius roughly 4×1017 cm, but
it moves close in to the pulsar in the polar regions, where the
power of the wind is low. Outside the current sheet, but still in
the equatorial region, the ordered field is roughly 1 mG on the
downstream side of the shock.

Here we adopt a planar model of the flow in the equat-
orial region, since the gyroradius of teraelectronvolt to
petaelectronvolt electrons in a milligauss magnetic field is

3 1012 15´ - cm, much smaller than the radius of the shock.
In Cartesian coordinates, the shock is located in the x=0
plane, and the equatorial plane is z=0. The location of this
region with respect to the observed optical and X-ray nebulae
is shown in Figure 1. In the downstream region, x 0> , the
plasma is assumed to flow everywhere along x+ ˆ at c 3, as
expected behind a strong, weakly magnetized relativistic
shock, and the current sheet is located at z z z0 0- < < . The
downstream magnetic field, B zd ( ), measured in the rest frame
of the downstream fluid (DRF), is linearly interpolated
between the values on the northern and southern edges of
the current sheet:
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To find the corresponding field in the upstream region, we
assume that the TS is a thin structure in which all incoming
oscillations at the pulsar rotation frequency are dissipated.
Applying Faraday’s law, together with a time average over the
pulsar period, one finds that the electric and magnetic fields
upstream, E zu¢( ) and B zu¢( ), as measured in the shock rest frame

(the “SRF”), are
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where xsb ˆ is the 3-velocity of the upstream plasma in the
SRF. Thus, for highly relativistic inflow, 1sb » , the fields
seen in the shock frame are, to a good approximation, equal to
those of a vacuum electromagnetic wave. It follows that the
particle trajectories are insensitive to the Lorentz factor

1 1s s
2bG = - of the upstream plasma. The oscillating

component is not constrained by this analysis, but this is not
important in the present context, since the gyroradius of
particles injected into the acceleration process in the equatorial
zone substantially exceeds the wavelength of the oscillations,
which, therefore, provide only a small perturbation of the orbit
computed in the phase-averaged field.
In the absence of turbulence, particles far from the equator

undergo systematic drifts in either the positive or negative x
direction, superimposed upon the plasma bulk motion.
Provided the drift motion in the plasma rest frame is slower
than the plasma speed in the SRF, which is always true in the
cases we consider, all particles move in the direction of the
flow, that is, toward the shock in the upstream and away from it
in the downstream region. However, a crucial, novel aspect is
introduced by the reversal of the average field. Speiser orbits
(Speiser 1965), which cross the plane z=0, do not drift, but
can propagate at arbitrary speed (consistent with their energy)

Figure 1. Sketch of the Crab Nebula and the location of the equatorial acceleration region. In the left panel, the outlines of the optical and X-ray nebulae are shown as
they appear on the sky (e.g., Figure 3 in Hester 2008), together with an estimate of the position of the termination shock of the wind, drawn roughly to scale. The
center panel shows the equatorial region of the shock oriented such that the rotation axis of the pulsar is in the vertical direction and sketched at a phase at which the
magnetic axis is in the plane of the figure. Magnetic field oscillations (stripes) of wavelength c times the pulsar rotation period are present upstream of the TS in a
sector around the equator, and are depicted on a greatly expanded length scale. Both upstream and downstream, the phase-averaged toroidal field reverses sign across
the equator. In the right-hand panel, the region z zcrit∣ ∣ (defined in Equation (4)) of the equatorial current sheet is shown, in which particles injected at the shock can
be accelerated by the first-order Fermi process. Typically, this region makes up a few percent of the shock area (see Table 2), that is, r z z10TS 0 crit  ´ .
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in the x directions. Thus, a population of particles exists that
is effectively disconnected from the local plasma speed, which
facilitates repeated shock crossings. As a rough guide, a
particle of energy Einj,d injected into the field defined in
Equation (1) at height z above the equatorial plane follows a
Speiser orbit if z zcrit<∣ ∣ , where

z
z E

eB

z E

B
5.8 10 cm , 4crit

0 inj,d

d,0

14 0,17 inj,d,12

d,0, 3
= ´

-
 ( )

where z z 100,17 0
17= ( cm), B B 1 mGd,0, 3 d,0=- ( ), and Einj,d,12 =

E 1 TeVinj,d ( ).

2.2. Turbulent Magnetic Field

Onto the large-scale magnetic field B zd ( ), we superimpose a
three-dimensional, homogeneous turbulent field, B x y z, ,dd ( )
(also defined in the DRF). This field satisfies B 0ddá ñ = , where
...á ñ denotes a spatial average, and its root-mean-square
strength, BB 0d d

2 1 2d dº á ñ >( ) , is independent of position.
This implies that the level of turbulence, defined as B Bd dd
with BBd d= ∣ ∣, is larger at small z∣ ∣, in line with results from
MHD simulations of pulsar wind nebulae. See, for instance, the
upper right panel in Figure 4 of Porth et al. (2016), where the
largest levels of turbulence in the TS downstream are obtained
around the equatorial plane.

We generate Bdd on 3D grids with 256 = vertices per side
(2563 grid points in total), following the method presented and
tested in Giacinti et al. (2012). The grids repeat periodically in
space, and the three Cartesian components of Bdd are calculated
at any point in space using an eight-point linear interpolation of
their values on the eightnearest vertices of the grid. We
generate isotropic Bohm turbulence with power spectrum

k k 1 µ -( ) , for wave vectors in the range L2 max p
k L2 min p , where Lmax is the lateral size of the grid and
Lmin is twice the spacing between grid points. The dynamical
range of the turbulence is, therefore, L L 2max min = =
128. We choose the spacing between grid points to be slightly
smaller than half of the gyroradius in the strongest magnetic
field in the injection zone of an electron with energy Einj,d in
the DRF. Taking smaller values does not noticeably affect the
results. The value of Lmax determines the high-energy cutoff in
our simulated electron spectra, because particles with gyroradii
larger than Lmax experience little scattering and, therefore, no
longer gain energy via the first-order Fermi mechanism. We
have also tested other power spectra, such as Kolmogorov
( k k 5 3 µ -( ) ), and found no significant difference.

The Fermi process depends on the competing effects of
advection and diffusion due to turbulence. Therefore, since
particles injected at z zcrit<∣ ∣ follow trajectories resembling
Speiser orbits, whereas those injected at z zcrit>∣ ∣ are
predominantly advected with the plasma, differences can be
expected according to whether the level of turbulence at
zcrit is smaller or larger than unity. We denote the dimension-
less parameter characterizing these different acceleration
regimes by

B B z , 5crit d d crith dº ( ) ( )

and we investigate a range of values covering small and large

crith , while keeping the magnetic field at z∼z0 predominantly
toroidal, as indicated by simulations (Porth et al. 2016).

The idealized, plane-parallel case with only a phase-
averaged field in the upstream region introduces an unphysical

feature into the particle kinematics: it permits particles moving
very close to the equator to propagate unhindered to an
arbitrarily large distance upstream of the shock. In reality, both
the spherical geometry and irregularities in the oscillating and
the phase-averaged fields prevent this behavior. In our
simulations, we take account of this by adding to the upstream,
phase-averaged component a small, turbulent field that is
purely magnetic as seen in the upstream rest frame (URF), in
analogy with that added to the downstream field, but physically
disconnected from it. This turbulent component maintains the
conservation of particle energy measured in the URF, making it
convenient to integrate the trajectories in this reference frame.
To ensure that particles moving almost along x- ˆ experience
resonant scattering, we also stretch the grid in the upstream by
a factor Γs along x. We have performed tests to ensure that
the properties of this turbulent upstream field do not affect
our results.

2.3. Injection

In an isotropic wind, the energy carried per particle in units
of m ce

2, after dissipation of the entire Poynting flux, is

L

N m c
, 6s.d.

e
2

m =
˙

( )

where Ls.d. is the spin-down power of the neutron star, and N˙
is the rate at which the particles are transported into the nebula
by the wind. In the absence of a phase-averaged field, that is,
precisely on the equator, the results of Amano & Kirk (2013),
Giacchè & Kirk (2017), and Kirk & Giacinti (2017) indicate
that particles are effectively thermalized in a thin structure,
termed an “electromagnetically modified shock front.” The
majority of the particles are transmitted through this structure
into the downstream region with energy in the DRF Einj,d =

m c m cinj,d e
2

e
2g m» , and a small fraction is reflected into the

upstream region. To date, computations of the shock structure
with a non-vanishing phase-averaged field (Sironi & Spit-
kovsky 2011) are available only for a uniform field and high
plasma density, a regime that is unlikely to be relevant in the
case of the Crab (see the discussion in Amano & Kirk 2013).
The physics of the high-density, uniform field case also differs
significantly from that considered here, because (1) the
wavelength of the oscillations is much larger than the
relativistic Larmor radius of the upstream particles, (2) the
shock does not undergo electromagnetic modification, and (3)
particles cannot be reflected, because of the absence of Speiser
trajectories. Nevertheless, the particle-in-cell (PIC) simulations
cited above are in good agreement with the simple estimate that
the injection energy equals the energy carried per particle after
dissipation of the oscillating component of the magnetic field.
Particles that undergo acceleration are injected relatively close
to the equator, with z z 0.10 ∣ ∣ (see Table 2), where the
energy density in the phase-averaged field B 8d

2 p is less than
roughly 1% of the total energy density. Therefore, independent
of the precise position, we assume particles are injected
into the downstream plasma with the same value of Einj,d as at
the equator. In addition, we assume injected particles have
an initial momentum directed along the shock normal.
On the one hand, these assumptions slightly overestimate
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the injection energy at finite z∣ ∣, but, on the other, they
underestimate it by neglecting the reflected particles, and also
underestimate the initial return probability by assuming the
angular distribution of the injected particles to be a collimated
beam. The average value of μ over the entire lifetime of the
Crab Nebula and over all directions of the wind is constrained
to be 10 104 6 m (Olmi et al. 2016; Porth et al. 2017); in
our simulations, we choose E 1 TeVinj,d = , corresponding
to 2 10inj,d

6g » ´ .

2.4. Simulated Trajectories

We integrate the particle trajectories in the test-particle limit
by solving the Lorentz force equation in the upstream and
downstream rest frames where the electric fields vanish. Each
time a particle crosses the shock, a Lorentz transformation of
the momentum components is performed from the old rest
frame to the new rest frame. Although it does not affect the
final result, this procedure requires a specific choice of
upstream Lorentz factor, for which we choose 100sG = . In
the DRF (URF), the shock is located at x ct 3d d= -
(x ctu s ub= - ). We note that advection of particles with the
fluid flow is automatically taken into account by this procedure.
We place an escape boundary in the downstream at x d= + , as
measured in the SRF, and terminate each trajectory when it
reaches x=d. We have verified that the results do not depend
on d, provided it is larger than the gyroradius of the highest
energy electrons present in the system. On the upstream side,
particles cannot escape to x  -¥, because the shock always
overtakes them. At each shock crossing, all relevant physical
quantities of the accelerated particles (energies in the DRF and
SRF, momenta coordinates, positions, times) are stored. These
are used, for example, to calculate the steady-state spectra of
the accelerated electrons and positrons at the shock front.

2.5. Synchrotron Emission from the Nebula

The particles accelerated at the TS are ultimately advected
into the nebula, where they cool and emit synchrotron
radiation; see the area shaded in blue in the left panel of
Figure 1. In a magnetic field B, the synchrotron power emitted
per unit frequency interval by a single electron with pitch angle
α and nonrelativistic (angular) gyrofrequency eB m cg ew = is

dL

d
F3 sin , 7

1p
synch

f g c
n

a w a n n= ( ) ( )

where fa is the fine-structure constant, 3 sin 4c
2

gn g w a p= ( )
is the characteristic frequency, and the synchrotron function is

F x x dtK t , 8
x

5 3ò=
¥

( ) ( ) ( )

where K5 3 is a modified Bessel function. In the following, we

neglect the dependence on pitch angle by setting sin 2 3a =
and approximate the synchrotron function by F x =( )

x x1.85 exp1 3 -( ) (see Melrose 1980). The resulting total
luminosity per unit frequency interval is

J d N
dL

d
, 9c

1p
synch

òn g g
n

=( ) ( ) ( )

where N dN dc cg g=( ) is the differential number of cooled
electrons in the interval dg in the nebula, and we have

implicitly assumed a homogeneous magnetic field within the
radiation zone. For a source at a distance D from Earth, the
differential energy flux is F J D4 2n p=n ( ) ( ). Synchrotron
losses imply 2g bg= -˙ with B m c6T

2
eb s p= ( ) and Ts the

Thomson cross section, and one finds, in the steady-state
regime,

N d Q
1

, 10c 2 òg
bg

g g= ¢ ¢
g

¥
( ) ( ) ( )

where Q dg g( ) is the number of particles accelerated at the TS
and “injected” into the nebula per time unit with a Lorentz
factor between γ and dg g+ .
We set

Q
Q fE m c E m cfor

0 otherwise
11d

0 d inj,d e
2

d max e
2e  

g
g g

=
a⎧⎨⎩( ) ( )

and determine the spectral index, αe, from the results described
in Section 3.2. The parameter f is chosen such that the simulated
particle spectrum at the TS is a power law at E f Ed inj,d ´ .
Typically, we find f=3–7. Particles of energy less than
f Einj,d´ are neglected in (11), but they influence only the
low-frequency synchrotron spectrum, fE mcinj,d

2 2
gn w( ) . We

do not attempt to model the spectrum of the Nebula in this
energy range, since it is less well known, because of the
uncertainty associated with the contribution of the pulsar and the
difficulties involved in modeling absorption (Kirsch et al. 2005).
The limited dynamical range of the turbulence in our simulation
introduces an artificial upper limit to the power-law distribution
of accelerated particles. In reality, however, this quantity, Emax,
is determined by radiative losses, even though these can be
neglected over most of the acceleration range. Setting the loss
time, m c B E6sync e

2 3
T

2t p s= ( ), equal to the time to complete
one-half of a gyration, E eBc1 2t p= ( ), at E Emax= , leads to

E
m c e

B
B

6
1.1 PeV , 12max

e
2 4

T
3
1 2

s
= -

- ( )

where B B 1 mG3 =- ( ).
As we will see in Section 3, particles are accelerated to high

energies only if they are injected in a region of the TS close to
the equatorial plane. Therefore, to avoid computing uninterest-
ing trajectories, we introduce a free parameter inj , which we
vary between roughly 5% and 20%, according to the particular
simulation, and we select for the injection region the range
z zinj 0∣ ∣ . The normalization factor Q0 depends on the
fraction, acc,f , of particles injected at z zinj 0∣ ∣ that are
accelerated to E f Ed inj,d ´ . We determine acc,f numerically.
Let us assume that the equatorial region of the TS is

approximately spherical with a radius rTS, and that the region at
z zinj 0∣ ∣ in our planar 1D simulations corresponds to a ring-
shaped region of the TS whose half-width, as viewed from the
pulsar, subtends an angle z rinj inj 0 TSQ = . In this model, the
angle z r0 TSQ = corresponds to that between the rotation and
magnetic axes of the pulsar. The angular dependence of the
wind power, dL ds.d. W, can be modeled as being proportional
to sinnJ, where ϑ is the colatitude, and the index n lies
between2 (when the magnetic and rotation axes are aligned)
and 4 (when they are orthogonal; Tchekhovskoy et al. 2016).
The angular dependence of the particle component, however,
is not well constrained. Here, we assume it has the same

4

The Astrophysical Journal, 863:18 (13pp), 2018 August 10 Giacinti & Kirk



functional form, so the rate at which electrons (or positrons) are
injected at z zinj 0∣ ∣ is

N d dL d E2 sin 13,inj
2

2

s.d. inj,d
inj

inj

òp J J= W
p

p


-Q

+Q
˙ ( ) ( )

dL d z r E4 , 14s.d. 2 inj 0 TS inj,dp» W J p=( ) ( ) ( )

and Q0 of Equation (11) is

Q
N n

n
n

1 1 for 0
1.5 for 2
1.9 for 4

, 150
e acc,f ,inj

max
1

min
1e e

a

g g
=

+

-
´

=
=
=

a a


+ +

⎪

⎪

⎧
⎨
⎩

( ) ˙

( )
( )

where fE m cmin inj,d e
2g = and E m cmax max e

2g = .
For convenience, we summarize here the main parameters of

our simulations:

z0: The height of the “striped” wind region at the TS.
Θ: The angle between the rotation and magnetic axes of the

pulsar, z r0 TSQ = .
zcrit: The height at which the gyroradius of an injected particle

in the large-scale magnetic field (1) equals its height
above the equator, as defined in Equation (4) (indepen-
dent of the level of turbulence).

ηcrit: The ratio of the turbulent field to the large-scale field at
height zcrit.

zw: The approximate height of the injection region of the TS
that leads to effective acceleration, as estimated from
Figure 6. For 1crith < (i.e., weak turbulence), zw∼ a
few zcrit´ but increases with the level of turbulence.

inj : The height of the region of the TS at which particles are
injected in the simulations, divided by z0.

acc,f : The fraction of injected particles whose energy is boosted
by at least a factor f, that is, those accelerated to energy

f Einj,d> ´ , as determined from the simulations.

3. Results

3.1. Trajectories of Electrons and Positrons

First, we examine particle trajectories in the region of the TS
that is close to the equatorial plane, in the sense that z zcrit∣ ∣ .
(We show below that this region is the most favorable for
electron acceleration.) In the upper row of Figure 2, several
trajectories in the SRF are plotted for electrons (upper left
panel) and positrons (upper right panel) injected at the TS at
z z 0.0150 ∣ ∣ , with z 100

17= cm. All other parameters are set
to the values discussed in Section 2. In particular, the injection

Figure 2. Upper row and lower left panel: trajectories of electrons (left panels) and positrons (upper right panel) injected at z z 0.0150 ∣ ∣ , for B 30 Gdd m= (solid
curves in the three panels) or B 400 Gdd m= (black dashed curve in the upper right panel). Lower right panel: trajectories of electrons injected at z z 0.0150 > and for
B 400 Gdd m= . In all four panels, trajectories are plotted in the SRF and projected onto (x, z). The parameters are z 100

17= cm, B 1 mGd,0 = , and E 1 TeVinj,d = .
The vertical black solid lines at x=0 denote the shock position, the horizontal black dotted lines the equatorial plane (z = 0), and the orange dashed lines the critical
distance zcrit from the equatorial plane.
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energy is E 1inj,d = TeV, the magnetic field at z0 is 1 mG
(B 1d,0, 3 =- ), and the pulsar polarity is such that B 0d,0 > . In
the following, we refer to “electrons” and “positrons” for this
pulsar polarity. For the opposite polarity, the situation for
electrons and positrons is inverted. The four solid lines
(magenta, red, green, and blue) in both panels represent typical
particle trajectories, calculated for B 30dd m= G and projected
onto the (x, z) plane. The level of turbulence, B Bd dd =

z3 10 cm15( ), at z zcrit= is, therefore, 5crith ~ . We show
only examples of particles that return to the shock and enter the
upstream region. In the simulations, most injected particles
(∼90%) escape downstream without experiencing accelera-
tion. The upstream region is on the left-hand side of the panels,
at x 0< , and the downstream is on the right-hand side, at
x 0> . The shock position is denoted by a thin vertical black
line at x=0, and the equatorial plane is marked by a dotted
black line at z=0. By comparing the two upper panels of
Figure 2, one can clearly see that electrons and positrons
behave differently. The drift-like motion imposed on crossing
and recrossing the shock pushes positrons away from the
equatorial plane, that is, their z∣ ∣ tends to increase with time,
whereas electrons are pushed toward z=0 and remain on
orbits close to, or around, the equatorial plane. Despite the
perturbations introduced by the turbulent field, several of
these electrons spend time on trajectories that closely resemble
Speiser orbits, such as the magenta trajectory at x 0< in the
upper left panel. The fact that shock drift systematically focuses
the electrons into the equatorial plane has a positive impact on
their acceleration: electrons tend to reenter the downstream
in regions with larger turbulence levels B Bd dd , and thence
have a nonnegligible probability to be scattered back into the
upstream and continue to gain energy via the first-order Fermi
mechanism. Indeed, one can see that the electrons plotted in the
upper left panel cross and recross the TS several times. The
lower left panel shows the trajectory of another electron
accelerated to high energy. One can see that this electron
spends most of its time on Speiser orbits, although it spends
some time on a drift orbit; seethe two loops in the downstream
at x≈(1.5–2.5)×1016 cm and z≈(3–5)×1015 cm. The
orbits appear irregular because of particle scattering induced by

the turbulent magnetic fields. We confirm that accelerated
electrons remain focused around the equatorial plane by
plotting in Figure 3 the distribution of the normalized shock
crossing altitudes z z0 of electrons injected at z z 0.0150 ∣ ∣ .
In total, 5 106´ particles are injected. We again use Bdd =
30 Gm in this example, and we verified that the results are not
significantly different for B 400 Gdd m= . Three energy bands
are shown; see the key in the figure. One can clearly see that
the electrons cross and recross the TS in a small region around
z=0, with a typical width of a few percent of z0. Even though
the size of this region increases with electron energy Es

(measured in the SRF), this is only due to the increase of
the particle gyroradius. We checked that electrons always
remain well confined and focused around z=0, even at the
highest energies.
In contrast, the situation for positrons is less favorable. As

can be seen in the upper right panel of Figure 2, those that cross
the TS and enter the upstream at z z1= reenter the downstream
at z z1>∣ ∣ ∣ ∣. This is clearly visible for the red and blue
trajectories at z<0. This forces the positrons to reenter the
downstream in regions where turbulence levels are lower. They
are then more likely to be advected away from the shock by
the stronger toroidal field at larger z∣ ∣, and this shuts down the
first-order Fermi mechanism. Out of the four plotted positron
trajectories, three of them complete only one cycle (i.e.,
downstream→upstream→downstream), and only one per-
forms two (green trajectory). Increasing the strength of the
turbulence in the downstream increases the probability for
positrons to complete more cycles: the dashed black line shows
a positron trajectory for B 400 Gdd m= , which completes two
cycles. However, even in this case, acceleration quickly stops
once the shock-induced drift pushes the particle to larger z∣ ∣,
where the turbulence levels are smaller. One can see that this
particle is advected in the downstream at z 4 1015´ cm.
Acceleration again stops more quickly than for electrons. The
orange dashed lines in Figure 2 show the altitudes where
z zcrit=  . For these parameter values, z z0.0058crit 0 . It is
interesting to note that in the downstream, the B drift is
strongest around z z1 3 crit» ´∣ ∣ ( – ) and is directed toward the
shock for positrons, both at z>0 and z<0. In other words,
the B drift helps the positrons injected in these regions to
fight against advection, and it increases their chances of
entering the upstream for their first cycle (e.g., the first half-
gyration in the downstream for the red and blue trajectories in
the upper right panel in Figure 2). Ultimately, however, this is
to no avail, because of the effect of shock drift during the
first cycle.
In the lower right panel of Figure 2, we show the trajectories

of four electrons injected farther from the equatorial plane, at
z3 10 cm 4 1015 15´ < < ´ cm, and take B 400 Gdd m= , the

other parameter values remaining unchanged. It is apparent that
shock drift pushes all these electrons closer to z=0. Because
of the lower turbulence levels in the downstream at these larger
z∣ ∣, the probability for a particle in the downstream to be
scattered back into the upstream is smaller, and out of the four
plotted trajectories, only one of them reaches the equatorial
plane (the magenta line). The other three are advected away
downstream after only one or a very few cycles. For example,
the green trajectory completes one excursion into the upstream,
whereas the blue one completes three. These electrons do gain
some energy, thanks to the first-order Fermi effect and the
shock-induced drift. However, the electron with the magenta

Figure 3. Distributions of normalized shock crossing altitudes, z z0, for
electrons with energies E 4 TeVs < (dashed blue line), E4 TeV 60 TeVs< <
(solid red line), and E 60 TeVs > (magenta dash-dotted line) at the time of
shock crossing. Electrons are injected at z z 0.0150 ∣ ∣ , B 30 Gdd m= , and the
other parameters are set to the same values as in Figure 2.
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trajectory gains significantly more energy than the others,
because it reaches the equatorial plane region, which is the
most favorable one for particle acceleration. Once an electron
enters this region, it remains on Speiser orbits, as do those
injected at z z 0.0150 <∣ ∣ ; see the oscillations between z>0
and z<0 in the upstream.

3.2. Particle Spectrum Close to the Equatorial Plane

We calculate now the energy spectrum of the particles injected
and accelerated in the equatorial region of the TS. The injection
region where particles are most likely to reach high energies is
typically within a few zcrit from the equatorial plane. We denote
the height of this region by zw, and we find (see Section 3.3)
z 5 10w

14» ´ cm for z 100
16= cm, z 1.5 10w

15» ´ cm for
z 100

17= cm, and z 3.6 10w
15» ´ cm for z 6 100

17= ´ cm.
In the following, we consider the latter two cases. For each tested
set of parameters, we inject 5 106´ particles at points equally
spaced in z in this region and construct the spectrum by recording
the particle energy in the DRF at each shock crossing. Since
particles do not change their energy while in the DRF, the
steady-state spectrum at the shock, averaged over all injection
points, is identical to the spectrum of particles at x=d, where they
are considered to have escaped. However, much better statistics are
achieved by binning the spectrum at each shock crossing, rather
than only at escape. We plot the steady-state spectrum in the
DRF, without taking into account the particles that have been
advected in the downstream without being accelerated; the spectra
shown hereafter refer to particles that have performed at least
one cycle.

In Figure 4 (left panel), we plot the spectra E dN dEd d´ of
electrons (thick solid lines) and positrons (dashed lines)
injected at z z 0.0150 ∣ ∣ for z 100

17= cm (i.e., z zcrit ∣ ∣
2.6), and for two levels of turbulence in the downstream:
B 30 Gdd m= (red lines) and B 400 Gdd m= (blue lines),
corresponding to a level of turbulence at z zcrit= of

5.2crith = and 69crith = , respectively. The positron spectra
are much softer than the electron spectra, even in the most
favorable case of strong turbulence in the downstream,
B 400 Gdd m= . This confirms the trend found in the previous
subsection: only electrons are efficiently accelerated, whereas
positrons are expelled from the acceleration region before they
can reach high energies. The electron spectra in Figure 4 extend

to E 100 300 TeVd ~ ( – ) . These high-energy cutoffs are an
artifact. They occur at the energy at which the electron
gyroradius equals the maximum size Lmax of the grid on which
the turbulent field is defined, above which the scattering is
strongly suppressed. In contrast, the cutoffs in the positron
spectra are physical, because they appear below that energy.
We demonstrate these points in the Appendix by repeating the
calculations of Figure 4 (left panel) with a smaller value of Lmax

and a reduced grid size. Below the approximately
100–300 TeV cutoff and above Ed4 TeV, that is, above a
few times the injection energy, the electron spectra are well
described by power laws. To guide the eye, we plot two power
laws: one Ed

1.2µ - (thin dashed black line) and the other Ed
0.8µ -

(thin dotted black line). One canclearly see that the electron
spectral index depends on Bdd , being αe;−1.8 for
B 30dd m= G and 2.2ea - for B 400dd m= G. We note that
the latter value of αe is compatible with the index expected for
particles accelerated at a relativistic shock with pure scattering
and no large-scale magnetic field (Achterberg et al. 2001). In
Figure 4 (right panel), we plot electron spectra for a wider
range of values of B B: 0.3 Gd dd d m= (solid gray line), 0.6 Gm
(dashed blue), 1 Gm (solid green), 60 Gm (solid red), and
200 Gm (dashed magenta), corresponding to levels of turbu-
lence at zcrit of 0.052crith = , 0.10, 0.17, 10, and 35. The
electron spectrum is seen to be slightly softer than Ed

2.2- for
B 0.3dd = ( : 1 Gm) . It hardens to dN dE Ed d

1.8µ - for
B 60 Gdd m= and softens again for larger turbulence levels:
the dotted magenta line for B 200 Gdd m= is compatible with
an index 2.2 1.8ea- < < - . All curves are normalized to the
same (arbitrary) level, which shows that, for low levels of
turbulence B 1 Gbd m< , a smaller fraction of the injected
electrons are accelerated.
In Table 1, seventh column, we give the fraction, acc,3 , of

injected electrons that are accelerated to E 3 TeVd  . For Bbd <
1 Gm , acc,3 quickly drops but otherwise remains in the range
;4%–8%. In the fourth column of Table 1, we provide the values
of αe for z 100

17= cm and Bdd within the range 0.3–400 μG, and
for z 6 100

17= ´ cm and B 0.41 400 Gdd m= ( – ) . The third
column contains the corresponding values of crith . The spectral
indexes are calculated by fitting the electron spectra on the energy
interval E7 TeV 80 TeVd  , where they are well described
by power laws.

Figure 4. Left panel: spectra E dN dEd d´ of electrons (thick solid lines) and positrons (dashed lines) in the DRF, for B 30 Gdd m= (red lines, corresponds to
5.2crith = ) and B 400 Gdd m= (blue lines, 69crith = ); Right panel: spectra E dN dEd d´ of electrons for B 0.3, 0.6, 1, 60, 200 Gdd m= (i.e., 0.052crith = , 0.10,

0.17, 10, 35). See the key for the corresponding line types and colors. In both panels, z 100
17= cm, B 1 mGd,0 = , and the particles are injected at z z 2.6crit ∣ ∣

(i.e., z z 0.0150 ∣ ∣ ) with E 1 TeVinj,d = . For reference, the thin black dashed (dotted) lines show power laws Ed
1.2µ - (respectively Ed

0.8µ - ).
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In Figure 5 (left panel), we plot αe versus crith . The red line
and solid red dots are for z 100

17= cm, and the open black
circles are for z 6 100

17= ´ cm. The shape of the red curve
confirms the trend already noted in Figure 4. The spectrum is
soft, with 2.3ea - ( –2.2), at small ( 1 ) and large ( 30 )
values of crith , that is, small and large values of Bdd . It hardens
at intermediate values of crith , and the index reaches its
maximum of αe;−1.8 around a fewcrith  , that is, when the
turbulence level at zcrit is close to unity. The results for αe

versus crith are almost the same for both values of z0, which
suggests that αe is a function of crith . We note that, at Bd,0

fixed, B zcrit d 0h dµ ´ .
In the nonrelativistic theory of diffusive shock acceleration,

the spectral index αe is determined by the ratio of the average
return probability of electrons from downstream to upstream,

ret , and their average relative energy gain per cycle, E ED
(Bell 1978). The relativistic theory is more complicated,
since the (angular-dependent) ratio of these quantities must
be convolved with the actual angular distribution of particles at
the shock. Nevertheless, these quantities, separately averaged,
give a good intuitive guide to the mechanisms at work. In the
fifth and sixth columns of Table 1, we give the values of ret
and E E dD( ) (i.e., E ED as measured in the DRF),
respectively, for electrons with energies E7 TeV 80d 
TeV. No clear trend emerges for E E dD( ) , and the results are
compatible with E E dD( ) being almost constant and 1.1 . On
the other hand, ret shows a strong variation with crith . In
Figure 5 (right panel), we plot ret versus crith for z 100

17= cm
and z 6 100

17= ´ cm, with the same color code as in the left
panel. The good match between the open black circles and the

Figure 5. Left panel: electron spectral index αe as a function of crith (fits on the interval E7 TeV 80 TeVd  ). Right panel: return probability ret as a function of

crith , for electrons with E7 TeV 80 TeVd  . On both panels, solid red lines are for z 100
17= cm, and open black circles for z 6 100

17= ´ cm, B 1 mGd,0 = , and

the electrons are injected at z z 2.6crit ∣ ∣ (i.e., z z z0.015 10 cm0 0
17∣ ∣ ) with E 1 TeVinj,d = .

Table 1
Simulations with Injection Close to the Equatorial Plane

z0/(10
17 cm) δBd/(1 μG) Turbulence level Electron index Return probability Gain per cycle Fraction at >3 TeV

ηcrit αe ret (ΔE/E)d òacc,3

1 0.3 5.2×10−2 −2.36 ± 0.03 0.35 1.05 1.1×10−3

1 0.6 0.10 −2.34 ± 0.02 0.36 1.07 2.1×10−2

1 1 0.17 −2.28 ± 0.02 0.39 1.06 4.4×10−2

1 3 0.52 −2.10 ± 0.02 0.46 1.08 6.9×10−2

1 10 1.7 −1.82 ± 0.03 0.57 1.07 8.4×10−2

1 30 5.2 −1.77 ± 0.01 0.55 1.10 5.7×10−2

1 60 10 −1.83 ± 0.01 0.52 1.11 5.3×10−2

1 100 17 −1.90 ± 0.01 0.48 1.09 5.2×10−2

1 200 35 −2.04 ± 0.01 0.43 1.09 4.7×10−2

1 300 52 −2.14 ± 0.02 0.41 1.09 4.8×10−2

1 400 69 −2.21 ± 0.01 0.39 1.08 4.5×10−2

6 0.41 0.17 −2.22 ± 0.01 0.40 1.05 3.2×10−2

6 12 5.2 −1.77 ± 0.01 0.56 1.09 6.3×10−2

6 41 17 −1.90 ± 0.01 0.48 1.11 5.0×10−2

6 82 35 −2.03 ± 0.02 0.43 1.14 4.4×10−2

6 163 69 −2.20 ± 0.03 0.39 1.13 4.7×10−2

6 200 85 −2.21 ± 0.03 0.40 1.16 4.9×10−2

6 300 1.3×102 −2.24 ± 0.04 0.40 1.14 4.6×10−2

6 400 1.7×102 −2.25 ± 0.05 0.37 1.16 4.2×10−2

Note. Electrons are injected at z z 2.6crit ∣ ∣ corresponding to z z z0.015 10 cm0 0
17∣ ∣ ( ) . The injection energy is E 1 TeVinj,d = , and the regular magnetic field

at z0 is B 1 mGd,0 = .
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red curve shows that ret is also a function of crith . By
comparing the left and right panels in Figure 5, one sees that αe

and ret are strongly correlated. The return probability of
electrons is maximal ( 0.6ret » ) at values of crith where the
electron spectrum is hardest, and it is smaller ( 0.35 0.4ret » – )
at values of crith where the electron spectrum is soft,

2.3 2.2ea » -( – ). This implies that the hard electron spectrum
found at 1 10crith ~ ( – ) is due to an increase in the return
probability of the electrons from the downstream to the
upstream at these turbulence levels. The reason is connected
with the nature of the drift trajectories, combined with the fact
that for 1h ~ , the role of turbulence is significant in those
sections of the orbit closer to the equatorial plane (low altitude,
i.e., smaller z∣ ∣) and relatively unimportant in those at higher
altitude (larger z∣ ∣). Electron drift trajectories move away from
the shock front (x 0>˙ ) at low altitude, and toward it at high
altitude. Since the turbulence predominantly scatters the low-
altitude section, the net result is a reduction in ẋ, that is, in the
escape probability.

3.3. Overall Electron Spectrum at the Termination Shock

We now investigate the acceleration, or lack thereof, of
electrons injected farther away from the equatorial plane. In
Figure 6, we plot the spectra E dN dEd d´ of electrons injected
at the TS in six different zones of equal area, located at
successively increasing distance from the equatorial plane (see
caption). The first column corresponds to B 30dd m= G, the
second to B 100 Gdd m= , and the third to B 400 Gdd m= . In the
first row, z 100

17= cm, and in the second, z 6 100
17= ´ cm.

The value of crith in each panel of Figure 6 is then 5.2 (upper
left), 17 (upper center), 69 (upper right), 13 (lower left), 42
(lower center), and 170 (lower right). The downstream
turbulence level B Bd dd can be deduced at any given z∣ ∣ by
noting that it is equal to B B z z z zd d,0 0 crit critd h´ =( (∣ ∣ )) (∣ ∣ ).
In every panel, all spectra are normalized to the same (arbitrary)

level. The solid red line for the electrons injected at
z z 0.020 ∣ ∣ dominates over all other lines. A larger fraction
of these particles is accelerated than is the case for injection at
larger z∣ ∣, and their spectrum is also harder. These results
unambiguously confirm that electron acceleration to high
energies preferentially happens for particles injected at small
z∣ ∣, in line with the qualitative discussion in Section 3.1. As is
visible in the lower right panel in Figure 2, electrons injected at
larger z∣ ∣ move toward the equatorial plane due to shock drift, but
most of them are advected into the downstream after a few
cycles. Only a small fraction of them reaches the equatorial
region, and this fraction decreases with the value of z∣ ∣ at
injection. For instance, in the upper left panel in Figure 6, the
hard, high-energy tail of the dashed orange spectrum for

z z0.02 0.040 < ∣ ∣ ( z z3.46 6.93;crit < ∣ ∣ 5.2crith = ) is
due to those few particles that have reached the equatorial region
and are subsequently accelerated there. Indeed, this spectrum has
about the same slope as the solid red one. The electrons that do
not reach the equatorial region still gain some energy from their
few shock crossings and from shock drift because the average
change per cycle in z∣ ∣ is negative. This is the origin of the small
energy gains experienced by particles injected at higher z∣ ∣, and
of their “bump-like” spectra with low-energy cutoffs. See,
for example, the spectra for z z0.04 0.060 < ∣ ∣ (dotted
green lines) in the first column of Figure 6, and those
for z z0.08 0.100 < ∣ ∣ (solid magenta lines) in the second
column.
For values of z z0∣ ∣ larger than those plotted in Figure 6, the

turbulence level B Bd dd is so low that almost all injected
electrons are advected away into the downstream and do not
perform even a single cycle.
Comparing the three columns of Figure 6, we also note

that the width zw of the favorable region where electrons
can be accelerated to high energies grows with Bdd . This is
unsurprising, because larger turbulence amplitudes in the
downstream correspond to wider regions around the equatorial

Figure 6. Electron spectra E dN dEd d´ in the DRF for injection close to the equatorial plane, z z 0.020 ∣ ∣ (solid red lines), and in five zones of increasing altitude
above it: z zi i0 1z z< < +∣ ∣ , with i0.02iz = ´ , i 1 ,... 5= , corresponding to z zi icrit 1x x< < +∣ ∣ , with 3.46, 6.93, 10.4, 13.9, 17.3, 20.8x = ( ) in the first row,
where z 100

17= cm, and with 8.48, 17.0, 25.4, 33.9, 42.4, 50.9x = ( ) in the second row, where z 6 100
17= ´ cm. In the first column B 30 Gdd m= , in the second

B 100 Gdd m= , and in the third B 400 Gdd m= . The thin black dashed and dotted lines show power laws Ed
1.2µ - and Ed

0.8µ - , respectively.
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plane where the downstream turbulence levels B Bd dd are
sufficiently large for electrons to be scattered back into the
upstream and be accelerated via the first-order Fermi mech-
anism. For instance, for B 30 Gdd m= and z 100

17= cm (upper
left panel), none of the electrons injected in the band

z z0.04 0.060 < ∣ ∣ is accelerated to high energy. However,
for B 400 Gdd m= (upper right panel), acceleration in this
band is almost as successful as for the central band with
z z 0.020 ∣ ∣ . Indeed, the band z z0.04 0.060 < ∣ ∣ corre-
sponds to a region with downstream turbulence levels of

B B0.5 0.75d d d< in the upper left panel where 5.2crith = ,
and to B B6.7 10d d d< in the upper right one where

69crith = .
By comparing the two rows in Figure 6, one can see that the

relative width z zw 0 of the favorable region for electron
acceleration decreases with z0 at Bdd fixed. For example,
for z 100

17= cm and B 30 Gdd m= (upper left panel), accel-
eration to high energies still takes place in the band

z z0.02 0.040 < ∣ ∣ (dashed orange line), whereas no accel-
eration to high energies is recorded in the same band for
z 6 100

17= ´ cm (lower left panel), even though the down-
stream turbulence levels are the same in this band in both
panels. Therefore, the width zw of the favorable region for
particle acceleration does not grow linearly with z0. It grows
more slowly, roughly as zcrit and thence as z0 (i.e.,
z z z1w 0 0µ ). The band z z0.02 0.040 < ∣ ∣ corresponds
to z z3.46 6.93crit < ∣ ∣ in the upper left panel, and to

z z8.48 17.0crit < ∣ ∣ in the lower left panel. Indeed, the
results for this band in the upper panel are similar to those in
the band z z 0.020 ∣ ∣ in the lower panel, which corresponds
to z z 8.48crit ∣ ∣ .

To expedite the simulations, we choose an upper boundary
on the relative size of the region where injected electrons can
be accelerated to high energies: z z0 inj∣ ∣ . A “generous”
estimate is provided in the fifth column of Table 2, for Bdd
within the range 0.6–400 μG, and for z 100

17= cm or

z 6 100
17= ´ cm. We inject 106 electrons at the TS, in the

region at z z0 inj∣ ∣ . In the fourth column of Table 2,
we provide the fraction acc,7 of these electrons that are
accelerated to energies E 7 TeVd  . We use here the condition
E 7 TeVd  because our simulations show that the overall
electron spectrum at the TS is well described by a power law
above this energy. We find that the spectrum below ≈7 TeV
does not look like a perfect power law and displays a small
bump due to the particles injected at large z∣ ∣. This can be seen
qualitatively by summing up by eye the contributions from all
bands in Figure 6. These fractions acc,7 depend on inj , and
multiplying them by zinj 0 gives the total acceleration
efficiency for the whole TS in the striped wind region, in
planar geometry. As already expected from Figure 6, the total
acceleration efficiency tends to grow with Bdd . The values for
acc,7 are smaller than those for acc,3 in Table 1 because of the
higher energy threshold (7 TeV), and because of the larger size
of the studied region.
Finally, we note that positron acceleration, which is

inefficient in the equatorial plane, shuts off completely at
larger z∣ ∣.

3.4. Synchrotron X-Rays from the Crab Nebula

Using the method described in Section 2.5, we compute the
synchrotron spectrum, taking B=0.5 mG for the strength of
the magnetic field in which the electrons cool, and E 1max =
PeV for their maximum energy at the TS; see Equation (12).
These values provide a high-energy cutoff in the synchrotron
spectrum at roughly 30MeV, which agrees with observations
of the Crab Nebula and lies well above the X-ray observations
with which we compare our predictions. The cooling time of
electrons of 1 PeV is roughly 106 s, corresponding to a region
of size somewhat larger than the acceleration zone considered.
The results of Section 3.3 show the electron spectrum at the TS
to be a power law E eµ a above E 7 TeVmin = (i.e., f= 7),
which we can expect to extend up to Emax. The cooling time for
electrons of Emin is roughly 108 s, corresponding to a size
somewhat smaller than the X-ray nebula, and the energy of the
photons emitted by these electrons is about 1 keV, which
roughly defines the lower limit of the range we attempt to
model.
Observations by NuSTAR(Madsen et al. 2015) give

2.2ea - , which, from Figure 5 (left panel) and Table 1,
implies either B 400 Gdd m> or 200 Gm> for z 100

17= cm
and 6 1017´ cm, respectively. Or, alternatively, B 1 Gdd m<
or B 0.4 Gdd m< , again for z 100

17= cm and 6 1017´ cm,
respectively. (The case of harder spectra is discussed in
Section 4.)
Assuming the Crab Nebula to be at a distance

D 2.0Crab = kpc from Earth and that the particle flux from
the pulsar is distributed in latitude in proportion to the wind
power, with n=0 or n=4, we plot in Figure 7 the
synchrotron spectra νFν at energies h 1 keVn for these
values of z0 and Bdd . The normalization is found using the
values of acc,7 and inj from Table 2, assuming the equatorial
radius of the TS is r 4.3 10TS

17= ´ cm, the spin-down
luminosity L 5 10s.d.

38= ´ erg s−1, and the mass-loading
parameter 2 106m = ´ . In this figure, the solid black line
shows the approximate level of the NuSTAR data(Madsen
et al. 2015) in the energy band h3 keV 78 keV n (area
shaded in gray). Our prescription of the electron spectrum
below E 7d = TeV, given in Equation (11), influences νFν for

Table 2
Fraction of Accelerated Electrons over the Whole TS

z 10 cm0
17( ) B 1 Gdd m( ) crith acc,7 inj

1 0.6 0.10 3.19×10−4 0.05
1 1 0.17 2.06×10−3 0.05
1 3 0.52 6.99×10−3 0.05
1 10 1.7 5.72×10−3 0.05
1 30 5.2 1.01×10−2 0.055
1 60 10 7.22×10−3 0.08
1 100 17 5.78×10−3 0.1
1 200 35 7.59×10−3 0.1
1 300 52 6.42×10−3 0.12
1 400 69 5.93×10−3 0.17
6 0.6 0.25 3.24×10−4 0.05
6 1 0.42 1.39×10−3 0.05
6 3 1.3 3.47×10−3 0.05
6 10 4.2 3.56×10−3 0.05
6 30 13 4.15×10−3 0.055
6 60 25 3.48×10−3 0.08
6 100 42 3.33×10−3 0.1
6 200 85 5.84×10−3 0.1
6 300 1.3×102 5.26×10−3 0.12
6 400 1.7×102 5.27×10−3 0.17

Note. Electrons are injected at z z0 inj∣ ∣ with energy 1 TeV. The regular
field at z0 is B 1 mGd,0 = . acc,7 is the fraction of injected particles accelerated
to more than 7 TeV.
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h 2 3n ( – ) keV. Since this is not relevant for NuSTAR data, we
extrapolate the power law in this figure to below 7 TeV.

The four solid lines in Figure 7 are calculated for an isotropic
pulsar wind (n= 0) with z 6 100

17= ´ cm, which corresponds
to 80Q  , that is, an almost orthogonal rotator. These four
spectra are computed for B 1 Gdd m= (magenta line), Bdd =
100 Gm (blue), B 200 Gdd m= (green), and B 400 Gdd m=
(red). As expected, the level of the emission increases with Bdd .
The line for B 400 Gdd m= is still below the NuSTAR data, but
is compatible with it if one takes into account both the
uncertainties on the distance to the Crab Nebula (±0.5 kpc) and
those on Ls.d.. In contrast, small values of Θ cannot explain the
data. For instance, we show, with the dash-dotted red line, νFν

for z 100
17= cm (i.e., 13Q  ) and B 400 Gdd m= : in this

case, the predicted level of the emission is an order of
magnitude below the NuSTAR data. Finally, since the pulsar
wind may be anisotropic, we plot, as an example, the case
n=4 (see Section 2.5) with z 6 100

17= ´ cm and Bdd =
400 Gm (dashed red line). The emission is enhanced by a factor

2» with respect to that for an isotropic wind with the same
parameters, which raises it to the level of the NuSTAR data. We
represent the uncertainty on the two lines with z B,0 dd ={ }
6 10 cm, 400 G17 m´{ }, caused by the estimate of the distance

DCrab to the Crab Nebula by the area shaded in red. This shows
that the data are compatible with the above predictions, as well
as with those for an anisotropic pulsar wind with a lower level
of turbulence B 200 Gdd m= .

In our picture, electrons enter the Fermi acceleration process
after thermalization at the TS to an injection energy
E m cinj,d e

2m~ . The computations reported in Figure 7 are
performed with E 1inj,d = TeV, which lies at the upper end of
the permitted range. Repeating these for E 10 GeVinj,d = leads
to a reduction in the X-ray flux by a factor of approximately 25.
This is due to reductions of the normalization of the electron
spectrum in the radiating band, and of the size of the region
around the equatorial plane where electron acceleration occurs,
which are only partially compensated for by the increased
particle flux density compared to the total power density in the
wind. Thus, in our model, such a low injection energy is
incompatible with the X-ray observations of the Crab Nebula.

4. Discussion and Perspectives

The synchrotron spectrum of the Crab Nebula follows a
power law, F 0.1n nµn

- , in the X-ray band, according to
observations by NuSTAR(Madsen et al. 2015). This corre-
sponds to an accelerated electron spectrum at the TS with

2.2ea - , close to the value −2.23±0.01 predicted for the
first-order Fermi mechanism operating at a parallel, ultra-
relativistic shock in the presence of isotropic pitch-angle
diffusion (Kirk et al. 2000). However, though ultrarelativistic,
the TS of the wind of the Crab Pulsar is expected to be
perpendicular, rather than parallel, which has led to suggestions
that the Fermi process cannot provide an explanation of the
X-ray spectrum (e.g., Olmi et al. 2016). The results presented
in Section 3 use an explicit model of the magnetic field at the
TS to demonstrate that this mechanism is indeed viable.
Physically, the reason is that the drift of particle orbits along
the shock surface tends to focus either electrons or positrons
(depending on the pulsar polarity) into the equatorial current
sheet of the nebula. Here, the toroidal magnetic field is weak,
and the level of turbulence suggested by global MHD
simulations is sufficient to provide the scattering needed for
the Fermi process to be effective.
In contrast to the case of a uniform magnetic field, we find

that the spectral index for the more appropriate equatorial
current sheet configuration depends on the amplitude of the
turbulence. As can be seen in Figure 5 (left panel), both weak
and strong turbulence lead to 2.2ea - , but an intermediate
range exists in which a harder spectrum with 1.8ea - is
predicted. In this connection, “weak” and “strong” refer to the
turbulence level at that height in the sheet where the gyroradius
of an injected particle equals its distance from the equatorial
plane. That is, in terms of the parameter defined in
Equation (5), 1crith  and 1crith  . In the case of the Crab,
only “strong” turbulence amplitudes and a relatively broad
current sheet—as determined by the angle between the pulsar’s
magnetic and rotation axes—are compatible with the flux level
reported by NuSTAR. This conclusion rests on the assumption
that the angular dependence of the particle flux carried by the
wind is proportional to that of the total power. At first sight, it
might seem that a scenario in which the particle flux is more
strongly concentrated toward the equatorial plane would lead to
an enhanced X-ray flux and, therefore, relax the above
constraints. However, an increase in the equatorial particle
flux corresponds to a decrease in the effective value of μ and,
therefore, of the injection energy. As noted in Section 3, this
reduces the predicted X-ray flux. These remarks apply to the
spatially integrated X-ray flux and assume a level of turbulence
that is constant in time. In principle, the level of turbulence
close to the TS can fluctuate on the timescale of months. Our
computations predict a harder synchrotron spectrum when

1crith ~ –10. Thus, the high spatial resolution observations by
the Chandra X-ray Observatory (Mori et al. 2004), which
reported a photon spectrum corresponding to 1.8 2.0ea - ( – )
very close to the equator, may have sampled a lower turbulence
level in this region of the Nebula.
In our model, particles are able to return to the shock because

they propagate in a prescribed field of Gaussian turbulence.
This approach is motivated by MHD simulations of the global
flow pattern, which show turbulence driven roughly on the
scale of the radius of the TS, with an amplitude comparable to
the ambient field strength outside the current sheet. It implicitly
assumes that a turbulent cascade to smaller length scales

Figure 7. Predicted synchrotron spectra at h 1 keVn for the Crab Nebula
versus NuSTAR measurements(Madsen et al. 2015, solid black line). Each line
corresponds to a different combination of z0 and Bdd , for isotropic (“iso.”) or

sin4Jµ pulsar winds and for D 2.0 kpcCrab = ; see the key. The red area is the
uncertainty on z B6 10 cm, 400 G0

17
dd m= ´ ={ } for D1.5 kpc Crab 

2.5 kpc.
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develops and fills the downstream region. We tested both
Kolmogorov ( k k 5 3 µ -( ) ) and Bohm ( k 1µ - ) spectra, and we
did not find a significant impact on our results. This suggests
that the choice of spectrum is not important, but we note that
our limited dynamical range (L L 100max min ~ ) does not
allow us to firmly rule out any dependence on k( ) in the case
of L L 100max min  .

On the other hand, in the upstream plasma, any turbulence
present must either be imprinted at the launching point of the
wind or created by reflected particles or waves (Lemoine &
Pelletier 2010; Casse et al. 2013). Since the amplitude of the
former is difficult to estimate, and the latter effect is absent in
our test-particle simulations, we performed a series of checks
and verified that our results are unaffected by either the power
spectrum or the amplitude of the upstream turbulence, provided
the latter does not greatly exceed 0.1 Gm~ . Complete neglect
of the upstream turbulence, on the other hand, would introduce
an unphysical artifact into our simulations, since a planar 1D
treatment without upstream turbulence permits some particles
on Speiser orbits to propagate to arbitrarily large distance
upstream. In a more realistic picture, such orbits are eliminated
by effects such as irregularities in the incoming wave and
radiation losses of the particles, as well as the spherical
geometry appropriate for a pulsar wind.

The main argument against Fermi acceleration as the
mechanism responsible for producing the X-ray-emitting
electrons in the Crab Nebula is based on the results of PIC
simulations (Sironi & Spitkovsky 2009), which show efficient
acceleration at relativistic shocks only when the ambient field is
approximately parallel to the shock normal and the magnetiza-
tion parameter σ is small (typically 10 3< - ). Because such
conditions are expected on only a very small fraction ( 1% ) of
the TS, through which a correspondingly small fraction of
the wind power flows, particles accelerated there cannot carry
the power needed to explain the observed X-ray emission
(Amato 2014). However, currently available PIC simulations
specify an initially uniform magnetic field, so particles can
return to the shock only by scattering on self-generated
turbulence. In contrast, the scattering in our approach results
from a turbulent field generated externally by the global flow
pattern. The region of the TS in which particles are injected
into the acceleration process reaches, in this case, a height
of several times zcrit above the equator, corresponding to a
few percent of the area of the TS. The majority ( 90% ) of the
electrons carried by the wind do not enter the Fermi
acceleration process. Although we do not address the fate of
these electrons here, it is conceivable that another acceleration
mechanism operates upon them and may be responsible for the
radio to optical emission of the Nebula (Olmi et al. 2016). It is
important to note that during the course of Fermi acceleration,
the area of the TS sampled by the particles grows in proportion
to their energy. Therefore, although the number of participating
particles is restricted to those entering through a few percent of
the TS area, the available power is a much larger fraction of the
wind luminosity and is ultimately sufficient to produce the
observed X-ray flux.

5. Summary and Conclusions

Using a global model of the magnetic field, we study the
acceleration of electrons and positrons at the TS of a striped
pulsar wind, and we compute the resulting high-energy
synchrotron emission. For parameters appropriate for the Crab

Nebula, we find that either electrons or positrons—but not both
—can be accelerated to approximately petaelectronvolt ener-
gies via the first-order Fermi mechanism in a ring-shaped
region of the TS, around the equatorial plane of the pulsar. The
width of this ring grows with the downstream turbulence level.
The Fermi mechanism shuts off outside this region because of
the strong toroidal field at higher latitudes. Drifts along the
surface of the TS focus the accelerating particles toward the
equatorial plane and maintain them on Speiser orbits around it.
This favors acceleration via the first-order Fermi mechanism,
because it causes them to cross the TS and reenter downstream
near this plane, where the toroidal field is weakest and the
turbulence level is largest. In contrast, drifts along the shock
push particles of the disfavored charge away from this region,
thus hampering their acceleration. The sign of charge that is
accelerated depends on the pulsar polarity. Interestingly,
modeling of the multiwavelength emission of the Crab Nebula
suggests that the particles responsible for X-ray emission
are indeed accelerated close to the equatorial plane(Olmi
et al. 2016).
The predicted spectral index of the accelerated particles is in

the range αe;−1.8 to −2.4 and depends on the downstream
turbulence level, being primarily determined by the electron
return probability from the downstream to the upstream;
see Figure 5. For turbulence levels 1crith  or 10 —see
Equations (5) and(4)—we find that it is 2.2ea - , which is
consistent with the photon index Γ=2.1 measured for the
Crab Nebula in 1–100 keV X-rays (Madsen et al. 2015). The
observed X-ray flux can be reproduced for 10crith  , provided
the angle between the magnetic and rotation axes of the pulsar
is sufficiently large; seeFigure 7. The electron spectrum
hardens to αe;−1.8 to −2.0 when 1 10crith » – , which may
explain the hard photon index 1.9G  to 2.0 observed by the
Chandra X-ray Observatory in the central regions of the Crab
Nebula(Mori et al. 2004). Taking account of the dependence
of the spectral index on the level of turbulence ( crith ) may
also offer an explanation of the X-ray emission of other
pulsar-wind nebulae.

We thank Uri Keshet for useful discussions. This research
was supported by a grant from the GIF, the German-Israeli
Foundation for Scientific Research and Development.

Appendix
Influence of the Grid Size on the Particle Spectra

We assert in Section 3.2 that the ∼100–300 TeV cutoffs in
the electron spectra of Figures 4 and 6 are artifacts of our
simulation technique, caused by the finite dynamical range
L L 128max min = of the turbulence, whereas the cutoffs that
appear at lower energies in the positron spectra of Figure 4 (left
panel) and in the spectra of the electrons injected at large z z0∣ ∣
in Figure 6 are physical. We have confirmed this interpretation
by performing simulations with turbulence generated on a
smaller grid, using a correspondingly reduced value of Lmax.
For example, Figure 8 shows the electron and positron spectra
for the same parameters as in Figure 4 (left panel), except that
the turbulence is generated on a grid of size 64 = (instead of

256 = ), and the value of Lmax is reduced by a factor of four.
By comparing these two figures (which use the same line types
and colors), one sees that, apart from statistical fluctuations, the
positron spectra are identical, whereas the electron spectra in
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Figure 8 have a high-energy cutoff at an energy that is
approximately four times smaller than in Figure 4 (left panel).
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