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Abstract

We investigate how the statistical properties of dispersion measure (DM) and apparent flux density/fluence of
(nonrepeating) fast radio bursts (FRBs) are determined by unknown cosmic rate density history [ρFRB(z)] and
luminosity function (LF) of the transient events. We predict the distributions of DMs, flux densities, and fluences
of FRBs taking account of the variation of the receiver efficiency within its beam, using analytical models of
ρFRB(z) and LF. Comparing the predictions with the observations, we show that the cumulative distribution of
apparent fluences suggests that FRBs originate at cosmological distances and ρFRB increases with redshift
resembling the cosmic star formation history (CSFH). We also show that an LF model with a bright-end cutoff at
log10Lν (erg s−1 Hz−1)∼34 are favored to reproduce the observed DM distribution if ρFRB(z)∝CSFH, although
the statistical significance of the constraints obtained with the current size of the observed sample is not high.
Finally, we find that the correlation between DM and flux density of FRBs is potentially a powerful tool to
distinguish whether FRBs are at cosmological distances or in the local universe more robustly with future
observations.
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1. Introduction

Fast radio bursts (FRBs) are transient events observed in
∼1 GHz radio bands with typical durations of several
milliseconds (e.g., Lorimer et al. 2007; Keane et al. 2012;
Thornton et al. 2013). Their large dispersion measures (DMs),
which indicate the column density of free electrons along the
sightlines, suggest that they are extragalactic objects. If FRB
DMs arise from the intergalactic medium (IGM), FRBs may
provide us with an unprecedented opportunity to detect the
IGM directly.

However, the origin of FRBs is not yet known. Although
various theoretical models have been proposed (e.g.,
Kashiyama et al. 2013; Popov & Postnov 2013; Totani 2013;
Falcke & Rezzolla 2014; Cordes & Wasserman 2016;
Zhang 2017), observational evidence that confirms or rejects
those models is hardly obtained. The currently available
localization precision of FRBs is typically several arcmin,
which is too large to identify their host galaxies, and FRB
distance measurements that are independent of DM are also
missing.

The only exception is FRB121102, the repeating FRB, for
which the host galaxy is identified and its redshift is known
thanks to its repeatability (Chatterjee et al. 2017; Tendulkar
et al. 2017). However, the other FRBs do not show any
repeatability, and hence FRB121102 can be a different kind of
phenomenon from the other FRBs (Palaniswamy& Zhang 2018),
although it is also pointed out that FRB110220 and
FRB140514 might be repetitions of a same source (Piro &
Burke-Spolaor 2017). Hereafter, FRB means nonrepeating FRB,
unless stated otherwise.

Redshift distribution of a population of transient events is an
important clue to understand the nature of the transients, which
reflects their luminosity function (LF) and comoving rate
density at each redshift. The cosmic FRB rate density [ρFRB(z)]
would be proportional to the cosmic star formation history
(CSFH) if FRBs are related to the young stellar population

(e.g., core-collapse supernovae, young neutron stars), while it
would follow the cosmic stellar mass density (CSMD) if FRBs
arise from older stars.
Although we cannot measure redshift of an FRB in most

cases, distance to an FRB can be estimated via its DM. The
excess of the DM over the Milky Way contribution in the
direction (DMEX) can be interpreted as the distance to the source
under the assumption that a major part of the observed DMEX

arises from the IGM (e.g., Ioka 2003; Inoue 2004). Previous
studies have shown that the DMEX distribution of the observed
FRBs is consistent with the expectations if FRBs are distributed
over cosmological distance (e.g., Dolag et al. 2015; Caleb
et al. 2016; Katz 2016; Cao et al. 2017). However, DMEX does
not necessarily arise only from the IGM, because a part of DMEX

can be attributed to ionized gas in the vicinity of FRBs.
The cumulative distribution of FRB flux densities/fluences

(so-called logN–logS distribution) also serves as a clue to
understand the distance distribution of FRBs, because the
distribution follows a power law with the index of −1.5 when
the sources are uniformly distributed in a Euclidean space,
while the distribution may vary when the sources are at
cosmological distances due to the cosmic expansion and
cosmological evolution of the source number density (Caleb
et al. 2016; Katz 2016; Oppermann et al. 2016; Vedantham
et al. 2016; Li et al. 2017; Macquart & Ekers 2018).
In this study, we investigate how the interplay between

unknown cosmic rate density history and LF of FRBs
determines the statistical properties of the observable quantities,
i.e., DMEX and apparent flux density/fluence, taking account of
the variation of the receiver efficiency within its beam. We
discuss what constraint the current observations put on the nature
of FRBs and how we can distinguish whether FRBs are at
cosmological distances or in the local universe with future
observations.
In Sections 2 and 3, we describe our models of cosmic FRB

rate history and FRB LF, respectively. We discuss constraints
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on the cosmic rate history and the LF of FRBs obtained from
the observed DMEX distribution under the assumption that
FRBs originate at cosmological distances in Section 4. In
Section 5, we discuss the logN–logS distribution and the
correlation between DMEX and apparent flux density of FRBs,
comparing the predictions of the cosmological and local FRB
models. In Section 6, we discuss a couple of uncertainties that
may potentially affect our results. Our conclusions are
summarized in Section 7. Throughout this paper, we assume
the fiducial cosmology with ΩΛ=0.7, Ωm=0.3, and H0=
70 km s−1 Mpc−1.

2. Cosmic FRB Rate History and DMIGM Distribution

We consider three models of ρFRB in this study (the top panel
of Figure 1). One is proportional to CSFH (SFR model),
another is constant throughout cosmic time (constant model),
and the other is proportional to CSMD (Må model). We use the

formulations of CSFH and CSMD by Madau & Dickinson
(2014).
The redshift distribution of FRBs that occur in a unit area on

the sky within a certain time period in the observer frame can
be expressed as
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where ne,IGM is the electron density in the IGM. Here we
assume that the IGM is uniform at each redshift with the
comoving density ρcritΩb, composed of 75% H and 25% He,
and fully ionized throughout the redshift range we consider.
Under these assumptions, the IGM electron density can be
written as
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The upper horizontal axis of Figure 1 indicates DMIGM that
corresponds to z in the lower axis (naively, DMIGM∼
1000z cm−3 pc in this redshift range).
In the above expression, it is assumed that the dominant

fraction of baryons in the universe is in the IGM, which is true
when we consider diffuse ionized gas associated with dark
matter halos as part of the IGM (e.g., Fukugita & Peebles 2004).

Figure 1. Top panel: ρFRB models (occurrence rate of FRBs per comoving
volume) normalized at z=0. Middle panel: observed comoving volume per
redshift per steradian with the assumed cosmology (dV/dzdΩ). Bottom panel:
occurrence rate of FRBs per redshift per steradian in the observer frame, which
is proportional to ρFRB(z)/(1+z)×dV/dzdΩ. We note that the FRB rates
shown in this figure represent all FRBs regardless of their detectability. The
DMIGM that corresponds to each redshift is indicated in the upper horizontal
axis (see Equation (2)).

Figure 2. Top panel: the Airy disk model of a radio receiver beam efficiency as
a function of the offset from the beam center. Bottom panel: the efficiency PDF
within an Airy disk beam.
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If a significant part of the IGM is associated with dark matter
halos, the IGM might be inhomogeneous in reality, and the
inhomogeneity might affect the DMIGM distribution of FRBs.
We discuss the effect of the IGM inhomogeneity on our results
in Section 6.1

The predicted redshift distributions with the three ρFRB(z)
models are shown in the bottom panel of Figure 1. The redshift
distributions with the different ρFRB(z) models are similar to
each other at z1, where the majority of the currently known
FRBs reside, while the redshift distributions are dramatically
different at z>1, as previously shown by Dolag et al. (2015)
using cosmological simulations. We note that detectability of
FRB events are not considered here and the redshift
distributions may include FRBs that are too faint to be
detected. We discuss a fraction of detectable FRBs at each
redshift in Section 3.

3. FRB Luminosity and Receiver Efficiency

3.1. Receiver Efficiency Variation within a Beam

The observed radio flux density of an FRB at the peak of its
light curve (Sν,app) does not depend solely on its luminosity and
distance; it also depends on the unknown position of the FRB
within the receiver beam, because the efficiency of a radio

receiver largely varies within its beam. We assume that a beam
efficiency pattern of a radio receiver under consideration is
represented by an Airy disk
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where the efficiency at the beam center is unity, J1 is the first-
order Bessel function of the first kind, and a=r/rc is the offset
from the beam center normalized by the beam characteristic radius
(the top panel of Figure 2). The efficiency is 50% at a=1.62 and
drops to zero at a=3.83 (≡aout). For the Parkes multibeam
receiver (Staveley-Smith et al. 1996), whose full width at half
maximum (FWHM) is 14.4 arcmin, rc is 4.4 arcmin. We do not
consider sidelobe detections ( >∣ ∣a aout).
The probability distribution function (PDF) of òbeam within a

beam ( ∣ ∣a aout) can be written as
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where a(òbeam) is the inverse function of Equation (4) in the
range of a>0. In the bottom panel of Figure 2, we show the
PDF defined by Equation (5). We note that the PDF is not

Figure 3. FRB luminosity function models considered in this study. The left, middle, and right panels show the PDFs of Lν,eff (thin solid) and Lν,app (thick dashed) for
LF1 (standard candles), LF2 (power-law), and LF3 (power-law + exponential cutoff), respectively. The PDFs with log10Lν,0 (erg s

−1 Hz−1)=33 are shown for each
model.

Figure 4. Left panel: the correlation between Sν,app and S/N in the Parkes sample. Right panel: same as the left panel but between Fν,app and S/N. The two peculiarly
bright events, FRB010724 and 150807, are excluded.
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dependent on the choice of rc, and is hence applicable to any
radio telescope whose efficiency profile can be represented by
an Airy disk.

3.2. Propagation Effects and K-correction

Flux density of an FRB is also affected by its propagation
medium. While scattering may suppress FRB flux density by
pulse broadening, scintillation and plasma lensing may also
enhance FRB flux density (e.g., Hassall et al. 2013; Cordes
et al. 2016, 2017). Currently, it is difficult to separate the
intrinsic LF of FRBs from the PDF of the propagation effects.
In this study, we consider effective luminosity (Lν,eff), which
includes the propagation effects (òprop) rather than intrinsic
luminosity (Lν,int) of an FRB. We also consider apparent
luminosity (Lν,app) which includes òbeam in addition to òprop and
can be directly related to Sν,app.

K-correction is also an important effect when we consider
observed flux densities of objects at cosmological distances.

We express the K-correction factor as

k
n
n
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n

n
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where νobs is the observing frequency and νrest=(1+z)νobs. In
the case of the Parkes multibeam receiver, νobs=1.4 GHz. The
functional form of κν(z) is determined by spectra of FRBs,
which are not yet known. Here we asume κν(z)=1 (constant)
and discuss how our results are affected by K-correction in
Section 6.2.
In summary,
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where dL(z) is luminosity distance at redshift z.

Figure 5. The DMIGM distributions of detectable FRBs predicted with our models. LF1 with log10Lν,0 (erg s−1 Hz−1)=34, and the SFR model of ρFRB are used,
unless otherwise stated. The DM distribution of the Parkes sample are shown together (gray histogram). Left panel: the predicted DMIGM distributions with the three
different LF models. Middle panel: the DMIGM distributions with different Lν,0. Right panel: the DMIGM distributions with the three different ρFRB models. Thin and
thick lines indicate the distributions with log10Lν,0 (erg s−1 Hz−1)=34 and 35, respectively.

Figure 6. PKS likelihood between the model and observed DMEX distributions as a function of Lν,0. The left, middle, and right panels show PKS for LF1, LF2, and
LF3, respectively. The cases with the three ρFRB models are shown for each LF.
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3.3. FRB LF

We examine the following three Lν,eff distribution function
models to demonstrate how difference of FRB LF affects the
observable properties of FRBs.

1. LF1: FRBs are standard candles with Lν,eff=Lν,0.
2. LF2: Lν,eff follows a power-law distribution, fd

µn n n
-( )L dL L,eff ,eff ,eff

2 , with a faint-end cutoff at Lν,0.
3. LF3: Lν,eff follows a distribution function with the faint-end

power-law index −1 down to log10Lν,eff (erg s
−1 Hz−1)=

30.0, and exponential cutoff in the bright-end, Lν,effLν,0,
i.e., df(Lν,eff)/dLν,eff∝x

−1exp(−x), where x=Lν,eff/Lν,0.

The three Lν,eff PDFs and the corresponding Lν,app PDFs are
shown in Figure 3. The Lν,app PDFs are obtained by convoluting
the Lν,eff PDFs with the òbeam PDF (Equation (5)). The faint-end
cutoff of LF3 is adopted so that the integral of the LF is finite.
The cutoff luminosity can be observed at redshifts only up to
z∼0.01 with the Parkes multibeam receiver, and hence it is
faint enough not to affect our result.

Although the shape of the bright-end of the Lν,app PDFs
resembles that of the Lν,eff PDFs, the faint-end of the Lν,app

PDFs is smeared out by the òbeam variation. Hence it will be
difficult to constrain the faint-end of the Lν,eff PDFs from the
currently observable properties of FRBs. Although the actual
shape of the FRB LF is hardly known, we consider that the
three LF models described above can represent a wide variety
of LFs due to this smearing. We note that the PDF of òprop, and
hence the Lν,eff PDF, may depend on galactic latitude and
longitude of observation fields, if the propagation effects in the
Milky Way significantly affect observed flux densities.
However, we assume that all FRBs under consideration arise
from a single Lν,eff PDF and consider the PDF to be the average
of those in all observation fields.

3.4. Detection of an FRB

To constrain the FRB models, we use the sample of FRBs
detected by the Parkes multibeam receiver before the end of
2017 November (21 FRBs between 010125 and 160102). The
properties of the observed FRBs are taken from the FRBCAT1

(Petroff et al. 2016). Although the values in the FRBCAT are

Figure 7. Cumulative DMEX distribution of the Parkes FRB sample (histogram), and the best-fit model distributions to the observations. Top left panel: the best-fit
models with LF1, LF2, and LF3 (solid (red), dashed (magenta), and dotted (blue) lines, respectively), the SFR model of ρFRB is assumed. A simple log-normal
distribution with the median DMEX=750 cm−3 pc and σ=0.2 dex is plotted together (dotted–dashed line (black)). Top right, bottom left, and bottom right panels:
the best-fit distributions with the different ρFRB models (SFR: solid line, constant: dashed line, and Må: dotted line) with LF1, LF2, and LF3, respectively.

1 http://frbcat.org
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derived separately by individual authors, Petroff et al. (2016)
have reanalyzed some of the data in a uniform manner, and we
use the values derived by the reanalysis when available. We
note that FRBs discovered by different telescopes should not be
treated together in a statistical study of the DM distribution
because the DMIGM distribution of a sample of FRBs would
depend on the detection limit of the observations.

We compute the fraction of detectable FRBs at each redshift
using the Lν,app distribution functions. For simplicity, we
consider that an FRB is detected when the apparent flux density
exceeds a threshold, Sν,app�Sν,th. To compare our model
predictions with the Parkes detected FRB sample, we assume
the threshold flux density Sν,th=0.4 Jy, which is comparable
to the faintest FRBs in the Parkes sample.

Although it is pointed out that detectability of an FRB
depends not only on its flux but also on the pulse width (and
hence the fluence, Keane & Petroff 2015), the Parkes sample
shows that Sν,app is a better proxy for signal-to-noise ratio
(S/N) than apparent fluence (observed fluence including òbeam
(Fν,app), see Figure 4). When the saturated event FRB010724
(Lorimer et al. 2007) and the extremely bright outlier event
FRB150807 (Ravi et al. 2016) are excluded from the sample,
the correlation coefficient between log10Sν,app and log10S/N is
0.79 (0.58 between log10Fν,app and log10S/N). In Figure 5, we
show how the predicted DMIGM distribution of detectable
FRBs depends on the assumed FRB models.

4. Luminosity of FRBs in the Case that They Originate at
Cosmological Distances

Here we determine the characteristic luminosity density of
FRBs (Lν,0, see Section 3.3) that reproduces the observed
DMEX distribution best for each set of LF and ρFRB models,
assuming that FRBs originate at cosmological distances and the
observed DMEX is dominated by DMIGM. We evaluate the
goodness of fit using the Kolmogorov–Smirnov (KS) test.
Figure 6 shows the KS test probability (PKS) that the observed
sample can arise from the model distribution as a function of
Lν,0, and Figure 7 shows the best-fit DMIGM distributions.

Although a wide variety of LF and ρFRB models agree with
the observed DMEX distribution, the model with ρFRB∝SFR
plus LF2 does not reproduce the observations well. The best-fit
Lν,0 for the ρFRB∝SFR plus LF2 model is log10Lν,0

(erg s−1 Hz−1)�31 (PKS is constant for smaller Lν,0), which
is smaller than the best-fit values for the other models. This is
because LF2 makes the DMIGM distribution heavily tailed in
the high DM end, while the observed DMEX distribution
steeply declines above DMEX1000 cm−3 pc (the left panel
of Figure 5). The small Lν,0 suppresses the high DM tail in the
model distribution and minimizes the discrepancy between the
model and observed distribution. However, it also overpredicts
the number of FRBs with DMEX500 cm−3 pc making the
model distribution broader than observed.
The discrepancy between the model with ρFRB∝SFR plus

LF2 and the observations suggests that neither an FRB LF with an
extended bright-end without cutoff, nor an FRB LF that is
dominated by its faint-end is favorable to reproduce the observed
narrow DMEX distribution when ρFRB∝SFR; though, the current
FRB sample is not sufficient to rule out the model with high
statistical significance. On the other hand, LF1 and LF3 reproduce
the observations with similar Lν,0 to each other (log10Lν,0
(erg s−1 Hz−1)∼34–35), indicating that the faint-end of a Lν,eff
PDF does not significantly affect the DMEX distribution unless the
Lν,eff PDF is dominated by its faint-end as in the case of LF2 with
log10Lν,0 (erg s−1 Hz−1)31.
It is also noticeable that the ρFRB∝SFR plus LF1 model

produce a sharp upper limit in the DMIGM distribution that
reflects the upper limit of the Lν,eff distribution making the
agreement between the model and the observations poorer than
those with the other models, although it is not rejected with a
certain statistical significance. The decrease in the number of
FRBs above DMIGM1000 in the constant and Må models
(the bottom panel of Figure 1) can ease the conflict between
LF1/LF2 and the observations. In those cases, LF2 also favors
log10Lν,0 (erg s−1 Hz−1)∼34.

5. Are FRBs Cosmological or Local Events?

Although the cosmological DMIGM models (except that with
ρFRB∝SFR plus LF2) reproduce the observed DMEX

distribution well, as previously shown by Dolag et al. (2015),
Katz (2016), and Caleb et al. (2016), it should be noted that the
distribution can also be explained by a simple log-normal
distribution with the median DMEX=750 cm−3 pc and
σ=0.2 dex (shown in the top left panel of Figure 7). Since
a log-normal distribution is one of the most commonly seen

Figure 8. Left panel: the cumulative distribution of Sν,app (logN–logS), predicted by the cosmological FRB models with the SFR and Må models of ρFRB (thick and
thin lines, respectively). The results with the three LF models are shown (LF1, LF2, and LF3; solid, dashed, and dotted lines, respectively). The Sν,app distribution of
the Parkes sample is plotted together (histogram), and the dotted–dashed line indicates the distribution in the Euclidean case (α=−1.5). Right panel: same as the left
panel but for Fν,app.
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PDFs in nature, it can be easily produced by a population of
ionized gas in the circum/interstellar medium (CSM/ISM)
around FRB sources without significant contribution from the
IGM. Although a DMEX as high as 750 cm−3 pc is not likely to

arise from an ordinary galaxy ISM, if FRB sources are
associated with ionized gas, such as a supernova remnant, it
may significantly contribute to the observed DMEX (Connor
et al. 2016; Lyutikov et al. 2016; Murase et al. 2016;
Piro 2016).
Here, we discuss how to distinguish whether FRBs are at

cosmological distances (cosmological FRB model, DMEX is
dominated by DMIGM) or in the local universe (local FRB
model, DMEX is dominated by CSM/ISM in the vicinity of
FRB sources).

5.1. logN–logS Distribution

When a population of light sources is homogeneously
distributed in a Euclidean space as in the case of the local FRB
model, observed flux density and fluence of the sources (the so-

Figure 9. Distributions of FRBs on the parameter plane of DMEX vs. Sν,app.
The top three panels show the distributions of the cosmological FRBs with
LF1, LF2, and LF3, respectively. ρFRB is assumed to be proportional to SFR.
The bottom panel shows the distribution of the local FRB model. The
horizontal dashed line indicates the assumed detection limit in our model
(0.4 Jy). FRBs in the Parkes sample are overplotted with crosses.

Figure 10. Mean and standard deviation of the correlation coefficient between
DMEX and Sν,app generated by the Monte Carlo tests according to the
distribution function shown in Figure 9. Data points connected with solid,
dashed, and dotted lines show the correlation coefficient distribution with the
cosmological FRB models with LF1, LF2, and LF3, respectively. The
correlation coefficient distribution with the local FRB model is shown with data
points connected with a dotted–dashed line. The data points are slightly shifted
sideways for visibility. The horizontal double-dotted–dashed line indicates the
correlation coefficient between DMEX and Sν,app in the Parkes sample with
FRB010724 and 150807 excluded (Nsample=19). The random generation of
mock sample is performed 1000 times for each Nsample.

Figure 11. Cumulative DMEX distributions predicted with (thin line) and
without (thick line) the inhomogeneity of the IGM. The solid, dashed, and
dotted lines represent the distributions predicted with LF1, LF2, and LF3,
respectively. The SFR model of ρFRB is assumed. The distributions without the
inhomogeneity are identical to those in Figure 7. DMEX of the Parkes sample is
plotted together (histogram).
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called logN–logS distribution) follow the power-law distribu-
tion < µn n

a( )N S S with index α=−1.5. Although actual Sν
and Fν of an FRB is not measurable due to the uncertain beam
efficiency for each event, Sν,app and Fν,app would also follow
the same power-law distribution when actual Sν and Fν follow
the power-law distribution. Thus the observed distributions of
Sν,app and Fν,app can serve as clues to distinguish whether FRBs
are cosmological or local.

The earlier studies by Vedantham et al. (2016), Caleb et al.
(2016), and Li et al. (2017) showed that the Fν,app distribution is
flatter than the Euclidean case (α>−1.5). However, Macquart
& Ekers (2018) pointed out that the Fν,app distribution of FRBs
are largely affected by the detection incompleteness in the faint-
end, and the steepness of the distribution is dependent on the
fluence limit applied in the analysis. The recent analyses by
Macquart & Ekers (2018) and Bhandari et al. (2018) showed that
the observed FRB sample indicates that the Fν,app distribution is
steeper than the Euclidean case (α<−1.5) above the fluence
completeness limit of 2 Jyms (Keane & Petroff 2015), although
the current FRB sample size is not sufficient to reject the
Euclidean case. On the other hand, Oppermann et al. (2016)
examined the distribution of S/Ns of FRBs rather than Sν and
Fν, and found that the logN–logS distribution agrees well with
the Euclidean case.

In the left panel of Figure 8, we show the predicted Sν,app
distributions by the cosmological FRB models assuming the SFR
and Må models of ρFRB together with the three LF models.
Hereafter, the parameter Lν,0 in the LF models is fixed to the best-
fit value determined in Section 4, unless otherwise stated. The
distribution functions predicted by the Må model of ρFRB are
shallower than the Euclidean case regardless of the assumed LF
model, while the distributions predicted by the SFR model of ρFRB
are similar to the Euclidean case. This is because the cosmological
expansion makes the logN–logS distribution shallower, while
larger source density at larger distance (as in the case of the SFR
model of ρFRB) makes the distribution steeper.

The right panel of Figure 8 shows the same distribution as
that in the left panel but for Fν,app. We have assumed the PDF
of FRB energy follow the same formulations as the LF (LF1,
LF2, and LF3), with the characteristic energy Eν,0=
Lν,0×3 ms, and the fluence threshold of 2 Jy ms, which is
the completeness limit derived by Keane & Petroff (2015);
though, many FRBs are detected below this fluence.

The predicted Fν,app distributions are steeper than the Sν,app
distributions because fluence is not affected by the cosmolo-
gical expansion of time. As a result, the Fν,app distribution
functions predicted by the SFR model of ρFRB is steeper than
the Euclidean case (α∼−1.8), being consistent with the
suggestions by the recent observations (Bhandari et al. 2018;
Macquart & Ekers 2018). Although the Euclidean case
(α=−1.5) is not fully ruled out by the current sample, if
the steep fluence distribution is confirmed with the larger FRB
sample, it indicates that FRBs originate at cosmological
distances and ρFRB is larger at higher redshift resembling
CSFH (see Section 6.2 for another possibility).
The difference of α between the Fν,app distribution and the

Sν,app distribution predicted by the cosmological FRB models
with ρFRB∝SFR can also reconcile the different α suggested
by Oppermann et al. (2016, S/N distribution) and Macquart &
Ekers (2018, Fν,app distribution), given that Sν,app correlates
well with S/N. On the other hand, the shallow logN–logS
distributions predicted by the Må model of ρFRB are close to the
upper limit of α derived by Amiri et al. (2017), and hence can
be rejected in the near future.
In the current Parkes sample, 9 out of the 21 FRBs have larger

Fν,app than the 2 Jy ms completeness limit. Macquart & Ekers
(2018) examined how precisely α can be determined for a variation
of FRB sample sizes. Their results suggest that ∼50 FRBs above
the fluence completeness limit would be necessary to distinguish
α=−1.8 (our model prediction) from the Euclidean case with a
statistical significance of ∼95%. If the fraction of FRBs above the
fluence completeness limit in the observed sample remains
unchanged, the total sample size required will be ∼100 FRBs.

5.2. Correlation between DMEX and Sν,app

Unlike Fν,app, Sν,app correlates well with S/N and the
cumulative distribution of Sν,app does not show significant
incompleteness in its faint end (Figures 4 and 8). Hence we
might be able to utilize a larger observed sample when we
investigate Sν,app rather than Fν,app. However, the cumulative
distribution of Sν,app of the cosmological FRB model is similar
to the Euclidean case (i.e., the local FRB model) when
ρFRB∝SFR, making it difficult to distinguish whether FRBs
are cosmological or local solely with the Sν,app distribution.
One possible clue is the correlation between DMEX and

Sν,app. Yang et al. (2017) investigated the correlation between
DMEX and observed flux density to constrain the contribution
of CSM/ISM in the vicinity of FRBs to DMEX but without
taking account of the òbeam variation within a receiver beam.
Here we examine how efficiently the cosmological and local
FRB models can be distinguished by the correlation between
DMEX and Sν,app, in the case of ρFRB∝SFR.
We compute a distribution of FRBs on the parameter plane of

DMEX versus Sν,app using the cosmological FRB models with
LF1, LF2, and LF3 (the top three panels of Figure 9). For the
local FRB model, we assume that the logN–logS distribution is
the power law with α=−1.5, and DMEX follows the log-
normal distribution with the median DMEX=750 cm−3 pc and
σ=0.2 dex (the bottom panel of Figure 9).
We then randomly generate 103 sets of mock samples of

DMEX and Sν,app with sample size Nsample each in accordance
with the model distributions, and compute probability distribu-
tion of the correlation coefficient between DMEX and Sν,app. In
Figure 10, we show the mean and the standard deviation of the
correlation coefficient distributions as functions of Nsample.

Figure 12. Same as Figure 5, but with β=−2, 0, and 2. LF1 with log10Lν,0
(erg s−1 Hz−1)=34, and the SFR model of ρFRB are assumed.
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When the two peculiarly bright events, FRB010724 and
150807, are excluded, the correlation coefficient between DMEX

and Sν,app in the Parkes sample is −0.35 with Nsample=19. The
correlation coefficient in the Parkes sample is already outside the
standard deviation of the local FRB model with the current
Nsample. Although the correlation coefficient is still within the 2σ
error of the local FRB model, it can be ruled out if the same
correlation coefficient is obtained with Nsample=40.

Among the cosmological FRB models with ρFRB∝SFR, LF3
agrees best with the observations. The correlation coefficient
distribution with LF2 is hardly distinguishable from that with the
local FRB model; however, LF2 is disfavored by the DMEX

distribution (see Section 4). When the constant and Må models of
ρFRB are assumed, the correlation coefficient between DMEX and
Sν,app is not significantly changed with LF1 and LF3, while the
model with LF2 shows the correlation coefficient of approxi-
mately −0.2 to −0.3 depending on the ρFRB model.

If FRBs with higher DMEX suffer more pulse broadening, it is
possible that DMEX and Sν,app correlates even in the local FRB
model because pulse broadening may decrease Sν,app. However, we
note that the pulse width of the FRBs in the Parkes sample is not
correlated with their DMEX (the correlation coefficient is −0.003).

6. Discussion

6.1. Inhomogeneous IGM

In the previous sections, we have assumed that the IGM
density is spatially uniform at each redshift. McQuinn (2014)
computed a DMIGM variation of FRBs at a single redshift caused

by the inhomogeneity of the IGM. Their results show that the
standard deviation of DMIGM is 20%–30% of the mean DMIGM

at each redshift in the range z∼0.3–1.4 when the spatial baryon
distribution from a cosmological simulation is assumed.
To test how such DMIGM variation affects the overall

DMIGM distribution that includes FRBs at various redshifts.
We compute the DMIGM distributions with the cosmological
FRB models assuming that the probability distribution of
log10DMIGM at a redshift follows a Gaussian distribution with
the mean value determined by Equation (2) and σ=0.1 dex.
We find that the inhomogeneity of the IGM does not
significantly affect either the overall DMIGM distribution of
FRBs, or the PDF of the correlation coefficient between DMEX

and Sν,app. The DMIGM distributions predicted with and without
the inhomogeneity of the IGM are shown in Figure 11.

6.2. K-correction

We have also assumed the K-correction factor to be
κν(z)=1 (constant). The real κν(z) is determined by spectra
of FRBs, which is not yet well known (see Equation (6)). For
example, when the spectrum of an FRB is a power law,
Lν,eff(ν)∝νβ, the K-correction factor is κν(z)=(1+z)β. If
κν(z) increases with redshift, we would detect more FRBs at
higher redshifts. In this sense, there is a degeneracy between
the K-correction (spectrum) and ρFRB. In Figure 12, we show
the DMIGM distributions with β=−2, 0, and 2, assuming LF1,
ρFRB∝SFR, and log10Lν,0 (erg s−1 Hz−1)=34.

Figure 13. Same as Figure 6, but with β=±2.
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We have determined the Lν,0 that reproduces the observed
DMEX distribution with β=±2 following the same procedure
as that in Section 4 (Figure 13). The observed DMEX

distribution can be reproduced in a wide variety of cases but
with different Lν,0. Once the best-fit Lν,0 for each β is
determined, the K-correction does not significantly affect the
correlation coefficient between DMEX and Sν,app. However, we
note that β>0 can also make the cumulative distribution of
Fν,app steeper as well as the increase of ρFRB at high redshifts,
due to the degeneracy between the K-correction and ρFRB.
Observations with different νobs are important to break the
degeneracy.

7. Conclusions

We have computed the DMEX distribution, the logN–logS
distribution, and the DMEX–Sν,app correlation based on the
analytic models of cosmic rate density history (ρFRB) and LF of
FRBs. Comparing the model predictions with the observations,
we have found that the cumulative distribution of apparent
fluences suggests that FRBs are at cosmological distances with
higher ρFRB at higher redshifts resembling CSFH (or FRBs
typically have very hard radio spectra with Lν larger at higher
frequency, i.e., β>0), although the sample size of the current
observations is not sufficient to rule out that FRBs originate in
the local universe.

If ρFRB is proportional to SFR, the narrow DMEX distribution
of the observed FRBs favors an FRB LF with a bright-end
cutoff at log10Lν (erg s−1 Hz−1)∼34. Although the constraint
on the faint-end of FRB LF is rather weak, an FRB LF that is
dominated by its faint-end is also disfavored. However, the
statistical significance of the constraint with the current sample
is still low.

The correlation coefficient between DMEX and Sν,app is
potentially a very powerful tool to distinguish whether FRBs
are at cosmological distances or in the local universe more
robustly with future observations, which may provide us
with higher statistical significance of the constraint than the
logN–logS distribution for a given sample size.
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