# New and Known Moving Groups and Clusters Identified in a Gaia Comoving Catalog 

Jacqueline K Faherty ${ }^{1}$ (1) , John J. Bochanski ${ }^{2}$ (1) Jonathan Gagné ${ }^{3}$, Olivia Nelson ${ }^{1}$, Kristina Coker $^{1}$, Iliya Smithka ${ }^{1}$, Deion Desir ${ }^{1}$, and Chelsea Vasquez ${ }^{1}$<br>${ }^{1}$ American Museum of Natural History Department of Astrophysics, Central Park West at 79th Street, New York, NY 10034, USA; jfaherty @amnh.org<br>${ }^{2}$ Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648, USA<br>${ }^{3}$ Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA<br>Received 2018 March 25; revised 2018 May 8; accepted 2018 May 10; published 2018 August 13


#### Abstract

We present a reorganization of the Oh et al. wide, comoving catalog of 4555 groups of stars (10,606 individual objects) identified in the Tycho Gaia Astrometric Survey (TGAS) into new and known coevolving groups of stars in the Milky Way. We use the BANYAN $\Sigma$ kinematic analysis tool to identify 1015 individual stars in the Oh et al. catalog that yielded a $>80 \%$ probability in 1 of 27 known associations (e.g., the AB Doradus moving group, Columba, Upper Scorpius) in the vicinity of the Sun. Among the 27 groups uncovered by Oh et al. that had $>10$ connected components, we find that 4 are newly discovered. We use a combination of Tycho, Gaia, Two micron All Sky catalog, Wide Field Infrared Survey Explorer Mission, Galaxy Evolution Explorer, and Rontgen Satellite photometry as well as Gaia parallaxes to determine that these new groups are likely older than the Pleiades but younger than $\sim 1$ Gyr. Using isochrone fitting, we find that the majority of these new groups have solar-type stars and solar-type metallicity. Among the 35 Oh et al. groups with five to nine members, we find that 19 also appear new and comoving, with Oh et al. Group 30 is particularly exciting as it is well within 100 pc (range of 77-90 pc) and also appears to be older than the Pleiades. For known star-forming regions, open clusters, and moving groups identified by Oh et al., we find that the majority were broken up into pieces over several Oh et al. groups (e.g., Lower Centaurus Crux members are spread over 26 Oh et al. groups); however, we found no correlation with positions of the groups on color-magnitude diagrams, and therefore no substructure of the association correlated with the Oh et al. designated group. We find that across the 27 groups tested by BANYAN $\Sigma$ there were 400 new members to 20 different associations uncovered by Oh et al. that require further vetting.


Key words: methods: data analysis - proper motions - stars: kinematics and dynamics - open clusters and associations: general - binaries: general
Supporting material: machine-readable tables

## 1. Introduction

Mapping the Milky Way with coevolving stars can provide information on the dynamic history of our Galaxy. Galactic position along with parallax, proper motion, and radial velocity measurements for individual stars helps us to create maps of the six-dimensional spatial and velocity structure of the Milky Way. Using such detailed maps of the Galaxy, investigations of the locations of stars with their kinematic clustering can be paired with parameters such as stellar separations, fundamental parameter estimates ( $\log (g)$, metallicity, mass, and radius), and chemical compositions to yield vital details about the past, present, and future of the Milky Way.

Widely separated companions are particularly important as they are easiest to study in detail given that individual sources can be resolved. Studying binaries, triples, or hierarchical systems with common origins, allows for much needed tests on age-calibration relations (e.g., Chanamé \& Ramírez 2012) but can also lead to intriguing discoveries about the planetary formation history around Milky Way stars (e.g., Teske et al. 2015; Oh et al. 2018). Furthermore, hierarchical systems at wide separations that have strong evidence for coevolution are important objects for understanding the influence of the

[^0]Galactic potential and large perturber structures (e.g., giant molecular clouds) in the Milky Way (e.g., Weinberg et al. 1987).
The Washington Double Star Catalog (WDS) maintained by the United States Naval Observatory is a principal resource for a list of double and multiple star information (Mason et al. 2018) and contains over 140,000 entries with references for discovery as far back as 1895 (e.g., Aitken 1895). Currently, identifying widely separated companions is enabled by large or all-sky surveys such as the Sloan Digital Sky Survey (e.g., Dhital et al. 2010, 2015), the Digitized Sky Surveys (e.g., Lépine 2005; Lépine \& Shara 2005), Tycho, and Hipparcos (e.g., Kirkpatrick et al. 2001; Faherty et al. 2010, 2011). Having precise parallax, proper motion, and radial velocity are critical to identifying and confirming comoving stars. That is why the European Space Agency's (ESA) Gaia space-based observatory is a much-anticipated next major advancement in the science enabled by wide comoving stars. By the time of the Gaia DR2 release (expected in 2018 April), this mission will chart 10,000 times more stars than Hipparcos at a precision 100 times better. In 2016 September, the first data release of Gaia (DR1), which provided a subset of parallaxes and precise proper motions for Tycho stars (dubbed TGAS) led to several papers identifying new wide hierarchical systems in the Galaxy (e.g., Andrews et al. 2017; Oelkers et al. 2017; Oh et al. 2017, hereafter Oh17).

Aside from wide binaries in the Galaxy, important comoving collections of moderate numbers of stars have also been

Table 1
Oh17 with Spectral Type and $T_{\text {eff }}$

| Name | R.A. | Decl. | SpT | $\begin{aligned} & T_{\text {eff }} \\ & (\mathrm{K}) \end{aligned}$ | BANYAN Grp | BANYAN Prob ${ }^{\text {a }}$ (\%) <br> (\%) | Oh Grp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| TYC 1253-388-1 | 59.45728 | 18.56219 | ... | $\cdots$ | FIELD | 7.3 | 0 |
| TYC 1804-1924-1 | 57.07039 | 25.21493 | F4V | 6890 | PLE | 98.7 | 0 |
| HIP 18091 | 58.00344 | 19.59669 | ... | ... | FIELD | 36.6 | 0 |
| HIP 18544 | 59.50715 | 20.6766 | F8 | 6200 | PLE | 56.9 | 0 |
| TYC 1261-1630-1 | 58.37032 | 20.90718 | ... | ... | PLE | 98.7 | 0 |
| TYC 1261-1415-1 | 58.88317 | 21.07928 | $\ldots$ | $\cdots$ | PLE | 79.1 | 0 |
| TYC 1261-24-1 | 59.59016 | 21.25748 | $\ldots$ | $\ldots$ | PLE | 95.2 | 0 |
| HIP 18266 | 58.61605 | 21.38955 | $\ldots$ | $\ldots$ | PLE | 98.6 | 0 |
| HIP 19367 | 62.23086 | 20.38579 | F8 | 6200 | FIELD | 0.3 | 0 |
| HIP 18955 | 60.93413 | 22.9441 | F5 | 6440 | PLE | 75.2 | 0 |
| HIP 16423 | 52.8682 | 21.82172 | F2 | 6890 | PLE | 85.6 | 0 |
| HIP 15341 | 49.45743 | 22.832 | A3 | 8720 | FIELD | 0.2 | 0 |
| TYC 1256-516-1 | 56.25702 | 19.55919 | F5 | 6440 | PLE | 65.8 | 0 |
| HIP 17325 | 55.62454 | 20.1498 | A2 | 8970 | PLE | 94.3 | 0 |
| HIP 17607 | 56.58068 | 20.8796 | $\ldots$ | ... | PLE | 99.1 | 0 |
| TYC 1260-671-1 | 57.16395 | 21.92476 | F0 | 7200 | PLE | 96.2 | 0 |
| HIP 17921 | 57.47955 | 22.24397 | B8III | 12400 | PLE | 99.8 | 0 |
| HIP 17892 | 57.40917 | 22.5333 | B9 | 10500 | PLE | 99.8 | 0 |
| TYC 1800-118-1 | 57.297 | 22.60927 | A0 | 9520 | PLE | 99.8 | 0 |
| TYC 1800-669-1 | 57.58886 | 23.09616 | ... | $\ldots$ | PLE | 99.9 | 0 |
| HIP 17043 | 54.8051 | 21.84306 | A0 | 9520 | PLE | 99.3 | 0 |
| HIP 17316 | 55.60007 | 21.47329 | G0 | 6030 | PLE | 99.1 | 0 |
| TYC 1247-515-1 | 55.8798 | 22.15819 | F8 | 6200 | PLE | 99.8 | 0 |
| HIP 17317 | 55.60019 | 22.42095 | ... | ... | PLE | 99.9 | 0 |
| HIP 17511 | 56.2456 | 22.03227 | F5 | 6440 | PLE | 99.7 | 0 |
| TYC 1260-498-1 | 56.17434 | 22.46436 | $\ldots$ | ... | PLE | 99.4 | 0 |
| TYC 1799-1102-1 | 56.41633 | 22.69428 | A0 | 9520 | PLE | 99.9 | 0 |
| TYC 1800-1574-1 | 56.66006 | 22.9196 | G0 | 6030 | PLE | 99.9 | 0 |
| HIP 17497 | 56.21357 | 23.26874 | F3V | 6890 | PLE | 99.9 | 0 |
| TYC 1800-1774-1 | 56.69618 | 22.91439 | F8 | 6200 | PLE | 99.9 | 0 |
| TYC 1800-2170-1 | 56.95058 | 23.2179 | ... | ... | PLE | 99.9 | 0 |
| TYC 1800-471-1 | 57.48549 | 23.21844 | F8 | 6200 | PLE | 99.7 | 0 |
| TYC 1800-496-1 | 57.41426 | 23.28992 | ... | . | PLE | 99.9 | 0 |
| TYC 1800-628-1 | 57.4206 | 23.34138 | A7V | 7850 | PLE | 99.9 | 0 |
| TYC 1800-727-1 | 57.38645 | 23.38022 | F3V | 6890 | PLE | 99.9 | 0 |
| TYC 1800-2129-1 | 57.18299 | 23.25963 | A8V | 7850 | PLE | 100 | 0 |
| TYC 1800-1672-1 | 56.66674 | 23.11014 | F5V | 6440 | PLE | 99.9 | 0 |
| HIP 17572 | 56.45349 | 23.14696 | A0 | 9520 | PLE | 99.9 | 0 |
| TYC 1800-1917-1 | 56.54194 | 23.3398 | ... | ... | PLE | 99.2 | 0 |
| TYC 1800-2027-1 | 56.756 | 23.49475 | $\ldots$ | $\ldots$ | PLE | 99.9 | 0 |
| TYC 1800-1616-1 | 56.72404 | 23.58337 | $\ldots$ | $\ldots$ | PLE | 99.9 | 0 |
| TYC 1800-1630-1 | 56.86188 | 23.67814 | A3V | 8720 | PLE | 99.8 | 0 |
| HIP 17692 | 56.83746 | 23.80315 | A1V | 9230 | PLE | 99.9 | 0 |

Notes.This subtable is a preview of the entire sample, which will be available as a machine-readable table. Above we show the Tycho or Hipparcos name along with corresponding position, and the SpT and $T_{\text {eff }}$ compiled in Skiff (2014). We also show the BANYAN $\Sigma$ probability of membership and the corresponding group as well as the Oh17 group number.
${ }^{\text {a }}$ The BANYAN probability is applicable for the group noted.
(This table is available in its entirety in machine-readable form.)
discovered using astrometric surveys. Using early, low astrometric precision catalogs, Kapteyn (1905) and Eggen (1965) identified large kinematically coherent associations of stars through their common proper motions and parallaxes. With time, astrometric surveys became far more precise and these original associations were resolved into smaller agecoherent groups with the progression to milliarcsecond parallaxes and proper motions from the Tycho and Hipparcos surveys (Perryman et al. 1997; Høg et al. 2000).

Within a few hundred parsecs of the Sun, there are numerous associations ranging in age from a few megayears (e.g., Rho

Ophiuchus, $0.5-2 \mathrm{Myr}$, Wilking et al. 2008; Taurus, $1-2 \mathrm{Myr}$, Daemgen et al. 2015) to hundreds of megayears (e.g., Tucana Horologium, $\sim 45 \mathrm{Myr} ; \mathrm{AB}$ Doradus, $\sim 150 \mathrm{Myr}$, Bell et al. 2015; Pleiades, $\sim 112$ Myr, Dahm 2015; Hyades, $\sim 750 \mathrm{Myr}$, Brandt \& Huang 2015a). In-depth studies of the closest associations to the Sun ( $<200 \mathrm{pc}$ ) have revealed that they harbor large numbers of low-mass stars, brown dwarfs, and even objects whose mass falls below the deuterium burning boundary (so-called free-floating planetary-mass objects; Gagné et al. 2015; Faherty et al. 2016). Moreover, given that moving groups harbor the closest young stars to the Sun, they

Table 2
Oh17 with Photometry

| Name (1) | SpT <br> (2) | $\begin{gathered} B \\ (3) \end{gathered}$ | $\begin{gathered} V \\ (4) \end{gathered}$ | $\begin{gathered} J \\ (5) \end{gathered}$ | $\begin{gathered} H \\ (6) \end{gathered}$ | $\begin{gathered} K \\ (7) \end{gathered}$ | W1 (8) | $W 2$ (9) | $\begin{gathered} W 3 \\ (10) \end{gathered}$ | $\begin{gathered} W 4 \\ (11) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYC 1253-388-1 | $\ldots$ | 12.45 | 11.32 | $9.98 \pm 0.03$ | $9.53 \pm 0.02$ | $9.45 \pm 0.02$ | $9.38 \pm 0.02$ | $9.41 \pm 0.02$ | $9.27 \pm 0.05$ | $8.63 \pm \cdots$ |
| TYC 1804-1924-1 | F4V | 9.62 | 9.22 | $8.14 \pm 0.02$ | $7.91 \pm 0.02$ | $7.86 \pm 0.02$ | $7.83 \pm 0.03$ | $7.86 \pm 0.02$ | $7.82 \pm 0.02$ | $7.33 \pm 0.12$ |
| HIP 18091 |  | 11.13 | 10.45 | $9.27 \pm 0.02$ | $8.98 \pm 0.02$ | $8.87 \pm 0.02$ | $8.86 \pm 0.02$ | $8.88 \pm 0.02$ | $8.82 \pm 0.03$ | $8.23 \pm 0.33$ |
| HIP 18544 | F8 | 9.88 | 9.38 | $8.44 \pm 0.02$ | $8.25 \pm 0.02$ | $8.20 \pm 0.03$ | $8.13 \pm 0.02$ | $8.15 \pm 0.02$ | $8.14 \pm 0.02$ | $7.79 \pm 0.20$ |
| TYC 1261-1630-1 | $\ldots$ | 12.86 | 11.68 | $10.10 \pm 0.02$ | $9.64 \pm 0.02$ | $9.51 \pm 0.02$ | $9.48 \pm 0.02$ | $9.49 \pm 0.02$ | $9.39 \pm 0.04$ | $8.79 \pm \ldots$ |
| TYC 1261-1415-1 | $\ldots$ | 11.79 | 11.11 | $9.62 \pm 0.02$ | $9.28 \pm 0.02$ | $9.17 \pm 0.02$ | $9.14 \pm 0.02$ | $9.19 \pm 0.02$ | $9.16 \pm 0.03$ | $8.27 \pm \ldots$ |
| TYC 1261-24-1 | $\ldots$ | 12.35 | 11.42 | $9.94 \pm 0.03$ | $9.58 \pm 0.03$ | $9.45 \pm 0.02$ | $9.42 \pm 0.02$ | $9.45 \pm 0.02$ | $9.35 \pm 0.04$ | $8.75 \pm \cdots$ |
| HIP 18266 | $\ldots$ | 11.65 | 10.85 | $9.60 \pm 0.02$ | $9.26 \pm 0.02$ | $9.18 \pm 0.02$ | $9.16 \pm 0.02$ | $9.20 \pm 0.02$ | $9.16 \pm 0.03$ | $8.26 \pm 0.32$ |
| HIP 19367 | F8 | 9.83 | 9.36 | $8.38 \pm 0.02$ | $8.19 \pm 0.02$ | $8.11 \pm 0.03$ | $8.11 \pm 0.02$ | $8.13 \pm 0.02$ | $8.10 \pm 0.02$ | $8.16 \pm 0.28$ |
| HIP 18955 | F5 | 10.3 | 9.68 | $8.52 \pm 0.04$ | $8.26 \pm 0.02$ | $8.18 \pm 0.02$ | $8.16 \pm 0.02$ | $8.17 \pm 0.02$ | $8.17 \pm 0.02$ | $8.13 \pm 0.28$ |
| HIP 16423 | F2 | 9.24 | 8.84 | $8.07 \pm 0.02$ | $7.89 \pm 0.02$ | $7.82 \pm 0.02$ | $7.81 \pm 0.03$ | $7.84 \pm 0.02$ | $7.79 \pm 0.02$ | $7.71 \pm 0.18$ |
| HIP 15341 | A3 | 7.91 | 7.63 | $7.07 \pm 0.02$ | $6.98 \pm 0.03$ | $6.89 \pm 0.01$ | $6.90 \pm 0.06$ | $6.89 \pm 0.02$ | $6.92 \pm 0.02$ | $6.78 \pm 0.09$ |
| TYC 1256-516-1 | F5 | 9.87 | 9.39 | $8.40 \pm 0.02$ | $8.23 \pm 0.03$ | $8.15 \pm 0.02$ | $8.10 \pm 0.02$ | $8.11 \pm 0.02$ | $8.09 \pm 0.02$ | $7.85 \pm 0.23$ |
| HIP 17325 | A2 | 8.72 | 8.4 | $7.75 \pm 0.02$ | $7.67 \pm 0.02$ | $7.65 \pm 0.02$ | $7.74 \pm 0.22$ | $7.61 \pm 0.02$ | $7.62 \pm 0.02$ | $7.81 \pm 0.19$ |
| HIP 17607 | $\ldots$ | 12.84 | 11.64 | $9.99 \pm 0.02$ | $9.61 \pm 0.02$ | $9.52 \pm 0.02$ | $9.47 \pm 0.02$ | $9.50 \pm 0.02$ | $9.46 \pm 0.05$ | $8.56 \pm \cdots$ |
| TYC 1260-671-1 | F0 | 8.79 | 8.41 | $7.56 \pm 0.03$ | $7.40 \pm 0.02$ | $7.32 \pm 0.02$ | $7.26 \pm 0.04$ | $7.30 \pm 0.02$ | $7.31 \pm 0.02$ | $7.25 \pm 0.12$ |
| HIP 17921 | B8III | 6.05 | 6.07 | $5.97 \pm 0.02$ | $6.05 \pm 0.06$ | $5.98 \pm 0.02$ | $6.06 \pm 0.09$ | $5.99 \pm 0.04$ | $6.11 \pm 0.01$ | $5.70 \pm 0.04$ |
| HIP 17892 | B9 | 7.04 | 7 | $6.85 \pm 0.02$ | $6.92 \pm 0.02$ | $6.88 \pm 0.02$ | $6.89 \pm 0.06$ | $6.92 \pm 0.02$ | $6.95 \pm 0.02$ | $6.80 \pm 0.08$ |
| TYC 1800-118-1 | A0 | 7.9 | 7.73 | $7.31 \pm 0.03$ | $7.27 \pm 0.03$ | $7.24 \pm 0.02$ | $7.21 \pm 0.05$ | $7.24 \pm 0.02$ | $7.29 \pm 0.02$ | $6.92 \pm 0.10$ |
| TYC 1800-669-1 | .. | 12.24 | 11.24 | $9.86 \pm 0.02$ | $9.51 \pm 0.03$ | $9.39 \pm 0.02$ | $9.35 \pm 0.02$ | $9.39 \pm 0.02$ | $9.31 \pm 0.04$ | $8.25 \pm \cdots$ |

Note. This subtable is a preview of the entire sample, which will be available as a machine-readable table. Above we show the Tycho or Hipparcos name along with corresponding photometry from Tycho, 2MASS, and WISE as well as the SpT compiled from Skiff (2014). Upper limits on photometry are shown as $\pm-$.
(This table is available in its entirety in machine-readable form.)
are also the targeting ground for directly imaged exoplanets. Associations such as Tucana Horologium, TW Hya, and the AB Doradus moving group contain isolated objects that range in mass from a few solar masses down to a few Jupiter masses (Gagné et al. 2017; J. K. Faherty 2018, in preparation) as well as stars with planetary-mass companions. Observations of these associations enable investigations of the mass function, kinematics, and spatial distribution across the full range of objects generated through star formation processes in different isolated groups at young ( $1-2 \mathrm{Myr}$ ), medium ( $30-50 \mathrm{Myr}$ ), and older ( $100-700 \mathrm{Myr}$ ) ages.

Given the expectation of a dramatic increase in high precision astrometry for stars in the Galaxy with Gaia, the DR2 catalog will reorganize our understanding of structures in the local Galactic neighborhood (e.g., Kushniruk et al. 2017). In this work, we examine the recent catalog of comoving stars produced by Oh et al. (2017) in search of new higher order structures in the Milky Way. In Section 2, we discuss the sample at large and, in Section 3, we detail all the data we collected on individual sources. In Section 4, we describe in detail our reorganization of the original catalog into known and new structures in the Galaxy using (primarily) the kinematic analysis tool called BANYAN $\Sigma$. In Section 5, we focus on five new associations that appear to be newly identified and, in Section 6, we review the age, mass, and metallicity parameters for each of them calculated using isochronal fitting. Conclusions are presented in Section 7.

## 2. The Sample

In 2016 September, the European Space Agency (ESA) made public the first data release catalog (DR1), including a subset dubbed the Tycho Gaia Astrometric Survey (TGAS; Lindegren et al. 2016). The latter contains parallaxes and proper motions for $2,057,050$ stars with astrometry grounded
by positions in the Tycho-2 catalog (Høg et al. 2000). While there are numerous comoving stars uncovered with the original Hipparcos and Tycho catalogs (e.g., Lépine \& Bongiorno 2007; Faherty et al. 2010; Shaya \& Olling 2011), the precision and photometric reach of Gaia lends itself to searches for wider and more distant pairs than has been previously possible. Indeed since the release of TGAS, several papers have conducted new analyses for wide comoving pairs (Andrews et al. 2017, 2018; Oelkers et al. 2017; Oh et al. 2017) that have pushed both the distance (separations $\gg 1 \mathrm{pc}$ ) and magnitude of proper motion for the discovered system.
In this paper, we use the work of Oh et al. (2017) as our input sample. Oh et al. (2017) restricted the TGAS sample to those stars with parallax signal-to-noise values $\geqslant 8$ (totaling 619,618 ) and searched within a 10 pc radius of each for a comoving companion. Using both parallax and proper motion values of this precise subsample of TGAS stars, Oh et al. (2017) implemented a marginalized likelihood ratio test to discriminate candidate comoving pairs from the field population. Unlike the standard method for identifying comovers with a proper motion cut (e.g., recent work by Oelkers et al. 2017 that uncovered $\sim 1900$ pairs in TGAS), the Oh et al. (2017) technique marginalized over the (unknown) true distances and velocities of the stars utilizing a probabilistic model for the assumptions on the 3D velocities of the two stars in a pair.

The outcome of the Oh et al. (2017) work is by no means a complete overview of wide, Gaia comovers. Indeed, between the Oelkers et al. (2017), Andrews et al. (2017), and Oh et al. (2017) wide companion catalogs from TGAS astrometry, there is overlap but also unique collections in each. Interesting for this work, Oh et al. (2017) uncovered 10,606 unique stars found to be comoving with at least one but up to 151 others in TGAS (referred to as Oh17 sample from here-in). In the process and perhaps quite serendipitously for the project,

Table 3
Oh17 with Photometry（continued）

| Name （TGAS） （1） | SpT （2） | $\begin{aligned} & \text { NUV } \\ & (\text { GALEX }) \\ & (3) \\ & \hline \end{aligned}$ | $\begin{gathered} \text { FUV } \\ (G A L E X) \end{gathered}$ <br> （4） | Name （ROSAT Bright） （5） | $\begin{gathered} \log \left(L_{x}\right) \\ (R O S A T) \end{gathered}$ <br> （6） | $\begin{gathered} \text { Name } \\ \text { (ROSAT Faint) } \\ \text { (7) } \end{gathered}$ | $\log \left(L_{x}\right)$ <br> （ROSAT） <br> （8） | Grp <br> （9） | BANYAN <br> （10） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYC 1253－388－1 | $\ldots$ | $17.86 \pm 0.04$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0 | FIELD 7.3 |
| TYC 1804－1924－1 | F4V | $13.48 \pm 0.01$ | ．．． | ．．． | $\ldots$ | ．．． | ．．． | 0 | PLE 98.7 |
| HIP 18091 | ．．． | $15.48 \pm 0.01$ | $\cdots$ | ．．． | ．．． | $\ldots$ | $\ldots$ | 0 | FIELD 36.6 |
| HIP 18544 | F8 | $13.69 \pm 0.01$ | $18.75 \pm 0.10$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | 0 | PLE 56.9 |
| TYC 1261－1630－1 | $\ldots$ | $18.22 \pm 0.03$ | $21.79 \pm 0.48$ | $\ldots$ | $\ldots$ | $035328.8+20544$ | $29.94 \pm 0.38$ | 0 | PLE 98.7 |
| TYC 1261－1415－1 | $\cdots$ | $17.18 \pm 0.03$ | $\cdots$ | $\ldots$ | $\ldots$ | $035531.7+21044$ | $29.59 \pm 0.50$ | 0 | PLE 79.1 |
| TYC 1261－24－1 | $\ldots$ | $17.70 \pm 0.03$ | $\ldots$ | $\ldots$ | $\ldots$ | ．．． | ．．． | 0 | PLE 95.2 |
| HIP 18266 | $\ldots$ | $16.72 \pm 0.03$ | $\ldots$ | ．．． | $\ldots$ | ．．． | $\cdots$ | 0 | PLE 98.6 |
| HIP 19367 | F8 | $14.01 \pm 0.00$ | $18.87 \pm 0.07$ | $\ldots$ | $\ldots$ | $040857.0+20232$ | $29.82 \pm 0.40$ | 0 | FIELD 0.3 |
| HIP 18955 | F5 | $14.32 \pm 0.01$ | $20.02 \pm 0.17$ | $\ldots$ | $\ldots$ | ． | ．．． | 0 | PLE 75.2 |
| HIP 16423 | F2 | $\ldots$ | $17.64 \pm 0.08$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0 | PLE 85.6 |
| HIP 15341 | A3 | $12.32 \pm 0.00$ | $14.51 \pm 0.01$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0 | FIELD 0.2 |
| TYC 1256－516－1 | F5 | ．．． | ．．． | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 0 | PLE 65.8 |
| HIP 17325 | A2 | $12.53 \pm 0.00$ | $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\ldots$ | 0 | PLE 94.3 |
| HIP 17607 | ．．． |  | ． |  | ．．． | $\cdots$ | $\cdots$ | 0 | PLE 99.1 |
| TYC 1260－671－1 | F0 | $12.72 \pm 0.00$ | $\cdots$ | $034839.3+21553$ | $30.03 \pm 0.26$ | $\cdots$ | $\cdots$ | 0 | PLE 96.2 |
| HIP 17921 | B8III | ．．． | $\cdots$ | ．．． | ．．． | $\cdots$ | $\cdots$ | 0 | PLE 99.8 |
| HIP 17892 | B9 | $\cdots$ | $\cdots$ | $\cdots$ | ．．． | $\cdots$ | $\cdots$ | 0 | PLE 99.8 |
| TYC 1800－118－1 | A0 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.8 |
| TYC 1800－669－1 | $\cdots$ | $\cdots$ | ．．． | $\ldots$ | $\ldots$ | ．．． | $\cdots$ | 0 | PLE 99.9 |
| HIP 17043 | A0 | $11.64 \pm 0.00$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | 0 | PLE 99.3 |
| HIP 17316 | G0 | $14.54 \pm 0.01$ | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.1 |
| TYC 1247－515－1 | F8 | $15.56 \pm 0.01$ | $\cdots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | 0 | PLE 99.8 |
| HIP 17317 | $\ldots$ | $15.25 \pm 0.01$ | $20.82 \pm 0.16$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| HIP 17511 | F5 | $13.70 \pm 0.00$ | $19.06 \pm 0.03$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.7 |
| TYC 1260－498－1 | $\ldots$ | $16.44 \pm 0.00$ | $21.84 \pm 0.28$ | $\ldots$ | $\ldots$ | $034440.7+22274$ | $29.74 \pm 0.57$ | 0 | PLE 99.4 |
| TYC 1799－1102－1 | A0 | ．．． | ．．． | $\ldots$ | $\ldots$ | ．．． | ．．． | 0 | PLE 99.9 |
| TYC 1800－1574－1 | G0 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | 0 | PLE 99.9 |
| HIP 17497 | F3V | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\ldots$ | 0 | PLE 99.9 |
| TYC 1800－1774－1 | F8 | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－2170－1 | ．．． | $\cdots$ | ．．． | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－471－1 | F8 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.7 |
| TYC 1800－496－1 | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－628－1 | A7V | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－727－1 | F3V | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－2129－1 | A8V | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | 0 | PLE 100 |
| TYC 1800－1672－1 | F5V | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| HIP 17572 | A0 | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |
| TYC 1800－1917－1 | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.2 |
| TYC 1800－2027－1 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | 0 | PLE 99.9 |

 luminosity from ROSAT bright and／or faint（with corresponding name）．We also include the Oh 17 group number and the BANYAN $\Sigma$ predicted association．
（This table is available in its entirety in machine－readable form．）

Table 4
Oh17 Sample with BANYAN $\Sigma$ Input of Known Members

| Name (1) | R.A. (2) | Decl. <br> (3) | $\begin{gathered} \mu_{\alpha} \cos (\delta) \\ \left(\mathrm{mas}^{-1}\right) \end{gathered}$ <br> (4) | $\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas}^{-1}\right) \\ (5) \end{gathered}$ | $\begin{gathered} \pi \\ \text { (mas) } \\ (6) \end{gathered}$ | $\begin{gathered} \mathrm{v}_{\mathrm{rad}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ <br> (7) | Group-BANYAN <br> (8) | Prob <br> (9) | Group-Oh <br> (10) | Known <br> (11) | Known <br> (12) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYC2899-1744-1 | 76.17226 | 40.39956 | $12.147 \pm 2.195$ | $-111.141 \pm 1.942$ | $16.238 \pm 0.262$ | ... | ABDMG | 92.6 | 1036 | No | No |
| HIP23399 | 75.43895 | 42.34373 | $17.984 \pm 0.076$ | $-123.319 \pm 0.052$ | $17.337 \pm 0.285$ | $\ldots$ | ABDMG | 94.1 | 1036 | No | No |
| HIP17405 | 55.93921 | 16.66598 | $156.198 \pm 0.146$ | $-310.030 \pm 0.092$ | $58.125 \pm 0.363$ | $\ldots$ | ABDMG | 98.4 | 1237 | No | No |
| HIP17414 | 55.9697 | 16.67071 | $157.960 \pm 0.181$ | $-316.306 \pm 0.112$ | $58.046 \pm 0.235$ | $\ldots$ | ABDMG | 99.5 | 1237 | No | No |
| HIP41181 | 126.05475 | 44.94519 | $-60.136 \pm 0.393$ | $-176.593 \pm 0.270$ | $27.097 \pm 0.245$ | $\ldots$ | ABDMG | 96.7 | 1456 | No | No |
| HIP41184 | 126.06486 | 44.94897 | $-63.222 \pm 0.103$ | $-177.913 \pm 0.064$ | $27.102 \pm 0.244$ | $\ldots$ | ABDMG | 97.1 | 1456 | No | No |
| HIP29964 | 94.61743 | -72.04454 | $-7.670 \pm 0.122$ | $74.367 \pm 0.137$ | $25.612 \pm 0.220$ | $\ldots$ | ABDMG(56);BPMG(44) | 99.6 | 1806 | BF | BPMG |
| TYC9162-379-1 | 79.22423 | -68.35218 | $14.406 \pm 1.465$ | $58.566 \pm 1.503$ | $22.114 \pm 0.455$ | $\ldots$ | ABDMG(75);BPMG(25) | 97.1 | 1806 | No | No |
| HIP14809 | 47.80793 | 22.41534 | $55.656 \pm 0.110$ | $-125.193 \pm 0.090$ | $19.711 \pm 0.240$ | $\ldots$ | ABDMG | 93.3 | 2048 | BF | ABDMG |
| TYC1807-46-1 | 56.49168 | 27.55932 | $43.262 \pm 1.190$ | $-118.850 \pm 0.468$ | $18.245 \pm 0.275$ | $\ldots$ | ABDMG | 96.6 | 2048 | No | No |
| HIP2981 | 9.48814 | 47.40737 | $110.257 \pm 0.039$ | $-82.865 \pm 0.028$ | $22.101 \pm 0.311$ | $\cdots$ | ABDMG | 88.3 | 2201 | No | No |
| HIP3589 | 11.46274 | 54.97752 | $96.401 \pm 0.030$ | $-73.969 \pm 0.042$ | $19.878 \pm 0.340$ | $\cdots$ | ABDMG | 88.1 | 2201 | BF | ABDMG |
| HIP118008 | 359.04558 | -39.05311 | $206.231 \pm 0.056$ | $-185.819 \pm 0.064$ | $45.471 \pm 0.228$ | $\ldots$ | ABDMG | 99.8 | 2240 | BF | ABDMG |
| HIP79578 | 243.54936 | -31.66473 | $-75.560 \pm 0.035$ | $-256.211 \pm 0.027$ | $41.194 \pm 0.476$ | $\ldots$ | ABDMG | 98.8 | 2371 | No | No |
| TYC4718-894-1 | $58.8352$ | -1.7296 | $42.085 \pm 0.903$ | $-91.433 \pm 0.588$ | $18.102 \pm 0.250$ | $\cdots$ | ABDMG | 97.6 | 2727 | No | No |
| HIP19183 | $61.67321$ | 1.68352 | $36.571 \pm 0.063$ | $-94.590 \pm 0.037$ | $17.547 \pm 0.336$ | $\ldots$ | ABDMG | 95.9 | 2727 | BF | ABDMG |
| HIP31878 | 99.9582 | -61.47789 | $-26.981 \pm 0.104$ | $74.960 \pm 0.093$ | $45.328 \pm 0.236$ | $\ldots$ | ABDMG(75); $\mathrm{BPMG}(25)$ | 99.8 | 2841 | BF | ABDMG |
| HIP30314 | 95.62882 | -60.21838 | $-11.418 \pm 0.027$ | $64.559 \pm 0.028$ | $41.973 \pm 0.276$ | $\ldots$ | ABDMG(83); ${ }^{\text {PPMG(17) }}$ | 99.8 | 2841 | BF | ABDMG |
| TYC5899-26-1 | 73.10226 | -16.82363 | $123.265 \pm 1.133$ | $-212.593 \pm 1.008$ | $63.400 \pm 0.366$ | ... | ABDMG | 99.6 | 2849 | BF | ABDMG |
| HIP17695 | 56.84801 | -1.97335 | $180.433 \pm 0.170$ | $-274.096 \pm 0.127$ | $59.266 \pm 0.332$ | $\ldots$ | ABDMG | 99.7 | 2849 | BF | ABDMG |
| HIP19422 | 62.39687 | 69.54015 | $73.004 \pm 0.037$ | $-298.653 \pm 0.055$ | $53.358 \pm 0.242$ | $\ldots$ | ABDMG | 93.3 | 3017 | No | No |
| HIP40910 | 125.23018 | 14.07024 | $-83.698 \pm 0.137$ | $-261.809 \pm 0.080$ | $44.351 \pm 0.274$ | $\ldots$ | ABDMG | 98.5 | 3493 | No | No |
| HIP44295 | 135.32228 | 15.26443 | $-125.739 \pm 0.122$ | $-320.354 \pm 0.082$ | $54.658 \pm 0.306$ | $\cdots$ | ABDMG | 94.7 | 3493 | No | No |




 However, we note that we did not perform a detailed literature search as to whether some of these sources were investigated by others; therefore, further vetting is required for each source.
(This table is available in its entirety in machine-readable form.)

Table 5
BANYAN $\Sigma$ Summary of Oh17

| BANYAN Name (1) | Total <br> (2) | $\begin{gathered} \text { \# BF } \\ \hline(3) \end{gathered}$ | $\underset{(4)}{\# \text { CM }}$ | $\underset{(5)}{\# \text { HM }}$ | $\begin{gathered} \text { \# LM } \\ \hline(6) \end{gathered}$ | $\underset{(7)}{\# R M}$ | $\begin{gathered} \text { \# AM } \\ (8) \end{gathered}$ | $\begin{gathered} \text { \# NO (NEW?) } \\ (9) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 118 TAU | $\ldots$ | ... | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| ABDMG | 24 | 8 | 1 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 15 |
| BPMG | 6 | 3 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 3 |
| CAR | 0 | $\ldots$ |
| CARN | 9 | 5 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 4 |
| CBER | 45 | 33 | 2 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 10 |
| COL | 18 | 4 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 14 |
| CRA | 1 | $\ldots$ | $\ldots$ | 1 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| EPSC | 10 | 5 | 2 | 1 | $\ldots$ | $\ldots$ | 1 | 1 |
| ETAC | 2 | 1 | $\ldots$ | 1 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| HYA | 110 | 88 | 14 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 8 |
| IC2391 | 28 | 18 | $\ldots$ | 8 | $\ldots$ | $\ldots$ | $\ldots$ | 2 |
| IC2602 | 31 | 11 | 1 | ... | 11 | $\ldots$ | 1 | 7 |
| LCC | 156 | 37 | 9 | 41 | $\ldots$ | $\ldots$ | 1 | 68 |
| OCT | 34 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 34 |
| PL8 | 22 | $\ldots$ | $\ldots$ | 5 | $\ldots$ | $\ldots$ | $\ldots$ | 17 |
| PLE | 136 | 117 | 6 | $\ldots$ | $\ldots$ | 1 | $\ldots$ | 12 |
| ROPH | ... | $\cdots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| TAU | 33 | 9 | $\ldots$ | 2 | $\ldots$ | $\ldots$ | $\ldots$ | 22 |
| THA | 29 | 24 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | ... | 5 |
| THOR | 5 | 2 | 2 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1 |
| TWA | 3 | ... | ... | $\ldots$ | $\ldots$ | $\ldots$ | ... | 3 |
| UCL | 194 | 27 | 8 | 41 | $\ldots$ | $\ldots$ | 2 | 116 |
| UCRA | 2 | $\ldots$ | $\ldots$ | ... | $\ldots$ | $\ldots$ | $\ldots$ | 2 |
| UMA | 1 | $\ldots$ | 1 | ... | $\ldots$ | $\ldots$ | $\ldots$ | ... |
| USCO | 107 | 23 | 4 | 24 | $\ldots$ | $\ldots$ | $\ldots$ | 56 |
| XFOR | 9 | 3 | ... | 6 | $\ldots$ | $\ldots$ | ... | ... |

Note. The number of Oh17 objects for each BANYAN selected group that are either bonafide members (BF), candidate members (CM), high likely members (HM), low likely members (LM), ambiguous members (AM), rejected members (RM), not in BANYAN $\Sigma(N O)$. The full names of BANYAN $\Sigma$ groups are 118 Tau (118TAU), AB Doradus (ABDMG), $\beta$ Pictoris (BPMG), Carina (CAR), Carina-Near (CARN), Coma Berenices (CBER), Columba (COL), Corona Australis (CRA), $\epsilon$ Chamaeleontis (EPSC), $\eta$ Chamaeleontis (ETAC), the Hyades cluster (HYA), Lower Centaurus Crux (LCC), Octans (OCT), Platais 8 (PL8), the Pleiades cluster (PLE), $\rho$ Ophiucus (ROPH), the Tucana-Horologium association (THA), 32 Orionis (THOR), TW Hya (TWA), Upper Centaurus Lupus (UCL), Upper CrA (UCRA), the core of the Ursa Major cluster (UMA), Upper Scorpius (USCO), Taurus (TAU), and $\chi$ For (XFOR).

Oh et al. (2017) uncovered parts of many known moving groups, open clusters, associations and star-forming regions.

The 10,606 unique stars are organized into 4555 groups. Those are further broken down into 27 groups that have $\geqslant 10$ connected components-objects who passed the Oh17 kinematic association criterion- 35 groups that have between 5 and 10 connected components, 39 groups that have four connected components, 218 that have three connected components, and 4,236 that have two connected components.

As noted in Oh et al. (2017), radial velocities are required for each star to further verify that comovers are not simply chance alignments, a prospect that becomes far more likely because the pairs have separations $>1$ pc (see Price-Whelan et al. 2017).

## 3. Data on the Sample

In order to examine the groups as a whole in the Oh17 sample, we supplemented the Gaia data for each unique star with catalog photometry and spectral information. Using the Tool for OPerations on Catalogs And Tables (TOPCAT; Taylor 2005), we cross-matched with the Two micron All Sky catalog (2MASS; Skrutskie et al. 2006), the Wide Field Infrared Survey Explorer Mission (WISE; Wright et al. 2010), the Galaxy Evolution Explorer (GALEX; Martin et al. 2005), and the Rontgen Satellite (ROSAT; Voges et al. 2000, 1999)—both bright and faint source catalogs. For 2MASS and WISE, we
used a $1^{\prime \prime}$ radius to match to ALLWISE, which automatically had a cross-match with 2MASS at the $3^{\prime \prime}$ level. For GALEX, we used $5^{\prime \prime}$ and ROSAT we used $30^{\prime \prime}$ given their larger pixel sizes and greater positional uncertainties. We also used TOPCAT to cross-match all 10,606 unique stars with the Catalog of Stellar Spectral Classifications compiled by Skiff (2014). We list the recovered 2MASS $J H K_{s}$, WISE $W 1 W 2 W 3 W 4$, GALEX FUV and NUV photometry, ROSAT X-ray flux values as well as Skiff (2014) spectral type in Tables $1-3$. We used the photometry in combination with the Gaia parallaxes in order to investigate color-magnitude diagrams and search for ageinformative diagnostics in Section 5 below.

## 4. The Oh17 Sample Reorganized

As the Oh17 sample is organized into groups with only a few known collections of stars explicitly described, in this section, we reorganize the comovers into their known associations, label them as new candidate members of groups, or recommend a collection of stars as an entirely new pair or comoving association. A detailed literature search of new comoving pairs would normally be warranted to execute this task, however, it is time consuming to sift through the numerous references to Tycho and Hipparcos stars (although, see Gagné \& Faherty 2018 for an analysis of new members across all of TGAS). To expedite the reorganization into known associations, we

Table 6
BANYAN Groups Matched to Oh17

| BANYAN Name <br> (1) | \# Oh17 Groups <br> (2) | Oh17 Group Number <br> (3) | $\begin{gathered} \# \text { in BANYAN } \\ \text { (4) } \end{gathered}$ | \# in Oh17 Groups <br> (5) | $\begin{gathered} \text { Age (Myr) } \\ \text { (6) } \end{gathered}$ | Age References <br> (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 118 TAU | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\sim 10$ | 14 |
| ABDMG | 14 | $\begin{gathered} 1036,1237,1456,1806,2048, \\ 2201,2240,2371,2727,2841, \\ 2849,3017,3493,3709 \end{gathered}$ | 24 | 28 | $149_{-19}^{+51}$ | 1 |
| BPMG | 3 | 241, 2230, 3062 | 6 | 7 | $24 \pm 3$ | 1 |
| CAR | $\ldots$ | $\ldots$ | $\cdots$ | $\cdots$ | $45_{-7}^{+11}$ | 1 |
| CARN | 5 | 215, 272, 2347, 2785, 3746 | 9 | 12 | $\sim 200$ | 2 |
| CBER | 1 | 7 | 45 | 47 | $562_{-84}^{+98}$ | 3 |
| COL | 7 | $\begin{gathered} 355,93,241,690,1460, \\ 2495,4103 \end{gathered}$ | 18 | 23 | $42_{-4}^{+6}$ | 1 |
| CRA | 1 | 3261 | 1 | 2 | 4-5 | 16 |
| EPSC | 1 | 3 | 10 | 114 | $3.7{ }_{-1.4}^{+4.6}$ | 4 |
| ETAC | 1 | 2071 | 2 | 2 | $11 \pm 3$ | 1 |
| HYA | 3 | 2, 261, 3208 | 110 | 123 | $750 \pm 100$ | 5 |
| IC2391 | 2 | 9,2520 | 28 | 38 | $50 \pm 5$ | 18 |
| IC2602 | 1 | 5 | 31 | 59 | $46_{-5}^{+6}$ | 6 |
| LCC | 21 | $\begin{gathered} 3,13,40,45,48 \\ 75,77,100,183,239 \\ 255,266,937,1340,2035 \\ 2091,2162,2206,2283,2288 \\ 4032 \end{gathered}$ | 156 | 197 | $15 \pm 3$ | 7 |
| OCT | 14 | $\begin{gathered} 31,37,143,670,2351, \\ 2974,3508,3521,3562,3730, \\ 3994,3995,4187,4289,4340 \end{gathered}$ | 34 | 38 | $35 \pm 5$ | 8 |
| PL8 | 4 | 12, 269, 574, 4289 | 22 | 30 | $\sim 60$ | 9 |
| PLE | 1 | 0 | 136 | 151 | $112 \pm 5$ | 10 |
| ROPH | $\ldots$ | $\ldots$ | . | $\ldots$ | $<2$ | 13 |
| TAU | 9 | $\begin{aligned} & 28,29,286,300,1348 \\ & 3774,3824,3856,3870 \end{aligned}$ | 33 | 34 | 1-2 | 15 |
| THA | 6 | $\begin{gathered} 15,221,303,673 \\ 951,1022 \end{gathered}$ | 29 | 35 | $45 \pm 4$ | 1 |
| THOR | 1 | 44 | 5 | 6 | $22_{-3}^{+4}$ | 1 |
| TWA | 2 | 172, 3001 | 3 | 5 | $10 \pm 3$ | 1 |
| UCL | 38 | $\begin{gathered} 8,11,13,18,24, \\ 25,33,40,45,46 \\ 54,92,94,99,114 \\ 239,299,304,308,408 \\ 668,672,1443,2239,2668 \\ 2828,3019,3155,3238,3245, \\ 3362,3908,4027,4132,4218, \\ 4300,4404,4490 \end{gathered}$ | 194 | 215 | $16 \pm 2$ | 7 |
| UCRA | 2 | 1308, 3261 | 2 | 4 | 10 | 17 |
| UMA | 1 | 1058 | 1 | 2 | $414 \pm 23$ | 11 |
| USCO | 11 | $\begin{gathered} 4,25,27,69,113 \\ 114,131,155,447 \\ 831,1242 \end{gathered}$ | 107 | 115 | $10 \pm 3$ | 7 |

Table 6
(Continued)

| BANYAN Name <br> (1) | \# Oh17 Groups <br> (2) | Oh17 Group Number <br> (3) | \# in BANYAN <br> (4) | \# in Oh17 Groups <br> (5) | $\begin{gathered} \text { Age (Myr) } \\ (6) \end{gathered}$ | Age References <br> (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XFOR | 1 | 19 | 9 | 13 | $\sim 500$ | 12 |
| NON-BANYAN |  |  |  |  |  |  |
| Alpha Perseus | $\cdots$ | 1 | $\cdots$ | 125 |  |  |
| RSG $2^{\text {a }}$ | $\ldots$ | 16 | $\ldots$ | 18 |  |  |
| Blancol | $\ldots$ | 17 | $\ldots$ | 16 |  |  |
| Praesepe | $\ldots$ | 6, 4141 | $\ldots$ | 60 |  |  |
| NGC2451A | $\ldots$ | 21, 233, 236 | $\cdots$ | 18 |  |  |
| Platais 9 | $\ldots$ | 22 | $\ldots$ | 18 |  |  |
| NGC2516 | $\ldots$ | 3967 | $\ldots$ | 2 |  |  |
| NGC3532 | $\ldots$ | 3116 | $\ldots$ | 2 |  |  |
| NGC6475 | $\ldots$ | 57, 2870, 2891, 2983 | $\ldots$ | 11 |  |  |
| NGC6633 | $\cdots$ | 1335 | $\ldots$ | 2 |  |  |
| NGC7092 | $\cdots$ | 3101 | $\cdots$ | 2 |  |  |

Notes. All 21 of the BANYAN $\Sigma$ tested groups compared to the Oh17 catalog group numbers. Non-BANYAN tested groups are also listed with corresponding Oh17 group numbers. The full names of BANYAN $\Sigma$ groups are 118 Tau (118TAU), AB Doradus (ABDMG), $\beta$ Pictoris (BPMG), Carina (CAR), Carina-Near (CARN), Coma Berenices (CBER), Columba (COL), Corona Australis (CRA), $\epsilon$ Chamaeleontis (EPSC), $\eta$ Chamaeleontis (ETAC), the Hyades cluster (HYA), Lower Centaurus Crux (LCC), Octans (OCT), Platais 8 (PL8), the Pleiades cluster (PLE), $\rho$ Ophiucus (ROPH), the Tucana-Horologium association (THA), 32 Orionis (THOR), TW Hya (TWA), Upper Centaurus Lupus (UCL), Upper CrA (UCRA), the core of the Ursa Major cluster (UMA), Upper Scorpius (USCO), Taurus (TAU), and $\chi$ For (XFOR).
${ }^{\text {a }}$ A new open cluster discovered recently by Röser et al. (2016).
References: (1) Bell et al. (2015); (2) Zuckerman et al. (2006); (3) Silaj \& Landstreet (2014); (4) Murphy et al. (2013); (5) Brandt \& Huang (2015b); (6) Dobbie et al. (2010); (7) Pecaut \& Mamajek (2016); (8)Murphy \& Lawson (2015); (9) Platais et al. (1998); (10) Dahm (2015); (11) Jones et al. (2015); (12) Pöhnl \& Paunzen (2010); (13) Wilking et al. (2008); (14) Mamajek (2016); (15) Kenyon \& Hartmann (1995); (16) Gennaro et al. (2012); (17) Gagné et al. (2018a); (18) Barrado y Navascués et al. (2004).

## Hyades



Lower Centaurus Crux


Figure 1. Pie chart distribution of Oh17 designated groups with $>80 \%$ membership in a BANYAN $\Sigma$ tested association. The percentages are based on the total number of objects that BANYAN found to be members and the contribution by an individually marked Oh17 group (labeled above the percentage). On the left, we show the distribution of BANYAN $\Sigma$ predicted Hyades members and on the right are Lower Centaurus Crux members. Each Oh17 group has been color coded in the pie chart. We label the group number with percentage of the total at each pie slice.


Figure 2. See the caption of Figure 1. On the left, we show the distribution of BANYAN $\Sigma$ predicted Tucana Horologium members and on the right are Upper Scorpius members.


## AB Doradus



Figure 3. See the caption of Figure 1. On the left, we show the distribution of BANYAN $\Sigma$ predicted Upper Centaurus Lupus members and on right are AB Doradus members.


Figure 4. $(G-J)$ vs. $M_{G}$ color-magnitude diagram for TGAS (black) and all BANYAN $\Sigma>80 \%$ membership probability of the Upper Centaurus Lupus association (UCL). We highlight in different colored circles the five largest Oh17 groups that were found to be comoving members of UCL.
utilized a kinematic tool called BANYAN $\Sigma$ (Gagné et al. 2018a). This tool uses a compiled list of bonafide members (see Gagné et al. 2018a for details on the bonafide definition) of 27 different associations within 150 pc of the Sun to determine the probability of a given star on the sky also being associated.

### 4.1. Oh17 sample in BANYAN

To begin sorting which group corresponded to which known association of stars, we first applied the BANYAN $\Sigma$ kinematic code (Gagné et al. 2018a) to each of the 10,606 unique stars to ascertain the Bayesian probability that it belonged (new or known) to one of 27 comoving collections. We chose a moderate membership probability threshold of $>80 \%$ Bayesian likelihood for membership in a known group. This number is arbitrary and moderately conservative (e.g., Gagné \& Faherty 2018 used $>90 \%$ for their threshold) but given that these sources already have at least one connected component, we think it is justified. Table 4 shows that 1015 unique stars passed the probability criterion for 1 of the 27 collections tested by BANYAN. Table 4 gives the probability that an object was a member of a BANYAN tested association (column 10) but it also gives a breakdown of likelihood if it had a chance of being in more than one group (column 9).

Table 7
Oh17 Group with Conflicting BANYAN Prediction

| Oh17 Group \# | BANYAN Group |
| :--- | :---: |
| $(1)$ | (2) |
| 3 | EPSC, LCC |
| 13 | UCL, LCC |
| 25 | UCL, USCO |
| 40 | LCC, UCL |
| 45 | UCL, LCC |
| 114 | USCO, UCL |
| 239 | LCC, UCL |
| 241 | BPMG, COL |
| 3261 | CRA, UCRA |

Note. A list of the Oh17 groups that had members with $>80 \%$ probability in more than 1 BANYAN $\Sigma$ tested group.

A few things of note came from the BANYAN results. Given the $80 \%$ group membership probability that we employed to investigate the Oh17 comoving stars, there were times when one object in a comoving pair was found to be a part of a known group, while its designated partner was not. For instance, in the AB Doradus moving group, there were 24 individual stars identified by BANYAN to have a $>80 \%$ probability of membership. However, there were four doubleconnected components in Oh17 where only one of the two stars was recovered as a AB Doradus member (e.g., Oh17 group 2240, which contains a bonafide member). This occurred across all of the 27 BANYAN groups. Given that the Oh et al. (2017) method requires matching kinematics for the pairs to emerge, we postulate that the majority of these broken up groups is due to the second component having a probability that simply did not exceed our $80 \%$ threshold. Further investigation may prove that its connected partner(s) is also a candidate member, but with a lower likelihood. All known information and BANYAN results are reported in Table 4.

### 4.2. Known Associations from BANYAN

Using the $>80 \%$ probability threshold, members of each of the 27 BANYAN $\Sigma$ tested groups were identified. It is important to note that the Oh et al. (2017) method was not designed to identify these large kinematic associations; therefore, it is not expected that it would or should recover all known members possible from Tycho and Hipparcos in a given association (see Gagné et al. 2018b). As such, we emphasize that the Oh17 sample is not a complete look at

Table 8
Potentially New Associations from Oh17 with $>10$ Connected Components

| Name (1) | R.A. (2) | Decl. (3) | SpT (4) | $\mu_{\alpha}$ $\left(\right.$ mas $\left.^{-1}\right)$ <br> (5) | $\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas}^{-1}\right) \end{gathered}$ |  | Group (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HIP69721 | 214.07256 | 58.38940 | F5 | $-16.254 \pm 0.039$ | $-2.903 \pm 0.049$ | $9.341 \pm 0.293$ | 10 |
| HIP67005 | 205.97812 | 52.06439 | A1V | $-18.270 \pm 0.018$ | $-5.605 \pm 0.021$ | $10.737 \pm 0.325$ | 10 |
| TYC3851-600-1 | 207.11420 | 54.04270 | $\ldots$ | $-18.288 \pm 0.297$ | $-3.934 \pm 0.783$ | $10.709 \pm 0.255$ | 10 |
| HIP67231 | 206.64844 | 54.43266 | A2P | $-18.533 \pm 0.018$ | $-4.750 \pm 0.021$ | $10.333 \pm 0.503$ | 10 |
| TYC3851-336-1 | 205.40212 | 53.33751 | G0 | $-18.006 \pm 0.617$ | $-3.350 \pm 0.743$ | $10.040 \pm 0.261$ | 10 |
| TYC3851-369-1 | 205.78236 | 54.02590 | G5 | $-19.004 \pm 0.298$ | $-2.867 \pm 0.663$ | $10.431 \pm 0.297$ | 10 |
| HIP66198 | 203.53030 | 55.34841 | $\ldots$ | $-19.079 \pm 0.022$ | $-6.070 \pm 0.023$ | $10.704 \pm 0.570$ | 10 |
| TYC3850-257-1 | 201.21590 | 54.89743 | A5 | $-19.011 \pm 0.347$ | $-6.271 \pm 0.396$ | $11.125 \pm 0.264$ | 10 |
| HIP63702 | 195.81947 | 57.31521 | F8 | $-17.103 \pm 0.063$ | $-8.196 \pm 0.070$ | $10.246 \pm 0.261$ | 10 |
| TYC3480-1209-1 | 223.27004 | 51.26115 | K2 | $-14.193 \pm 0.392$ | $-0.685 \pm 0.682$ | $9.772 \pm 0.238$ | 10 |
| TYC3868-177-1 | 230.81618 | 54.84823 | ... | $-13.792 \pm 0.398$ | $-1.234 \pm 0.845$ | $8.986 \pm 0.262$ | 10 |
| HIP74458 | 228.24117 | 56.04643 | A2 | $-13.157 \pm 0.041$ | $-1.189 \pm 0.039$ | $8.672 \pm 0.300$ | 10 |
| TYC3861-1374-1 | 222.52355 | 53.63483 | $\ldots$ | $-14.564 \pm 0.914$ | $-1.915 \pm 0.748$ | $9.633 \pm 0.295$ | 10 |
| TYC3860-1483-1 | 219.85980 | 54.77406 | $\ldots$ | $-17.561 \pm 0.458$ | $-2.798 \pm 0.653$ | $10.964 \pm 0.261$ | 10 |
| HIP72389 | 222.01173 | 56.15920 | G5 | $-15.865 \pm 0.117$ | $-1.522 \pm 0.123$ | $10.266 \pm 0.221$ | 10 |
| HIP69917 | 214.62966 | 52.03331 | A2 | $-17.194 \pm 0.026$ | $-3.122 \pm 0.030$ | $10.059 \pm 0.271$ | 10 |
| HIP69650 | 213.82070 | 52.53591 | A4V | $-17.603 \pm 0.022$ | $-3.474 \pm 0.027$ | $10.402 \pm 0.280$ | 10 |
| HIP69958 | 214.73284 | 54.86376 | A5Vn | $-16.565 \pm 0.029$ | $-2.063 \pm 0.029$ | $9.790 \pm 0.681$ | 10 |
| TYC3865-934-1 | 216.29629 | 57.63321 | G0 | $-15.381 \pm 0.367$ | $-2.485 \pm 0.645$ | $9.571 \pm 0.284$ | 10 |
| HIP73730 | 226.07328 | 59.53505 | A2 | $-13.661 \pm 0.027$ | $-0.164 \pm 0.029$ | $9.000 \pm 0.275$ | 10 |
| TYC3875-762-1 | 231.92341 | 59.98704 | $\ldots$ | $-13.297 \pm 0.289$ | $0.094 \pm 1.020$ | $8.928 \pm 0.281$ | 10 |
| TYC3867-281-1 | 226.10718 | 59.88078 | K2 | $-13.399 \pm 0.353$ | $-0.068 \pm 1.138$ | $9.351 \pm 0.280$ | 10 |
| HIP71911 | 220.63149 | 60.23096 | F0 | $-16.235 \pm 0.065$ | $-3.840 \pm 0.066$ | $9.428 \pm 0.219$ | 10 |
| TYC3867-1373-1 | 222.87595 | 59.53208 | $\ldots$ | $-15.362 \pm 0.456$ | $-1.742 \pm 1.371$ | $9.638 \pm 0.392$ | 10 |
| TYC4173-609-1 | 219.82002 | 61.93126 | $\ldots$ | $-17.035 \pm 0.363$ | $-3.995 \pm 0.976$ | $9.892 \pm 0.300$ | 10 |
| HIP69275 | 212.72088 | 62.52220 | F2IV | $-17.166 \pm 0.043$ | $-3.034 \pm 0.050$ | $9.678 \pm 0.247$ | 10 |
| TYC4174-1117-1 | 209.67123 | 63.68876 | ... | $-18.907 \pm 0.583$ | $-4.208 \pm 0.691$ | $10.613 \pm 0.260$ | 10 |
| TYC3471-233-1 | 211.95507 | 51.95266 | $\ldots$ | $-16.804 \pm 0.351$ | $-4.588 \pm 0.894$ | $9.982 \pm 0.242$ | 10 |
| HIP68637 | 210.74889 | 50.97178 | A0IV | $-16.444 \pm 0.018$ | $-6.210 \pm 0.019$ | $9.936 \pm 0.418$ | 10 |
| TYC9280-112-1 | 258.43252 | -69.98264 | $\ldots$ | $-11.735 \pm 0.607$ | $-12.739 \pm 0.774$ | $4.244 \pm 0.253$ | 14 |
| TYC9279-1700-1 | 256.44526 | -70.39820 | A(?) | $-13.393 \pm 0.421$ | $-13.273 \pm 0.472$ | $4.424 \pm 0.241$ | 14 |
| TYC9279-2048-1 | 254.64074 | -70.24192 | ... | $-13.924 \pm 0.544$ | $-12.111 \pm 0.681$ | $4.330 \pm 0.219$ | 14 |
| TYC9279-1772-1 | 254.96898 | -70.17474 | $\ldots$ | $-13.458 \pm 0.493$ | $-12.506 \pm 0.712$ | $4.361 \pm 0.264$ | 14 |
| TYC9275-1592-1 | 252.40693 | -69.30057 | $\ldots$ | $-14.436 \pm 0.554$ | $-13.326 \pm 0.713$ | $4.734 \pm 0.252$ | 14 |
| TYC9275-963-1 | 255.52187 | -68.19909 | $\ldots$ | $-13.093 \pm 0.456$ | $-12.835 \pm 0.652$ | $4.478 \pm 0.222$ | 14 |
| TYC9276-2997-1 | 258.71396 | -68.85196 | $\ldots$ | $-11.928 \pm 0.512$ | $-13.501 \pm 0.699$ | $4.222 \pm 0.231$ | 14 |
| TYC9275-2648-1 | 255.75727 | -68.62989 | A1V | $-13.721 \pm 0.306$ | $-13.050 \pm 0.296$ | $4.639 \pm 0.406$ | 14 |
| TYC9275-2499-1 | 255.66161 | -68.61236 | $\ldots$ | $-13.545 \pm 0.483$ | $-13.917 \pm 0.716$ | $4.516 \pm 0.247$ | 14 |
| TYC9275-3434-1 | 257.82869 | -68.11085 | $\ldots$ | $-12.428 \pm 0.365$ | $-12.500 \pm 0.628$ | $4.284 \pm 0.269$ | 14 |
| TYC9275-1819-1 | 256.02271 | -68.19380 | $\ldots$ | $-12.999 \pm 0.438$ | $-12.991 \pm 0.577$ | $4.348 \pm 0.246$ | 14 |
| TYC9275-1067-1 | 255.89374 | -67.88703 | A2Vs | $-12.990 \pm 0.369$ | $-12.302 \pm 0.419$ | $4.280 \pm 0.275$ | 14 |
| TYC9275-2142-1 | 254.16395 | -68.35217 | A6III | $-13.716 \pm 0.446$ | $-12.913 \pm 0.547$ | $4.601 \pm 0.275$ | 14 |
| TYC9275-251-1 | 252.96875 | -68.07482 | $\ldots$ | $-13.832 \pm 0.544$ | $-11.963 \pm 0.576$ | $4.422 \pm 0.317$ | 14 |
| TYC9050-754-1 | 252.84677 | -67.47804 | $\ldots$ | $-14.366 \pm 0.434$ | $-13.203 \pm 0.572$ | $4.583 \pm 0.244$ | 14 |
| TYC9275-1107-1 | 254.72914 | -67.78803 | A5IV | $-14.559 \pm 0.445$ | $-13.242 \pm 0.475$ | $4.544 \pm 0.299$ | 14 |
| TYC9064-2249-1 | 257.50549 | -66.88909 | $\ldots$ | $-13.776 \pm 0.452$ | $-14.554 \pm 0.734$ | $4.672 \pm 0.246$ | 14 |
| TYC9051-124-1 | 254.90482 | -66.98483 | $\ldots$ | $-13.290 \pm 0.440$ | $-12.357 \pm 0.637$ | $4.457 \pm 0.276$ | 14 |
| HIP82908 | 254.13678 | -66.10902 | A0V | $-14.133 \pm 0.039$ | $-12.773 \pm 0.037$ | $4.436 \pm 0.321$ | 14 |
| TYC9050-901-1 | 250.97105 | -67.24941 | $\ldots$ | $-15.309 \pm 0.528$ | $-13.511 \pm 0.715$ | $4.755 \pm 0.265$ | 14 |
| TYC8950-174-1 | 148.39804 | -64.19227 | A(?) | $-28.902 \pm 0.707$ | $23.115 \pm 0.660$ | $4.874 \pm 0.323$ | 23 |
| HIP48707 | 149.02216 | -63.11015 | A4V | $-29.082 \pm 0.071$ | $23.529 \pm 0.067$ | $4.717 \pm 0.269$ | 23 |
| TYC8951-88-1 | 151.54021 | -63.92761 | A2V | $-29.790 \pm 0.707$ | $22.781 \pm 0.628$ | $5.008 \pm 0.242$ | 23 |
| HIP48873 | 149.52952 | -62.58526 | G5/6III | $-29.149 \pm 0.030$ | $23.367 \pm 0.028$ | $4.735 \pm 0.254$ | 23 |
| TYC8946-285-1 | 148.20684 | -62.10954 | ... | $-29.946 \pm 0.915$ | $23.556 \pm 0.656$ | $4.446 \pm 0.267$ | 23 |
| TYC8942-2165-1 | 148.16318 | -61.72158 | $\ldots$ | $-29.677 \pm 0.903$ | $23.039 \pm 0.632$ | $4.406 \pm 0.267$ | 23 |
| HIP48281 | 147.65756 | -60.52759 | A1IV | $-28.084 \pm 0.027$ | $23.504 \pm 0.028$ | $4.580 \pm 0.336$ | 23 |
| TYC8941-397-1 | 145.63238 | -60.09132 | A5IV | $-26.126 \pm 0.730$ | $23.833 \pm 0.752$ | $4.611 \pm 0.326$ | 23 |
| TYC8943-2975-1 | 150.07020 | -61.51121 | ... | $-31.134 \pm 0.803$ | $23.904 \pm 0.569$ | $4.696 \pm 0.242$ | 23 |
| TYC8942-2267-1 | 146.93234 | -60.93701 | $\ldots$ | $-28.471 \pm 1.132$ | $23.109 \pm 0.985$ | $4.311 \pm 0.350$ | 23 |
| TYC3713-616-1 | 44.21811 | 58.58569 | G0 | $32.929 \pm 0.829$ | $-29.927 \pm 0.451$ | $8.431 \pm 0.239$ | 26 |

Table 8
(Continued)

| Name | R.A. | Decl. | SpT | $\mu_{\alpha}$ <br> $\left(\mathrm{mas}^{-1}\right)$ | $\pi$ <br> $(5)$ | $\mu_{\delta}$ <br> $\left(\mathrm{mas}^{-1}\right)$ <br> $(6)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | Group |  |  |

Note. Collections of stars in Groups 10, 14, 23, and 26 from the Oh17 sample that appear to be newly discovered.
known groups or even one where a significant portion of members should be identified.

That stated, for our own purposes, we cross-matched all of the individual stars with the bonafide (BM), candidate (CM), high-likelihood (HM), low-likelihood (LM), ambiguous (AM), and rejected member (RM) lists used in Gagné et al. (2018a) to create BANYAN $\Sigma$. Column (12) and column (13) of Table 4 reflect on whether an object might be a new candidate that requires further vetting ( NO ) or whether it falls in one of the above listed BANYAN categories (BM, CM, LM, AM, or RM). Table 5 summarizes each of the 27 BANYAN tested groups. We note that the NO objects may still be known literature sources, however, they are not in BANYAN $\Sigma$ and we only performed a cursory check in the literature for the most prominent associations. In the case of the Hyades, the Pleiades, and Coma Berenices, we verified that all of the NO sources were discussed as members in the literature therefore there are no new additions in the Oh17 catalog. The remaining groups with NO objects listed, may have new members uncovered. Specifically, given that there is a significant number of Oh17 stars that are connected components to known or candidate members of associations, we suggest there is a significant number of new additions to moving groups uncovered. Detailed vetting and literature searching is required to confirm new objects.

Organizing the Oh17 groups/pairs by BANYAN results as laid out in Table 6, we find that Upper Centaurus Lupus (194 $>80 \%$ probability members) and Lower Centaurus Crux ( $156>80 \%$ probability members) were found in greatest number. Conversely, the groups 118TAU, $\rho$ Ophiucus, and Carina were not recovered at all.

Members of Pleiades (Oh17 group 0), Coma Berenices (Oh17 group 7), IC 2602 (Oh17 group 5), and Alessi 13 (Oh17 group 19) were recovered from BANYAN $\Sigma$ as all belonging to the same Oh17 defined group. However-with the exception of Corona Australis, $\epsilon$ Chamaeleontis, $\eta$ Chamaeleontis, and Ursa Major where only one pair (or one object in a pair) was recovered-the remaining 15 BANYAN $\Sigma$ groups were recovered across more than one Oh17 defined group (see Figures $1-3$ for pie charts illustrating the distributions). For instance, BANYAN $\Sigma$ found $107>80 \%$ membership probability Upper Scorpius stars. However, as illustrated in Figure 2, those are spread across 11 different Oh17 groups. Among those, Oh17 group 4 (with 72 members), was the largest collection of Upper Scorpius objects, all of which came out as $>80 \%$ membership BANYAN probability in the
association. The 10 other Oh17 groups with the 35 remaining $>80 \%$ membership probability Upper Scorpius stars ranged in size from 2 to 10.

We investigated whether this substructure of Oh17 groups for the same BANYAN predicted group was significant but found no obvious evidence for a correlation with the members and their Oh17 group assignment. For example, in Figure 4, we look at the five largest Oh17 groups that came out as Upper Centaurus Lupus in BANYAN on a $(G-J)$ versus $M_{G}$ colormagnitude diagram. While we see nothing striking, Röser et al. (2018) report that using TGAS astrometry, spatial positions, and some follow-up radial velocities, they find that Group 11 is part of a compact new moving group around V1062 Sco. Further investigation is required for each of the individual groups to see if they end up mapping fine detailed kinematic structures or substructures within a larger association.

Groups that were particularly close to the Sun (distance $\ll 100 \mathrm{pc}$ ) were almost entirely broken into pairs or triples by Oh et al. (2017). For instance, as illustrated in Figure 3, the AB Doradus moving group whose members span from 7 to 77 pc from the Sun and are scattered in R.A. and decl. all over the sky, spanned 14 different Oh17 groups. The Oh et al. (2017) method probably breaks down for nearby groups given that the closer an association is to the Sun, the more important understanding the full kinematics becomes to deciphering membership. With the Oh et al. (2017) method, radial velocity measurements are not employed, making it difficult to differentiate the full kinematic signature of solar neighborhood groups.

We also found that several of the Oh17 groups with $>10$ sources had a mixture of objects with different BANYAN predicted associations. Table 7 lists each of the Oh17 groups that had a component in more than one of the BANYAN $\Sigma$ tested groups. For instance, Oh17 group 25 has six BANYAN predicted members of Upper Scorpius and four BANYAN predicted members of Upper Centaurus Lupus. Group 13 has one BANYAN predicted member of Lower Centaurus Crux and 21 predicted members of Upper Centaurus Lupus. These associations are known to have cross-contaminating kinematics as they occupy a similar part of XYZUVW space, so it is not surprising that the Oh17 method found them together. Moreover, lacking a radial velocity means there is a crucial kinematic component missing for associations that are already very similar.

Table 9
Potentially New Associations from Oh17 with Five to Nine Connected Components

| Name (1) | R.A. (2) | Decl. (3) | SpT (4) |  | mas ${ }^{-1}$ <br> (6) | $\pi$ <br> mas <br> (7) | Group (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TYC8950-1447-1 | 147.07979 | -64.05587 | $\ldots$ | $-43.466 \pm 1.072$ | $46.020 \pm 0.687$ | $12.982 \pm 0.268$ | 30 |
| HIP45594 | 139.39198 | -63.38719 | F3V | $-28.931 \pm 0.050$ | $42.406 \pm 0.050$ | $11.025 \pm 0.246$ | 30 |
| TYC9210-1730-1 | 153.12405 | -67.87577 | $\ldots$ | $-47.205 \pm 0.715$ | $42.869 \pm 0.510$ | $12.245 \pm 0.232$ | 30 |
| TYC9210-1818-1 | 152.09121 | -67.94434 | $\ldots$ | $-39.815 \pm 1.079$ | $38.142 \pm 0.717$ | $11.325 \pm 0.315$ | 30 |
| HIP47335 | 144.68804 | -66.85889 | A9IV/V | $-36.597 \pm 0.052$ | $45.317 \pm 0.054$ | $11.671 \pm 0.232$ | 30 |
| TYC8953-1289-1 | 144.79319 | -66.77079 | ... | $-37.709 \pm 3.199$ | $45.094 \pm 2.661$ | $11.653 \pm 0.376$ | 30 |
| HIP46460 | 142.12690 | -66.70166 | A0V | $-35.443 \pm 0.025$ | $49.410 \pm 0.026$ | $12.977 \pm 0.461$ | 30 |
| HIP47017 | 143.73490 | -64.99927 | F5V | $-34.670 \pm 0.068$ | $44.232 \pm 0.061$ | $11.620 \pm 0.234$ | 30 |
| TYC7700-1309-1 | 144.25993 | -42.63547 | $\cdots$ | $-32.821 \pm 0.973$ | $14.060 \pm 0.463$ | $6.968 \pm 0.272$ | 34 |
| HIP48403 | 148.03021 | -43.79756 | A9IV/V(m) | $-35.664 \pm 0.041$ | $13.527 \pm 0.044$ | $7.488 \pm 0.390$ | 34 |
| TYC7702-1556-1 | 148.57572 | -41.70651 | F8 | $-33.243 \pm 0.925$ | $12.140 \pm 0.441$ | $7.324 \pm 0.321$ | 34 |
| TYC7690-1513-1 | 139.75253 | -43.40861 | F5V | $-31.488 \pm 0.879$ | $16.398 \pm 0.897$ | $7.181 \pm 0.312$ | 34 |
| HIP47161 | 144.15275 | -42.08476 | F3V | $-33.935 \pm 0.102$ | $14.598 \pm 0.099$ | $6.982 \pm 0.222$ | 34 |
| HIP48234 | 147.50611 | -40.16895 | A1/2V | $-34.784 \pm 0.033$ | $12.641 \pm 0.034$ | $7.230 \pm 0.274$ | 34 |
| TYC7700-2419-1 | 144.21453 | -41.97493 | ... | $-30.378 \pm 1.091$ | $12.498 \pm 0.502$ | $6.833 \pm 0.330$ | 34 |
| TYC3698-2538-1 | 34.17816 | 58.21182 | F2IV | $36.798 \pm 0.673$ | $-27.865 \pm 0.575$ | $8.674 \pm 0.274$ | 35 |
| HIP9690 | 31.16681 | 65.10339 | A0V | $43.445 \pm 0.021$ | $-26.549 \pm 0.025$ | $9.598 \pm 0.506$ | 35 |
| TYC3697-428-1 | 30.91825 | 59.76027 | FOII | $41.841 \pm 0.576$ | $-28.335 \pm 0.468$ | $9.832 \pm 0.271$ | 35 |
| TYC4036-884-1 | 29.99388 | 62.69480 | ... | $45.049 \pm 0.445$ | $-27.465 \pm 0.763$ | $9.433 \pm 0.300$ | 35 |
| HIP11156 | 35.87925 | 61.77354 | F5V | $39.542 \pm 0.065$ | $-29.346 \pm 0.060$ | $9.169 \pm 0.270$ | 35 |
| TYC4046-788-1 | 35.85626 | 61.78297 | $\ldots$ | $40.546 \pm 1.380$ | $-29.693 \pm 0.507$ | $8.966 \pm 0.240$ | 35 |
| TYC4037-1304-1 | 32.35060 | 63.22518 | $\ldots$ | $37.965 \pm 0.544$ | $-24.123 \pm 0.740$ | $8.351 \pm 0.232$ | 35 |
| TYC3698-1416-1 | 34.05663 | 58.66893 | $\ldots$ | $16.484 \pm 1.081$ | $-13.733 \pm 0.410$ | $2.631 \pm 0.235$ | 36 |
| HIP10844 | 34.89591 | 59.30818 | A2V | $15.517 \pm 0.071$ | $-13.776 \pm 0.063$ | $2.649 \pm 0.253$ | 36 |
| TYC3698-475-1 | 35.90293 | 59.92108 | A3V | $15.083 \pm 0.785$ | $-13.633 \pm 0.484$ | $2.661 \pm 0.228$ | 36 |
| TYC3698-985-1 | 34.16233 | 59.83703 | $\ldots$ | $15.798 \pm 0.972$ | $-13.631 \pm 0.377$ | $2.677 \pm 0.228$ | 36 |
| TYC3698-495-1 | 33.51432 | 59.79895 | $\ldots$ | $15.683 \pm 1.094$ | $-13.389 \pm 0.398$ | $2.678 \pm 0.225$ | 36 |
| TYC3698-3123-1 | 36.63970 | 58.36576 | $\ldots$ | $15.503 \pm 1.030$ | $-14.365 \pm 0.453$ | $2.673 \pm 0.258$ | 36 |
| TYC3698-747-1 | 33.46726 | 59.75090 | A0V | $15.850 \pm 1.151$ | $-13.708 \pm 0.437$ | $2.628 \pm 0.239$ | 36 |
| HIP117376 | 356.99239 | 78.37609 | F8 | $22.344 \pm 0.090$ | $1.349 \pm 0.084$ | $6.359 \pm 0.228$ | 38 |
| TYC4500-124-1 | 0.17226 | 79.67775 | G | $22.601 \pm 0.637$ | $0.630 \pm 0.602$ | $6.372 \pm 0.278$ | 38 |
| TYC4500-310-1 | 9.91810 | 79.09186 | ... | $23.259 \pm 0.888$ | $-3.678 \pm 0.837$ | $6.681 \pm 0.259$ | 38 |
| TYC4500-1478-1 | 9.52596 | 79.05572 | $\ldots$ | $22.385 \pm 0.644$ | $-2.306 \pm 0.722$ | $6.549 \pm 0.249$ | 38 |
| TYC4501-1813-1 | 11.34654 | 79.73042 | F5 | $23.907 \pm 1.174$ | $-3.876 \pm 0.654$ | $6.687 \pm 0.250$ | 38 |
| TYC4500-616-1 | 4.36837 | 79.79943 | $\ldots$ | $23.831 \pm 1.096$ | $-1.806 \pm 1.129$ | $6.291 \pm 0.282$ | 38 |
| HIP115764 | 351.80796 | 79.54195 | A2 | $21.916 \pm 0.038$ | $4.080 \pm 0.040$ | $6.364 \pm 0.700$ | 38 |
| HIP23819 | 76.79954 | -3.49642 | A2/3V | $11.312 \pm 0.067$ | $-13.707 \pm 0.054$ | $5.741 \pm 0.281$ | 39 |
| TYC4745-475-1 | 73.30027 | -3.81951 | ... | $13.013 \pm 0.818$ | $-14.544 \pm 0.693$ | $6.125 \pm 0.237$ | 39 |
| HIP23386 | 75.41076 | -2.72076 | A1/2V | $11.985 \pm 0.065$ | $-14.462 \pm 0.050$ | $5.481 \pm 0.330$ | 39 |
| TYC4741-307-1 | 74.07619 | -1.89251 | ... | $11.062 \pm 1.004$ | $-14.083 \pm 0.754$ | $5.690 \pm 0.244$ | 39 |
| HIP22716 | 73.27011 | -1.27584 | A7/F0 | $12.649 \pm 0.061$ | $-15.773 \pm 0.041$ | $5.867 \pm 0.344$ | 39 |
| HIP22689 | 73.19139 | 0.68718 | F8 | $11.499 \pm 0.214$ | $-15.130 \pm 0.124$ | $5.707 \pm 0.237$ | 39 |
| HIP23661 | 76.27642 | -3.67021 | A2V | $11.557 \pm 0.056$ | $-13.612 \pm 0.046$ | $6.091 \pm 0.336$ | 39 |
| TYC9233-1754-1 | 170.35634 | -72.84477 | A2V | $-25.955 \pm 0.878$ | $-1.928 \pm 0.613$ | $4.120 \pm 0.267$ | 41 |
| HIP54740 | 168.12389 | -71.74939 | B8V | $-25.582 \pm 0.036$ | $-1.247 \pm 0.039$ | $4.222 \pm 0.244$ | 41 |
| TYC9220-3213-1 | 166.17019 | -71.67039 | $\ldots$ | $-26.136 \pm 0.754$ | $-0.681 \pm 0.592$ | $4.076 \pm 0.245$ | 41 |
| HIP54712 | 168.02257 | -71.21747 | B7Vn | $-26.348 \pm 0.032$ | $-1.295 \pm 0.031$ | $4.420 \pm 0.274$ | 41 |
| TYC9216-1951-1 | 167.26498 | -70.49593 | ... | $-26.590 \pm 0.812$ | $-1.286 \pm 0.672$ | $4.080 \pm 0.266$ | 41 |
| TYC9220-3429-1 | 164.25354 | -71.35402 | $\ldots$ | $-25.284 \pm 0.472$ | $0.389 \pm 0.466$ | $4.278 \pm 0.266$ | 41 |
| TYC9233-453-1 | 170.14833 | -72.02462 | $\ldots$ | $-24.680 \pm 0.999$ | $-1.998 \pm 0.563$ | $4.107 \pm 0.367$ | 41 |
| TYC3709-701-1 | 45.22227 | 56.76031 | $\ldots$ | $28.772 \pm 1.063$ | $-27.059 \pm 0.491$ | $6.725 \pm 0.257$ | 42 |
| TYC3700-400-1 | 40.67272 | 54.15157 | $\ldots$ | $27.166 \pm 1.150$ | $-21.516 \pm 0.634$ | $6.275 \pm 0.279$ | 42 |
| TYC3709-588-1 | 46.63326 | 56.33607 | $\cdots$ | $28.689 \pm 1.578$ | $-26.658 \pm 0.792$ | $6.524 \pm 0.345$ | 42 |
| HIP14047 | 45.22317 | 52.35193 | B9V | $27.129 \pm 0.065$ | $-24.901 \pm 0.068$ | $6.770 \pm 0.437$ | 42 |
| TYC3309-1348-1 | 42.21890 | 52.47538 | ... | $28.137 \pm 0.914$ | $-24.381 \pm 0.668$ | $6.647 \pm 0.347$ | 42 |
| HIP13488 | 43.41998 | 53.80268 | A2 | $28.509 \pm 0.070$ | $-26.244 \pm 0.051$ | $6.812 \pm 0.250$ | 42 |
| TYC661-692-1 | 57.71066 | 11.00143 | F8 | $23.839 \pm 0.716$ | $-23.964 \pm 0.409$ | $6.476 \pm 0.241$ | 43 |

Table 9
(Continued)

| Name | R.A. | Decl. | SpT | $\mu_{\operatorname{mas}^{-1}}^{\mu_{1}}$ | $\mu_{\operatorname{mas}^{-1}}$ | $\begin{gathered} \pi \\ \mathrm{mas} \end{gathered}$ | Group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
| HIP18033 | 57.81623 | 13.04598 | B9II-III | $23.194 \pm 0.030$ | $-22.986 \pm 0.013$ | $6.483 \pm 0.546$ | 43 |
| TYC664-136-1 | 57.91530 | 14.79663 | ... | $25.105 \pm 0.741$ | $-24.219 \pm 0.428$ | $6.280 \pm 0.252$ | 43 |
| HIP18778 | 60.33910 | 9.33362 | F8 | $25.241 \pm 0.122$ | $-26.186 \pm 0.068$ | $6.548 \pm 0.256$ | 43 |
| TYC662-820-1 | 59.08010 | 11.41968 | ... | $25.069 \pm 1.335$ | $-24.482 \pm 0.556$ | $6.660 \pm 0.412$ | 43 |
| TYC662-217-1 | 59.92566 | 12.16893 | $\ldots$ | $23.671 \pm 0.693$ | $-24.894 \pm 0.424$ | $6.824 \pm 0.317$ | 43 |
| TYC3698-121-1 | 33.52886 | 59.73304 | A0V | $15.448 \pm 1.083$ | $-13.620 \pm 0.420$ | $2.882 \pm 0.241$ | 47 |
| HIP9795 | 31.49397 | 60.27831 | G2II | $16.715 \pm 0.096$ | $-13.524 \pm 0.088$ | $2.914 \pm 0.231$ | 47 |
| TYC3698-1347-1 | 33.38928 | 59.42791 | ... | $15.654 \pm 0.960$ | $-13.609 \pm 0.345$ | $2.873 \pm 0.232$ | 47 |
| TYC3698-501-1 | 33.37689 | 59.45773 | $\ldots$ | $16.153 \pm 0.827$ | $-13.464 \pm 0.589$ | $2.954 \pm 0.282$ | 47 |
| TYC3698-1731-1 | 33.82643 | 59.81540 | $\ldots$ | $15.228 \pm 1.096$ | $-13.427 \pm 0.462$ | $2.887 \pm 0.223$ | 47 |
| TYC4033-2479-1 | 32.66574 | 60.07869 | K0 | $15.567 \pm 0.965$ | $-13.498 \pm 0.524$ | $2.836 \pm 0.238$ | 47 |
| HIP43909 | 134.17590 | -63.04840 | B8/9Vn | $-27.470 \pm 0.028$ | $14.054 \pm 0.027$ | $4.914 \pm 0.335$ | 49 |
| HIP43135 | 131.79257 | -63.81253 | A0V | $-26.131 \pm 0.054$ | $15.481 \pm 0.040$ | $5.154 \pm 0.263$ | 49 |
| TYC8930-1190-1 | 132.04977 | -63.35331 | ... | $-26.729 \pm 0.851$ | $15.076 \pm 0.682$ | $4.987 \pm 0.248$ | 49 |
| TYC8930-2088-1 | 132.27606 | -63.06794 | $\ldots$ | $-27.764 \pm 1.167$ | $15.406 \pm 1.033$ | $5.327 \pm 0.413$ | 49 |
| TYC8931-646-1 | 135.02120 | -63.28649 | $\ldots$ | $-26.964 \pm 1.219$ | $12.878 \pm 1.097$ | $5.076 \pm 0.264$ | 49 |
| TYC8930-1213-1 | 131.06627 | -62.51399 | $\ldots$ | $-25.408 \pm 0.911$ | $15.105 \pm 0.805$ | $5.184 \pm 0.294$ | 49 |
| TYC5314-259-1 | 68.38328 | -7.97834 | $\ldots$ | $-4.724 \pm 1.069$ | $-2.278 \pm 0.815$ | $6.333 \pm 0.229$ | 51 |
| TYC4746-535-1 | 68.21826 | -5.72537 | F3V | $-3.875 \pm 0.516$ | $-2.017 \pm 0.713$ | $6.516 \pm 0.639$ | 51 |
| TYC4743-981-1 | 69.40904 | -5.51202 | A9V | $-4.823 \pm 0.500$ | $-2.146 \pm 0.455$ | $6.487 \pm 0.321$ | 51 |
| TYC5317-617-1 | 68.64190 | -10.59108 | F3V | $-4.531 \pm 0.479$ | $-0.393 \pm 0.471$ | $6.669 \pm 0.309$ | 51 |
| HIP21484 | 69.20860 | -8.46049 | B9V | $-4.241 \pm 0.032$ | $-1.386 \pm 0.025$ | $6.540 \pm 0.449$ | 51 |
| HIP16609 | 53.44380 | 8.29048 | A5 | $26.983 \pm 0.071$ | $-23.388 \pm 0.043$ | $6.916 \pm 0.264$ | 52 |
| TYC72-816-1 | 58.44870 | 5.70640 | ... | $28.956 \pm 0.742$ | $-25.953 \pm 0.467$ | $7.503 \pm 0.263$ | 52 |
| HIP17512 | 56.24565 | 8.31947 | G5 | $26.671 \pm 0.097$ | $-24.288 \pm 0.064$ | $7.111 \pm 0.440$ | 52 |
| TYC658-828-1 | 56.46727 | 8.54080 | ... | $28.188 \pm 0.826$ | $-25.445 \pm 0.488$ | $7.533 \pm 0.279$ | 52 |
| HIP17907 | 57.44383 | 9.40739 | B9 | $25.379 \pm 0.037$ | $-24.417 \pm 0.018$ | $7.162 \pm 0.509$ | 52 |
| TYC8180-844-1 | 145.55105 | -51.05258 | $\ldots$ | $-19.043 \pm 1.318$ | $8.059 \pm 0.775$ | $8.162 \pm 0.302$ | 53 |
| HIP48338 | 147.79501 | -53.18296 | F0/2IV | $-19.648 \pm 0.059$ | $6.854 \pm 0.057$ | $7.817 \pm 0.258$ | 53 |
| HIP46740 | 142.89615 | -51.25188 | A4/5IV/V | $-21.168 \pm 0.047$ | $9.718 \pm 0.051$ | $8.252 \pm 0.242$ | 53 |
| TYC8175-288-1 | 140.82228 | -50.22978 | ... | $-19.665 \pm 1.131$ | $10.253 \pm 1.107$ | $8.116 \pm 0.380$ | 53 |
| TYC8584-2682-1 | 143.10856 | $-52.62763$ | $\ldots$ | $-17.960 \pm 1.958$ | $8.918 \pm 0.916$ | $8.057 \pm 0.347$ | 53 |
| TYC8534-396-1 | 94.22929 | -52.87385 | $\ldots$ | $1.378 \pm 0.731$ | $8.411 \pm 0.659$ | $8.348 \pm 0.232$ | 56 |
| TYC8542-1617-1 | 96.52613 | -56.52116 | G0 | $1.148 \pm 0.820$ | $12.801 \pm 0.726$ | $8.437 \pm 0.269$ | 56 |
| HIP30685 | 96.72389 | -53.58192 | F0V | $1.288 \pm 0.075$ | $11.312 \pm 0.083$ | $8.927 \pm 0.227$ | 56 |
| TYC8534-211-1 | 95.47952 | -52.73230 | ... | $1.949 \pm 0.922$ | $9.413 \pm 0.690$ | $8.532 \pm 0.244$ | 56 |
| TYC8115-252-1 | 96.89736 | -50.77373 | $\ldots$ | $2.073 \pm 1.563$ | $8.170 \pm 0.624$ | $8.196 \pm 0.280$ | 56 |
| HIP34706 | 107.82022 | -70.11906 | K0III | $-20.228 \pm 0.077$ | $90.907 \pm 0.066$ | $5.774 \pm 0.213$ | 58 |
| TYC9183-1267-1 | 110.73158 | -69.43246 | ... | $-23.350 \pm 0.766$ | $93.447 \pm 0.706$ | $5.836 \pm 0.237$ | 58 |
| TYC8922-1022-1 | 113.48855 | -66.31245 | $\ldots$ | $-25.490 \pm 0.840$ | $82.590 \pm 0.797$ | $5.844 \pm 0.316$ | 58 |
| TYC8919-2129-1 | 117.55586 | -65.35849 | $\ldots$ | $-36.701 \pm 0.797$ | $87.584 \pm 0.624$ | $5.862 \pm 0.318$ | 58 |
| TYC8918-990-1 | 113.69697 | -63.95839 | $\ldots$ | $-26.029 \pm 1.078$ | $81.378 \pm 0.866$ | $5.914 \pm 0.378$ | 58 |
| HIP105282 | 319.86989 | 49.51030 | B6V | $14.414 \pm 0.025$ | $2.174 \pm 0.024$ | $6.276 \pm 0.513$ | 59 |
| HIP103196 | 313.60852 | 48.92983 | AM | $13.083 \pm 0.032$ | $2.685 \pm 0.030$ | $6.263 \pm 0.297$ | 59 |
| TYC3579-1214-1 | 313.08423 | 48.72394 | ... | $12.447 \pm 1.589$ | $3.931 \pm 0.859$ | $6.251 \pm 0.274$ | 59 |
| HIP103658 | 315.02763 | 48.67945 | B9P | $13.870 \pm 0.031$ | $3.278 \pm 0.038$ | $6.216 \pm 0.302$ | 59 |
| TYC3592-755-1 | 315.13891 | 48.71559 | F2 | $14.353 \pm 0.890$ | $2.638 \pm 0.817$ | $6.207 \pm 0.266$ | 59 |
| TYC81-1439-1 | 67.13638 | 6.09780 | A3 | $19.980 \pm 0.663$ | $-21.486 \pm 0.487$ | $6.215 \pm 0.553$ | 60 |
| TYC81-986-1 | 65.60088 | 6.52921 | A3 | $19.850 \pm 0.643$ | $-21.099 \pm 0.542$ | $6.263 \pm 0.320$ | 60 |
| TYC80-202-1 | 63.96299 | 7.11771 | $\ldots$ | $23.279 \pm 0.975$ | $-25.185 \pm 0.566$ | $6.134 \pm 0.268$ | 60 |
| TYC668-737-1 | 65.35161 | 8.89843 | $\ldots$ | $21.998 \pm 1.326$ | $-24.095 \pm 0.707$ | $6.166 \pm 0.378$ | 60 |
| HIP20425 | 65.63759 | 5.69412 | F5 | $20.631 \pm 0.107$ | $-21.217 \pm 0.081$ | $6.377 \pm 0.265$ | 60 |
| HIP35588 | 110.16249 | -52.19871 | F3/5V | $-9.239 \pm 0.030$ | $0.645 \pm 0.030$ | $6.734 \pm 0.391$ | 61 |
| TYC8131-363-1 | 109.54213 | -52.03277 | A1V | $-9.722 \pm 0.514$ | $1.429 \pm 0.476$ | $6.234 \pm 0.254$ | 61 |
| TYC8131-1097-1 | 109.21415 | -51.59885 | F2V | $-8.141 \pm 0.863$ | $0.824 \pm 0.610$ | $6.326 \pm 0.260$ | 61 |
| TYC8127-223-1 | 109.63125 | -50.21998 | $\cdots$ | $-9.479 \pm 0.876$ | $1.219 \pm 0.535$ | $6.642 \pm 0.220$ | 61 |

Table 9
(Continued)

| Name | R.A. | Decl. | SpT | $\mu_{\alpha}$ | $\mu_{\delta}$ | $m^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $m^{-1}$ | $(6)$ |
| TYC8128-923-1 | 111.16376 | -49.76533 | FOIV $/ \mathrm{V}$ | $-9.642 \pm 1.025$ | $0.925 \pm 0.675$ | $6.469 \pm 0.251$ |

Note. Collections of stars in Groups with five to nine connected components from the Oh17 sample that appear to be newly discovered.


Figure 5. X vs. Y and X vs. Z positions of BANYAN $\Sigma$ tested groups as well as six (five with $>10$ members and one with eight members) new associations discussed in this work.

### 4.3. Non-BANYAN but Known Groups Identified

As stated above, the Oh17 sample consists of 27 groups that have $\geqslant 10$ connected components, which we choose as a
cutoff number for what we investigated as a potentially new large association. We found that 15 of those Oh17 groups contained BANYAN predicted members of nine different associations (as stated above some BANYAN groups were split among more than one Oh17 group). The remaining 12 Oh17 groups with $>10$ members were split between (1) known associations that were simply not tested by BANYAN and (2) potential new groups. For the former, we conducted a literature search including a cross-match with the Gaia Open Cluster catalog (Gaia Collaboration et al. 2017) and found that Oh17 Group 1 is $\alpha$ Persei, Oh17 group 6 is Praesepe, Oh17 group 9 is IC2391, Oh17 group 17 is Blanco 1, Oh17 group 21 is NGC2451A, Oh17 group 20 is Platais 3, and Oh17 group 16 is RSG 2. Table 6 lists the membership (BANYAN or not) that we found through a literature search for any source in the Oh17 sample.

### 4.4. New Moving Groups Identified in Ohl7

Of the 27 groups that have $\geqslant 10$ connected components, five Oh17 groups appear to be newly identified. Those were Oh17 groups $10,14,23$, and 26 (containing $29,20,10$, and 10 connected components respectively). The stellar members and associated kinematics for each new group are listed in Table 8. Group 10 is perhaps the most exciting both because it has the largest number of members (29) and it falls within 100 pc (full range is $90-115 \mathrm{pc}$ ). We note that there is a reference to three of the stars (HIP 67005, HIP67231, and HIP66198) belonging to an unnamed open cluster by Latyshev (1977)—along with four other stars that were not recovered by Oh et al. (2017). However, we found no other information aside from their coordinates in a literature search.

For the remaining three groups, a quick search of the literature did not yield any indication that they were previously identified as comoving associations. Group 26 with 10 members is just a bit farther than Group 10 with a range of $105-135 \mathrm{pc}$. See Table 8 for the range of distances for all new groups as well as proper motion, radial velocity, and spectral types for their members.

For the 35 Oh17 groups with five to nine members, we find that 19 do not show any likelihood of membership in BANYAN tested groups, the Gaia Open Cluster catalog, or a very cursory literature search. While we do not give these the same attention as the five new groups with $\geqslant 10$ connected components, we break out their individual components in Table 9.
We note that Oh17 Group 30 is particularly exciting as it is within 100 pc (range $77-90 \mathrm{pc}$; see Figure 5). As such, we provide a G-J color-magnitude diagram for this eight component group and note that there is one fairly strong X-ray active F5 star (see Figure 6) indicating that it is Pleiades age or older. This group will be the subject of a future study.


Figure 6. See the caption of Figure 7. Group 30 from Oh17 is highlighted. No FUV or NUV detections were found for objects; therefore, those panels are blank in the figure.


Figure 7. Suite of color-magnitude diagrams and an X-ray luminosity diagram highlighting the newly uncovered Group 10 from the Oh17 sample (orange five-point stars). At the top left, we show the $(G-J)$ vs. $M_{\text {NUV }}$ CMD for the full Oh 17 sample (black) with select BANYAN $\Sigma$ selected groups highlighted to show different age bins. Circled in black are Oh17 sources in known associations not otherwise color coded. At the top right, we show the ( $G-J$ ) vs. $M_{\text {Fuv }}$ CMD. Bottom left is the $(G-J)$ vs. $\log \left(L_{X}\right)$. Bottom right is the $(G-J)$ vs. $M_{G}$ CMD with all of TGAS stars with parallax signal-to-noise $>10$ shown as black points.

## 5. Age Estimates of the Five New Moving Groups from X-Ray and UV Activity

We investigated the five new groups for age-indicative information among members. First, we plotted each in XYZ
space to examine whether they overlapped in position with any of the BANYAN $\Sigma$ known groups. Figure 5 shows the results. While each group occupies a tight portion in XY or XZ space, most are too distant for comparison and we find no obvious connection to known associations.


Figure 8. See the caption of Figure 7. Group 14 from Oh 17 is highlighted. No ROSAT detections were found for objects; therefore, this panel is blank in the figure.

There is a significant portion of stars in each group that have spectral information. In Group 10, the closest of the new groups, there are AFG and K stars. Group 14 only has A stars with literature spectral types, while groups 23 and 26 have FG and A stars.

To ascertain whether these new groups follow a logical temperature sequence, and how that sequence is related to known groups with ages, we examined a series of colormagnitude diagrams. As stated in Section 3, we cross-matched all unique stars in the Oh17 sample with 2MASS, WISE, GALEX, and ROSAT. We used $(G-J)$ as our color proxy for spectral type/effective temperature as this appeared to have a clean relationship after examining an array of photometric combinations. The bottom right panels of Figures $7-10$ show $(G-J)$ versus $M_{G}$ for all of TGAS using a signal-to-noise cut off of 10 . Overplotted are the individual stars in each of the four uknown groups (respective to their own figure) as well as BANYAN groups that were identified in Oh17 color coded to reflect different ages. We chose to group objects into age bins of $\sim 15 \mathrm{Myr}$ with Upper Scorpius, Upper Centaurus Lupus, and Lower Centaurus Crux; ~50 Myr with IC2602; ~100 Myr with the Pleiades; and $\sim 500-800 \mathrm{Myr}$ with the Hyades and Coma Berenices. Moving from blue to red $(G-J)$ color on the sequence, we see that the younger groups shift redder and brighter than would be expected from field stars. Each new group forms a fairly tight sequence across the range of ( $G-J$ ) colors. No group looks as young as the $\sim 15 \mathrm{Myr}$ sequences.

While the groups show some scatter, they are all consistent with Pleiades age ( $\sim 100 \mathrm{Myr}$ ) or older associations.

Using X-ray and UV magnitudes, we examined how the different groups (known and new) as well as the full sample measured on age-activity relations (e.g., Preibisch \& Feigelson 2005; Shkolnik et al. 2011; Rodriguez et al. 2013; Núñez \& Agüeros 2016). We looked at the color-magnitude diagrams of $(G-J)$ versus $M_{\mathrm{NUV}}$ and $M_{\mathrm{FUV}}$ as well as $(G-J)$ versus X-ray luminosity. The top panels of Figures $7-10$ show NUV and FUV color-magnitude diagrams for each group separately while the bottom left panel of each figure shows the X-ray comparison. Each group had several stars with NUV detections. Groups 23 and 26 had no FUV detections and Group 14 had one. In X-ray, Groups 14 and 23 had no detections in ROSAT. Similar to the $(G-J)$ versus $M_{G}$ color-magnitude diagram comparisons, we find that the new groups follow logical sequences on the ultraviolet diagrams. The FUV and NUV magnitude sequences are consistent with ages that are older than the Pleiades for each group. The X-ray activity indicates that Group 10 is similar to Hyades members at ages of $\sim 750$ Myr. While Group 26 has stars that are more active and could be considered much younger with this diagnostic parameter.

## 6. Age, Mass, and Metallicity from Isochronal Fitting

We also turned to isochrone fitting to investigate the parameters of each new group. Using the methodology of


Figure 9. See the caption of Figure 7. Group 23 from Oh17 is highlighted. No ROSAT or FUV detections were found for objects; therefore, those panels are blank in the figure.


Figure 10. See the caption of Figure 7. Group 26 from Oh17 is highlighted. No FUV detections were found for objects; therefore, this panel is blank in the figure.

Bochanski et al. (2018), where the Oh17 sample was supplemented with 2MASS and WISE photometry and then tested with posterior probabilities calculated using the trilinear interpolation schemes within isochrones and assumed priors described in Morton (2015), we look at the Mesa Isochrones and Stellar Track library (MIST; Paxton et al. 2011, 2013,

2015; Choi et al. 2016; Dotter 2016) predictions for each star. We investigate both the age as well as the mass and $[\mathrm{Fe} / \mathrm{H}]$ parameters. Figures 11-14 show the results for each group. For context, we overplotted one group in each of our age bins with MIST isochrone parameters from Bochanski et al. (2018): Upper Scorpius ( $\sim 10 \mathrm{Myr}$; purple), Pleiades ( $\sim 112 \mathrm{Myr}$; red),


Figure 11. Output of $\log (\mathrm{age}),[\mathrm{Fe} / \mathrm{H}]$, and mass parameters from MIST isochrone fitting as described in Bochanski et al. (2018). For context, we show both the group of interest (Group 10) as well as known associations at specific age bins: Upper Scorpius ( $\sim 10 \mathrm{Myr}$; purple), IC2602 ( $\sim 46 \mathrm{Myr}$; green), Pleiades ( $\sim 112 \mathrm{Myr}$; red), and Hyades ( $\sim 750 \mathrm{Myr}$; Blue)

IC2602 ( $\sim 50 \mathrm{Myr}$; green), and the Hyades ( $\sim 750 \mathrm{Myr}$; blue). The histogram plots were normalized to 1 for ease of comparison and they were binned by 0.1 in mass and age and 0.03 in $[\mathrm{Fe} / \mathrm{H}]$. As stated in Bochanski et al. (2018), the age predictions from MIST isochrone fitting are scattered and can be significantly different than observable indications like Li depletion, gyrochronology, or UV/X-ray activity levels. As such, we note the isochrone age predictions with skepticism and are more interested in the mass and $[\mathrm{Fe} / \mathrm{H}]$ distribution of the groups.

### 6.1. Group 10

Group 10 shows a slight bifurcation in age predictions from isochrones with half of the stars showing an indication of ages younger than 1 Gyr and the other half falling older. The metallicity distribution tends to be near solar if not slightly metal-rich compared to the known group predictions. The stars identified in Group 10, the closest of the new groups examined, tend toward solar mass with a large number of higher mass objects. There are several A stars in Group 10 spectroscopically identified, so this is consistent with literature work on the members.

### 6.2. Groups 14 and 26

Groups 14 and 26 show isochrone age predictions for the stellar members that fall within the known associations plotted. The metallicity predictions for stars in each group all fall slightly subsolar but are within the predictions of known groups. The vast majority of stars identified in Groups 14 and 26 fall between 1 and 2 solar masses, consistent with what we see on the color-magnitude diagram sequences.

### 6.3. Group 23

Group 23 has 10 members, one of which falls clearly in the giant star area of the $(G-J)$ versus $M_{G}$ color-magnitude diagram. That object, HD86703, also skews the age, mass, and metallicity plots by showing up as significantly younger, slightly metal-rich, and high mass. Otherwise, Group 23 is similar to Groups 14, 16, and 26 in its parameters. Indeed HD86703 is the bright outlier on the NUV color-magnitude diagram of Figure 9 and is classified as a G5/G6 giant star in the literature.

## 7. Conclusions

The Oh17 comoving catalog is rich with discoveries for the local solar neighborhood and the nearby galactic substructure.


Figure 12. See the caption of Figure 11. Group 14 from Oh17 is highlighted.

There were 10,606 individual stars in the Oh17 catalog split into 4555 groups. Those were further broken down into 27 groups with 10 or more connected components, 35 groups with $5-9,39$ groups with 4,218 that have three, and the remaining that have 2 .

The original Oh17 paper produced a rich and very useful catalog; however, it lacked a detailed literature search as to whether the groups were new, known, or parts of a whole. Given that future Gaia data releases will certainly uncover a wealth of previously unrecognized associations in the Galaxy, we looked to reorganize the sample of 4555 groups into known or unknown collections of stars. The BANYAN $\Sigma$ tool is one method for quickly parsing through the collection of pairs and hierarchical associations. Using BANYAN $\Sigma$, we find that 1015 individual stars in the Oh17 catalog have an $80 \%$ or larger probability of membership in 1 of the 27 groups analyzed. Using those objects as a seed for interpretation of the overall Oh17 catalog, we find that 24 of the 27 groups were uncovered in part (none in their entirety), and there are 400 new candidate members with Gaia astrometry across 20 different groups. In fact, a significant portion were uncovered as bonafide members in the literature and the Oh17 catalog found a comoving companion or multiple connected companions with $>80 \%$ probability in a group.

We uncovered that a significant number of the large ( $>10$ connected component) groups in the Oh17 sample were broken up parts of big, known associations like Upper Centaurus Lupus, Upper Centaurus Crux, or Upper Scorpius. We found no correlation with the individual Oh17 group and position on color-magnitude diagrams; therefore, we do not identify traces of substructure in those known associations; however, recent work suggests that further investigation is warranted (see Röser et al. (2018) and the discovery that Oh17 Group 11 was a compact new moving group around V1062 Sco).

We investigated the Oh17 groups with $>10$ connected components in detail and found that four of those hierarchical associations are newly discovered comoving collections of stars in the Milky Way. Among those were Oh17 Groups 10, 14,23 , and 26 containing $29,20,10$, and 10 connected components each. Group 10 was the closest with a range of $105-135 \mathrm{pc}$ making it a new candidate for searches of a coevolving association with directly imaged exoplanets and brown dwarfs. Each group appears to be older than the Pleiades but with indications that they are younger than $\sim 1$ Gyr. Using the kinematics of these objects in updates of strong kinematic analysis tools like BANYAN $\Sigma$, one can uncover more members. Moreover, while we did not perform a detailed search, we found that 19 of the 35 Oh17 groups

with five to nine members also appeared to be new comoving associations in the Galaxy and warrant follow-up. Oh17 group 30 was particulary exciting given that it would be well within 100 pc (range of $77-90 \mathrm{pc}$ ), has at least one X-ray active F5 star, and is in a compact area of young stars near the Sun. Given that the Gaia DR2 release will occur in 2018 April, these new groups are likely just the tip of a large iceberg of discovery when it comes to the substructure of the Milky Way.

We thank Dustin Lang for providing the Gaia-Tycho2MASS cross-match data, and Seomyong Oh for useful conversations about the original catalog. We also thank amateur astronomer Bruno Alessi for pointing out a recently discovered cluster. This research has made use of the Washington Double Star Catalog maintained at the U.S. Naval Observatory; the SIMBAD database and VizieR catalog access tool, operated at the Centre de Donnees astronomiques de Strasbourg, France (Ochsenbein et al. 2000); data products from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/California Institute of Technology
(Caltech), funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation; data products from the Wide-field Infrared Survey Explorer (WISE; and Wright et al. 2010), which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL)/Caltech, funded by NASA. This project was developed in part at the 2017 Heidelberg Gaia Sprint, hosted by the Max-Planck-Institut fur Astronomie, Heidelberg. This work has made use of data from the European Space Agency (ESA) mission Gaia, processed by the Gaia Data Processing and Analysis Consortium. Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. With deepest appreciation, we acknowledge Kathryn W. Davis for her generous founding support of the Master of Arts in Science Teaching (MAT) Program. Leadership support for the MAT program is provided by The Shelby Cullom Davis Charitable Fund. The MAT program is supported in part by the National Science Foundation under Grant Number DUE-1340006 and the U.S. Department of Education under Grant Number U336S140026.
Software: BANYAN (Gagné et al. 2018a), isochrones (Morton 2015), TOPCAT (Taylor 2005).


## ORCID iDs

Jacqueline K Faherty © https://orcid.org/0000-0001-6251-0573
John J. Bochanski © https://orcid.org/0000-0001-7096-425X

## References

Aitken, R. G. 1895, PASP, 7, 305
Andrews, J. J., Chanamé, J., \& Agüeros, M. A. 2017, MNRAS, 472, 675
Andrews, J. J., Chanamé, J., \& Agüeros, M. A. 2018, MNRAS, 473, 5393
Barrado y Navascués, D., Stauffer, J. R., \& Jayawardhana, R. 2004, ApJ, 614, 386
Bell, C. P. M., Mamajek, E. E., \& Naylor, T. 2015, MNRAS, 454, 593
Bochanski, J. J., Faherty, J. K., Gagné, J., et al. 2018, AJ, 155, 149
Brandt, T. D., \& Huang, C. X. 2015a, ApJ, 807, 58
Brandt, T. D., \& Huang, C. X. 2015b, ApJ, 807, 24
Chanamé, J., \& Ramírez, I. 2012, ApJ, 746, 102
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102
Daemgen, S., Bonavita, M., Jayawardhana, R., Lafrenière, D., \& Janson, M. 2015, ApJ, 799, 155
Dahm, S. E. 2015, ApJ, 813, 108
Dhital, S., West, A. A., Stassun, K. G., \& Bochanski, J. J. 2010, AJ, 139, 2566
Dhital, S., West, A. A., Stassun, K. G., Schluns, K. J., \& Massey, A. P. 2015 AJ, 150, 57
Dobbie, P. D., Lodieu, N., \& Sharp, R. G. 2010, MNRAS, 409, 1002
Dotter, A. 2016, ApJS, 222, 8
Eggen, O. J. 1965, in Moving Groups of Stars, ed. A. Blaauw \& M. Schmidt (Chicago, IL: Univ. Chicago Press), 111
Faherty, J. K., Burgasser, A. J., Bochanski, J. J., et al. 2011, AJ, 141, 71
Faherty, J. K., Burgasser, A. J., West, A. A., et al. 2010, AJ, 139, 176

Faherty, J. K., Riedel, A. R., Cruz, K. L., et al. 2016, ApJS, 225, 10
Gagné, J., \& Faherty, J. K. 2018, MNRAS, submitted (arXiv:1805.11715) Gagné, J., Faherty, J. K., Cruz, K. L., et al. 2015, ApJS, 219, 33
Gagné, J., Faherty, J. K., Mamajek, E. E., et al. 2017, ApJS, 228, 18 Gagné, J., Mamajek, E. E., Malo, L., et al. 2018a, ApJ, 856, 23
Gagné, J., Roy-Loubier, O., Faherty, J. K., Doyon, R., \& Malo, L. 2018b, ApJ, 860, 43
Gaia Collaboration, van Leeuwen, F., Vallenari, A., et al. 2017, A\&A, 601, 19 Gennaro, M., Prada Moroni, P. G., \& Tognelli, E. 2012, MNRAS, 420, 986 Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A\&A, 355, L27
Jones, J., White, R. J., Boyajian, T., et al. 2015, ApJ, 813, 58
Kapteyn, J. C. 1905, British Assoc. Adv. Sci. Rep., 257
Kenyon, S. J., \& Hartmann, L. 1995, ApJS, 101, 117
Kirkpatrick, J. D., Dahn, C. C., Monet, D. G., et al. 2001, AJ, 121, 3235
Kushniruk, I., Schirmer, T., \& Bensby, T. 2017, A\&A, 608, A73
Latyshev, I. N. 1977, ATsir, 969, 7
Lépine, S. 2005, AJ, 130, 1247
Lépine, S., \& Bongiorno, B. 2007, AJ, 133, 889
Lépine, S., \& Shara, M. M. 2005, AJ, 129, 1483
Lindegren, L., Lammers, U., Bastian, U., et al. 2016, A\&A, 595, A4
Mamajek, E. 2016, A New Candidate Young Stellar Group at $\mathrm{d}=121 \mathrm{pc}$ Associated with 118 Tauri, Figshare
Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJL, 619, L1
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., \& Worley, C. E. 2018, yCat, 102026
Morton, T. D. 2015, Isochrones: Stellar Model Grid Package, Astrophysics Source Code Library, ascl:1503.010
Murphy, S. J., \& Lawson, W. A. 2015, MNRAS, 447, 1267
Murphy, S. J., Lawson, W. A., \& Bessell, M. S. 2013, MNRAS, 435, 1325
Núñez, A., \& Agüeros, M. A. 2016, ApJ, 830, 44
Ochsenbein, F., Bauer, P., \& Marcout, J. 2000, A\&AS, 143, 23
Oelkers, R. J., Stassun, K. G., \& Dhital, S. 2017, AJ, 153, 259
Oh, S., Price-Whelan, A. M., Brewer, J. M., et al. 2018, ApJ, 854, 138

Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D., \& Spergel, D. N. 2017, AJ, 153, 257
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Pecaut, M. J., \& Mamajek, E. E. 2016, MNRAS, 461, 794
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A\&A, 323, L49
Platais, I., Kozhurina-Platais, V., \& van Leeuwen, F. 1998, AJ, 116, 2423
Pöhnl, H., \& Paunzen, E. 2010, A\&A, 514, A81
Preibisch, T., \& Feigelson, E. D. 2005, ApJS, 160, 390
Price-Whelan, A. M., Oh, S., \& Spergel, D. N. 2017, arXiv:1709.03532
Rodriguez, D. R., Zuckerman, B., Kastner, J. H., et al. 2013, ApJ, 774, 101
Röser, S., Schilbach, E., \& Goldman, B. 2016, A\&A, 595, A22
Röser, S., Schilbach, E., Goldman, B., et al. 2018, A\&A, 614, A81
Shaya, E. J., \& Olling, R. P. 2011, ApJS, 192, 2

Shkolnik, E. L., Liu, M. C., Reid, I. N., Dupuy, T., \& Weinberger, A. J. 2011, ApJ, 727, 6
Silaj, J., \& Landstreet, J. D. 2014, A\&A, 566, A132
Skiff, B. A. 2014, yCat, 2023
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Taylor, M. B. 2005, in ASP Conf. Ser. 347, Astronomical Data Analysis Software and Systems XIV, ed. P. Shopbell, M. Britton, \& R. Ebert (San Francisco, CA: ASP), 29
Teske, J. K., Ghezzi, L., Cunha, K., et al. 2015, ApJL, 801, L10
Voges, W., Aschenbach, B., Boller, T., et al. 1999, A\&A, 349, 389
Voges, W., Aschenbach, B., Boller, T., et al. 2000, yCat, 9029
Weinberg, M. D., Shapiro, S. L., \& Wasserman, I. 1987, ApJ, 312, 367
Wilking, B. A., Gagné, M., \& Allen, L. E. 2008, in Handbook of Star Forming Regions II, ed. B. Reipurth (Tucson, AZ: Univ. Arizona Press), 351
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Zuckerman, B., Bessell, M. S., Song, I., \& Kim, S. 2006, ApJL, 649, L115


[^0]:    

    Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

