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Abstract

We present the first statistical study of the anisotropy of the magnetic field turbulence in the solar wind between 1
and 200 Hz, i.e., from proton to sub-electron scales. We consider 93 ten-minute intervals of the Cluster/STAFF
measurements. We find that the fluctuations B2d ^ are not gyrotropic at a given frequency f, a property already
observed at larger scales ( ^ means parallel/perpendicular to the average magnetic B0). This non-gyrotropy gives
indications of the angular distribution of the wave vectors k: at f< 10 Hz, we find that k k^  , mainly in the fast
wind; at f > 10 Hz, fluctuations with a non-negligible kP are also present. We then consider the anisotropy ratio
B B2 2d d ^ , which is a measure of the magnetic compressibility of the fluctuations. This ratio, always smaller than 1,
increases with f. It reaches a value showing that the fluctuations are more or less isotropic at electron scales, for
f 50 Hz . From 1 to 15–20 Hz, there is a strong correlation between the observed compressibility and the one
expected for the kinetic Alfvén waves (KAWs), which only depends on the total plasma β. For f 15 20 Hz> – , the
observed compressibility is larger than expected for KAWs, and it is stronger in the slow wind: this could be an
indication of the presence of a slow-ion acoustic mode of fluctuations, which is more compressive and is favored
by the larger values of the electron to proton temperature ratio generally observed in the slow wind.
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1. Introduction

For decades, the three orthogonal components of the
magnetic field fluctuations have been observed in the solar
wind as functions of the frequency f in the frame of a single
spacecraft. Their frequency spectra display two kinds of
anisotropy. The first anisotropy is only related to the direction
of the average magnetic field B0: there is less energy in the
compressive fluctuations B f2d  ( ) parallel to B0 than in the

transverse fluctuations B f2d ^( ) perpendicular to B0. The other
anisotropy is related to the direction of B0 and to the radial
direction R, which is close to the direction of the expansion
velocity of the solar wind: the fluctuations B f2d ^( ) are non-
gyrotropic (non-axisymmetric with respect to B0), with less
energy in the x direction, which is perpendicular to B0 in the
R B, 0( ) plane, than in the y direction, which is perpendicular to
both B0 and R (see, e.g., Bruno & Carbone 2013; Oughton
et al. 2015). These two kinds of anisotropy have been observed
at large scales, in the inertial range of the magnetic turbulence
(Belcher & Davis 1971; Bieber et al. 1996; Wicks et al. 2012).
The fluctuations are still anisotropic and non-gyrotropic at
proton scales (around [0.1, 1]Hz) and at sub-proton scales up
to 10 Hz, a range sometimes called the dissipation range
(Leamon et al. 1998; Turner et al. 2011). In the present work,
we study the anisotropies of Bd from 1 Hz to about 200 Hz in a
sample of 93 intervals of 10 minutes. Indeed, the nature of the
turbulent fluctuations in the solar wind is still under
investigation, and a study of their anisotropies can shed some
light into this question: previous works have shown that the
anisotropy B B2 2d d ^ gives indications of the nature of the
dominant mode of the fluctuations, while the non-gyrotropy of
B2d ^ gives indications of the directions of the wave vectors k,
i.e., the anisotropy of the k-distribution.

The general shape kP ( ) of the k-distribution can be deduced
from the non-gyrotropy of B f2d ^( ), using the fact that
fluctuations with different k contribute to the reduced spectral
density observed at the same f. If kP ( ) is gyrotropic, 2D
turbulence (i.e., k k^  ) will be observed with a non-
gyrotropic B f2d ^( ) in the satellite frame; for slab turbulence
(i.e., k k^  ), B f2d ^( ) will be gyrotropic in the satellite frame
(Bieber et al. 1996). Previous observations in the inertial range
have shown that the k-distribution is mainly 2D. However, the
slab component is also present and its proportion increases
when f reaches the proton scales [0.1, 1]Hz (Bieber et al. 1996;
Leamon et al. 1998; Hamilton et al. 2008).
The anisotropy of the k-distribution of the fluctuations has

also been estimated from a comparison of the correlation
lengths parallel and perpendicular to B0, measured by a single
spacecraft, assuming a stationary and gyrotropic k-distribution
in the MHD range below 10−3 Hz (Matthaeus et al. 1990) and
below 10−2 Hz (Dasso et al. 2005). Multispacecraft measure-
ments also allow a comparison of the correlation lengths
parallel and perpendicular to B0 in the inertial range, still
assuming a gyrotropic k-distribution. Osman & Horbury
(2007), with Cluster observations, find an indication that the
k-distributions in the inertial range are more 2D for
compressive fluctuations B 2d  than for transverse fluctua-

tions B2d ^.
Using data from the four Cluster spacecraft, Chen et al.

(2010) find that B 2d  and B2d ^ have a k-distribution with k k>^ 
below 10 Hz. Using the k-filtering technique, Sahraoui et al.
(2010) find k k^   up to 2 Hz. Still using the k-filtering
technique below 1 Hz, for 52 intervals of Cluster data, Roberts
et al. (2015) find k k^  , except in four intervals with a
relatively fast wind, where quasi-parallel wave vectors are also
present above 0.05 Hz up to 0.3 Hz, where they disappear
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(Roberts & Li 2015). These quasi-parallel wave vectors
correspond to Alfvén Ion Cyclotron (AIC) waves, which are
usually observed in this frequency range, in a fast wind (Jian
et al. 2014). At proton scales, in the range [0.1, 2.5]Hz,
Perrone et al. (2016) find that the magnetic fluctuations in a
slow wind are mainly compressive coherent structures, with
k k^  . At the same scales but in a fast wind, Lion et al.
(2016) find Alfvénic coherent structures with k k^   and
quasi-monochromatic AIC waves with k k̂ superimposed
on a non-coherent and non-polarized component of the
turbulence. In these analyses, as well as in Perschke et al.
(2013), there is no clear mention of the non-gyrotropy of the
wave vector energy distribution in the solar wind.

The second kind of anisotropy, the ratio B B2 2d d ^ , is a
measure of the compressibility of the magnetic fluctuations. In
the inertial range, as well as at proton scales, the compressi-
bility increases when the proton pb factor increases (Smith
et al. 2006; Hamilton et al. 2008). pb ( eb ) is the ratio between
the proton (electron) thermal energy and magnetic energy. The
compressibility also increases when f increases, from the
inertial range to proton scales (Hamilton et al. 2008; Salem
et al. 2012), and from 0.3 to 4 Hz (Podesta & TenBarge 2012).
At sub-proton scales, the compressibility still increases with pb
up to 10 Hz (Alexandrova et al. 2008a) and still increases with f
up to 100 Hz (Kiyani et al. 2013). We call dp and de the proton
and electron inertial lengths, and pr and er the proton and
electron gyroradii, calculated with the temperatures Tp⊥ and
Te⊥ perpendicular to B0.

Even if isolated, coherent nonlinear structures are present in
the solar wind (Perri et al. 2012; Lion et al. 2016; Perrone et al.
2016, 2017), a comparison of the observed dimensionless ratios
of the fluctuating fields and plasma quantities (transport ratios)
with the linear properties of the plasma wave modes can give
indications, on a first approximation, of the nature of the
dominant type of fluctuation (Gary 1992; Krauss-Varban
et al. 1994; Denton et al. 1998). This usual modeling of the
turbulence as a superposition of linear waves is discussed by
Klein et al. (2012) and TenBarge et al. (2012), who consider
Alfvén, fast, whistler, and slow modes from the MHD to the
kinetic range.

The slow mode is frequently neglected because it is strongly
damped, except when the electron to proton temperature ratio
T Te p is larger than 1. However, Wind observations at large
scales (k 0.05pr < ), in the inertial range, show that the
anticorrelation between the density and the compressive
magnetic fluctuations is typical of quasi-perpendicular slow
modes; kinetic slow waves may then be cascaded as passive
fluctuations by Alfvénic fluctuations and thus exist at proton
scales (Howes et al. 2012; Klein et al. 2012). Narita & Marsch
(2015) underline how difficult it is to distinguish between
kinetic slow modes and kinetic Alfvén waves (KAWs),
especially in a high-beta plasma.

Salem et al. (2012) compare the observed compressibility
with the compressibility expected for whistler waves or for
KAWs, and find that the compressibility up to 1 Hz can be
explained by KAW-like fluctuations with nearly perpendicular
wave vectors. Quasi-perpendicular KAWs are generally found
up to proton scales, i.e., up to 1–3 Hz (Sahraoui et al. 2010; He
et al. 2012; Podesta & TenBarge 2012; Podesta 2013; Roberts
et al. 2015). Conversely, Smith et al. (2012) find that KAWs
cannot be the only component below 1 Hz, at least when pb is
larger than 1. Comparing the spectra of the density and of the

magnetic field fluctuations measured on the ARTEMIS-P2
spacecraft, Chen et al. (2013) find KAWs between 2.5 and
7.5 Hz, i.e., k 5pr  –14.
Calculations by Podesta et al. (2010) show that linear

collisionless electron Landau damping prevents KAWs from
cascading to electron scales, so that the energy cascade to these
scales must be supported by wave modes other than the KAW
mode. On the other hand, analytical calculations and numerical
simulations of the turbulence at sub-proton scales show that a
cascade characterized by KAW-like properties can be sustained
between proton and electron scales (Howes et al. 2011;
TenBarge et al. 2013; Franci et al. 2015; Schreiner &
Saur 2017) and can explain the shape of the spectra observed
by Alexandrova et al. (2012), which is controlled by the
electron gyroradius.
Using 2D kinetic simulations, Camporeale & Burgess

(2011b) analyzed the dispersion relation and electron compres-
sibility (i.e., the ratio between the electron density and the
magnetic field modulus of the fluctuations) up to k 1er = or
more, for 0.5p eb b= = . They find that the electron compres-
sibility of the simulated fluctuations is too small to be related to
slow-ion acoustic waves and much too large to be related to
whistler waves, while KAWs are damped. They conclude that
the fluctuations are probably a mixture of different modes.
In this paper, we consider the two types of anisotropy

discussed above: (i) the non-gyrotropy of Bd ^ and (ii) the
compressibility of the magnetic fluctuations B B2 2d d ^ . After a
presentation of the Cluster/STAFF instrument (Section 2) and
the data selection procedure (Section 3), we study the non-
gyrotropy of Bd ^. In Section 4, we compare our observations,
from 1 Hz to 50 Hz or more, in the fast wind and in the slow
wind with the calculations of Saur & Bieber (1999); this gives
us indications of the k-distribution, assumed to be gyrotropic in
the plasma frame. Note that the values of the field-to-flow angle
θ are near 90° in our sample; otherwise, Cluster would be
magnetically connected to the Earth’s bow shock. In Section 5,
we study the compressibility of the magnetic fluctuations. We
show how the compressibility depends on the plasma
parameters in our sample. Then, we compare our observations
with the predictions for KAWs. We show that the observed
magnetic compressibility agrees with the KAW compressibility
up to 15–20 Hz, which corresponds to kd 0.3e  in our sample
(where the electron inertial length de is about 1 to 3 km). Above
20 Hz, the magnetic fluctuations are more compressive than
KAWs, and are more compressive in the slow wind than in the
fast wind. It is well-known that the electron to proton
temperature ratio T Te p is larger in the slow wind. A larger
T Te p increases the damping of KAWs for several values of pb
and k (Schreiner & Saur 2017) but reduces the damping of the
slow-ion acoustic mode; hence, we cannot exclude the presence
of this last mode for f 20> Hz, i.e., for kd 0.3e  , a mode
which would be less damped and more compressive than the
KAW mode.

2. Instruments and Data

The present study relies on data sets from different experi-
ments onboard a spacecraft (Cluster 1) of the Cluster fleet. The
Spatio-Temporal Analysis of Field Fluctuations (STAFF)
experiment on Cluster (Cornilleau-Wehrlin et al. 1997, 2003)
measures the three orthogonal components of the magnetic field
fluctuations in the frequency range 0.1 Hz–4 kHz and comprises
two onboard analyzers, a wave form unit (SC) and a Spectrum
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Analyzer (SA). STAFF-SC provides digitized waveforms, which
are projected in the Magnetic Field Aligned (MFA) frame given
by the FGM experiment every 4 s; Morlet wavelet spectra are
then calculated between 1 and 9 Hz. The SA builds a 3×3
spectral matrix every 4 s, at 27 frequencies between 8 Hz and
4 kHz. This spectral matrix is also projected in the MFA frame:
the Propagation Analysis of STAFF-SA Data with Coherency
Tests (PRASSADCO program) gives the fluctuation properties,
direction of propagation, phase, and polarization with respect to
B0 (Santolík et al. 2003). Both experiments, SC and SA, allow us
to see whether or not the observed fluctuations are polarized. In
some intervals, circularly polarized fluctuations are observed,
with the direction of propagation near B0, at frequencies
displaying a small or large spectral bump. These fluctuations
are quasi-parallel whistler waves (Lacombe et al. 2014). In the
present work, we only consider intervals without such quasi-
parallel whistler waves.

The WHISPER experiment (Décréau et al. 1997) is used to
check that Cluster is in the free solar wind, i.e., that the
magnetic field line through Cluster does not intersect the
Earth’s bow shock: there is no electrostatic or Langmuir wave,
typical of the foreshock, in our sample. Some of the intervals
studied by Perri et al. (2009), Narita et al. (2010, 2011a,
2011b), Narita (2014), Comişel et al. (2014), and Perschke
et al. (2014) contain incursions of Cluster into the foreshock.

The Cluster Science Data System gives the magnetic field B0
every 4s (FGM experiment; Balogh et al. 1997), the proton
density Np, the wind velocity Vsw, and the proton temperatures
of the entire proton distribution, TpP and Tp⊥, respectively,
parallel and perpendicular to B0 (CIS experiment; Rème et al.
1997). The electron parameters given by the Low Energy
Electron Analyzer of the PEACE experiment (Johnstone
et al. 1997) are taken from the Cluster Science Archive: we
use the electron temperatures TeP and Te⊥ of the entire electron
distribution.

3. Data Set

We first consider the same sample of solar wind intervals as
Alexandrova et al. (2012), observed on Cluster1 from 2001 to
2005. This sample contains 100 intervals of 10 minutes, when
magnetic fluctuations (which are not circularly polarized) are
observed above 1 Hz up to 20–400 Hz, according to the
intensity of the fluctuations. These frequencies are above the
proton cyclotron frequency fcp= [0.08–0.3 Hz] in our sample.
With the Taylor hypothesis k Vf2 swp w=  · , where k is the
wavenumber of the fluctuations, the scales corresponding to the
observed frequencies decrease from kd 0.01e  to kd 3e 
(kd 0.4p  –130).

For each 10 minute interval, average spectra are calculated
over 150 points (4 s spectra) in the three directions of the MFA
frame. The 4s FGM magnetic field B0 can be considered as a
quasi-local mean field, giving an average frame valid for
fluctuations above ;1 Hz. It is not really a local mean B0,
which would be computed with waveforms at each scale: such
a computation is impossible with the STAFF-SA data, above
1 Hz. A consequence of this use of a quasi-local mean B0 in
place of a local field will be mentioned in Section 4.1.

Alexandrova et al. (2012) studied the spectral shape of the
total variance of the fluctuations, summed in the three
directions (without subtraction of the background noise). We
now want to study the anisotropies of the variance of the
magnetic fluctuations. It is well-known that the variance is

anisotropic in the inertial range and at kinetic scales, and that
the anisotropies are weaker at small scales (see, e.g., Turner
et al. 2011 and references therein; Kiyani et al. 2013). At high
frequencies, the Power Spectral Density (PSD) is weaker and
tends toward the instrument background noise, which is an
additive noise. It is thus necessary to subtract the background
noise not only for the total 3D magnetic variance but also for
the 1D variance in each direction. This subtraction has been
done as explained in Appendix. As a result, seven intervals
among the 100 have been withdrawn from the sample because
their signal-to-noise ratio was smaller than 3 at 20 Hz and
above. We thus obtain 93 intervals with 1D and 3D spectra
intense enough up to 20 Hz or more, after subtraction of the 1D
and 3D background noise. The importance of the noise
subtraction is illustrated in Figure4 of Howes et al. (2008).
During these intervals in the free solar wind, the Cluster

orbit implies that the average magnetic field B0 makes a large
angle with the solar wind velocity: the sampling direction is far
from the B0 direction. The acute angle θ between B0 and R,
which is close to the field-to-flow angle, is always larger than
52° in our sample; its average value is 78°.
Figure 1 gives the ranges of the plasma properties that can be

found in our data set. It displays scatter plots of the beta factors
eb and pb , the solar wind speed Vsw, the electron to proton

temperature ratio T Te p, and the anisotropy ratios of the proton
and electron temperature, T Tp p^  and T Te e^ . pb varies
between 0.28 and 5.1, and eb between 0.08 and 3.9
(Figure 1(a)). T Te p varies between 0.22 and 2.2, and Vsw

between 300 and 690 km s−1 (Figure 1(b)). T Tp p^  varies
between 0.12 and 0.97 (Figure 1(c)), and T Te e^  between 0.57
and 1 (Figure 1(d)). Within these ranges, the plasma is
expected to be sufficiently far from the thresholds of proton and
electron kinetic instabilities (e.g., Hellinger et al. 2006; Štverák
et al. 2008; Matteini et al. 2013; Chen et al. 2016), at least in
the majority of the intervals analyzed. We then exclude that a
possible wave activity associated with these processes may
significantly affect the results of this work.

Figure 1. Ranges of the solar wind parameters of our sample. (a) The factors pb
and eb . The dotted lines indicate the ranges of small and large pb considered in
Figures 6 and 7(d). (b) The wind speed and T Te p. The dotted lines indicate the
ranges of the slow and fast wind considered in Sections 4.3 and 5.2. (c) T Tp p^ 
is always weaker than 1. (d) T Te e^  is generally weaker than 1.
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4. Observations and Wave Vector Distribution

4.1. Spectra and Anisotropies

We consider the anisotropic PSD P( f ) of the magnetic
fluctuations as a function of f. The PSD of the transverse
fluctuations, perpendicular to B0, is P f P f P fxx yy= +^( ) ( ) ( ).
Pyy is the PSD perpendicular to B0 and to R, and Pxx is the PSD
perpendicular to B0 in the plane R B, 0( ). We call the
fluctuations parallel to B0, i.e., to z, P Pzz= , compressive.
We call P f3D( ) the sum of the fluctuations in the three
directions, P P P3D = + ^ . Two spectra of our sample are
shown in Figure 2. For each spectrum, the solid line gives Pyy,
the dashed line Pxx, and the dashed–dotted line Pzz. We see that
Pyy is the most intense spectrum and that Pxx is generally the
least intense. Pzz is close to Pxx at the lowest frequencies and
close to Pyy at the highest frequencies.

Figure 3(a) displays the anisotropy of the variance of the
fluctuations in the two directions x and y perpendicular to B0.
The 93 solid lines are the ratios of the 10 minute averages of the
PSD in these two directions—the anisotropy ratios as functions
of f (see a discussion on different averaging methods in
TenBarge et al. 2012). The red diamonds are the average values
of these anisotropy ratios over the 93 events at each frequency.
P Pyy xx is always larger than 1. This implies that the transverse
fluctuations are not gyrotropic at a given frequency in the
spacecraft frame. The fact that the non-gyrotropy of P( f ) could
be compatible with a gyrotropic wave vector energy distribu-
tion has been suggested by Alexandrova et al. (2008b). Using
analytical calculations and numerical simulations, Turner et al.
(2011) have shown that this suggestion was valid for the
magnetic fluctuations in the solar wind, from the inertial range
to 10 Hz, if the frequency f is only due to the sampling along
Vsw (Taylor hypothesis) and if the modulus q of the spectral
index of the fluctuations is larger than 1.

The compressibility P P̂ of the 93 events, observed as a
function of f, is given in Figure 3(b): the average value of P P̂
at each frequency is shown by red diamonds. The compres-
sibility increases when f increases. Figure 10 of TenBarge et al.

(2012) illustrates how the compressibility depends on the
chosen local B0 field: the compressiblity calculated with a field
averaged over 1 hr can be two to three times larger than the
compressibility calculated with a local field. We thus think that
our quasi-local field (4 s average) can lead to a slight
overestimation of the compressibility at the highest
frequencies.
According to Figure 3 (see the horizontal bars in each panel),

the frequencies f
pr
corresponding to the proton gyroscale

(k 1pr = ) are generally found between 1 and 4 Hz, and the
frequencies fdp

between 0.7 and 2 Hz. For the electron scales,
f

er
is mainly found between 30 and 200 Hz, and fde

between 30
and 100 Hz.
In the following subsection, we shall look for wave vector

distributions consistent with the non-gyrotropy in the frequency
domain displayed in Figure 3(a). The other anisotropy, the

Figure 2. Most intense spectrum (1) and one of the weakest spectra (2) of our
sample. The green long-dashed line gives the average background noise
bn f1D( ) on a search coil (see the Appendix). The two vertical solid lines give
the frequency f V 2 eswe

pr=r ( ) corresponding to the electron gyroradius scale
for the two spectra, (1) and (2).

Figure 3. Variance anisotropies: ratios between the 10 minute averaged PSD in
different directions. The solid lines are for the 93 events. The red diamonds are
averages of these ratios at each frequency. (a) The ratio P P fyy xx( )( ) between
the average PSD in the two directions x and y perpendicular to B0. (b) The
magnetic compressibility P P f^( )( ), which is the ratio between the
compressive PSD and the total transverse PSD. In each panel, the thick
horizontal bars give the frequency range of f V 2 pswp

pr=r ( ),
f V d2d pswp

p= ( ), f V 2 eswe
pr=r ( ), and f V d2d eswe

p= ( ) in the sample.
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compressibility P P̂ (Figure 3(b)), will be studied in
Section 5.

4.2. Angular Distributions of the Wave Vectors

Saur & Bieber (1999) consider four models for the wave
vector angular distribution in the solar wind and the resultant
PSD anisotropies in the frequency domain, assuming that the
fluctuations are stationary and frozen-in (Taylor hypothesis).
The four distributions are:

(a) a slab symmetry with respect to B0, i.e., k strictly parallel
to B0;

(b) a gyrotropic 2D distribution, with k strictly perpendicular
to B0. The corresponding fluctuations are in planes that
contain B0 and can make any angle with it, with a
component PP parallel to B0 and a component P⊥
perpendicular to B0;

(c) an isotropic wave vector distribution;
(d) a slab symmetry with respect to the radial direction, i.e., k

strictly parallel to R.

Equations (33) to (43) of Saur & Bieber (1999) give the
values of Pxx( f ), Pyy( f), and Pzz( f ) for the four above
distributions as functions of f, θ, and P P f^( )( ). The PSD
are power laws f q- . The spectral index q of the fluctuations is
assumed to be the same in the three directions x, y, and z, and
constant over the whole frequency range.

The equations of Saur & Bieber (1999) are valid at MHD
scales, larger than pr and dp. However, at smaller scales, the Hall
term starts to show its effects in the induction equation. As clearly
shown by Kiyani et al. (2013; see also the detailed derivation of
Schekochihin et al. 2009), the Hall term implies interactions
between the compressive Pzz and transverse P⊥ fluctuations, and
an enhancement of the magnetic compressibility. Thus, the MHD
terms P Pzz yy and P Pzz xx given by Saur & Bieber (1999) are no
longer valid at proton and electron scales. The term P Pyy xx,
which only involves transverse fluctuations, can be considered to
be less affected by the Hall effect: it does not depend on P P̂ . It
is thus able to give indications of the wave vector distribution at
scales smaller than the MHD scales.

The anisotropy P Pyy xx can be calculated with the formulas of
Saur & Bieber (1999) for the four above distributions. For the
slab symmetry with respect to B0,

P P f 1. 1yy xx =( )( ) ( )

This distribution gives a gyrotropic variance, which is not
observed. For the 2D distribution, Pyy( f ) and Pxx( f ) depend on
P P f^( )( ) in the same way, and so their ratio does not depend
on it:

P P f q, 2yy xx =( )( ) ( )

where q is the spectral index of Pxx and Pyy. For the isotropic
distribution, Pyy( f ) and Pxx( f) do not depend on P P f^( )( ):

P P f
q

q

1 2

cos 1 2 sin
, 3yy xx 2 2q q

=
+

+ +
( )( ) ( )

( )
( )

where θ is the field-to-flow angle. For the slab symmetry with
respect to R,

P P f 1 cos . 4yy xx
2 q=( )( ) ( )

In Figure 4, the observations of P Pyy xx are compared with
two models (Equations (2) and (3)). The calculated anisotropies

depend on the observed spectral index q. To get the average
value qá ñ of the spectral index at each frequency, we use
successive averaging processes: we first calculate the local
slope (linear fit over three contiguous frequencies) of the total
spectrum P3D of each event of our sample; then, we smooth this
local slope over 11 contiguous frequencies for each event;
finally, we average the slope over the 93 events and find qá ñ.
In Figures 4(a) and (b), the observed average anisotropy (red

diamonds) P Pyy xx shown in Figure 3(a) is drawn as a function
of f. As the dispersion of P Pyy xx for the 93 events is large
(Figure 3(a)), the two red lines in Figures 4(a) and (b) give the
error interval (average± the standard deviation) at each
frequency. Following Equation (2), P Pyy xx for the 2D
distribution is equal to the spectral index. Thus, in
Figure 4(a), the thick black solid line for the 2D k-distribution
shows the observed average qá ñ: it varies between 2.7 and 2.9
below 6 Hz; then it increases up to 4 when f increases. This
regular increase of qá ñ is due to the exponential shape of the
spectra (Alexandrova et al. 2012). The thin black lines give the
standard deviation for qá ñ over the 93 events, i.e., the dispersion
of the 2D model itself. Taking into account the standard
deviation of the observed ratio P Pyy xx (red lines), it is clear that
the observations from 1 to 6 Hz are close to the ratio for a 2D
k-distribution. Above 10 Hz (at sub-proton and electron
scales), the observations are further from the 2D model.
In Figure 4(b), the observations are compared with the

isotropic model (with its standard deviation). Below 10 Hz, the
observations are far from the isotropic model. Above 10 Hz, the
observations are near the ratio for an isotropic k-distribution.
At any frequency, the slab model (Equation (1)) is far from the
observations. The ratio (Equation (4)) for the model with a slab
symmetry with respect to R is not drawn in Figure 4 because it
is generally larger than 10. We conclude that the 2D model is
better below 6 Hz, and the isotropic model better above 10 Hz.
However, this conclusion relies on the hypothesis of Saur &
Bieber (1999) that the spectral index q is constant over the
whole frequency range: this is not exact above about 10 Hz
(Figure 4(a)). Our results are just an indication, given by the
non-gyrotropy of the PSD, that the k-distribution tends to be
2D below 6 Hz and more isotropic above 10 Hz.

Figure 4. For P P fyy xx( )( ), comparison of the observations with two models
(Equations (2) and (3)). Red diamonds: the observed average anisotropies,
given by the diamonds in Figure 3(a); the error interval at each frequency,
related to the standard deviation over the 93 intervals, is given by the red lines.
Thick black lines: the average anisotropy calculated for two models of the
angular distribution of the wave vectors: (a) the 2D model (Equation (2)) and
(b) the isotropic model (Equation (3)). The thin black lines give the standard
deviation for each model, which is related to the dispersion of the spectral
index q over the 93 intervals.
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Several authors assume that the turbulence is in critical
balance, i.e., the nonlinear cascade rate is of the order of the
linear frequency. Such a model implies relations between kP
and k⊥, i.e., privileged directions of the wave vectors, with
increasing energy in k⊥ when the wavenumber increases (see
Figure 1 of Howes et al. 2008). It can be valid from the inertial
range to the kinetic range (Goldreich & Sridhar 1995; Howes
et al. 2008; Schekochihin et al. 2009; TenBarge et al. 2013). In
our sample, the critical balance model could be valid at low
frequency (below 6 Hz) where the wave vectors are quasi-
perpendicular, but it is probably less valid at higher frequency,
where the k-distribution is more isotropic, i.e., with relatively
more energy in oblique or parallel wave vectors when the
wavenumber increases.

To explain the variations of the observed anisotropies with
the field-to-flow angle θ at a given frequency, different authors
consider a linear combination of two of the above distributions
(Saur & Bieber 1999 and references therein), slab, slab/R, 2D,
and isotropic, in different frequency domains in the solar wind.
At frequencies 10 3-[ Hz, 2 10−2 Hz], Bieber et al. (1996) find
that the turbulence in the inertial range can be described by

85% of the energy in 2D fluctuations and 15% in slab
fluctuations. Leamon et al. (1998) find that the proportion of
slab fluctuations increases at proton scales (0.1–1 Hz).
Hamilton et al. (2008) find an even larger proportion (more
than 80%) of slab fluctuations at proton scales. However, the
pure 2D + slab combination is oversimplified: an angular lobe
of wave vectors along each axis probably has to be considered.
This is illustrated by the work of Mangeney et al. (2006), who
study the variations, as a function of θ, of the PSD of the
magnetic fluctuations and of the PSD of the electric fluctuations
observed by Cluster in the magnetosheath from 8 Hz to 2 kHz.
They find that the electromagnetic PSD, up to kd 30e  or
more, can be explained by a 2D k-distribution, with an aperture
angle of about 10°; the electrostatic fluctuations above
kd 160e  can be explained by a slab distribution, with the
same aperture angle for k around B0.

A more or less smooth transition from a 2D to an isotropic
k-distribution when f increases could be a model of our
observations that is more realistic than a two-component model
with an increasing proportion of slab fluctuations when f
increases.

4.3. Wave Vector Distribution in the Fast and Slow Winds

In the inertial range (resolution of about 1 minute), Dasso
et al. (2005) and Weygand et al. (2011) find that fast streams
are dominated by wave vectors quasi-parallel to B0, while
intermediate and slow streams have quasi-2D k-distributions.
Osman & Horbury (2007), using 4s FGM data on Cluster, do
not find any relation between the solar wind speed and the ratio
of the parallel to perpendicular correlation lengths. Hamilton
et al. (2008) do not find a significant difference between the
k-distribution in the fast and the slow wind, neither in the
inertial range nor at proton scales.

In our sample, the wind speed varies from 300 to 700 km s−1

(Figure 1(b)). We consider separately a sample of 16 intervals
with V 630sw > km s−1, and a sample of 16 intervals with
V 380sw < km s−1. Figure 5(a) displays P Pyy xx as a function of
f for the fast wind (red) and for the slow wind (blue). The
crosses give the average value of each sample. We see that the
average value of P Pyy xx is larger for the fast wind, below

10 Hz. Is this difference significant, in view of the large
dispersion of P Pyy xx in each sample? In Figure 5(b), the
average values of Figure 5(a) (crosses) are shown again, as well
as the error interval for each sample (average± the standard
deviation) given by the solid lines of the same color. Between 2
and 10 Hz, the average values given by the red (blue) crosses
are at the boundary of the blue (red) error interval: the
difference between the averages of P Pyy xx in the fast wind and
the slow wind is thus significant at these frequencies.
Figures 5(c) and (d) allow a comparison of the averages of
P Pyy xx observed in the fast and the slow wind (crosses) to the
P Pyy xx calculated for the two models of the k-distribution
given by Saur & Bieber (1999) (Equations (2) and (3)).
We thus find that the 2D character of the k-distribution is

stronger in the fast wind than in the slow wind, from 1 to
10 Hz. This is contrary to the observations in the inertial range
(quoted above). In the same way, simulations led Verdini &
Grappin (2016) to conjecture that the turbulence is more
isotropic in the fast wind than in the slow wind, still in the
inertial range. A reason for these differences could be that our
frequency range is more than 100 times higher than the inertial
range, so that the operating physical processes can be different.

Figure 5. P P fyy xx( )( ) for two samples: a sample (16 events) with V 380sw <
km s−1 (blue symbols) and a sample (16 events) with V 630sw > km s−1 (red
symbols). (a) The thin lines give P Pyy xx for the considered events; the crosses
give the average values over 16 events. (b) The crosses give the same average
values as in (a); the thin solid lines give the error interval (average ± the
standard deviation) for the observations in the fast and slow wind. From about
2 Hz to 10 Hz, the difference between the fast and the slow wind is significant.
(c) The red crosses are the average values of P Pyy xx given in (b) for the fast
wind intervals. (d) The blue crosses are the average values of P Pyy xx given in
(b) for the slow wind intervals. In (c) and (d), the thick black lines are the
average ratios for the 2D (solid line) and isotropic (dashed–dotted line)
distributions (Equations (2) and (3)) in the same (respectively, fast and slow)
wind intervals. In (c) and (d), the thin lines on either side of the 2D and
isotropic model give the error interval of the model (average ± the standard
deviation), related to the dispersion of the spectral index. The horizontal bars
give the frequency ranges corresponding to the proton and electron scales,
respectively, in the fast and slow wind intervals.
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5. Magnetic Compressibility of the Fluctuations

The compressibility P P̂ of the 93 events of our sample
(Figure 3(b)) increases with frequency. The average value of
P P̂ is about 0.2 at 1 Hz and reaches 0.5 at 50 Hz, close to the
values displayed in Figure1 of Kiyani et al. (2013). Above
50 Hz, P P̂ is larger than the value of 0.5 corresponding to an
isotropic variance, and it still increases up to 0.65 at 200 Hz. To
allow comparisons with other works, Figure 6(a) displays
P P3D , another definition of the compressibility, as a function
of f. Salem et al. (2012) find that P P3D reaches 0.5 at 2 Hz.
This is larger than what we find.

The ranges of the pb values of our sample are given in
Figure 1(a). The lower red dashed line in Figure 6(a) is the
average of P P3D for five events with a small pb , and the upper
red dashed line is for five events with a large pb (see the
selected values of pb in the caption). These red lines show that
the compressibility and the variation of the compressibility
with f depend strongly on pb .

5.1. Compressibility in the Wavenumber Domain

Converting the observed frequency f into a wavenumber
k f V2 swp= (Taylor hypothesis), we calculate the PSDs
Pxx(k), Pyy(k), Pzz(k), and P k3D( ) in nT km2 (despite the fact
that this conversion is problematic for anisotropic k-distribu-
tions and reduced spectra; we shall return to this point in
Section 6). In Figure 6(b), similar to Figure 6(a), we see that the
variation of the compressibility P P3D with the wavenumber k
depends strongly on pb .

We then normalize k to the electron inertial length de, or to
the gyroradii er or pr , and interpolate the normalized PSD at 15
values of kde, k er , or k pr . Figures 7(a) and (b) give the total
power P3D as functions of kde and k er . The slope of the spectra
is close to −2.8 at the largest scales. At the smallest scales, the
spectra are steeper, with an exponential shape controlled by the
electron gyroradius (Alexandrova et al. 2012).

Figure 7(c) gives the compressibility P P3D as a function of
kde. The vertical bars in the abscissae give kdp=1, 10, and
100. With high-resolution 2D hybrid simulations of a decaying
turbulence, for 0.5p eb b= = , Franci et al. (2015) obtain a

compressibility P P3D increasing from 0.1, at kd 0.1,p = to 0.5
at kd 2p = , and a nearly constant (plateau) value 0.6 for
kd 5p = –10. (See also the gyrokinetic simulations in Figure9
of TenBarge et al. 2012). After a kind of plateau from kd 2p =
to 10, the observed average P P3D (Figure 7(c)) increases from
kd 10p = to 100, but it is always smaller than 0.4 (reached for
kd 2e  , kdp=100). We conclude that the observed and the
simulated compressibility have similar variations up to
kd 10,p = but the observed compressibility is two to three
times weaker: we shall discuss this last point in Section 6. For
kd 10p > , a domain not reached by these simulations, the
observed compressibility still increases.

5.2. Compressibility in the Fast and Slow Winds

In Figure 8(a), we compare the compressibility P P̂ for a
sample of 16 intervals in the fast wind (red) and 16 intervals in
the slow wind (blue). The crosses give the average values for
each sample. In Figure 8(b), taking into account the standard
deviation of each sample, we see that the compressibility is the
same in the fast wind and in the slow wind for f< 10 Hz. For
f 15 20 Hz> – , it is larger in the slow wind. It is well-known
that there is a correlation between Vsw and Tp in the solar wind:
fast winds have a higher proton temperature than slow winds,
the electron temperature having a smaller range of variation
(see e.g., Mangeney et al. 1999): T Te p is anticorrelated with
Vsw (Figure 1(b)). Thus, the larger compressibility observed in
the slow wind above 15–20 Hz could be related to larger values
of T Te p.

Figure 6. Compressibility, here defined as P P3D , as a function of f in (a) and
of k in (b) for the 93 events. In (a), the red diamonds give the compressibility at
each frequency, averaged over the 93 events; the lower dashed red curve gives
the average compressibility for the five events with the lowest values of pb
(0.28 0.35pb< < ), while the upper dashed red curve gives the average
compressibility for the five events with the largest values of pb
(2.6 5.1pb< < ). In (b), the five lower (upper) red lines give the
compressibility for the same five events with the lowest (largest) values of pb .

Figure 7. In the wavenumber domain, for the 93 intervals. (a) 3D spectra as
functions of kde. (b) 3D spectra as functions of k pr . The dotted line helps show
that the spectral slopes are close to −2.8. (c) Compressibility P P3D a a
function of kde. (d) Ratio P P^  as a function of k pr . The upper solid red line is
the average value of P P^  for the five events with the lowest values of pb
(0.28 0.35pb< < ), while the lower solid red line is the average value for the
five events with the largest values of pb (2.6 5.1pb< < ). In (c) and (d), the red
diamonds give the average value at each scale. The vertical bars in the
abscissae of (a) and (c) give kd 1p = , 10, and 100. The horizontal dashed lines
indicate values corresponding to an isotropic PSD.
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5.3. Role of pb

Smith et al. (2006) in the inertial range, Hamilton et al.
(2008) up to 0.8 Hz, and Alexandrova et al. (2008a) from 0.3 to
10 Hz find that the compressibility increases when pb increases.
This is clear in Figure 9 for the present sample at 2 and 5 Hz.
The slope of P P̂ as a function of log pb (solid lines in
Figure 9) decreases when f increases, from 5 to 22 Hz. At
56 Hz, the compressibility is no longer correlated with pb .

5.4. Compressibility versus Different Plasma Parameters

The correlations of the compressibility with different plasma
parameters in the solar wind can help to identify the nature of
the dominant mode in the magnetic fluctuations. Figures 10(a)
to (f) display the correlation coefficients of P P f^( )( ) with
local parameters related to the proton or electron temperature.
Scatter plots of these plasma parameters are shown in Figure 1.
The correlation of P P̂ with pb (Figure 10(a)), as a function of
f, is larger than 0.7 from 3 to 10 Hz. It decreases clearly for
f 15> Hz. The correlation with eb (Figure 10(c)) is weaker
than with pb , but it extends up to 20–30 Hz. The correlation
with T Tp p^  (Figure 10(b)) is good (around 0.6) from 10 to
50 Hz. The correlation with T Te e^  (not shown) is always
weaker than 0.55.

Boldyrev et al. (2013; see also Schekochihin et al. 2009;
TenBarge et al. 2012) give analytical formulas for the magnetic
and the electron compressibilities of sub-proton electromagnetic
fluctuations, i.e., KAWs and whistler waves ;(see also Gary &
Smith 2009). The whistler magnetic compressibility does not
depend on β, only on the wave vector direction. Conversely, the
magnetic compressibility C ka

^ for KAWs, in the framework of
the electron-reduced MHD (k 1pr > and k 1er < ), depends on pb
and eb , not on the wavenumber:

C
2

. 5ka p e

p e

b b
b b

=
+

+ +^ ( )

Figure 10(d) displays the correlation between the observed
magnetic compressibility P P̂ and C ka

^ as a function of f.
This correlation is everywhere larger than the correlation with

pb (Figure 10(a)). It is larger than the correlation with eb

(Figure 10(c)) except in a narrow frequency range around
15–25 Hz. The correlation of Figure 10(d) is larger than 0.7
between 1.5 and 15 Hz.

5.5. Modes of the Fluctuations

5.5.1. For f 15 20 Hz< –

At these frequencies (corresponding to k 10p r ), our
observations can be compared with the Vlasov–Maxwell
results of TenBarge et al. (2012). These authors calculate
P P^  for Alfvén, fast, and slow modes up to k 10pr = for
different values of pb , assuming that the turbulence is in critical
balance (k k2 3µ ^ ), i.e., with quasi-perpendicular wave
vectors.
We have seen (Figure 9) that P P̂ increases when pb

increases: this is typical of KAWs, but excludes the presence of
fast waves for which P P̂ decreases when pb increases. The
observations of Figure 7(d) are also consistent with KAW
properties up to k 10pr = (Figure2 of TenBarge et al. 2012):
for the lowest values of pb , the observed P P^  (upper solid red
line) decreases strongly when k pr increases, while P P^ 

decreases weakly for the largest values of pb (lower solid red
line). Finally, Figure 10(d) confirms that fluctuations with a
KAW polarization are generally dominant at sub-proton scales,
for f< 15–20 Hz.
However, the observed P P^  profiles (Figure 7(d)) have a

large dispersion, so that they could be consistent, in some
cases, with other modes, oblique whistler waves with a critical
balance distribution (k k1 3µ ^ , Figure4 of TenBarge
et al. 2012), or with different mixtures of Alfvén, fast, and
slow wave modes (Figures2 and 6 of TenBarge et al. 2012) for
which P P^  changes strongly from k 0.5pr  to k 10pr  .

Figure 8. P P f^( )( ) for two samples: a sample (16 events) with V 380sw <
km s−1 (blue symbols) and a sample (16 events) with V 630sw > km s−1 (red
symbols). (a) The thin lines give P P̂ for the considered events; the crosses
give the average values over 16 events. (b) The crosses are the same average
values as in (a); the solid lines give the error interval (average ± the standard
deviation) for the fast and the slow winds. Above about 20 Hz, the difference
between the compressibility in the slow and fast winds is significant.

Figure 9. P P̂ as a function of pb at four frequencies (2, 5, 22, and 56 Hz;
cuts of Figure 3(b)). The correlation coefficient Cc between P P̂ and pb is
given in each panel.
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5.5.2. For f > 15–20 Hz

The weaker correlation between P P^  and C ka
^ observed in

Figure 10(d) above 15 Hz (and below 1.5 Hz) can be due to
different reasons: (i) Equation (5) for C ka

^ is valid in a limited
scale range, (ii) the KAWs are damped, and/or (iii) another
mode, with a different compressibility, is present. Let us
discuss these three points.

(i) Validity of Equation (5)? Equation (5) is valid for
k 1pr > and k 1er < . This is shown in Figure2(a) of
TenBarge et al. (2012) where the compressibility is
indeed equal to C ka

^ for k 2pr =^ to 10, at least for the
observed values 0.28 5.1pb  [ – ] . In our sample, for all
events, k 1pr > if f 3> Hz, and k 1er < if f 50< Hz.
Thus, in Figure 10(d), the weaker correlation below 3 Hz
can be due to the lack of validity of Equation (5).
Conversely, the weaker correlation from 15 to 20 Hz to
50 Hz has to be due to other reasons.

(ii) KAW damping? Figure 10(e) shows the correlation
between P P̂ and T Te p as a function of f. This
correlation is zero up to 10 Hz and still very small up
to 50 Hz. Above 80 Hz, the correlation reaches 0.5 among
about 20 events (a number given by the dotted line; see

the caption), which are the most intense at these
frequencies. Figure 10(f) shows that the correlation
between P P̂ and T Te p (Figure 10(e)) could be related
to the anticorrelation of P P̂ with Vsw above 20 Hz.
According to Figure1 of Schreiner & Saur (2017), larger
values of T Te p increase the damping of KAWs, at least
for the pb values of our sample, and for small scales
k 10 100pr^  [ – ] (see also Howes et al. 2006). The

decrease of the correlation between P P^  andC ka
^ above

20 Hz (Figure 10(d)) can thus be due to a stronger
damping of KAWs, itself due to relatively larger values
of T Te p. Note that Bruno & Telloni (2015) observe that
KAWs (below 4 Hz) tend to disappear when the wind
speed decreases.

(iii) Another mode? The weaker correlation between P P^ 

and C ka
^ for f 15 20> – Hz (Figure 10(d)) can be due to

the presence of another mode, with another compressi-
bility, superimposed or not on the KAW mode. What
could be this other mode? At electron scales, neither the
electron temperature anisotropy (Figure 1(d)) nor the heat
flux is unstable: whistler waves are not observed. The eb
values are generally too low to give an electron parallel
firehose instability (Matteini et al. 2013). The correlation
of P P̂ with T Te p (Figure 10(e)) above 80 Hz, which
could imply the presence of slow modes, is not strong,
but it is consistent with the results of Figure 8, above
20 Hz: the compressibility is larger in the slow wind,
where T Te p is larger. T Te p varies between 0.22 and 2.2
in our sample, with 60% of the intervals for T T 1e p <
(Figure 1(b)). These values seem to be too low to prevent
the damping of slow-ion acoustic modes. However, we
recall that Te and Tp are average values for the entire
distributions, without distinction between the tempera-
tures of the core, halo, strahl, or beam. A better
description of the distribution functions could show
whether slow-ion acoustic modes could be less damped
above 20 Hz, mainly in the slow wind: Tong et al. (2015)
underline how the KAW damping depends on realistic
distribution functions with electron drifts. Furthermore,
the correlation of the compressibility with T Tp p^ 
(Figure 10(b)) is larger for f 15 20> – Hz than in the
KAW frequency domain. According to Narita & Marsch
(2015), quasi-perpendicular kinetic slow modes could
produce proton heating so that the correlation in
Figure 10(b) could be another indication for the presence
of kinetic slow modes, cascading above 15–20 Hz.

In Figure 11, the P P̂ observed at four fixed frequencies is
drawn as a function of C ka

^ (Equation (5)). In each panel, Cc

gives the correlation coefficient between P P̂ and C ka
^ . At

2 Hz, the observed compressibility is always weaker than C ka
^ ,

the compressibility expected for KAWs (Figure 11(a)). At
6.6 Hz (Figure 11(b)), where Cc peaks, P P̂ is still weaker but
closer to C ka

^ . At 22 Hz, the observed compressibility is, on

average, equal to C ka
^ (Figure 11(c)). At 56 Hz, P P̂ is

mainly larger than C ka
^ (Figure 11(d)).

Taking into account that the observed magnetic compressi-
bility P P f^( )( ) can be underestimated with respect to
simulations or numerical calculations (see Section 6), we
conclude that P P̂ is larger than the KAW compressibility for
f 15 20> – Hz, i.e., k 10p r .

Figure 10. Correlations of the observed compressibility P P f^( )( ) with
plasma parameters as functions of the frequency: (a) pb , (b) T Tp p^ , (c) eb , (d)
compressibility C ka

^ of the KAWs (Equation (5)), (e) T Te p, and (f) 1/Vsw (the
diamonds give the correlations between the considered quantities, and the
crosses those between the logarithms). In the six panels, the dotted line gives
the fraction of the 93 events that are intense enough at this frequency to be
implied in the correlation: the fraction is 1 (93 events) up to 22 Hz, more than
0.6 (;60 events) up to 40 Hz, but less than 0.3 (;30 events) above 80 Hz. The
horizontal bars in (d) and (e) give the frequencies corresponding to the proton
and electron scales as in Figures 3 and 4.
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A few simulations of the slow-ion acoustic mode reach the
scales k 100pr  or k 1er  corresponding to our observations.
The hybrid Vlasov–Maxwell simulations of Valentini et al.
(2008) and Valentini & Veltri (2009) reach kd 100p  and
show the generation of ion-acoustic turbulence, but these
simulations imply a temperature ratio T T 10e p = , which is
much larger than the values of our sample (Figure 1(b)).
Camporeale & Burgess (2011b) reach k 10er  but the electron
compressibility of their simulated fluctuations is weaker than
the calculated electron compressibility of the slow-ion acoustic
waves. An interesting result in Figure3 of Camporeale &
Burgess (2011a) is that the electron compressibility of the
slow-ion acoustic mode is larger for a small propagation angle
( 45kBq = ) than for kBq = 60° or 80°. This is another point in
favor of the presence of slow-ion acoustic modes in our data.
Indeed, we concluded (Section 4.2) that the k-distribution is
more isotropic so that small kBq angles are more frequent when
f increases. Thus, a larger electron compressibility should be
found when f increases ( kBq decreases) if slow-ion acoustic
modes are present. We did not measure the electron
compressibility, but Figures 6(a) and 11 show that the magnetic
compressibility increases when f increases. Calculations similar
to those of Gary & Smith (2009) would tell us whether the
magnetic compressibility of slow-ion acoustic modes increases
when kBq decreases.

6. Discussion

In this work, we consider the reduced power spectral
densities Pxx( f ), Pyy( f), and Pzz( f ) of the magnetic field
fluctuations observed at a given frequency f in the three
directions with respect to the quasi-local magnetic field B0 (4 s
average), P f P fzz=( ) ( ) and P f P f P fxx yy= +^( ) ( ) ( ). The
sampling direction is in the plane (x z, ), i.e., perpendicular to
the y direction.

In Section 5, the magnetic compressibility observed in the
frequency domain, P P f^( )( ), is compared with analytical and

numerical calculations and simulations in the wave vector
domain, which only consider two components, kP and k⊥, and
give the compressibility P P k^ ^( )( ). But this comparison is not
really valid: we cannot assume that P P f^( )( ) is equal to
P P k^ ^( )( ). Indeed, if there is only one wave vector k1
perpendicular to B0, along x for instance, the PSD in the
directions perpendicular to k1, P kyy 1( ) and P kzz 1( ), will be
observed as P fyy 1( ) and P fzz 1( ) at the same frequency

k Vf 21 1 sw p= · (see Podesta & TenBarge 2012, Section 2.1)
and will display a phase relation between Byd and Bzd
corresponding to their polarization. If there is also a wave
vector k2 perpendicular to B0, along y, with wavenumber
k k2 1= , P kxx 2( ) and P kzz 2( ) will be observed as P fxx 2( ) and
P fzz 2( ) at the same frequency k Vf 22 2 sw p= · , but f2 will be
much smaller than f1 because k2 is more or less perpendicular
to the sampling direction Vsw. Thus, even if two wave vectors
perpendicular to B0 have the same k⊥, they will not be
observed at the same frequency in Pxx( f ), Pyy( f), and Pzz( f ).
Inversely, at a given frequency, Pxx( f ), Pyy( f), and Pzz( f ) do
not correspond to the same wavenumbers and wave vectors:
they do not belong to the same fluctuations, and there is no
clear phase relation between the components x, y, and z.
Furthermore, a PSD like Pzz or like P P Pxx yy= +^ or
P P Pzz3D = +^ at a given frequency is a mixture of fluctuations
with different wavenumbers and different phases. Thus,
analytical and 2D numerical calculations, which involve the
same wave vectors for all of the PSDs, and simulations that do
not “fly through” the simulation box with the solar wind
velocity, cannot predict exactly what is observed at a given
frequency. This is probably one of the reasons why the
observed compressibility is sometimes weaker than the
simulated or calculated compressibility (see Section 5).
The Taylor hypothesis has been assumed to be valid from 1

to 100 Hz; in Figures 6(b) and 7, the wavenumber dependence
relies on this hypothesis. However, at proton or electron scales,
some fluctuations can be present, with a frequency 0w in the
solar wind frame non-negligible with respect to k V. sw. Thus,
any detailed comparison of the observations with calculations
in the wavenumber domain (Section 5.1) has to take into
account the possibility that k is not always proportional to ω in
the kinetic range, and that wave modes could be present with a
non-negligible 0w . What could be these wave modes?
Howes et al. (2014) show that the Taylor hypothesis is valid

for all of the linear modes (Alfvén, fast, slow) in the near-
Earth solar wind, except for quasi-parallel whistler waves.
Our frequency range [1–200 Hz] is below the electron
gyrofrequency range fce: in our sample, fce varies from 150 to
550 Hz, with an average value of 300 Hz. Quasi-parallel
whistler waves could thus be present below fce (Lacombe
et al. 2014; Kajdič et al. 2016; Stansby et al. 2016), but their
characteristic right-handed polarization with respect to B0 and
the corresponding spectral bump are not observed in our
sample, so that even if weak underlying quasi-parallel whistlers
were present, they could not play an important role.
The observed frequency range is well above the proton

gyrofrequency range f 0.08 0.3 Hzcp = [ – ]. Thus, ion Bernstein
modes, at low harmonics (1, 2 or 3) of fcp cannot be observed.
Our frequency range is well below the proton plasma

frequency ( fpi varies from 400 Hz to 1.5 kHz, average
;800 Hz): slow-ion acoustic waves could be present, which
propagate below fpi. But the only magnetic compressibility
cannot allow the identification of non-Alfvénic wave modes

Figure 11. Comparison between the compressibility P P̂ , observed at four
frequencies, and the compressibility of kinetic Alfvén waves (Equation (5)).
The dotted line is the bisectrix.
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(Narita & Marsch 2015). This is illustrated by TenBarge et al.
(2012). To remove these ambiguities, fluctuations other than
the magnetic field fluctuations or other transport ratios need to
be considered, notwithstanding the fact that each wave
identifier has its own ambiguity (Krauss-Varban et al. 1994;
Denton et al. 1998; Klein et al. 2012). However, at small scales
( f 15 20> – Hz; see Section 5.5.2), the observed compressi-
bility is larger than the KAW compressibility (Figure 11). It is
larger in the slow wind than in the fast wind (Figure 8), i.e.,
larger when the electron to proton temperature ratio T Te p is
larger (Figure 1(b)). Is there a mode that has a compressibility
larger than the KAW compressibility, which could be present
in the slow wind, where T Te p is larger, and which can
propagate at oblique or small angles with respect to B0?
According to Figure1 of Gary (1992), if T T 1e p  and 1pb > ,
there is always a slow mode that is only weakly damped for
small propagation angles. This is valid for MHD modes and up
to kdp=0.1 (Gary & Winske 1992; Krauss-Varban
et al. 1994). This is still valid up to k 10er  (Camporeale &
Burgess 2011a) at least for 0.5p eb b= = . The magnetic
compressibility of this kinetic mode has to be calculated to be
compared to our observations.

The comparison of the observed polarization ratios with
those of linear modes is not always justified. But it could be
more valid at the smallest scales ( f 20> Hz or k er> 0.2), when
some angles kBq are probably smaller than the values giving the
critical balance condition, i.e., smaller than the values where
the role of nonlinear effects becomes dominant (Figure1 of
Howes et al. 2008).

7. Summary and Conclusion

We analyzed 93 ten-minute intervals of the solar wind
magnetic field fluctuations observed on Cluster1, from 1 Hz to
about 200 Hz. These intervals, between 2001 and 2005, are
selected with two conditions: (1) there is no indication of a
connection to Earth’s bow shock; as a consequence, the Cluster
orbit implies that the field-to-flow angle θ is large, and (2) there
is no indication of the presence of quasi-parallel whistler
waves, which are easily detected by their quasi-circular right-
handed polarization (Lacombe et al. 2014).

The PSD of the magnetic field turbulence is measured in the
three directions of the MFA frame, an average quasi-local
frame given by the 4 s magnetic field data. The PSD is
anisotropic. It decreases when f increases; it goes down to the
instrumental background noise at different frequencies in the
different directions. As explained in Section 3 and the
Appendix, we only consider the PSD when it is larger than
three times the noise in any direction; then, we subtract the
noise to obtain the corrected signal.

The corrected PSD P( f ) is itself anisotropic. It is maximum
in the y direction, which is perpendicular to B0 and to the radial
direction. P( f ) is weaker in the x direction, which is
perpendicular to B0 and y: the ratio P f P f 1yy xx >( ) ( ) implies
that the transverse fluctuations are not gyrotropic at a given
frequency f in the spacecraft frame.

Following Saur & Bieber (1999), the non-gyrotropic ratio
P P fyy xx( )( ) gives indications of the shape of a gyrotropic
distribution of k. We find that the k-distribution kP ( ) is mainly
2D (i.e., k k^  ) up to about 6 Hz, i.e., kd 0.1e  or k 3pr  .
There is also a slight proportion of wave vectors parallel to B0.
Through a separate study of intervals of fast wind and slow
wind, we show that kP ( ) is closer to a 2D distribution in the

fast wind and contains a larger proportion of wave vectors
parallel to B0 in the slow wind, at f < 10 Hz. At frequencies
f > 10 Hz, kP ( ) is less than 2D and tends toward isotropy
around 50 Hz: wave vectors oblique or parallel to B0 become
relatively more important when the frequency increases
(Section 4.2).
We call the anisotropy ratio P P f^( )( ) between the

compressive and transverse fluctuations the compressibility:
this polarization ratio increases from 1 to 200 Hz. From 2 Hz to
about 15–20 Hz, the observed compressibility is very well
correlated (Figure 10(d)) and nearly equal (Figure 11) to the
compressibility (Equation (5)) of linear KAWs, which only
depends on the beta factor p eb b b= + : fluctuations with a
KAW-like polarization are dominant below 20 Hz, i.e., below
kd 0.2e  or k 10pr  .

At smaller scales, f 20> Hz, we suggest that the fluctua-
tions could be related to a slow-ion acoustic mode. The
identification of the three modes, Alfvénic or compressive, and
the estimation of their damping rates and of their polarization
and transport ratios is a difficult task in the kinetic range where
the modes cross each other in the dispersion plane (Krauss-
Varban et al. 1994; Klein & Howes 2015). Calculations of the
dispersion relation and of the compressibility of the modes, for
different propagation directions, different pb , and different
T Te p, would be necessary to confirm (or infirm) the presence of
slow-ion acoustic modes with a large magnetic compressibility
and relatively small propagation angles, for k 10p r .
Note, however, that recent studies (Chen & Boldyrev 2017;

Passot et al. 2017) suggest that the compressibility of KAWs
can further increase when reaching the electron inertial length
scale, and thus be in possible good agreement with the trend
observed in this data set for frequencies above 20 Hz.
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Appendix
Subtraction of the Background Noise

For a precise measurement of the weak spectral levels on
Cluster, the subtraction of the instrument noise was justified by
Alexandrova et al. (2010): the frequency-dependent back-
ground instrument noise is a random variable; the solar wind
turbulence is a random variable; these random variables are
independent. It is well-known that the average value of the sum
of two independent random variables is the sum of their
average values. Thus, the true spectral level at the frequency f is
the difference P f bn f3D 3D-( ) ( ), where P f3D( ) is the average
of the trace of the spectral matrix measured on the triaxial
search coils (signal + noise) and bn f3D( ) is the average of the
trace of the background noise (additive noise). The background
noise is generally called sensitivity, but this name is misleading
because it implies a threshold, which has to be crossed, and not
an additive noise that has to be subtracted.
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The average background noise is easily measured every year
in summer, when Cluster crosses the magnetospheric lobes: in
these regions, the in situ fluctuations are so weak that the
measured signal is considered as the receiver noise. This
instrument noise is close to the values obtained by Earth’s
ground measurements (Cornilleau-Wehrlin et al. 2003). Robert
et al. (2014) show, in their Figure 9, that the background noise
is rather stable from 2001 to 2004, and even until 2011. At the
STAFF-SC frequencies (below 8 Hz), the observed solar wind
spectra (Figure 2) are intense enough so that there is no need to
subtract the noise. On STAFF-SA (above 8 Hz), from 2001 to
2005, we consider that the 3D background noise bn f3D( ) is
given by a one-hour average of the 3D power Plobe measured in
a lobe on 2004 June 03 (14:00–15:00 UT) on Cluster1.
Histograms of P flog lobe ( ) during this interval, at different f,
show that the instantaneous background noise can be as large
as two to three times the average value bn f3D( ) below 60 Hz,
and 1.3 to 1.5 times bn f3D( ) above 60 Hz. (Above 60 Hz, the
power of each STAFF-SA spectrum relies on eight times more
measures than below 60 Hz, so that the relative uncertainty on
the power level is weaker). To reach the true spectral level by a
subtraction, P f bn3D 3D( )– , we have to take into account this
uncertainty on bn3D, which is at most three times bn3D. The
corrected spectral level is the average value of P bn3D 3D– , but
only at the frequencies where P3D is larger than bn3 3D,

P f bn f3 . 63D 3D( ) ( ) ( )
There is no simple reliable way to separate the signal and

instrument noise at frequencies for which P3D is weaker
than bn3 3D.

For the background noise in each direction x, y, and z, we use
bn f bn f 31D 3D=( ) ( ) (as in Figure 2). Even if the three search
coils in the spacecraft frame (SR2) do not have exactly the
same 1D background noise, it is not useful to distinguish them:
indeed, the onboard (SR2) spectral matrix (signal + noise) is
projected and analyzed in the MFA frame, x, y, and z, so that
the role played by each search coil is time dependent, through
the angles between the SR2 and the MFA frames. Anyway, the
considered uncertainty (three times the noise) broadly takes
into account the differences between the three search coils.

The present work is based upon measurements of the PSD
anisotropies. We have to subtract the 1D background noise
from Pxx( f ), Pyy( f), and Pzz( f ). As Pxx( f ) (dashed lines in
Figure 2) is the weakest 1D spectrum (above 8 Hz), we first
have to check that the noise subtraction is significant forPxx:
indeed, the subtraction from P f3D( ) can be valid (if P f3D( ) is
larger than bn f3 3D( )), while the subtraction from Pxx( f ) is not
valid, if Pxx( f ) is equal to the 1D background noise. To prevent
errors in the subtraction of the noise from Pxx( f), we thus put a
second condition,

P f bn f3 . 7xx 1D( ) ( ) ( )
As Pxx( f ) is always weaker than Pyy( f ) and Pzz( f ), this

second condition implies that the 1D noise can be subtracted
without errors in every direction, x, y, and z. Figure 12
illustrates the two conditions (Equations (6) and (7)) to get
valid measurements of a 3D spectrum of Pxx( f ), Pyy( f), and
Pzz( f ), and thus of the anisotropy ratios of Figure 3. The lower
dotted lines in Figure 12 give the background noise for the 3D
noise (left panel) and the 1D noise (right panel). The upper
dotted lines respectively give bn3 3D and bn3 1D. The dashed
lines give P3D (left panel) and Pxx (right panel) before any
subtraction. The solid lines give the corrected spectra, which

obey the two above conditions, and after subtraction respec-
tively of bn3D and bn1D.
All of the spectra used in the present paper are corrected in

this way.
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