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Abstract

The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only
up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear
interactions from chiral effective field theory constrained by scattering data. In this work, we use physically
motivated ansatzes for the speed of sound cS at high density to extend microscopic calculations of neutron-rich
matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical
constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We
confirm earlier expectations that cS is likely to violate the conformal limit of c c 3S

2 2 , possibly reaching values
closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian.
If QCD obeys the conformal limit, we conclude that the rapid increase of cS required to accommodate a 2Me NS
suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even
between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4Me,
we find radii between 10 and 14 km, and the smallest possible radius of a 1.4Me NS consistent with constraints
from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS
and guide theoretical developments in nuclear physics.
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1. Introduction

The neutron-matter equation of state (EOS) at T=0 is a
crucial ingredient to describe the structure of neutron stars
(NS), as expressed by the mass–radius relation. At the high
densities in the NS core, the proton fractions are small,
typically 5%–10%, and NS matter can be effectively described
as pure neutron matter (PNM). Although protons are included
when constructing the EOS of NSs, their contribution is small
(compared to other uncertainties, which we shall discuss in
some detail) and always acts to reduce the pressure. Up to
∼1–2 times the nuclear saturation density, n0=0.16 fm−3;
2.7·1014 g cm−3, the EOS of PNM has been computed by
using different many-body methods with realistic nucleon–
nucleon interactions; see, e.g., Hebeler & Schwenk (2010),
Gandolfi et al. (2012, 2015), Tews et al. (2013), Hagen et al.
(2014), Sammarruca et al. (2015), Lynn et al. (2016), Drischler
et al. (2016), and Holt & Kaiser (2017). In the following, we
shall collectively refer to them as ab initio calculations. At
densities above 2n0, however, the PNM EOS is not
constrained.

From the EOS, p=p(ò), we can obtain the speed of sound
cS from

c
p

, 1S
2 


=

¶
¶

( ) ( )

with the pressure p and the energy density ò, where the latter
also includes the rest-mass contribution. Stability and causality
constrain c0 1S

2  , where we have set the speed of light
c=1. Current ab initio calculations of neutron matter
constrain the speed of sound up to ≈1–2n0, but, again, at
higher densities uncertainties grow rapidly and the speed of
sound remains unconstrained.

In this work, we show that useful constraints on the speed of
sound at higher densities can be deduced from the observation
of two-solar-mass NS (Demorest et al. 2010; Antoniadis
et al. 2013) by using ab initio calculations of the EOS of PNM
up to 1–2n0. Our work is similar in some respects to earlier
work by Bedaque & Steiner (2015), where cS at high density
was constrained using a parameterized EOS and astrophysical
observations. An important distinction is that we use ab initio
methods and nuclear interactions from chiral effective field
theory (EFT) which allows us to study the influence of
uncertainties due to poorly constrained short-distance behavior
of two- and three-nucleon interactions.
At very high densities, far exceeding the densities in the NS

core, additional information on the speed of sound can be
obtained from perturbative QCD. These calculations of cold
ultra-dense quark matter, which are reliable at asymptotic
density, show that corrections due to interactions between
quarks decrease cS and that c 1 3S

2 < (Kurkela et al. 2010).
They also show that c 1 3S

2  with increasing density from
below. In general, in conformal theories, where the trace of the
energy momentum tensor ò−3P vanishes, c 1 3S

2 = is
independent of density, temperature, or interactions. Lattice
QCD calculations at finite temperature and zero chemical
potential show that c 1 3S

2 < , and that the introduction of a
small baryon chemical potential does not alter this result
(Borsanyi et al. 2012). The speed of sound has also been
calculated in a large class of theories for which the ADS/CFT
correspondence holds, and calculations are possible in the
strong coupling limit. It has been conjectured that c 1 3S

2 < ,
even when the trace of the energy momentum tensor is nonzero
(Cherman et al. 2009), although recently explicit counter-
examples have been presented (Hoyos et al. 2016;
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Ecker et al. 2017). We refer the reader to Bedaque & Steiner
(2015) for a more detailed discussion of this conjecture and
known exceptions (see also Hoyos et al. 2016 and Ecker
et al. 2017).

For QCD at finite baryon density, we are unaware of
compelling reasons to expect that c 1 3S

2 < , and based on the
preceding arguments, we will consider two minimal scenarios,
which are illustrated in Figure 1. The scenario labeled
(a) corresponds to the case when we assume that QCD obeys
the conformal limit c 1 3S

2 < at all densities, and scenario
(b) corresponds to QCD violating this conformal bound. The
behavior of cS at low and high density is constrained by theory,
and we shall show that NS observations, when combined with
improved ab initio calculations of PNM, can distinguish
between these two scenarios, and provide useful insights about
matter at densities realized inside NSs.

This paper is structured as follows. In Section 2, we present
constraints on the speed of sound from nuclear physics. In
Section 3, we extend the speed of sound to higher densities. In
Section 3.1, we study the EOS under the assumption that the
conformal limit is obeyed and the speed of sound is bounded
by 1 3 . For this case, we find that cS needs to increase very
rapidly above 1–2n0 to stabilize a 2Me NS. Such a rapid
increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree
of freedom. In Section 3.2, we release this assumption but
still find that models in which cS increases rapidly, reaching
values close to c, are favored. We study correlations in our
parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics
and observations. We then investigate the impact of possible
additional observations in Section 5. Finally, we summarize our
main findings in Section 6.

2. EOS and Speed of Sound from Nuclear Physics

2.1. The EOS of Neutron Matter

In this work, we use auxiliary-field diffusion Monte Carlo
(AFDMC) to find the many-body ground state for a given
nonrelativistic nuclear Hamiltonian(Carlson et al. 2015). In
general, the nuclear Hamiltonian contains two-body (NN),
three-body (3N), and higher many-body (AN) forces,

, 2NN 3N AN    = + + + ( )

which can be obtained from chiral effective field theory (EFT)
at low-density (see, for instance, Epelbaum et al. 2009 and

Machleidt & Entem 2011). Chiral EFT is a systematic
framework for low-energy hadronic interactions, that naturally
includes both two-body and many-body forces and allows for
systematic uncertainty estimates. It has been successfully used
to calculate nuclei and nuclear matter, see, for instance, Hebeler
et al. (2015) and references therein.
In this paper, we extend the AFDMC calculations of PNM of

Lynn et al. (2016) with recently developed local chiral N2LO
interactions, including two- and three-body forces of Gezerlis
et al. (2013, 2014) and Tews et al. (2016), to higher densities.
We find that, despite the rapid increase of the error estimates,
EFT-based interactions remain useful up to n=0.32 fm−3 and
our results for the energy per particle in neutron matter are
shown in Figure 2. We plot the results for local chiral
interactions at LO, NLO, and N2LO with three different 3N
interactions defined in Lynn et al. (2016): 3N interactions with
only the two-pion exchange (TPE-only), and 3N interactions
containing the TPE plus shorter-range contact terms with two
different spin-isospin operators (TPE+VE, and TPE+VE,τ),
see Lynn et al. (2016) for details. The uncertainty bands for
the individual N2LO interactions are obtained as suggested by
Epelbaum et al. (2015), i.e., the uncertainty X N LO2D at
order N2LO is given by

X Q X X Q X

X Q X X

max ,

, , 3

N LO 4 LO free 2 NLO

LO N LO NLO

2

2

D = -

- -

( ∣ ∣ ∣
∣ ∣ ∣) ( )

and similar for lower orders. The dimensionless expansion
parameter Q is given by Q=max(p/ΛB, mπ/ΛB) with p being

Figure 1. Two possible scenarios for the evolution of the speed of sound in
dense matter.

Figure 2. Neutron-matter EOSs used in this work. We show the AFDMC
results for local chiral Hamiltonians with three different 3N short-range
operators: TPE-only (green middle band), TPE+VE, (red upper band), and
TPE+VE,τ (blue lower band), see Lynn et al. (2016) for details. For
comparison, we also show results for the phenomenological AV8′+UIX
interactions (black line), for AV8′ (dotted line), as well as LO (dashed line) and
NLO (dashed–dotted line) results for the local chiral interactions of Gezerlis
et al. (2014) with R0=1.0 fm.
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a typical momentum scale of the system, mπ being the pion
mass, and ΛB≈500MeV being the breakdown scale of chiral
EFT. For PNM in Figure 2, we use the scale p k3 5 ;F= see
Lynn et al. (2017). The results indicate that the EOS of PNM is
well constrained up to saturation density, but the associated
error grows rapidly with density. Nonetheless, the order-by-
order convergence is still consistent with EFT expectations in
the range n0–2n0. In addition, although these interactions are
only fit to low-energy scattering data up to laboratory energies
of 150MeV, they also describe phase shifts at much higher
energies within uncertainties; see, e.g., Epelbaum et al. (2015).
For comparison, we also show results obtained using the
phenomenological Argonne v8′ NN interaction (AV8′) and the
Urbana IX 3N interactions (UIX) in Figure 2.

We present the energy per particle and the pressure at n0 and
2n0 at LO, NLO, and N2LO in Table 1 to provide supporting
arguments for the convergence of the chiral expansion in this
density range. Uncertainty estimates in Table 1 are provided by
assuming a typical momentum scale p k3 5 F= and, in
addition, a more conservative choice p=kF. At saturation
density, we find a systematic order-by-order convergence for
both energy and pressure: the results at different orders overlap
within their uncertainties, which decrease order-by-order.

From Figure 2 and Table 1, we see that the shorter-range 3N
interactions significantly influence the convergence, but are still
within conservative uncertainty estimates. These shorter-range
3N forces appear at N2LO in the chiral power counting and
contribute to systems containing triples of both neutrons and
protons with S=1/2 and T=1/2, where S and T are the total
spin and isospin, respectively. They are typically fit to few-
body observables, such as the He4 binding energy and neutron-
alpha scattering (see Lynn et al. 2017 for a detailed discussion).
In PNM, where all triples have T=3/2, these 3N forces
usually vanish and it can be shown that at N2LO only the long-
range 3N TPE interaction contributes (see, for instance, Hebeler
& Schwenk 2010), while shorter-range contributions to PNM
only appear at higher-order in the chiral expansion. In our case,
however, contributions to PNM from short-range N2LO 3N
interactions arise as artifacts from using local regulators. Local
forces in coordinate space are essential for their incorporation
in AFDMC but introduce regulator artifacts; see Huth et al.
(2017) for a detailed discussion in the NN sector. In the case of
three-nucleon forces, these regulator artifacts appear in form of
shorter-range 3N interactions mixed into triples with S=3/2
or T=3/2, e.g., triples containing three neutrons. We include
these additional contributions, which we denote as N2LO TPE

+VE, and N2LO TPE+VE,τ, to provide even more conservative
uncertainty estimates.
It is interesting to analyze the predictions for the energy per

particle and the pressure of PNM at 2n0. From Table 1 and
comparing the LO, NLO, and N2LO TPE-only predictions, the
pattern of convergence for the energy per particle is quite
reasonable, with clear signs of an order-by-order improvement. For
the pressure, the NLO contribution is larger than expected from
naive power counting arguments. A plausible resolution of this
discrepancy could be important contributions due to the Δ isobar,
which are only included at N2LO in Δ-less chiral EFT. We note,
however, that the more conservative error estimates in brackets
assuage the tension somewhat. The improvement in predictions for
the pressure at 2n0 from NLO to N2LO (TPE-only), on the other
hand, is consistent with EFT expectations. The situation for the
TPE+VE, and TPE+VE,τ interactions is less satisfactory. For the
TPE+VE, interaction, the predicted pressure at N2LO has some
overlap with the error band at NLO, while for the TPE+VE,τ
interaction the overlap is negligible. It is particularly troubling that
the TPE+VE,τ interaction predicts negative pressures at 2n0.
As argued earlier, these shorter-range contributions are an

artifact of using local regulators. The large attractive contrib-
ution of the TPE+VE,τ interaction is unphysical and should be
discarded for the following reasons: (i) the full N2LO 3N
contributions in momentum-space calculations by Hebeler &
Schwenk (2010), Tews et al. (2013), Hagen et al. (2014),
Sammarruca et al. (2015), Wlazowski et al. (2014), and
Drischler et al. (2016) are all found to be repulsive in PNM;
(ii) the inclusion of N3LO 3N contributions does not change the
repulsive nature of 3N forces in PNM, see Krüger et al. (2013)
and Drischler et al. (2016); and (iii) local regulators lead to less
repulsion from the 3N TPE compared to typically used
nonlocal regulators(Tews et al. 2016; Dyhdalo et al. 2016).
For these reasons, we will ignore the N2LO TPE+VE,τ

interaction in the following but include the TPE+VE,
interaction to investigate more repulsive short-range 3N forces.
It is worth noting that the pressure predicted by the

phenomenological AV8′+UIX interaction at 2n0 is signifi-
cantly larger than the N2LO (TPE-only) prediction. Even the
inclusion of additional repulsion through the N2LO TPE+VE

interaction does not alleviate this discrepancy. With some
reserve, we propose that our calculations with the N2LO TPE
+VE, interaction provide an upper limit to the pressure.
Calculations with local chiral interactions suggest that
P (2n0)<20MeV fm−3 in PNM, see Table 1.
In the following, we use the PNM results from the chiral

N2LO TPE-only and TPE+ VE, interactions up to a transition
density ntr, which we vary in the range of 1–2n0. Although the

Table 1
Energy per Particle and Pressure in PNM at n0 and 2n0 for Local Chiral Hamiltonians

Free Pheno. LO NLO N2LO (TPE-only) N2LO (+VE,) N2LO (+VE,τ)

E/A n0 35.1 19.1 15.5±5.2 (8.6) 14.3±2.7 (5.7) 15.6±1.4 (3.8) 17.3±1.5 (3.8) 13.5±1.4 (3.8)
2n0 55.7 49.9 20.9±14.6 (24.3) 27.0±9.4 (20.3) 27.2±6.1 (16.9) 36.9±6.4 (16.9) 14.3±8.2 (16.9)

P n0 3.7 3.3 1.3±0.7 (1.1) 1.6±0.4 (0.8) 1.8±0.2 (0.5) 2.4±0.4 (0.6) 1.1±0.3 (0.5)
2n0 11.9 25.8 3.1±3.7 (6.1) 9.8±4.4 (5.6) 7.8±2.8 (4.7) 15.1±3.4 (4.7) −2.6±8.1 (10.4)

Note. Energy per particle and pressure in PNM at n0 and 2n0 for local Chiral Hamiltonians at LO, NLO, and N2LO with three different short-range operators. The

uncertainties are obtained using Equation (3) with two different expansion parameters p/ΛB with p k3 5 F= and p=kF in parenthesis. We also give the values for
the free Fermi gas and the phenomenological AV8′+UIX interaction.
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uncertainties are sizable at 2n0, we shall find that PNM
calculations still provide useful constraints. The phenomenologi-
cal AV8′+UIX interaction will also be analyzed in the same
density interval for comparison. Even though the expansion
parameter ;kF/ΛB only increases by about 25% when the
density is increased from n0 to 2n0, we have chosen 2n0 as an
upper limit to the validity of nuclear Hamiltonians for the
following reasons. First, the previous discussion of uncertainties
and the order-by-order convergence of the energy per particle and
pressure in neutron matter has shown that while the convergence
for the energies is consistent with EFT expectations, the situation
is less satisfactory for the pressure at 2n0. Second, the accuracy of
chiral nuclear interactions in describing typical momenta in nuclei
and nucleon–nucleon scattering data decreases with increasing
density. Third, at higher densities, additional degrees of freedom,
e.g., hyperonic dof, might appear(e.g., Ambartsumyan &
Saakyan 1960; Glendenning 1982; Lonardoni et al. 2015; Gal
et al. 2016). Fourth, at densities above 2n0, typical momenta in
neutron matter are comparable to the cutoff scales employed in
the calculation, which further increases the size of regulator
artifacts. Based on these reasons, we believe that 2n0 is a
reasonable upper bound for calculations with the local chiral
Hamiltonians that we employ here.

2.2. The EOS of NS Matter

Matter in NS is in β—equilibrium, and at the relevant densities
a small fraction of protons will be present. The proton fraction,
denoted by x, increases with density but remains small and
x10% even at 2n0. Although the proton contribution to the
EOS can be expected to be small compared to the intrinsic
uncertainty associated with the nuclear Hamiltonian discussed
earlier, we shall extend the PNM results to finite proton fraction.
To achieve this, we use the parameterization introduced by

Hebeler et al. (2013), given by

E

A
n x T x x
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x x
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where T n m3 2 2 N0
2

0
2 3 2p= ( ) ( ) is the Fermi energy of

noninteracting symmetric nuclear matter at saturation density,
x=np/n is the proton fraction (np is the proton density), and
α, αL, η, ηL, and γ are parameters that are fit to the neutron-
matter results and the saturation point of symmetric nuclear
matter, n , 0.5 16 MeVE

A 0
nuc

= -( ) , and Pnuc(n0, 0.5)=0. The
saturation point determines α and η, while the parameters αL,
ηL, and γ are determined by the PNM results. This
parameterization provides a faithful reproduction of the PNM
results obtained using AFDMC for densities up to 2n0, and has
also been shown to provide a good representation of results for
asymmetric nuclear matter obtained in many-body perturbation
theory(Drischler et al. 2014).
Using the parameterization in Equation (4), we follow Tews

(2017) to construct a consistent crust model up to the crust-core
transition density, ncc≈n0/2. For densities between ncc and
the chosen transition density ntr, we extend the PNM results to
β equilibrium. From this procedure, the neutron-star equation
of state P(ò) and the speed of sound c nS

2 ( ) are determined. In
Figure 3, we show the speed of sound in NS matter up to two
times nuclear saturation density for the chiral N2LO TPE-only
(green band), N2LO TPE+VE, (red band), and AV8′+UIX
(black line) interactions.

3. Speed-of-sound Extension to Higher Densities

To obtain the mass–radius relation of NSs we need to extend
our EOS of NS matter to higher densities. A common approach
is to use a polytropic extension (see, e.g., Hebeler et al. 2013;
Kurkela et al. 2014, and Raithel et al. 2016 for more details). In
such an approach, the higher-density EOS is parameterized by a
set of piecewise polytropes, that are matched to the microscopic
calculations. The polytropic indices and the transition densities
between the individual segments are then varied to sample many
possible EOS curves. This approach is rather general but it leads
to discontinuities in the speed of sound.
In this work, we shall restrict our analysis to scenarios for

which the speed of sound is continuous for densities
encountered inside NS, allowing us to directly parameterize
the speed of sound and use it to construct the EOS. Although
this may be less general than EOSs constructed from piecewise
polytropes, our choice is motivated by the following observa-
tion. Our calculations of the nuclear EOS up to 2n0 show that it
is relatively soft with a rather small speed of sound. To obtain a
maximum NS mass M 2max > Me, the EOS at higher density
needs to stiffen significantly. This disfavors strong first-order
phase transitions inside NS above 2n0, and models of high-
density matter where new Fermionic or bosonic degrees of
freedom appear suddenly to produce discontinuities in the
energy density (note that the pressure is continuous and

Figure 3. Speed of sound as a function of density for NS matter based on the
local chiral N2LO TPE-only (green lower band) and TPE+VE, (red higher
band) interactions of Lynn et al. (2016) and the AV8′+UIX interaction (black
line) for comparison. The arrow indicates the region of the crust-core transition.
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monotonically increasing toward the center of NS due to
hydrostatic equilibrium; Alford et al. 2013). Without such
phase transitions, it is more natural to expect that the evolution
of the speed of sound in the NS core will be continuous. In the
following, we shall connect the speed of sound in neutron
matter at densities up to 1−2n0 shown in Figure 3, to the
speed of sound expected in deconfined quark matter at very
high density(Kurkela et al. 2010) using two parameterizations,
that we will discuss in Sections 3.1 and 3.2.

We stress that sampling the speed of sound is a
complimentary approach to using a set of piecewise polytropes.
In fact, choosing a set of piecewise polytropes is completely
equivalent to choosing piecewise segments for the speed of
sound that have a specific functional form and are connected by
phase transitions, e.g., three segments with three such phase
transitions in the case of Hebeler et al. (2013). Sampling the
speed of sound allows us to easily control the number of phase
transitions as well as their characteristics and to extract
meaningful information on its density behavior, e.g., the
maximum speed of sound inside an NS and its peak position. It
is also straightforward to include additional information on the
speed of sound, e.g., bounds on cS. In Section 3.1, we will
analyze the impact of such a bound.

3.1. Extension with the Conformal Limit

In this scenario c 1 3S
2 < at all densities, and we extend the

speed of sound to densities above those described by the
nuclear EOS using a simple three-parameter curve,

c c
n c

n

1

3
exp , 5S

2
1

2
2

BL
2

= - -
-⎡

⎣⎢
⎤
⎦⎥

( ) ( )

where two of the parameters, c1 and c2, are fit to the speed of
sound and its derivative at ntr. The remaining parameter, nBL,
controls the width of the curve and presents a density interval
in which the speed of sound changes considerably. The smaller
this parameter, the stronger the change of the speed of sound
with density. By varying this remaining parameter, we can
easily control the slope of the speed of sound after the
transition density, see Figure 4. The choice of an exponential
function may seem ad hoc at this stage, but will be well
motivated shortly when we find that to obtain 2Me NSs, cS
must increase rapidly over a narrow interval nBLn0.

From Equation (5), we can construct the EOS using the
following procedure. Starting at ntr, where ò(ntr), p(ntr), and
ò′(ntr) are known, we take successive small steps Δn in density,

n n n 6i i1 = + D+ ( )

n
p

n
7i i i

i i

i
1   


= + D = + D

+
+

⎛
⎝⎜

⎞
⎠⎟· ( )

p p c n , 8i i S i1
2 = + D+ ( ) · ( )

to iteratively obtain the high-density EOS, where the index i=0
defines the transition density ntr. Note, in the second line we
have used the thermodynamic relation p n n = ¶ ¶ - valid
at zero temperature. We then use the resulting equation
of state to solve the Tolman–Oppenheimer–Volkoff (TOV)
equations, and to obtain the mass–radius relation for NS.

In Figure 5, we show the maximum NS mass as a function of
the baseline width nBL of Equation (5) (describing the slope)
for two transition densities, ntr,1= 1.1n0=0.18 fm−3 and
ntr,2=2n0=0.32 fm−3, and for the nuclear interactions of
Figure 3. We compare these to the current NS maximum-mass
constraint of 2.01±0.04Me (Antoniadis et al. 2013). Depend-
ing on the transition density and the nuclear Hamiltonian, we
observe the tension between current nuclear and astrophysical
constraints and the c 1 3S

2 < bound set by the conformal limit,
first noted in Bedaque & Steiner (2015; see also Moustakidis
et al. 2017). At the lower transition density, there is some
freedom to find an EOS that satisfies both the conformal bound
and the maximum-mass constraint. However, the inferred value
of nBL is small, indicating that cS must increase much more
rapidly in the density interval n0–2n0 than would be compatible
with EFT predictions. For ntr=2n0, chiral EFT, even with the
repulsion beyond the TPE-only interaction, is unable to support
the 2.01±0.04Me NS if the conformal bound is observed. The
stiffest EOS predicted by the phenomenological Hamiltonian
AV8′+UIX (black line) barely satisfies both bounds in that case.
In the left panel of Figure 6, we show the evolution of c2S for

the largest values of nBL compatible with a two-solar-mass NS
for several transition densities and for the softest and stiffest
nuclear interaction under investigation (without uncertainty
bands for clarity). In the right panel, we show this maximal
width as a function of ntr. We find that for the chiral N2LO
TPE-only interaction there is no curve that satisfies both the
speed-of-sound and the NS-mass bounds for transition densities
larger than ≈0.25 fm−3. For the phenomenological nuclear
Hamiltonian, the situation is only slightly different. We find
that for low transition densities a moderate slope of the speed of
sound is sufficient to reproduce a two-solar-mass NS. With

Figure 4. Extension for cS
2 as a function of density n as defined in Equation (5).

The orange line represents the constraint from the TPE-only EOS (up to
ntr=0.16 fm−3), while the blue lines are extensions for several widths
(nBL=0.1, 0.3, 0.5, 0.7 fm−3 from left to right). The red dashed line indicates
the conformal limit.
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increasing transition density, again, the speed of sound has to
increase on a smaller density interval to fulfill the mass
constraint. Above transition densities of ≈0.3 fm−3, we find
strong tension between both bounds.

To summarize, since AFDMC predictions for the EOS using
EFT interactions are very reliable, and order-by-order conv-
ergence at these densities was observed, we argue that our
results suggest that either QCD violates the conformal bound,
or a chiral EFT-based description breaks down at densities
below 2n0 due to new physical effects.

3.2. Extension without Conformal Limit

We shall now allow the speed of sound to exceed the
conformal limit of 1 3 at the densities encountered in the NS
core and only require that cS<1. We model its evolution with
density in a minimalist approach constrained by knowledge of
its behavior at low and high density by adding a skewed
Gaussian to the form defined in Equation (5),

c c
n c
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where the peak is described by its height hP, position nP,
width wP, and the shape or skewness parameter sP. The
coefficients c1 and c2 are again adjusted to the microscopic
calculations up to the transition density ntr to make sure that
the speed of sound and its derivative are continuous. By
varying the remaining parameters, we can model many
possible curves for the speed of sound. In Figure 7, we show
four such parameterizations where we also indicate the
maximal central density reached for each EOS. As one

can see, this approach is very versatile and can produce very
different shapes for the speed of sound, some of which
resemble the result by Paeng & Rho (2016).
The chosen form in Equation (9) allows cS to be a

nonmonotonic function of density. The peak at intermediate
density can be interpreted as describing a crossover transition
that may be realized inside NSs. However, the high-density
behavior, where cS

2≈1/3, is realized at densities well beyond
those accessed in NSs. While this functional form is rather
simple and has only five parameters, it is comparable in
complexity to a polytropic extension with three polytropic
segments, and can be easily extended. We have also tested
different functional forms for the speed of sound and found our
results to be robust: the average radius for a typical 1.4Me NS
varied only on the percent level when different functional
forms were chosen.
We sample values for the baseline width and the four peak

parameters that determine cS to construct the high-density
EOS. We use the full EOS and solve the TOV equations to
obtain NS mass–radius curves and the NS maximum mass;
when this is found to be greater than the 2.01Me mass
constraint, we accept the parameter set, and reject it
otherwise. We sample the five parameters from uniform
distributions within the following ranges: nBL between 0.01
and 3.0 fm−3, hP between 0.0 and 0.9, wP between 0.1 and
5.0 fm−3, nP between (ntr+0.08)–5.0 fm−3, and sP between
(−50)−50, and enforce that c0 1S

2  .
For the chiral interactions, we additionally sample from the

uncertainty bands for cS by randomly choosing a factor f err

between −1 and 1, that linearly interpolates between the lower
and upper bounds of the uncertainty band,

c n c n f c n , 10S S S
N LO err EKM2

= + D( ) ( ) ( ) ( )

where c nS
N LO2 ( ) is the chiral result at N2LO and c nS

EKMD ( ) is its
uncertainty.

Figure 5. Maximum mass Mmax as a function of baseline width nBL of Equation (5) for the chiral N2LO interactions (red and green bands), and the AV8′+UIX
interaction (black line) for two transition densities, ntr,1=0.18 fm−3 and ntr,2=0.32 fm−3. We also indicate the highest observed NS mass with its uncertainty
(orange band).
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As stated before, we analyze the results for two different
transition densities and generate a few thousand accepted
parameter sets for each transition density. We show histograms
for the resulting speed of sound, the mass–radius relation, and
the EOS in Figures 8 and 9 for both transition densities. For the
mass–radius histograms, we also show the average radius for
each mass as well as 68% confidence intervals.

We find that the speed of sound increases rapidly in a small
density range above ntr. This increase is more drastic for softer
nuclear interactions. For stiffer interactions, cS increases slowly

and peaks at higher densities. In all cases, for a large fraction of
parameterizations, the speed of sound increases to values
around cS≈0.9. For the smaller transition density, there exist
parameterizations that observe the conformal limit at all
densities, while for the higher transition density all parameter-
izations violate this bound, consistent with our previous
findings.
For the mass–radius relation, we find a rather broad radius

distribution at lower transition densities that narrows with
increasing transition density. This highlights the fact that PNM
calculations at densities ∼2n0 provide valuable information
despite sizable uncertainties. We highlight this fact in
Figure 10, where we show the radius of a typical 1.4Me NS
as a function of ntr for the chiral EFT interactions. At ntr,1, we
find a radius range of 9.4–14.0 km (10.0–14.1 km) with a 68%
confidence interval of 12.0±1.0 km (12.3± 0.9 km) for the
TPE-only (TPE+VE,) interaction. This range reduces to
9.4–11.8 km (10.2–12.3 km) with a 68% confidence interval
of 10.7±0.5km (11.5 0.4

0.3
-
+ km) for ntr,2.

For the phenomenological interaction, the mass–radius
relation is much narrower than for the chiral interactions
because the EOS is much stiffer and uncertainties associated
with the interaction are unknown. For a typical NS, we find a
radius range of 11.4–14.3 km with a 68% confidence interval of
12.7 0.6

0.7
-
+ for ntr,1 and a very narrow range of 12.8–12.9 km

for ntr,2.
In all histograms, we compare our findings to the

corresponding envelopes of Hebeler et al. (2013) for a
polytropic expansion with three polytropes and find very good
agreement for all interaction models. This suggests that our
extension is general enough to capture similar effects as the
polytropic extension. Our results are also consistent with other
radius constraints using EOSs obtained with the AFDMC
method(Steiner & Gandolfi 2012; Steiner et al. 2015).
In Table 2, we show the maximum masses and the maximal

central densities for all interactions and both transition
densities. The upper limit for the maximum mass strongly

Figure 6. Left panel: cS
2 as a function of density for several transition densities and two nuclear Hamiltonians. For each transition density and Hamiltonian, we show

the curve for the maximal nBL that still supports a two-solar-mass NS. Right panel: the maximal nBL that is sufficient to support a two-solar-mass NS as a function of
transition density for the same Hamiltonians.

Figure 7. Four examples for the extension of c nS
2 ( ) as defined in Equation (9)

(without conformal limit) for ntr,2 and the chiral TPE+VE,1 interaction. Black
dots indicate the maximal central densities reached inside NSs for the
corresponding EOSs and the red dashed line indicates the conformal limit.
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depends on the chosen transition density but not on the
interaction. For the smaller transition density, the highest
achievable maximum mass is ≈3.6Me, independent of the
interaction. For the higher transition density, the highest
achievable maximum mass is ≈2.8Me for all interactions.
The maximal central density reached inside the NS, nc,max,
that is, the central density in the maximum-mass NS, ranges
between 2.7 and 8.9n0 for the lower transition density, and
4.4–9.3n0 for the larger transition density.

Kurkela et al. (2014), Fraga et al. (2016), and Annala et al.
(2018) discussed the possibility of additionally constraining the
EOS with information from pQCD at very high densities. Their
calculation constrains the pressure at ò≈15000MeV fm−3 to
lie in the range of p≈2600–4000MeV fm−3. However, we
find that the highest pressure inside any stable NS pmax≈
1570MeV fm−3 is significantly smaller. Since we cannot infer
the EOS at densities above the maximum central density from
NS observations, it is always possible to find curves for the
speed of sound with c0 1S

2  that connect our models at the
maximal central density with the pQCD constraint.

3.3. Parameter Correlations

In the following, we want to discuss correlations between
nc,max and Mmax, and cS,max

2 and Mmax. We show histograms for

these correlations in Figure 11 for the chiral interactions and
ntr,2, but our observations do not change significantly for the
other interactions or transition densities.
The correlation between nc,max and Mmax indicates, as

expected, that the central densities of the heaviest NSs decrease
with maximum mass. The same is true for the uncertainties of
the central density, which also decrease with maximum mass.
Furthermore, these central densities are well below the upper
limit established by Lattimer & Prakash (2005).
For the correlation between Mmax and cS,max

2 , we find that the
highest masses can only be reached for the stiffest EOS, i.e.,
EOS with highest possible c 1S,max

2 = . Furthermore, for every
maximum mass there is a minimum for cS,max

2 that is needed to
support this mass. It follows that a maximum mass observation
will give a lower bound to the maximum speed of sound. For
the current maximum mass constraint, Mmax=2Me,
c 0.4S,max

2  for ntr,2, which is in excellent agreement with
the findings of Alsing et al. (2018). An observation of a 2.4Me
NS would require c 0.6S,max

2  .

4. Smallest Possible NS Radius

In this section, we investigate the smallest possible NS radius
consistent with ab initio calculations of neutron matter and the
observation of 2Me NSs. This radius is found for the softest

Figure 8. Histograms for c nS
2 ( ), the mass–radius relation, and the EOS for all the accepted parameter sets for the local chiral N2LO interactions of Figure 3 and ntr,1

(upper panels) and ntr,2 (lower panels). For the c nS
2 ( ) histogram, we terminate each parameterization at its maximal central density. The orange lines are the

corresponding contours for the polytropic expansion of Hebeler et al. (2013). For the mass–radius curve, we also show the average radius for each mass (solid line) as
well as 68% confidence intervals (dashed lines).
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possible low-density EOS combined with the stiffest possible
high-density EOS consistent with these constraints(Koranda
et al. 1997).

We again assume that ab initio neutron-matter calculations
are valid up to a transition density n1, which is at least nuclear
saturation density. We choose the softest PNM EOS up to
n1=n0 to construct the lower-density part of the softest NS
EOS. This EOS is given by the lower bound of the uncertainty
band of the chiral N2LO TPE+VE,τ interaction (blue band in
Figure 2). Although we did not use this interaction previously,
as it leads to attractive 3N contributions and negative pressure
at 1.5n0, it is the most conservative choice to estimate the
smallest possible NS radius. We then extend this EOS to
densities above n0 in the softest way possible by setting cS=0
up to a second transition density n2. For the EOS to be able to
fulfill the second constraint, namely to reproduce a NS of a
certain mass, the high-density part of the EOS has to be as stiff
as possible, and above n2, we set cS=1. This parameterization

Figure 9. Same as Figure 8 but for the AV8′+UIX interaction (black line in Figure 3).

Figure 10. Radius of a 1.4 Me NS as a function of transition density for the
chiral models. We show the total range of models (colored bands) as well as the
mean (solid lines) with 68% intervals (dashed lines).

Table 2
Maximal NS Mass and Maximal Central Densities

ntr (fm
−3) Interaction Mmax (Me) nc,max (n0)

TPE-only 2.01–3.63 2.8–8.6
0.18 TPE+VE,  2.01–3.66 2.7–8.9

AV8′+UIX 2.01–3.57 2.9–8.4

TPE-only 2.01–2.79 4.6–8.7
0.32 TPE+VE, 2.01–2.81 4.5–9.3

AV8′+UIX 2.01–2.84 4.4–8.9

Note. Maximal NS mass and maximal central densities for all interactions and
both transition densities.
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is similar to the one explored in Alford et al. (2015) and Alford
& Han (2016) for ntrans=n0, and leads to the smallest radii
consistent with the two constraints, because the radius is set by
the low-density part of the EOS while the maximum mass is set
by the high-density part. A softer high-density EOS would
require a stiffer low-density EOS, which in turn would result in
larger radii.

Changing the transition densities naturally affects the radius:
increasing n1 or lowering n2 would increase the radius. The
density n2 also determines the maximum mass Mmax that can be
supported by this softest EOS. Increasing n2 leads to decreasing
maximum masses, see Figure 12. We require Mmax to
be at least consistent with the lower uncertainty bound
of the heaviest observed NS, which is the case for n2=
0.68 fm−3=4.25n0 (solid black line). The corresponding
curve represents the lowest possible neutron-star radii
consistent with ab initio neutron-matter calculations and current
observational constraints on NS masses. This curve implies that
a typical 1.4Me NS has to have a radius larger than 8.4 km.

If heavier NSs would be observed, n2 has to decrease, which
in turn leads to increasing radii; see Figure 12. For different n2,
the EOS constructed here will produce the smallest possible
radius that is consistent with the corresponding Mmax. If, e.g., a
2.5Me NS was observed, the radius of a typical NS would
have to be larger than 10.2km.

5. Impact of Additional Observations

In the following section, we investigate to what extent
additional observations of NS properties, e.g., NS radii, may
help to constrain the properties of nuclear interactions. We will
assume in this section that we can trust nuclear interactions up
to ntr,2=2n0.

For a study of the impact of the recent NS merger
observation by the Advanced LIGO collaboration(Abbott
et al. 2017) using the speed-of-sound extension presented in
this paper, please see Tews et al. (2018). For studies using
different models for the high-density EOS constrained by chiral
interactions at low densities, please see Annala et al. (2018),
Most et al. (2018), and Lim & Holt (2018).

5.1. Observation of Compactness

We begin by assuming that the compactness of a NS has
been observed. It was claimed by Hambaryan et al. (2017) that
the compactness of the NS RX J0720.4-3125 can be inferred
to be (M/Me)/(R/km)=0.105±0.002. Margueron et al.
(2018) used this information to constrain the corresponding NS
mass to be 1.33±0.04Me with a radius of 12.7±0.3 km.
Investigating the effect of such a compactness observation, we

find a rather broad range for possible neutron-star masses and
radii, ranging from M=1.00–1.38Me and R=9.8–12.8 km.
The chiral interactions favor smaller NSs, with the weight of the
distribution around the point (11 km, 1.1Me) for the TPE-only
and (12 km, 1.2Me) for the TPE+VE, interaction. The AV8′

Figure 11. Histograms for the correlations between nc,max and Mmax and cS,max
2 and Mmax for the chiral interactions and ntr,2.

Figure 12. Mass–radius curves for the softest EOS consistent with neutron-
matter calculations up to saturation density for different densities n2. The
softest EOS consistent with the observation of a 2 Me NS is obtained for
n2=0.68 fm−3 (solid black line).
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+UIX interaction leads to a prediction of M=1.32–1.38Me
with a radius of 12.8 km, in good agreement with the prediction
of Margueron et al. (2018).

The observation of the compactness alone is naturally not
sufficient to further constrain the EOS. However, by observing
the compactness of a star with known mass, which is equivalent
to a radius measurement, additional constraints can be found.
We discuss this in the next section.

5.2. Observation of the NS Radius

In the following, we investigate how possible radius
measurements by the NICER mission will impact our findings
for the EOS and the mass–radius curve and help to constrain
the microscopic equation of state. The NICER mission, which
was launched in 2017 July, is expected to measure the
compactness (and, thus, radius) of at least three NSs with
known masses with an accuracy of 5%–10%. Among these are
(Arzoumanian et al. 2014) the NSs PSR J1023+0038 with
M=1.71±0.16Me (Deller et al. 2012), PSR J0437-4715
with M=1.44±0.07Me (Reardon et al. 2016), and a
proposal for using NICER to measure PSR J1614-2230 with
a mass of ≈2.0Me (Miller 2016).

We show histograms for the radius of a typical 1.4Me NS,
R1.4, versus the pressure at two times the nuclear saturation
density, p(2n0)=p2, and the pressure at four times the nuclear
saturation density, p(4n0)=p4 in Figure 13, for all interactions

and ntr,2. All interactions predict different p2, as expected, but
overlapping distributions for p4. The chiral interactions predict
similar radii around 10–12 km, and the AV8′+UIX interaction
predicts a higher radius of R 12.81.4 » km, which is not
consistent with the chiral models; see also Figure 9.
We now assume that the radius of such a 1.4Me NS is

observed with an accuracy of 10%. We will focus on two
extreme cases: Robs=(10±1.0) km, which is the lower
bound on the suggested radius range of Ozel & Freire
(2016), and Robs=(13±1.3) km, which is on the upper end
of the currently accepted radius range. We show the
corresponding histograms for the mass–radius relation and
the speed of sound in Figure 14.
The observation of a small 10 km NS would eliminate a sizable

part of the stiffer parameterizations with higher p2 and p4 (see also
Figure 13) and would allow us to obtain additional constraints on
the microscopic EOS at ntr,2: It would (i) exclude the stiffest chiral
interactions; (ii) rule out the AV8′+UIX interaction; (iii) reduce
the allowed maximum mass to≈2.5Me; and (iv) suggest that the
speed of sound changes less drastically above 2n0 and peaks at
densities of ∼4–5n0 with c c0.8 0.1S

2 2»  .
The observation of a large 13 km NS, instead, would exclude

the softest interactions. For the TPE-only interaction, for
example, only a very small fraction of parameterizations would
survive, and a major fraction of the uncertainty band for that
interaction could be ruled out. Also, in this case, the speed of
sound has to increase quickly above 2n0.

Figure 13. Histograms for the radius of a 1.4 Me NS, R1.4 vs. the pressure at two times the saturation density, p(2n0)=p2 (upper panels), or the pressure at four times
the saturation density, p(4n0)=p4 (lower panels), for all interactions (N

2LO TPE-only left, N2LO TPE+VE, middle, AV8′+UIX right) and ntr,2.
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Clearly, observations of more extreme radii and/or with
smaller uncertainties would present even stronger constraints.
For example, an observation of an 13 km NS with 5%
uncertainty would rule out the TPE-only interaction. The
prospect that NICER may achieve this precision soon with
better understood systematic errors is exciting for nuclear
physics and we eagerly await its results.

5.3. Observation of Two NS Radii

As we have shown in the previous section, the observation of
a single NS radius might prove useful to constrain nuclear
interactions, if the observed radius is either on the lower or on
the upper side of the currently accepted range of 12±2 km for
typical 1.4Me NSs. We now investigate to which extent the
observation of two NS radii with 5% uncertainty for stars with
known masses can be used to constrain both the EOS and
nuclear interactions.

We assume that radii of a 1.4Me neutron star, R1.4, and of a
2.0Me neutron star, R2.0, have been observed, and present the

pressure at twice saturation density, p2, in Table 3 and the
pressure at four times saturation density, p4, in Table 4 for all
interactions and assuming ntr,2.
For ntr,2, the pressure p2 is set by the nuclear input EOS and

independent of the extension. As we have shown in
Section 3.2, different interactions are compatible with different
ranges for R1.4. The chiral interactions lead to R1.4≈10–12 km
and the AV8′+UIX interaction is only compatible with
R1.4=13 km±5%. If, for instance, R1.4=10 km±5%
was observed, the AV8′+UIX interaction would be ruled out.
An additional observation of R2.0 would permit further

constraints. For instance, both chiral interactions permit
R1.4=12 km, but only the TPE+VE, interaction could
simultaneously lead to R2.0=10 km. Also, the second radius
observation might prove useful to constrain p4 and the high-
density equation of state. For a single radius measurement, the
predicted ranges for p4 are very large. For example, for
R1.4=12 km, the predicted p4=107–446MeV fm−3. A
second radius measurement would allow us to clearly reduce

Figure 14. Upper two panels: histograms for the mass–radius relation and the speed of sound for the chiral interactions and assuming an observation of a
NS with M=1.4 Me and R=10±1.0 km (black point). Lower two panels: the same, assuming an observation of a NS with M=1.4 Me and R=
13±1.3 km.
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this range in most cases. If, for example, R2.0=11 km, the
range for p4 would reduce to p4=117–252MeV fm−3.

The observation of two NS radii could be very useful to
constrain both low- and high-density EOS, and will hopefully
be made available by the NICER mission.

6. Summary

In this work, we used constraints on the neutron-matter EOS at
low densities and general considerations for the speed of sound in
NSs to investigate the structure of NSs.

Table 3
Pressure at Two Times Saturation Density for Hypothetical Radius Measurements

p2 (MeV fm−3)

R1.4 (km)

10%±5% 11%±5% 12%±5% 13%±5%

TPE-only 6.5–10.7
9%±5% TPE+VE,

AV8′+UIX

TPE-only 5.9–10.9 5.9–10.9
10%±5% TPE+VE, 12.8–13.6 12.8–18.1 14.7–18.9

AV8′+UIX

TPE-only 5.9–10.4 5.9–10.9 9.8–10.8
R2.0 [km] 11%±5% TPE+VE, 12.8–18.4 12.8–18.9

AV8′+UIX 26.0

TPE-only 5.9–10.9 6.1–10.9
12%±5% TPE+VE, 12.8–16.8 12.8–18.8

AV8′+UIX 26.0

TPE-only 10.8–10.9
13%±5% TPE+VE, 13.1–18.8

AV8′+UIX 26.0

Note. Pressure at two times saturation density, p2, for all interactions and ntr,2=0.32 fm−3, for hypothetical simultaneous measurements of the radii of a 1.4 Me and a
2.0 Me NS, R1.4 and R2.0, respectively.

Table 4
Pressure at Four Times Saturation Density for Hypothetical Radius Measurements

p4 (MeV fm−3)

R1.4 (km)

10%±5% 11%±5% 12%±5% 13%±5%

TPE-only 52–92
9%±5% TPE+VE,

AV8′+UIX

TPE-only 69–182 113–159
10%±5% TPE+VE, 72–112 84–152 107–141

AV8′+UIX

TPE-only 151–242 145–310 168–192
R2.0 [km] 11%±5% TPE+VE, 122–265 117–252

AV8′+UIX 147–152

TPE-only 164–428 178–428
12%±5% TPE+VE, 182–306 163–442

AV8′+UIX 148–285

TPE-only 425–426
13%±5% TPE+VE, 230–446

AV8′+UIX 171–461

Note. Pressure at four times saturation density, p4, for all interactions and ntr,2=0.32 fm−3, for hypothetical simultaneous measurements of the radii of a 1.4 Me and a
2.0 Me NS, R1.4 and R2.0, respectively.
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We found that the conformal limit of c 1 3S
2  is in tension

with current nuclear physics constraints and observations of
two-solar-mass NSs, in accordance with the findings of
Bedaque & Steiner (2015). If the conformal limit was found
to hold at all densities, this would imply that nuclear physics
models break down below 2n0.

We then allowed the speed of sound to exceed the conformal
limit and used general considerations about its high-density limit
to parameterize the speed of sound. By using randomly sampled
parameter sets and requiring the EOS to reproduce two-solar-
mass NSs, we computed histograms for the speed of sound, the
mass–radius relation, and the EOS for microscopic interactions
from chiral EFT and the AV8′+UIX interaction. We found that
the speed of sound likely exhibits a sharp increase around 2n0 for
all interactions under consideration. We found that the upper limit
on the maximum mass of NSs is 2.9–3.5Me, and that radii for
typical 1.4Me NSs range between 10 and 14 km, in agreement
with the results of Hebeler et al. (2013) and Steiner et al. (2018).

We then studied the minimal possible NS radius consistent
with microscopic ab initio neutron-matter calculations and NS
observations, and found that a typical 1.4Me NS has to have a
radius larger than 8.4 km.

Finally, we studied the impact of additional observations on
our models. If the compactness of a NS is observed, as suggested
by Hambaryan et al. (2017), microscopic calculations allow a
broad range of radii and masses for the corresponding NS. An
additional mass measurement, i.e., mass and radius are known
simultaneously, instead, might put tight constraints on the EOS.
If the observed radius would be at the limits of the currently
accepted range of 12±2 km, constraints on the microscopic
interactions would be possible. We have shown that the
observation of two NS radii for NS with different masses will
very likely permit tight constraints on nuclear interaction models
and the EOS up to several times nuclear saturation density.

With the prospect of radius observations becoming available,
either from the NICER mission or gravitational wave
observations from NS mergers by the Advanced LIGO
collaboration, an exciting era of nuclear astrophysics begins.
These observations will allow us to finally pin down the EOS
of NSs within the coming years.

This work was supported in part by the National Science
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Evolution of the Elements), the U.S.DOE under grants
Nos.DE-FG02-00ER41132 andDE-AC52-06NA25396, by
the NUCLEI SciDAC program, and by the LDRD program
at LANL. Computational resources have also been provided by
the Jülich Supercomputing Center.
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