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Abstract

We apply the vectorized non-negative matrix factorization (NMF) method to the post-processing of the direct
imaging data of exoplanetary systems such as circumstellar disks. NMF is an iterative approach, which first creates
a nonorthogonal and non-negative basis of components using the given reference images and then models a target
with the components. The constructed model is then rescaled with a factor to compensate for the contribution from
the disks. We compare NMF with existing methods (classical reference differential imaging method, and the
Karhunen–Loève image projection algorithm) using synthetic circumstellar disks and demonstrate the superiority
of NMF: with no need of prior selection of references, NMF not only can detect fainter circumstellar disks but also
better preserves their morphology and does not require forward modeling. As an application to a well-known disk
example, we process the archival Hubble Space Telescope STIS coronagraphic observations of HD181327 with
different methods and compare them, and NMF is able to extract some circumstellar materials inside the primary
ring for the first time. In an appendix, we mathematically investigate the stability of NMF components during the
iteration and the linearity of NMF modeling.
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1. Introduction

Detection and characterization of circumstellar disks and
exoplanets with direct imaging rely on excellent design of
telescope instruments and state-of-the-art post-processing of
the observations. Well-designed instruments are able to
stabilize the temporally varying noise in telescope exposures,
creating quasi-static features (Perrin et al. 2004, 2008;
Hinkley et al. 2007; Soummer et al. 2007; Traub &
Oppenheimer 2010). These quasi-static features (speckles),
together with stellar point-spread function (PSF), can be
empirically modeled and removed by post-processing techni-
ques, revealing circumstellar disks and exoplanets around
stars (e.g., Marois et al. 2006; Lafrenière et al. 2007, 2009;
Soummer et al. 2012).

Post-processing techniques have been evolving in the
past decade. When the stellar PSF and the speckles are stable
and do not have significant variation over time, they can be
removed by subtracting the image of a reference star (i.e.,
reference-star differential imaging [RDI]). This classical RDI
method has been extensively used, unveiling revolutionary
results, especially for bright disks (e.g., Smith & Terrile 1984;
Grady et al. 2010; Debes et al. 2013, 2017; Schneider et al.
2014, 2016). When the speckles do vary, especially in the
ground-based telescopes, several techniques have been pro-
posed to resolve this (e.g., angular differential imaging [ADI],
Marois et al. 2006; spectral differential imaging [SDI], Biller
et al. 2004).

Current successful removal of both stellar PSF and quasi-
static noises is based on the utilization of innovative statistical
methods (Mawet et al. 2012). Using a large sample of
references, there are two widely known advanced post-
processing algorithms: one is the Locally Optimized Combina-
tion of Images (LOCI) algorithm (Lafrenière et al. 2007), and

the other is the principal-component-analysis-based Karhunen–
Loève Image Projection (KLIP) algorithm (Amara & Quanz
2012; Soummer et al. 2012). Both LOCI and KLIP have
yielded a lot of new discoveries even with archival data (e.g.,
Lafrenière et al. 2009; Soummer et al. 2012, 2014; Choquet
et al. 2014, 2016; Mazoyer et al. 2014, 2016); however, the
aggressive PSF subtraction of LOCI biases the photometry and
astrometry of the results (Marois et al. 2010; Pueyo et al. 2012),
the projection onto the eigenimages of KLIP reduces the flux
from the astrophysical objects, and forward modeling has to be
performed (Soummer et al. 2012; Choquet et al. 2016, 2017).
Most forward-modeling works are designed for exoplanets
(Pueyo 2016), and attempts have been made for circumstellar
disks (e.g., Esposito et al. 2014; Milli et al. 2014; Wahhaj
et al. 2015; Follette et al. 2017); however, for some disks that
are irregularly shaped (see canonical examples in Grady
et al. 2013; Dong et al. 2016), forward modeling does not
work satisfactorily since the morphology of disks is buried in
current aggressive post-processing procedures (Follette
et al. 2017).
An accurate recovery of disk morphology can help us

understand the disk properties in several ways. First, we can
retrieve their surface brightness profiles and reveal possible
asymmetric structures and the traces of complex dynamical
structures (spiral arms, jets, clumps, etc.; see Dong
et al. 2015a, 2016, for some canonical examples). Second,
we will be able to study the evolution of them on short
timescales (see Debes et al. 2017, for the yearly evolution of
the TW Hydrae disk). Third, the morphology of disks in current
simulation results also indicates the possible existence of
unseen planets that are perturbing the circumstellar disk
structure and create observable signatures (e.g., Rodigas
et al. 2014; Lee & Chiang 2016; Nesvold et al. 2016; Dong
& Fung 2017).
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The aim of post-processing is to detect and characterize
point sources and extended circumstellar disks. Point-source
searching methods have gained much progress in recent years
(SDI, ADI, etc.); however, all these algorithms perform
poorly for extended disks, and it is hard, if not nearly
impossible, to fully calibrate the disks in that context. With an
eye toward more robust and well-calibrated PSF subtraction
for disk studies, we study in this paper the non-negative
matrix factorization (NMF) method. The early work of NMF
was carried out by Paatero & Tapper (1994) and became well
known after Lee & Seung (2001), who provided update rules
to guarantee convergence through iteration. In Blanton &
Roweis (2007), they came up with update rules that can
handle nonuniform and missing data, especially for astro-
nomical spectroscopic observations; their method was
improved by Zhu (2016) in a vectorized form, which is
adopted in this paper because of its excellent parallel
computational efficiency. An early attempt with NMF on
high-contrast imaging has been performed by Gomez
Gonzales et al. (2017); in this paper we study the method in
detail.

In post-processing, the steps of NMF are similar to KLIP:
construct components from given references first, and then
model any target with the components. Unlike KLIP, NMF
does not remove the mean of every image, and it keeps all the
entries non-negative, which consequently constructs a non-
orthogonal component basis. When modeling a target, non-
negative coefficients for the components are obtained. In order
to perfectly recover the morphology of the astrophysical signals
such as circumstellar disks, the NMF subtraction results do
need forward modeling; however, we are able to show that, to
the first order, this can be performed with a simple search in a
one-dimensional space.

The structure of this paper is as follows: Section 2 discusses
the limitation of current methods and explains the mechanism
of NMF; Section 3 is composed of the post-processing results
of various methods with modeled disks and the application to a
classical example of HD181327, thus making the NMF
method stand out among current ones; and Section 4
summarizes the general performance of NMF and discusses
its significance to the field. Appendix A provides a list of
symbols used in this paper; Appendix B shows the update rules
proposed by Zhu (2016), as well as the adjustments made for
direct imaging data; Appendix C investigates the stability of
NMF components during their construction; Appendix D
presents how to model a target with the NMF components; and
Appendix E describes our procedure to correct for
oversubtraction.

2. Methods

To illustrate the limitation of current methods and compare
them with NMF, we took data from the HST Space Telescope
Imaging Spectrograph (STIS) coronagraphic observations of HD
38393 (γ Leporis; Proposal ID: 14426;6 PI: J. Debes) and aligned
the centers of the stars using a radon-transform-based center-
determination method described in Pueyo et al. (2015). We release
an improved center-determination code, centerRadon,7 which
is based on radon transform, performs line integrals on specific

parameter spaces and selected regions, and is at least 2 orders
of magnitude faster than the classical radon transform center-
determination code for our STIS data.
We cut the aligned exposures into 87×87 pixel arrays,8

corresponding with a 4.41×4.41 arcsec2 field of view. The
original data contain 810 0.2 s exposures of HD38393 at nine
different telescope orientations. In our simulation, all the data
are normalized to have flux units of mJy arcsec−2, and to save
computational time, we use only 81 exposures by selecting just
nine exposures at each orientation.
This section is organized as follows: Section 2.1 discusses

the limitation of current modeling methods, and Section 2.2
explains the NMF method in detail.

2.1. Limitation of Current Methods

Current post-processing methods are excellent in finding
disks; however, they are limited and have several disadvan-
tages. We start our simulation with a synthetic face-on disk
generated by MCFOST, a radiative transfer software to model
circumstellar disks with given physical parameters of the
disks (Pinte et al. 2006, 2009). For the exposures of
HD38393 at one orientation, the synthetic disk was injected
onto them after being added with Poisson noise to simulate
real observations, therefore creating the target images, while
the exposures from the other eight orientations are treated as
the references.
The targets and references are then used for post-processing.

In order to perform the RDI technique, we compute the pixel-
wise median of the references, creating an empirical model of
the stellar PSF and speckles, and subtract the model from the
disk-injected images. For KLIP, we construct the components
from the references, model the targets with the components,
and then remove the KLIP model from the targets. This
procedure is executed for all nine orientations, and then the
final result is calculated from the pixel-wise median of the 81
subtracted targets.
The subtraction results with the synthetic face-on disk are

shown in Figure 1. The classical RDI subtraction method can
barely recover the morphology of the disk; KLIP recovers the
general morphology of the disk but loses the details (e.g., the
radial profile, especially the radial slope of the disk): it is
overfitting the disk and thus reduces the flux (Choquet et al.
2014; Ren et al. 2017). For the radial profiles of the recovered
disks, although the error bars of the classical RDI result agree
with that of the disk model, this consistency is not convincing
—the error bar for a given radial separation is calculated from
the standard deviation of the pixels located within
±0.5 pixels9 of that radial location: large azimuthal variations
result in large standard deviations. Although the error bars of
the KLIP result are smaller, there is a systematic downward
bias, and more importantly, the slope of the KLIP result is not
consistent with that of the disk model, and forward modeling
has to be performed to reveal the true slope.
In order to accurately retrieve the morphology and

photometry of the planets or disks simultaneously, forward
modeling has been adopted; however, not only does
this procedure assume a prior morphology model of the
objects (e.g., Soummer et al. 2012; Wahhaj et al. 2015;

6 http://archive.stsci.edu/proposal_search.php?mission=hst&id=14426
7 https://github.com/seawander/centerRadon

8 Note: the dimension of all the images in this paper is 87×87 pixels
( ´4.41 4.41 arcsec2) unless otherwise specified.
9 The STIS pixel size corresponds with 0.05078 arcsec (Riley 2017).
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Pueyo 2016), but it is also time-consuming to iteratively
recover them and break the degeneracy (e.g., Choquet
et al. 2016, 2017).

2.2. Non-negative Matrix Factorization

The methods to faithfully recover the objects have been
evolving. On one hand, new methods have been proposed and
studied to minimize oversubtraction: Pueyo et al. (2012) focus
on the positive coefficients for the LOCI method and
substantially improve the characterization quality of point-
source spectra. On the other hand, forward modeling is
introduced as a correction method for the reduced data:
Wahhaj et al. (2015) assume a prior model of the disks for the
LOCI subtraction; Pueyo (2016) takes the instrumental PSF to
characterize point sources with the KLIP method. Current
forward-modeling attempts are best optimized for planet
characterizations, while for the disks, assumptions of disk
morphology have to be made; however, these assumptions may
not represent the true morphology. In this paper, we aim to
circumvent the forward-modeling difficulties by studying a
new method—NMF.

NMF decomposes a matrix to the product of two non-
negative ones (Paatero & Tapper 1994; Lee & Seung 2001),
which has been evolving in the past decade to adjust for
astrophysical problems (Blanton & Roweis 2007; Zhu 2016).
Inspired by the Pueyo et al. (2012) work of adopting positive
coefficients, we study NMF because of its non-negativity,
which is well suited for astrophysical direct imaging
observations. The previous applications of NMF are to
one-dimensional astrophysical spectra; for two-dimensional
images with a significantly larger amount of data and
therefore escalating the computational cost, we make the
following adjustments: on the one hand, we flatten every
image into one dimension to maximize the utilization of
currently available tools, and on the other hand, we
adopt the vectorized NMF technique (Zhu 2016; Non-
negMFPy10) and implement parallel computation with
multiple cores.

The NMF application to imaging data is composed of two
steps: constructing the basis of components with the reference
images (Section 2.2.1), and modeling any new target with
the component basis (Section 2.2.2) and then correcting for
the overfitting with a scaling factor (Section 2.2.3). To reduce
the reader’s effort in coding, we release our realization,11

which is also available in the pyKLIP package (Wang
et al. 2015).

2.2.1. Component Construction

The first step of NMF is to approximate the reference
matrix R, with the product of two non-negative matrices:
the coefficient matrix W, and the component matrix H,
i.e.,

» ( )R WH, 1

by minimizing their Euclidean distances; see Appendix A for
detailed definition of symbols. The approximation of
Equation (1) is guaranteed to converge with iteration rules in

Zhu (2016) using

=+ ◦ ( )( ) ( )
( )

( ) ( ) ( )W W
RH

W H H
, 2k k

k T

k k k T
1

=+ ◦ ( )( ) ( )
( )

( ) ( ) ( )H H
W R

W W H
, 3k k

k T

k T k k
1

with random initializations. In the above equations, the circle ◦
and fraction bar12 


( )
( )

denote element-wise multiplication and

division for matrices, the superscripts enclosed with (·) denote
iteration steps, and the superscript T stands for matrix
transpose. For astronomical data, a weighting function V,
which is usually the element-wise variance (i.e., the square of
the uncertainties) of R, is applied to weigh the contribution
from different pixels and take care of heteroscedastic data
(Blanton & Roweis 2007; Zhu 2016); see Appendix B for the
adaptation for our STIS imaging data.
The connection between NMF and previous statistical

methods can be illustrated using Equation (2): we can cross
out the W terms on the right-hand side,13 and we get =W
RH

HH

T

T
, which stands for the projection of vector R onto

vector H. This expression is in essence performing least-
squares estimation as in KLIP, where the inversion of the
covariance matrix of the components is required (i.e., the
inverse of HHT); however, the covariance matrices are often
poorly conditioned for inversion. Intuitively, NMF returns a
non-negative approximation of the matrix inverse through
iteration.
In the KLIP method, the importance of the components is

ranked based on the magnitude of their corresponding
eigenvalues. For NMF, we rank them by constructing the
components sequentially: with n components constructed, we
construct the +( )n 1 th component using the n previously
constructed ones, i.e., in our construction, we only randomize
the initialization of the +( )n 1 th component, while the first n
components are initialized with their previously constructed
values. See Appendix C for detailed expression and derivation.
This construction method not only ranks the components but
also is essential for the linearity in target modeling in the next
subsection.

2.2.2. Target Modeling (“Projection”)

The sequential construction of NMF components is the
foundation of this paper. First, as illustrated in Appendix C,
the components remains stable in this setup. Second, the
stability of the components guarantees a linear separation
of the disk signal from the stellar signals (Appendix D).
Third and most importantly, the linearity of the target
modeling process calls for our attempt to circumvent
forward modeling with a scaling factor, as illustrated in
Appendix E.

10 https://github.com/guangtunbenzhu/NonnegMFPy
11 https://github.com/seawander/nmf_imaging

12 Note: all the fraction bars in this paper are element-wise division of matrices
unless otherwise specified.
13 Note: this operation is for demonstration purposes only; it is not
mathematically practical.
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With the basis of NMF components constructed sequentially,
the next step is to model the targets with the components. For a
flattened target T, we now minimize w-∣∣ ∣∣T H 2 with iteration
rule14

w w
w

=+ ◦ ( )( ) ( )
( )
TH

HH
, 4k k

T

k T
1

where ω is the ´ n1 coefficient matrix for the target and H is
the NMF components constructed in the previous paragraph.
This expression is essentially performing a least-squares
approximation as in KLIP, but the coefficients are smaller in
magnitude (Appendix D). A more detailed expression taking
the weighting function into account is given by Zhu (2016),
and the adaptation to our STIS data is shown in Appendix B.
When the above process converges, the NMF model of the
target can be represented by

w= ( )T H. 5NMF

2.2.3. Disk Retrieval via “Forward Modeling”

With sequentially constructed components, the target
modeling procedure is able to linearly separate the circum-
stellar disk from the others, as illustrated in Equation (51). To
the first order, we have

= + ( )T D S , 6NMF NMF NMF

where the subscript NMF means performing the NMF modeling
result for the stellar signal (S) or disk signal (D) alone. In
addition, when we sequentially model the target, if the disk
does not resemble any NMF component, then the first
component, which explains~90% of the residual noise (shown
in Section 3.1.1), will always dominate the modeling for the
disk—the captured morphology of the disk is just another copy
of the NMF model of the stellar PSF and the speckles (shown
in Section 3.1.2), i.e.,

a» ( )D S , 7NMF NMF

where α is a positive number.
The way to correct for the contribution from the disk is to

introduce a scaling factor f̂ , which satisfies

=ˆ ( )f T S , 8NMF NMF

and then when we subtract the scaled NMF model of the target
from the raw exposure, we will have the disk image:

- = - =ˆ ( )T f T T S D. 9NMF NMF

Ideally, we will solve for a= +ˆ ( )f 1 1 ; however, since α is
not known, we have to find f̂ empirically.
We introduce the best factor finding (BFF) procedure in

Appendix E as our attempt to circumvent forward modeling
with a simple scaling factor, which finds the factor
corresponding with the minimum background noise. To
illustrate the efficiency of BFF, we show the reduction results
with different scaling factors in Figures 2 and 3. When we do
not know the existence of the astrophysical signal (i.e., the
disk) a priori, the residual variance dependence on scaling
factor agrees consistently with the dependence of the
Euclidean distances between the reduction results (Df) and
the true model (D) on the scaling factor. This consistency has
been observed for synthetic disks at different inclination
angles in our simulation, which is not shown in this paper to
avoid redundancy of figures.
We could use multiple scaling factors to rescale every

overfitting component, and BFF will work for components
that are affecting the overall morphology. Given the
sparseness of the NMF coefficients (wD, Section 3.1.2), this
is easily achievable with a grid search. However, we only
focus on the first component, since the BFF procedure is
trying to optimize the whole field of view, while the
components of higher order usually do not have such
influence in our simulations.

Figure 1. Demonstration of limitations of current PSF subtraction methods
with a synthetic face-on circumstellar disk with integrated flux ratio

= ´ -F F 7.4 10disk star
6. (a) HST-STIS exposure of HD38393 added with

a synthetic face-on disk. The disk is barely seen because of its faintness,
and the central dark region is the coronagraphic BAR5 mask of STIS.
(b) Classical RDI subtraction result; the northeastern region shows an
overluminosity that does not belong to the disk. (c) Subtraction result with
KLIP; the disk is seen, but its flux is reduced and morphology modified. (d)
Radial profiles of the subtraction results and the disk model; although that of
the classical method agrees with the disk model, it is not trustworthy because
the error bars are calculated from the large standard deviation of pixels at the
same radial separation. KLIP not only is unable to recover the radial profile or
even change the slope but also induces unphysically negative pixels from its
systematic bias. See Figure 8 for the disk model and the subtraction result
with NMF.

14 This rule is the one-dimensional case of Equation (2).
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3. Comparison and Application

In the previous section we have demonstrated the limitation
of current methods and the mechanism of NMF; in this section,
we aim to demonstrate the ability of NMF in direct imaging
using specific examples. We first compare the statistical
properties of NMF and KLIP, as well as the intermediate steps
of them, in Section 3.1, and then focus on the post-processing
results: we compare the NMF results with those of the classical
RDI and KLIP subtraction methods using synthetic disks in
Section 3.2, and then in Section 3.3 we focus on a well-known
example as a sanity check of NMF—applying the method to
the HST-STIS coronagraphic imaging observations of
HD181327.

3.1. NMF versus KLIP: Statistical Properties
and Intermediate Steps

In this subsection, we aim to address the statistical
differences and intermediate steps between NMF and KLIP
and investigate why the non-negativity of NMF can yield better
results. Noise and disk signal are the two constituents in a
target image; however, they are always correlated with each
other, and separating them is the goal of all post-processing
efforts. In the target modeling process, we aim to maximize
noise removal and minimize disk capturing. We therefore
compare NMF with KLIP in these two aspects.

3.1.1. Noise Removal

Removing the quasi-static noise from the observations is the
most fundamental procedure in post-processing. With the 81
STIS images of HD38393, we calculate the fractional residual
variance (FRV) curves in the following way (Figure 1 of
Soummer et al. 2012): for each image, we cumulatively
increase the number of components and model it with KLIP or
NMF, and then we subtract the model from the image to obtain
the residual image. Then the FRV is calculated by dividing the
variance of the residual image by that of the original image.
The comparison is shown in Figure 4.
The FRV curves for KLIP decrease very fast at first,

indicating that KLIP is removing the quasi-static noise, then
reach a plateau for a long time, and drop again when
almost all the components are used. The plateau exists when
KLIP is not removing the noise, and it might even be trying
to capture the disk signal if anything is fitted during the
plateau. When the curves drop again, KLIP is starting to
remove the random noise that should not be removed using
any method.
The FRV curves for NMF decrease relatively slowly;

however, it is gradually capturing the quasi-static noise
and then converges to a higher level than KLIP when all
the components are used. The higher noise level indicates
that the random noise is kept, and it is also preserving

Figure 2. Illustration of the scaling factor for the disk model in Figure 5. (a)
Face-on disk model created by MCFOST. (b) Scaled reduced disk
with f=0.930; there are PSF residuals since the scaling factor is smaller
than the optimum one. (c) Scaled reduced disk with = =ˆf f 0.982, the
best disk corresponding with the optimal scaling factor obtained from the
BFF procedure. (d) Reduced disk with no correction (i.e., f = 1); this
is an oversubtracted disk, the disk flux is reduced, and the outskirts
of the disk are all negative. See Figure 3 for a comparison of the radial
profiles.

Figure 3. (a) The curve for Euclidean distance between the scaled disks and the
MCFOST model in Figures 5 and 2 (blue dot-dashed line) is consistent with
the curve for the s( )

f
conv (dashed black line). This is the demonstration of the

effectiveness of the BFF procedure. (b) Radial profiles for the model (black
solid line), and scaled disks with three different scaling levels. When
= < ˆf f0.930 , the radial profile (black solid line) is moving upward relative

to that of the model; when = = ˆf f0.982 , its radial profile (yellow dotted line)
agrees with that of the model; for = > ˆf f1 , the diskless pixels are all
negative (blue dot-dashed line; compare with the gray dotted horizontal line).
See Figure 6 for the results from other methods.
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the difference between the target and the component
basis.

3.1.2. Disk Capturing

Disk signal is coupled with the stellar PSF and the quasi-
static speckles, and it is likely to be removed together with
them in post-processing: this is when overfitting happens, and
it is why current post-processing methods need forward
modeling to compensate for that oversubtraction. In terms of
disk capturing, we assume that the stellar PSF and speckles
are perfectly removed, and then we project only a synthetic
face-on MCFOST disk onto the components to study the target
modeling process: the less disk is captured the better, since
the disk signal in principle shall not be classified as the
stellar PSF or speckles that should be modeled by the
components.

The meaning of projection is different for the two methods:
for KLIP, the projection process is directly performing a dot
product between the target and the components, while for
NMF, its “projection” is an iterative approach, which finds
a non-negative combination of the NMF components to
model the target as in Equation (4). In this paper, we do not
distinguish the two processes in words, but they are not
identical with respect to different methods.

We compare their intermediate modeling step of the disk in
Figure 5 under similar residual noise levels (n= 40 compo-
nents when FRV≈10−4, and with normalized KLIP and NMF
components in Figure 4).

KLIP is an “efficient” disk capturing method, and therefore it
gives rise to oversubtraction, which requires forward modeling
to compensate for that. Although the morphology of the disk
does not resemble any KLIP component, the disk is captured as
a result from direct linear projection. This provides evidence of

KLIP falling into the regime of overfitting: a fraction of the
disk is classified as the stellar PSF or speckle noise, and then it
is removed from the target image.
NMF is “inefficient” in disk capturing, causing less

oversubtraction, and is thus preferred in post-processing.
Although the NMF target modeling process is in essence
performing linear projection, the projection coefficients
are sparse and have smaller magnitudes than direct projec-
tions. As is shown in Equation (34), the NMF modeling
is less overfitting than the direct projection methods
like KLIP.
The sparsity of these coefficients inspires the “forward

modeling” for NMF in Section 2.2.3: we are able to accomplish
this by rescaling the NMF model of a target with a simple
factor, which is obtained from the BFF procedure as
demonstrated in Appendix E.

3.2. Synthetic Disk Models

To compare NMF with current post-processing methods,
we first synthesized three circumstellar disks with MCFOST at
different inclination angles and brightness levels. In this
paper, we do not aim to fit any physical parameters of the
disks as in the previous MCFOST applications. However, the
disks are still physically motivated and composed of silicates
with grain size ranging from 0.2 to 2000 μm with a power-
law index of 3.5. The disks are rings with a flaring index of
1.125 spanning from 0.5 to 1.0 arcsec. Our MCFOST disk
models are synthesized at 0.6 μm and convolved with the
STIS TinyTim PSF (Krist et al. 2011),15 to simulate the
HST-STIS response: at this wavelength, the incident photons

Figure 4. FRV as a function of the number of components. (a) FRV plots for KLIP; the gray solid lines are for individual images, and the blue solid line
is the theoretical curve (as in Figure 1 of Soummer et al. 2012). The existence of the plateau from »n 10 to »n 60 indicates that KLIP is not efficiently
capturing the noises. (b) FRV plots for NMF; the gray dashed lines are for individual images. There is no plateau in the NMF reduction, indicating
that it continues noise capturing when we increase the number of components. The comparison between KLIP and NMF projections at similar FRV levels
is shown in Figure 5. Note: the FRV trends of KLIP and NMF are not limited to the STIS data studied in this paper and should be applicable to all other
instruments.

15 http://www.stsci.edu/hst/observatory/focus/TinyTim
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from the host star are scattered by the disks and then received
by the telescopes.

We reduced the synthetic disks in the same manner as in
Section 2.1 with the classical RDI, KLIP, and NMF methods.
The face-on disk spanning from 0.5 to 1.0 arcsec in Figure 5
is adopted as the initial model, which is then tilted at 45°
and 75°; to investigate the performance of the three methods
at different contrasts, we dim the disks in Figure 6 by
dividing by factors of 10, 20, and 50, which is equivalent to
reducing disk mass, having F Fdisk star range from ~ -10 4 to
~ -10 6. The morphology results are shown in Figures 6–9,
respectively.

3.2.1. Morphology

Morphology is the most direct evidence for the spatial
distribution of the circumstellar materials, which should be
recovered to the maximum extent. From the morphology
results for different disks and brightness levels in Figures 6–9,
we compare the three methods as follows.

Classical subtraction is only able to recover the morphology
of the face-on disk in the brightest cases ( ~ -F F 10disk star

4);
it cannot recover the dimmer ones.

KLIP is able to recover the general morphology of the disks
in all cases; however, the disk fluxes are reduced owing to its
systematic overfitting bias (Section 3.1.2). Therefore, forward
modeling is needed to recover the real morphology of the disks.
Moreover, for detailed structures, especially when the dynamic
range is large, KLIP will lose the relatively faint information
owing to its mean subtraction (see the vanishment of the far
side in the lower regions of the tilted disks images in
Figures 6–9).
NMF outperforms other methods not only in recovering the

morphology of the disks but also in recovering the faint
structure: the faint far sides of the tilted disks are recovered in
the results.
When the disks are too faint (Figure 9), the reduced results

are dominated by random noise, and none of the methods
but NMF could marginally recover the morphology of the
disks.
For a quantitative comparison of the three methods,

we compute the c2 values using the initial model and the
results in this subsection. To better illustrate the relative
goodness of recovery, we plot the c2 ratios between different
methods and the classical RDI method in Figure 10. NMF
performs better than the classical method in this way; when

Figure 5. Comparison between KLIP and NMF projections using a synthetic face-on MCFOST disk model. (a) Disk model. (b) Projection of the disk model onto the
KLIP components; the central circularly shaped structure is the result from overfitting. (c) Coefficients of each component in KLIP modeling. (d) “Projection” of the
model onto the NMF components. (e) Coefficients of each component in NMF modeling in panel (d): the fact that both the components and the coefficients are non-
negative reduces the likelihood of overfitting, as shown in Equation (34). Note: the central dark regions in panels (b) and (d) are the coronagraphic occulting mask at
the STIS BAR5 position, and the images are in the same scale.
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comparing with KLIP, NMF is able reach lower or similar
levels, demonstrating its competence in disk retrieval. In the
cases when the NMF c2 values are slightly larger than that of
KLIP, it is from the fact that KLIP is overfitting the random
noise, which in principle should not be fitted by any
method, rather than KLIP having a better matching to the
disk model.

3.2.2. Radial Profile

For a face-on disk, its radial profile informs us of the spatial
distribution of the amount of materials, which should be
recovered faithfully. We compare the three methods from the
radial profiles shown in Figure 11 for the recovered face-on
disks in Figure 7.
Classical subtraction seems to be able to recover the radial

profile of the face-on disk at first glance, but it has large
uncertainties. This is because we calculate the uncertainties
from the standard deviation of pixels at the same radial

Figure 6. Initial models created by MCFOST at three different inclinations:
morphology of disks reduced by different methods. From top to bottom, the
disks is tilted at  0 , 45 , and 75° (going from face-on to nearly edge-on) with

= ´ -( )F F 1.5, 0.9, 1.9 10disk star
4, respectively. First column: models; second

column: classical subtraction results; third column: KLIP subtraction results;
fourth column: NMF subtraction results. Both KLIP and NMF recover the
geometries better than the classical method, and the dark halo around the KLIP
images rises from its oversubtraction.

Figure 7. Initial models dimmed by a factor of 10: morphology of disks
reduced by different methods for different inclination angles with

= ´ -( )F F 1.5, 0.9, 1.9 10disk star
5 from top to bottom. The classical method

is working poorly, and NMF works better than KLIP in the sense of recovering
faint signals (far side of the tilted disks).

Figure 8. Initial models dimmed by a factor of 20: morphology of disks
reduced by different methods for different inclination angles with

= ´ -( )F F 7.4, 4.8, 9.0 10disk star
6, respectively. The classical method is not

working. Both KLIP and NMF recover the geometries; however, NMF
preserves the morphology and flux better than KLIP.

Figure 9. Initial models dimmed by a factor of 50: morphology of disks
reduced by different methods for different inclination angles with

= ´ -( )F F 3.1, 1.9, 3.7 10disk star
6. The disks are too faint in this case; none

of the methods could recover the flux of the disks properly, but NMF is still
able to marginally recover the morphology.
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separations. From the morphology results indicating that
classical reduction is not working, this radial profile with large
uncertainty is not physically capable for further analysis.

KLIP is not able to recover the radial profile of the face-on
disk. This results from the overfitting of the astrophysical
signals (as discussed in Section 3.1): not only is KLIP unable to
recover the flux correctly, but it is also changing the slope of
the radial profile, and forward modeling has to be implemented
to recover the distribution. Although the error bars of KLIP are
smaller, this is a result from overfitting the signals.

NMF not only recovers the radial profile with no bias but
also has small uncertainties. With small uncertainties, NMF is
expected to detect fainter structures than any other method is
able to. Therefore, the NMF results can be used to perform
detailed analysis (e.g., Stark et al. 2014).

In this subsection, we have demonstrated that NMF outper-
forms current methods with synthetic circumstellar disks both
in morphology and in radial profile. In the next subsection, we
will apply NMF to a specific case when the classical method
works, ensuring the reliability of NMF using a well-
characterized disk.

3.3. Application to HST-STIS Observations: HD181327

Unseen planets are able to perturb the circumstellar disk
structure and create observable signatures (e.g., Jang-Condell
& Boss 2007; Jang-Condell & Turner 2012, 2013; Dong
et al. 2015a, 2015b; Zhu et al. 2015), and faithful recovery of
both the morphology and radial profile of circumstellar disks
is able to constrain the mass of these hypothetical planets
(e.g., Rodigas et al. 2014; Nesvold et al. 2016; Dong &
Fung 2017). In this subsection, we aim at checking the
effectiveness of NMF with a known circumstellar disk

surrounding HD181327, which ensures the reliability of
NMF by comparing with a well-characterized disk.
We obtain all public HST-STIS coronagraphic observations

available in 2016 December from the HST archive,16 and we
focus on the Wedge A0.6 position, then align the images with
centerRadon, and classify the exposures into two categories
as in Ren et al. (2017): targets that have infrared (IR) excess in
their spectral energy distributions (Chen et al. 2014), where the
IR excess is expected to emit from the circumstellar disks, and
references that do not have IR excess. After constructing the
NMF components using the references as described in
Section 2.2.1, we center on the observations of HD181327
(Proposal ID: 12228;17 PI: G.Schneider), which is located at
51.8 pc and is known to host a relatively bright disk with

= ´ -F F 1.7 10disk star
3 (Schneider et al. 2014); the disk is

composed of a nearly face-on primary ring and a faint
asymmetric debris structure to the northwest (Stark et al. 2014).
To compare NMF with classical RDI and KLIP subtractions,

we obtain the classical reduction result from Schneider et al.
(2014), the KLIP result with the 10% closest-matching
references in the L2 sense (Ren et al. 2017), and the NMF
result using the whole reference cube. We deproject and correct
for the distance-dependent illumination factor, as in Stark et al.
(2014), and show the results in Figure 12: the primary disk is
clearly seen in all results, while the KLIP disk is systematically

Figure 10. c cMethod
2

Classical
2 ratios for different methods and dimming levels

in Figures 6–9. The solid lines are for the face-on disk, the dashed lines are for
the disks tilted at 45°, and the dot-dashed lines are for the disks tilted at 75°.
NMF is able to perform better than the classical method in the c2 sense; in
comparison with KLIP, NMF is able to reach lower or similar levels of c2

values.

Figure 11. Radial profiles for the face-on disks in Figure 7. (a) Radial profiles
of the star, the face-on MCFOST disk model, and the target (star added with
disk). Blue dot-dashed line: the target; gray solid line: the star; black dashed
line: the disk. The face-on disk is ∼100 times fainter than the stellar PSF wing.
(b) Radial profiles of the disk reduced with different methods. Black diamond
with solid line: disk model; red square with dotted line: classical subtraction;
yellow triangle with dot-dashed line: KLIP result; blue circle with dashed line:
NMF result. KLIP is overfitting, therefore introducing unphysical negative
pixels in the outskirts (radial separation of more than 1.0 arcsec), but the radial
profiles of classical and NMF results are both consistent with the model,
whereas NMF performs better with smaller uncertainties.

16 http://archive.stsci.edu/hst/search.php
17 https://archive.stsci.edu/proposal_search.php?mission=hst&id=12228

9

The Astrophysical Journal, 852:104 (16pp), 2018 January 10 Ren et al.

http://archive.stsci.edu/hst/search.php
https://archive.stsci.edu/proposal_search.php?mission=hst&id=12228


dimmer than the other two methods, which is the result from
the overfitting of the disk.

In terms of the morphology of the HD181327 disk, the faint
debris at the northwest region is only revealed in the classical
and NMF results. Although KLIP is able to extract the primary
ring, the debris is buried in the unphysical negative regions.
This debris structure is studied in Stark et al. (2014) and is
probably caused by a recent catastrophic destruction of an
object with mass greater than M0.01 Pluto. With NMF, we are
able to faithfully recover this structure. In situations of fainter

disks, NMF is the only method that can extract the disks and
retain their morphology.
Focusing on the azimuthal profile for the HD181327 disk at

the peak radial position, the majority of the NMF result agrees
with the classical subtraction result both in the values and in the
shape within s1 level, indicating that the NMF result is capable
of being studied in the classical way as in Stark et al. (2014),
while KLIP is not consistent with the other results in either
aspect. We notice that the NMF result is slightly dimmer than
the classical result for the HD181327 primary ring, which

Figure 12. Comparison of HD181327 STIS disk reduced with classical subtraction, NMF, and KLIP (image dimension: 181 × 181 pixels,  ´ 9. 18 9. 18). (a)
Classical subtraction result of Schneider et al. (2014), deprojected and illumination corrected (i.e., r2 corrected) as a pseudo-face-on disk using the ellipse parameters
as in Stark et al. (2014). (b) NMF subtraction result, corrected in the same way as in panel (a). (c) KLIP subtraction result, corrected in the same way as in panels (a)
and (b). (d) KLIP subtraction result, corrected with BFF, then in the same way as in panels (a) and (b). (e) Radial profiles for panels (a)–(d). (f) Azimuthal profiles at
the peak of the ring; parameters taken from Stark et al. (2014). Panels (g)–(j) are the signal-to-noise ratio maps for panels (a)–(d), respectively—in the close-in regions
(inside the primary ring), NMF is able to reach higher signal-to-noise ratio than the other methods. The results in panels (e) and (f) show that the NMF and classical
results are mainly consistent within s1 . The KLIP results are systematically fainter owing to the overfitting of KLIP; even when corrected with the BFF procedure, the
KLIP result is not convincing in either aspect.
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might be caused by the fact that (1) the classical subtraction
may not be absolutely correct, or (2) the BFF procedure needs
diskless pixels to find the optimum scaling factor, while the
faint debris around HD181327, especially the northwest
debris, might be biasing the result. However, we do not aim
to argue which result better represents the disk signal, since the
major purpose of this subsection is to demonstrate the
excellence of NMF on well-characterized bright disks.

Another difference appears inside the primary ring of the
disk. With a large number of references, NMF is able to better
model the region near the inner working angle—for the region
inside the primary ring in Figure 12, the NMF result has greater
signal-to-noise ratio than the classical one: the region inside the
primary ring is nonzero at significance levels better than s1 ,
which calls for speculation of the existence of some scattered
light. The scattering materials might originate from the primary
ring and then be dragged inward by the gas in the system
(Marino et al. 2016), or by the Poynting–Robertson drag from
the radiation of the host star.

4. Summary

In the post-processing of direct imaging data, the most
important step is to find the best template of the stellar PSF and
the speckles for a target image. Especially for broadband
imaging instruments such as HST-STIS, due to the response of
its filter, an ideal template to the target is a reference star with
an identical spectral type. However, even if there is an ideal
match, the quasi-static noise caused by either the adaptive
optics systems or telescope breathing will change the PSF of
both the target and the reference. To capture these quasi-static
noises, multiple statistical methods have been proposed, and
they are working efficiently. Current advanced post-processing
methods do excel in finding circumstellar disks, but their
disadvantages are preventing us from studying the detailed
morphology of these systems.

To extract disk signals with reference differential imaging,
we have demonstrated that NMF is an excellent method for
capturing the stellar PSF and speckle noises. In this paper, we
first compared NMF with current methods using synthetic faint
disks and demonstrated that NMF supersedes current methods
both in retrieving disk morphology and in photometry; we then
applied NMF to a bright disk whose morphology is well
studied with the classical subtraction method, ensuring that
NMF is working in the most classical examples.

We propose to use NMF to overcome the limitations of
current post-processing methods in extracting signals from
circumstellar disks, especially to minimize oversubtraction,
thus circumventing the tedious forward-modeling attempts. We
summarize the properties of NMF as follows:

NMF does not need reference selection to detect circum-
stellar disks.18 For broadband imaging instruments, as long as a
reference library with all spectral types is given, NMF will
construct the components and then find the best combination of
components to model the targets. The NMF component basis
can be constructed only once but works for all different targets,
until new references are taken, the new basis will converge
promptly with the old one used as initialization. This will be the
dominant advantage of NMF in current and future big-data

astronomy, e.g., the surveying telescopes such as the Wide
Field Infrared Survey Telescope. This iterative approach will
need more computational time,19 but the gain is excellent as
demonstrated in this paper.
NMF can extract disk signals and keep their morphology.

The utilization of NMF will enable the study of the detailed
structures and morphology of circumstellar disks, especially for
the faint ones. With well-constrained disk morphology, we will
be able to better study the formation, evolution, and even the
planet–disk interaction of planetary systems.
With NMF, we can accomplish two goals for extracting

circumstellar disks through post-processing of imaging data in
this paper: detecting faint signals scattered from the disks,
and recovering the morphology of them. Although our paper
utilizes space-based coronagraphic observations for their
excellent imaging stability, NMF is capable of capturing the
varying stellar PSF and speckles from the ground-based
exposures (Bin Ren et al. 2018) opening up a new way to
better characterize the circumstellar disks.
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Appendix A
List of Symbols

In this Appendix, we present in Table 1 the list of symbols
used in this paper.

18 We still need the images of reference stars. For further detailed analyses,
reference selection is preferred to get better results; otherwise, the spectral
types of stars should be evenly sampled.

19 For 72 images of dimension 87×87 pixels, the component construction
time of NMF is ~ n0.3 minutes using four cores of Intel Xeon E5-2680v3
(2.5 GHz), where n is the number of components that are constructed
sequentially, while the KLIP process takes less than 5 s to construct all the
components with one core.
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Appendix B
NMF with Weighting Function

The update rules adopted in this paper are summarized here.
1. Rules for component construction with weighting function

(Zhu 2016):
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where R is the reference cube, V is the variance matrix of the
reference cube (if V is not given, an empirical V= R is
suggested because of Poisson noise), (·)H is the NMF
component matrix for the reference cube, and (·)W is the
coefficient matrix for the reference cube. In this paper, these
weighted update rules are adopted. For the HST-STIS images,
the variance matrix of the reference cube is obtained from the
square of the error extension in the flat-field FITS files (i.e.,
the ERR extension); when the exposures are added with
simulated disks (D), we have = +V D ERR2, where ERR
denotes the ERR extension.

2. Rule for target modeling with weighting function:

w w
w
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where T is the target, v is the variance matrix of the target, H is
the NMF components constructed above, and w(·) is the
coefficient matrix for the target.

Appendix C
Construction and Stability of the Component Basis

As stated in the main text, we propose to use a scaling factor
to correct for the capturing of disk signal by NMF (see
Section 2.2.3 for the detailed procedure). The use of the scaling
factor is based on the facts that (1) the disk captured by NMF
resembles that of the stellar exposure (Section 2.2.3), (2) the
target modeling process is linear to the first order (Appendix D),
and (3) the target modeling linearity relies on the property that
the NMF components are stable through iteration when they are
constructed sequentially, which is illustrated in this section.
In the component construction with the references, there

are two ways: set the number of components and run the
iteration in Appendix B directly, i.e., randomly; or construct
the components by starting from one component, and then use

Table 1
List of Symbols

Symbol Expression Dimension Meaning

◦ =( ◦ )A B A Bij ij ij Element-wise (Hadamard) multiplication for matrices A and B of same dimension.

D ´ N1 pix Flattened image of the astrophysical signal (i.e., no stellar information).
D̂ - ˆT f TNMF ´ N1 pix Reduced best image of the astrophysical signal (D), obtained from BFF procedure.

Df -T fTNMF ´ N1 pix Reduced image of the astrophysical signal with scaling factor f.

DNMF w( )HD ´ N1 pix NMF model of the astrophysical signal (D).

d (·) The change of the (·) item after one iteration.
F Fdisk star Flux ratio between the disk and the star.
f Scaling factor, where < <f0 1.
f̂ Optimum scaling factor obtained from the BFF procedure, corresponding with D̂.
H, ( )H k , +( )H k 1 [ ]h H, ,n

T
n
T T ´n Npix NMF component matrix for the reference cube.

hn, Hi, Hn ´ N1 pix The first, ith, and nth NMF component for the reference cube (R).

(·)( )k , +(·)( )k 1 superscript Iteration step number.
m( )

f
k The median of the pixels in Df at iteration step k.

Npix Number of pixels in each image.

Nref Number of images in the reference cube (R).
n Number of NMF components.

(·)o Little o notation, meaning ∣ (·)∣ ∣(·)∣o . Vectorized form means element-wise oʼs.
pA B, ( )AB BBT T The projection coefficient of column vector A onto column vector B.

R [ ]S S S, , ,T T
N
T T

1 2 ref ´N Nref pix Reference cube with rows containing flattened references.

s( )
f
k , s( )

f
conv The standard deviation for the pixels in Df at step k, or when the BFF procedure converges.

S, Si ´ N1 pix Flattened image of only a star (S); subscript i denotes the ith star.

SNMF w( )Hs ´ N1 pix NMF model of the star only (S), i.e., no other astrophysical signal is added.

(·)T =( )A AT
ij ji Transpose operator for matrices.

T S+D ´ N1 pix Flattened image of a target.

TNMF wH ´ N1 pix NMF model of the target (T).
V ´N Nref pix Variance of each pixel for the reference cube (R).

v ´ N1 pix Variance of each pixel for the target image (T).
W, ( )W k , +( )W k 1 ´N nref NMF coefficient matrix for the reference cube (R).
ω, w( ),T w( )k , w +( )k 1 ´ n1 NMF coefficient matrix for the target image (T).
w( )S ´ n1 NMF coefficient matrix for the stellar image (S).
w( )D ´ n1 NMF coefficient matrix for the astrophysical signal (D).
w1, wi, wn The 1st, ith, and nth entry of NMF coefficient matrix for the target image (T).
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the corresponding coefficient and component matrices to
initiate the construction for two components, ..., as in Zhu
(2016), i.e., sequentially.

When we sequentially construct the components, we can
denote wn and hn as the coefficient and component matrices that
are already constructed in the previous n steps and use +wn 1 and

+hn 1 as
20 the additional coefficient and component vectors for

the additional component, i.e., when +n 1 components should
be calculated. Then the simple update rules become (for
simplicity in this section, we only focus on the simple update
rules in Equations (2) and (3); the method and procedure in
Appendix C should work in principle with the weighted update
rules in Appendix B, with the substitutions in Appendix A3 of
Blanton & Roweis 2007), for the coefficient matrix,
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where the leftward-pointing arrow (←) is a simplified notation
of the updating procedure, where the left-hand side is the result
in the +( )k 1 th step and the right-hand side contains the
results from the kth step. For the component matrix,
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Focusing on the individual matrices, we have
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1
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n n
n
T

n
T
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T
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n
n
T

n
T

n n
w w h

w w h

1 1
1

1 1 1 1

1
1

1 n
T

n n

n
T

n n

1 1 1

1

Given the facts that

(a) when n=m, the coefficient matrix wn and component
matrix hn are already satisfying »R w hn n, and

(b) the new coefficient and component vectors ( +wn 1 and
+hn 1) are randomly initialized (Zhu 2016): the elements

are drawn from a uniform distribution from 0 to 1,

the change of hn in the first iteration of Equation (16) before
(hn

old) and after (hn
new) the inclusion of +wn 1 and +hn 1 gives

d = - ( )h h h 19n n n
new old

=
+

-
+ +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ◦ ◦ ( )h

w R

w w h

1

1
1 20

w w h

w w h

n
n
T

n
T

n nn
T

n n

n
T

n n

1 1

=
+

-
+ +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ◦ ( )h

1

1
1 . 21

w w h

w w h

n
old

n
T

n n

n
T

n n

1 1

Lemma (Stability): For the individual elements ( (·)R j) in the
reference cube, if the (·)R jʼs are sufficiently large (for our
purpose, they should have large signal-to-noise ratios), then the
update has little impact on the constructed components (i.e., hn)
if we construct the components sequentially.
Proof: In high-contrast imaging, if the values of the pixels in

the references are large, (·)R j can be represented by

 ( )(·)R 1, 22j

which, when accompanied with a weighting function as
adopted in our paper (see Appendix B, as well as Blanton &
Roweis 2007), the pixels should have large signal-to-noise
ratios, i.e.,

=  ( )(·)
(·)

(·)

R

V
SNR 1. 23j

j

j

To simplify our derivation, the above representation of signal-
to-noise ratio is represented by (·)R j in this section. This
simplification is in principle valid following the substitution as
in Blanton & Roweis (2007).
Assuming that before the inclusion of the additional

component, i.e., the +( )m 1 th component (represented by
+wn 1 and +hn 1), the following relationship is already satisfied

during previous iterations (for n=m):

» ( ) ( )R w h , 24kj n n kj

20 Note: the definition of symbols (i.e., + +w h w h, , ,n n n n1 1) here is only valid
in this section for simplification (Appendix C), and it is not included in the
table of symbols in Appendix A.
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then given that +wn 1 and +hn 1 are randomly initialized (drawn
from a uniform distribution from 0 to 1), we have

+ +( ) ( )w h 1. 25n n kj1 1

Combining Equations (22)–(25), we have

+ + 
( )

( )
( )

w h

w h
1, 26

n n kj

n n kj

1 1

and if this inequality is written in the little o notation (i.e.,
∣ ( )∣ ∣ ∣o x x ), we have

=+ +
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )w w h

w w h
o 1 , 27n

T
n n

n
T

n n ij

1 1

where = å =( ) ( ) ( )w w h w w hn
T

n n ij k
m

n ik n n kj1 is the weighted sum of
the pixels at the same position in all the references.

Substituting Equation (27) into Equation (21), we have

d =
+

-
⎛
⎝⎜

⎞
⎠⎟( )

( )
( ) ( )h

o
h

1

1 1
1 28n ij n ij

old

= + --{[ ( )] }( ) ( )o h1 1 1 29n ij
1 old

 - (( ) ) ( )o h , 30n ij
old

and to the first order, we have equality in the above equation. In
a vectorized form, we have

d = - ∣ ∣ ∣ ( )∣ ∣ ∣ ( )h o h h , 31n n n

element-wise, i.e., the addition of an extra component has little
impact on the previously constructed components.

Appendix D
Target Modeling

When the NMF components are stable through iteration, as
illustrated in Appendix C, we are able to demonstrate the
linearity of NMF modeling in this section. Assuming that there
are n components chosen to model a target (T), then the ith
entry of the coefficient matrix ω ( = i n1, , ) in update rule
Equation (4) is

å
w w

w
=+

=

( )( ) ( )
( )

TH

H H
32i

k
i
k i

T

j

n
j
k

j i
T

1

1

å
=

+
w

w= ¹

( )( )

( )

TH

H H

1

1
33i

T

i i
T

j j i

n H H

H H1,
j
k

i
k

j i
T

i i
T

< ( )TH

H H
, 34i

T

i i
T

where the superscripts ( )k and +( )k 1 are the iteration numbers, Hi

is the ith component of H, and wi is the ith entry of the
coefficient matrix ω. On the right-hand side of Equation (34),
this represents the coefficient of the projection of vector T onto
vector Hi.

Inequality(34) arises from the fact that all the components
are nonpositive; therefore, the denominator of the second term
in Equation (33) is always larger than 1. This is the evidence
why NMF is less prone to overfitting—the NMF coefficients
always have smaller absolute values than normal projections:

since NMF the elements are always non-negative, the normal
projection coefficients are always equal to their absolute values.
When Equation (33) converges (i.e., dw w∣ ∣ ∣ ∣i i , or

dw w w w= - =+ ( )( ) ( ) oi i
k

i
k

i
1 , is satisfied), it will have a form of

å
w w=

+
+

w

w= ¹

( ) ( )TH

H H
o

1

1
; 35i

i
T

i i
T

j j i

n H H

H H

i

1,
j

i

j i
T

i i
T

for simplicity, when we replace the projections with definition

= ( )p
AB

BB
, 36AB

T

T

Equation (35) becomes

å

å

w w

w

w
w

=
+

+

= +

w

w= ¹

=

( )

( ) ( )

p
p

o

p

p
o

1

1

. 37

i TH

j j i

n
H H

i

i TH

j

n
j H H

i

1,

1

i j

i j i

i

j i

Since all the wiʼs are non-negative, dividing both sides by wi,
the above equation becomes

å w = +
=

( ) ( )p p o p . 38
j

n

j H H TH TH
1

j i i i

Given = +T S D, and using them as superscripts, we can
substitute the equation into Equation (38) and obtain

å
å
å

w

w

w

= +

= +

= +

=

=

=

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )

( )

( )

( )

( )

p p o p

p p o p

p p o p

, 39

j

n
j
T

H H TH TH

j

n
j
S

H H SH SH

j

n
j
D

H H DH DH

1

1

1

j i i i

j i i i

j i i i

and in addition, since

= =
+

= +
( ) ( )p

TH

H H

S D H

H H
p p , 40TH

i
T

i i
T

i
T

i i
T SH DHi i i

we have

å w w w- + =
=

[ ( )] ( ) ( )( ) ( ) ( ) p o p . 41
j

n

j
T

j
S

j
D

H H TH
1

j i i

Theorem (Linearity): The NMF target modeling process is
linear to the first order when the NMF components are
created sequentially and stable under iterations (i.e., when
Equation (31) in Lemma holds).
Proof: The above equation is equivalent to proving

w w w w= + + ( ) ( )( ) ( ) ( ) ( )o . 42j
T

j
S

j
D

j
T

Now we prove the above equation by way of induction:

A. n=1, since >p 0h hn n
, for i=1, we have

w w w- + =[ ( )] ( ) ( )( ) ( ) ( ) p o p , 43T S D
h h Th1 1 1 n n n

w w w w- + = =( ) ( ) ( ) ( )( ) ( ) ( ) ( )o p p o , 44T S D
Th h h

T
1 1 1 1n n n

Equation (42) holds.
B. Assume for n=m, Equation (42) holds, and we also

have the following equation holds (Equation (41), for
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= i m1, , ):

å w w w- + =
=

[ ( )] ( ) ( )( ) ( ) ( ) p o p . 45
j

m

j
T

j
S

j
D

H H TH
1

j i i

C. For = +n m 1, given the fact that the components do not
vary to the first order when the number of components
increases (Appendix C, Conclusion), for = i m1, , ,
Equation (41) becomes

å

å

å

w w w

w w w

w w w

w w w

w w w

= - +

= - +

´ + +

+ - +
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=
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=
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=
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( ) ( ) ( )
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p o p

o p

o p o p
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m

j
T

j
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j
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j
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j
T

j
S

j
D

H H H H H H

m
T

m
S

m
D
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j
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T

j
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j
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m
T

m
S

m
D

H H H H

1

1

1

2

1 1 1

1

2

1 1 1

i j j i i

j i j i j i

m i m i

i

j i j i

m i m i

1 1

1 1

where Equation (45) is substituted into Equation (41) in
the above derivation. Since

+
pH Hm i1

is a simple number
rather than a vector, and Equation (42) holds, by keeping
up to the first order, we have

å
w w w

w w w

- +

=
- - + +

+

+ + +

=

+ +
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1 1 1

1
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m i m i1 1

=
- -

+
=

+ + +
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47TH TH TH

H H H H

TH

H H

2 3
i i i

m i m i

i

m i1 1 1

w= +( ) ( )( )o , 48m
T

1

which is also true when = +i m 1; therefore, the proof
of Equation (42) is complete.

Rewriting Equation (42) in vector form, we have

w w w w= + + ( ) ( )( ) ( ) ( ) ( )o , 49T S D T

and thus

w w w w= = + + ( ) ( )( ) ( ) ( ) ( )T H H H o H 50T S D T
NMF

= + + ( ) ( )S D o T , 51NMF NMF NMF

i.e., to the first order, we can linearly separate the stellar PSF
and speckles from the circumstellar disk signal.

Appendix E
The BFF Procedure

We notice that when the optimum scaling factor is in effect
(Section 2.2.3), the diskless regions should be well modeled by
the NMF model of the target; therefore, the values on these
pixels should be small and have a histogram distribution that is
symmetric about 0, and consequently, the variation of the noise

of the diskless region should be minimized. We thus introduce
the BFF procedure as follows to find this factor:

1. For each target (T), construct its NMF model (TNMF) with
the component basis (H), and then vary the scaling factor
( )f from 0 to 1, creating several scaled reduced
images ( = -D T fTf NMF).

2. For each scaled reduced image (Df),
(a) Identification of the background region iteratively: in

each iteration ( k), find the median (m( )
f
k ) and standard

deviation (s( )
f
k ) of Df, remove the pixels having

values satisfying condition

m s m s> + < -( ) ( ) ( ) ( )value 3 or value 10 ;f
k

f
k

f
k

f
k

these pixels are treated as nonbackground ones
because of their large deviations from the median.
Repeat this process until the number of background
pixels does not change.

(b) Calculation of the noise of the diskless region:
calculate the standard deviation of the remaining
pixels when step (a) converges, and denote it
by s( )

f
conv .

3. The factor corresponding with the minimum standard
deviation of Df of the diskless pixels will be taken as the
best one ( f̂ ), i.e.,

s=ˆ ( )f argmin .f f
conv

The connection between BFF and the classical optimum
scaling factor is that both of them are minimizing the
residual noise. In comparison, the classical method
minimizes the residual noise along the major diffraction
spikes after PSF subtraction (e.g., Schneider et al. 2009).
When the diffraction spikes are not stable, especially for
ground-based observations, BFF is able to focus on
the entire field of view and is more able to minimize the
overall difference between the PSF template and the
target.
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