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Abstract

Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux
ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady
solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of
a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying
streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for
the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well
confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence
of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For
significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to
runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due
to the weight of the prominence, despite having low plasma β. As the flux rope erupts, the prominence erupts,
showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked
morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the
flux rope with less than one wind of twist can erupt via the onset of the torus instability.

Key words: magnetohydrodynamics (MHD) – methods: numerical – Sun: coronal mass ejections (CMEs) – Sun:
corona – Sun: filaments, prominences
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1. Introduction

Solar prominences or filaments (elongated large-scale
structures of cool and dense plasma suspended in the much
hotter and rarefied solar corona) are major precursors or source
regions of coronal mass ejections (CMEs). It is suggested that
most CMEs are the result of the destabilization and eruption of
the hosting magnetic structure capable of supporting the
prominence (e.g., Webb & Hundhausen 1987). The hosting
magnetic structure is likely a magnetic flux rope with helical
field lines twisting about its center, supporting the dense
prominence plasma at the dips of the field lines (e.g.,
Low 2001; Gibson 2015). Many previous MHD simulations
of CME initiation have focused on the mechanism for the
destabilization and eruption of coronal flux ropes using highly
simplified thermodynamics, e.g., zero plasma β, isothermal, or
ideal gas with lowered adiabatic index γ, without the possible
formation and effects of prominence condensations (e.g.,
Antiochos et al. 1999; Török & Kliem 2005, 2007; Fan &
Gibson 2007; Aulanier et al. 2010; Fan 2010, 2012; Török
et al. 2011; Chatterjee & Fan 2013; Amari et al. 2014). These
simulations also generally consider an initial static potential
field without an ambient solar wind that partially opens the
magnetic field. MHD simulations of CME events with more
realistic treatment of the thermodynamics that explicitly
include the non-adiabatic effects of the corona and transition
region, termed thermodynamic MHD simulations (e.g., Linker
et al. 2007; Downs et al. 2012), have been conducted. These
simulations have been used to carry out direct comparisons
with coronal multiwavelength observations of the simulated
events. For example, Downs et al. (2012) conducted a global
thermodynamic MHD simulation of the 2010 June 13 CME
event and used forward-modeled EUV observables to compare
and interpret SDO/AIA observations of the EUV waves

associated with the eruption. However, these studies have not
explicitly presented the formation and eruption of prominences.
Recently, Xia et al. (2014) and Xia & Keppens (2016) carried
out thermodynamic MHD simulations to model the formation
and fine-scale dynamics of a prominence in a stable equilibrium
coronal flux rope, which reproduced many features of the solar
prominences observed by SDO/AIA. However, simulations of
the eruption of prominence-carrying coronal flux ropes are still
an area to be explored. In this paper, we carry out MHD
simulations of the evolution of coronal flux ropes under coronal
streamers, explicitly including the non-adiabatic effects that
allow for the formation of prominence condensations, and
model the destabilization and eruption of the flux ropes with
the more realistic treatment of the thermodynamics. We assume
a fully ionized hydrogen gas with the adiabatic index γ = 5/3
and explicitly include a simple empirical coronal heating,
optically thin radiative losses, and the field-aligned thermal
conduction. We consider a broad and a narrow initial coronal
streamer into which we drive the emergence of a twisted flux
rope with varying lengths and total twists, and we find different
scenarios and mechanisms for the transition from quasi-
equilibrium to dynamic eruption of the flux rope. In the cases
with a long, significantly twisted flux rope, we also find the
formation of prominence condensations in the dips of the
twisted field lines due to the development of radiative
instability or non-equilibrium. With the eruption of the flux
rope, we also obtain a prominence eruption. Pagano et al.
(2014, 2015) also carried out MHD simulations of flux rope
ejection incorporating field-aligned thermal conduction and
optically thin radiative losses, and synthesized the modeled
SDO/AIA EUV emissions from the simulated eruption. Their
thermodynamic MHD simulations focus on the dynamic
eruption phase, using an initial flux rope configuration that is
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already out of equilibrium as it evolved from a separate zero
plasmaβ global magnetofriction model (Mackay & van
Ballegooijen 2006). Our MHD simulations on the other hand
also model the transition from quasi-equilibrium to the
development of instabilities of the flux rope.

2. The Numerical Model

For the simulations, we solve the following semi-relativistic
MHD equations (Gombosi et al. 2002; Rempel 2017) in
spherical geometry:
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and the last term on the right-hand side of the momentum
equation (Equation (2)) is the semi-relativistic correction (see
Equations (53) and (54) in Rempel 2017). In the above,
symbols have their usual meanings, where v is the velocity
field; B is the magnetic field; ρ, p, and T are, respectively ,the
plasma density, pressure, and temperature; e is the internal
energy density; c is the (reduced) speed of light (see more
discussion later);  is the unit tensor; =b̂ B B is the unit
vector in the magnetic field direction; R, μ, and γ, are,
respectively, the gas constant, the mean molecular weight, and
the adiabatic index of the perfect gas; and = - ( )g rGM r2

is the gravitational acceleration, with r being the radial distance
to the center of the Sun. We assume a fully ionized hydrogen
gas with the adiabatic index g = 5 3. We solve the internal
energy equation, taking into account the non-adiabatic effects
of an empirical coronal heating H (to heat the corona and
accelerate the solar wind), optically thin radiative cooling Qrad,
and electron heat conduction- · q. The conduction heat flux
q is given by

= + -( ) ( )q q qf f1 , 9s S s H

which combines the collisional form of Spitzer,

k= - ˆ ˆ · ( )q bbT T , 10s 0
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with k = - - - -10 erg s cm K0
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where = r R5H , such that the heat flux transitions smoothly
from the collisional form in the lower corona to the
collisionless form at large distances (with > r R5 ). This
formulation for q is the same as that used in van der Holst et al.
(2014). The optically thin radiative cooling is given by

= L( ) ( )Q N T , 13rad
2

where r=N mp is the proton number density assuming a fully
ionized hydrogen gas, with mp being the proton mass, and the
radiative loss function L( )T is as given in Athay (1986),
modified to suppress cooling for  ´T 7 104 K and kept
constant for > ´T 3.8 106 K, as shown in Figure 1. We
suppress cooling for  ´T 7 104 K so that the smallest
pressure scale height of the coolest plasma that can form does
not go below two grid points given our simulation resolution.
We set the cooling to be constant for > ´T 3.8 106 K so that
it follows more closely the radiative loss given by CHIANTI 7
with coronal abundances (Landi et al. 2012) in the high
temperature range near 107 K. We use a simple form of the
empirical coronal heating function, which only varies with
height following an exponential decay:
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where the input energy flux density is = ´F 9.74
- -10 ergs cm s5 2 1 and the decay length is = ´L 1.948H

1010 cm.
The above MHD equations are solved using the “Magnetic

Flux Eruption” (MFE) code that has been used in several past

Figure 1. Radiative loss function as given in Athay (1986, blue curve), and the
modified actual function used, where the radiative loss is suppressed for
 ´T 7 104 K and is set constant for T above ´3.8 106 K.
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simulations of coronal mass ejections (e.g., Fan 2012, 2016). The
code uses a staggered r−θ−f grid with a second-order accurate
spatial discretization. A second-order TVD Lax-Friedrichs scheme
with a reduced numerical diffusive flux (Equation A(3) in Rempel
et al. 2009) is used for evaluating the advection terms in the
continuity, momentum, and the internal energy equations. For the
induction equation, a method of characteristics that is upwind for
the shear Alfvén waves is applied for evaluating the electromotive
force (emf) ´v B, and the constrained transport scheme is used
to ensure  =· B 0 (Stone & Norman 1992). No explicit
viscosity and magnetic diffusion are included in the momentum
and the induction equations. However, numerical diffusions are
present as a result of the upwinded evaluations of the advection
fluxes in the momentum equation and the electric field in the
induction equation. In the numerical code, the dissipation of
kinetic and magnetic energies due to these numerical diffusive
fluxes are being evaluated and added to the internal energy
as non-adiabatic heating, in addition to the explicit empirical
coronal heating term H in the above internal energy equation.
To evaluate the numerical dissipation of magnetic energy, we
take the difference between the actual (upwinded) evaluation of
the emf ´( )v B actual and a direct linear interpolation evaluation
of the emf ´( )v B int at the cell edges (where the emf is
defined on the staggered grid). From this difference emf

= ´ - ´( ) ( )E v B v Bnum actual int, we evaluate the conversion
of magnetic energy into thermal energy due to numerical diffusion
as p-  ´( ) · ( )E B1 4 num , which is added to the right-hand
side of the internal energy equation. Here,  ´ B is computed
with a simple centered finite difference. Similarly, in the
evaluation of the advection term r · ( )vv of the momentum
equation, the actual upwinded evaluation of the momentum flux
r( )vv actual can be written as r +( )vv int num, where r( )vv int is a
direct linear interpolation evaluation of the momentum flux and
num denotes the additional numerical diffusive flux due to the
upwinding in the modified TVD Lax-Friedrichs scheme. Then, we
evaluate  ( · ) · vnum as the numerical viscous dissipation
added to the right-hand side of the internal energy equation, where
the derivatives for ∇ in the above expression is evaluated using
simple centered finite differences. The (numerical) energy
dissipation is strongest at current sheets and shocks and is being
put back into the internal energy as heating.

The code uses an explicit third order Runge–Kutta scheme
for temporal discretization. Under typical coronal conditions,
the CFL time step required for the parabolic (field-aligned) heat
conduction is often orders of magnitude smaller than the time
step required for the hyperbolic advection terms. Here we have
used the hyperbolic heat conduction approach described in
Section 2.2 in Rempel (2017) to circumvent the stringent time-
step constraint. Instead of using Equation (10), we solve the
following equation for the heat flux qs:

t k
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where ts represents a finite timescale for qs to evolve toward the
Spitzer heat flux, and it is set to
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whereDt denotes the dynamic CFL time step determined from
all of the other advection terms, fcfl is the CFL number used,
and Dxmin is the smallest grid size. With the addition of
Equation (15), we have three more dependent variables (three

vector components of qs) which we advance using the same
Runge–Kutta scheme, with the right-hand side of Equation (15)
evaluated with a simple second-order finite difference scheme
on the staggered grid (without the need for upwinded
interpolation). As described in Rempel (2017), the introduction
of qs given by Equation (15) produces a wave-like equation for
T (or internal energy e), and the above specification of ts in
Equation (16) ensures that the effective wave speed does not
require a CFL time step that is below Dt. Rempel (2017)
showed that the hyperbolic heat conduction approach gives a
good approximation of the evolution produced by the parabolic
heat conduction if the required ts is small compared to the
thermal diffusion timescale of interest. For our current
simulations, we have tested this hyperbolic heat conduction
approach by comparing the results obtained using this approach
to those produced by solving for the parabolic heat conduction
term using operator split and sub-cycling with the explicit
Super TimeStepping scheme of Meyer et al. (2012), and we
found good agreement in the resulting evolution.
Our simulations are carried out in a spherical wedge

domain with Î  [ ]r R R, 11.47 , θ ä [75°, 105°], and
f f fÎ -[ ],max max , where we have run cases with f = 75max
and f = 37 .5max to accommodate flux ropes with different
lengths and total twists. We use a grid of q´ ´( ) ( )r504 196

f( )960 for the longer domain with f = 75max and a grid of
q f´ ´( ) ( ) ( )r504 196 480 for the domain with f = 37 .5max .

The grid is uniform in θ and f and stretched in the r direction, with
a grid size of = =dr R0.002727 1.898 Mm for < r R1.79 ,
and it increases geometrically to about R0.19 at the outer
boundary of = r R11.47 .
For the thermodynamic conditions at the lower boundary of

the simulation domain, we assume a fixed transition region
temperature of ´5 105 K and adjust the base pressure


pR in

the following way:
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such that the base pressure is driven toward a value preb that is
proportional to the downward heat conduction flux, in a timescale
of τ, to crudely represent the effect of chromospheric evaporation.
The expression (Equation (18)) for the coronal base pressure preb
is given by the radiative energy balance (reb) model of Withbroe
(1988). Here we have used = ´ -C 1.32 10 6 in cgs units and
t = 357 s. We have chosen τ to be on the order of the sound-
crossing time of the chromosphere. Thus, the (time-varying)
pressure


pR prescribed at the bottom boundary via Equation (17)

provides a mass reservoir for the corona plasma and the solar wind
that is heated and accelerated in the domain. Note also that this
mass reservoir at the lower boundary is fixed at the temperature of
´5 105 K, so any cool prominence condensation that develops in

the corona is not directly carried into the domain from the lower
boundary, but forms after emerging into the coronal domain.
At the lower boundary, we also impose a kinematic magnetic

flux transport by specifying a time-dependent transverse
electric field ^ = ∣E r R . Setting the electric field to zero would
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correspond to a rigid anchoring or line-tying lower boundary.
At certain time periods during the simulations, we impose the
emergence of a twisted magnetic torus at the lower boundary
by specifying the electric field,

q f= ´ - ´ ´^ = 
⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥∣ ˆ ( ) ˆ ( )E r v B r

c
R t

1
, , , , 19r R 0 torus

that corresponds to upward advection at a constant velocity v0

of a magnetic field structure Btorus given below. It is defined in
its own local spherical polar coordinate system ( ¢r , q¢, f¢),
whose origin is located at q f= = ( )r r r , ,0 0 0 0 of the Sun’s
spherical coordinate system and whose polar axis is parallel to
the polar axis of the Sun’s spherical coordinate system:
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where a is the minor radius of the torus, v =
q¢ + ¢ - ¢ ¢ ¢( )r R r R2 sin2 2 1 2 is the distance to the circular axis

of the torus, in which ¢R is the major radius of the torus, q/a
denotes the rate of field line twist (rotation in rad per unit
length) about the circular axis of the torus, and ¢B a Rt gives
the field strength at the circular axis of the torus. For all of the
simulations in this work, we have = a R0.04314 and

= -q a 0.0166 rad -Mm 1. We have used different values
for the major radius ¢R and axial field strength ¢B a Rt to carry
out simulations with different lengths and hence different total
twists of the emerging portion of the flux rope (since here we
fix the twist rate q/a of the torus). The different cases of ¢R
used will be given later in Section 3.1. Also, to specify the flux
emergence via the ^ = ∣E r R given by Equation (19), it is
assumed that the torus’ center position r0 is initially located at

q p f= - - ¢ = =( )r R a R , 2, 00 0 0 (thus the torus is
initially entirely below the surface) and moves bodily toward
the lower boundary at a constant velocity = ˆv rv0 0 0, with

=v 1.950 km s−1, until such a time when the emergence is
stopped and ^ = ∣E r R is set to zero. The velocity field at the
lower boundary is specified to be uniformly r̂v0 0 in the area
where the emerging torus intersects the lower boundary and is
zero everywhere else. Note that r̂0 denotes a constant unit
vector that does not change with position (unlike r̂)—it is the
direction of the position vector r0 of the center of the torus. The
imposed advection speed v0 is orders of magnitude smaller than
the Alfvén and sound speeds in the coronal domain to ensure
that the emerging flux rope is allowed to evolve quasi-statically
during the driving flux emergence phase. For the side
boundaries of the simulation domain, we assume a non-
penetrating stress-free boundary for the velocity field and
perfectly electrically conducting walls for the magnetic field.
For the top boundary, we use a simple outward extrapolating
boundary condition that allows plasma and magnetic field to
flow through.

Here we comment on the use of the semi-relativistic MHD.
The last term on the right-hand side of Equation (2) represents
the semi-relativistic correction to the classical MHD momen-
tum equation when the Alfvén speed va becomes relativistic
(becomes comparable to the speed of light c) while the bulk
plasma speed and the sound speed remain non-relativistic (e.g.,
Gombosi et al. 2002; Rempel 2017). This is also known as the
“Boris correction”. It effectively increases the inertia for
acceleration perpendicular to the magnetic field and limits the
Lorentz force. In regions of the solar corona with strong
magnetic field, the Alfvén speed can become extremely high
(approaching or even exceeding the speed of light), and
therefore the semi-relativistic correction is appropriate. Further-
more, the extreme Alfvén speed can impose a stringent
numerical time-stepping constraint for classical MHD. Thus,
by using the semi-relativistic correction and also artificially
reducing the speed of light c, one can take significantly larger
time steps for numerical integration (e.g., Gombosi et al. 2002;
Rempel 2017). This is particularly useful and appropriate for
the long quasi-static evolution phase where the coronal flux
rope is built up under the streamer as a result of flux emergence
and/or tether-cutting reconnection. In our simulations in this
work, we have set c = 1951 km s−1, which is always above the
peak Alfvén speed in the apex cross-section of the emerging
flux rope, but below the peak Alfvén speed for the entire
domain, which is found either in the open-field solar wind
outflow region in the lower corona or at the lower boundary,
reaching about 3000 km s−1. In this way, we are able to take
larger time steps (than that with classic MHD) through the long
quasi-static evolution phase, but still properly model the
acceleration of the flux rope during the dynamic eruption
phase. There are two major effects of using an artificially
reduced speed of light c. One is that it increases the inertia for
acceleration perpendicular to the direction of the magnetic field
and thus can alter the acceleration of the flux rope during the
onset of eruption. The other is that it also reduces the effective
numerical viscosity and diffusivity by reducing the maximum
speed used for the upwinded evaluation of the advection fluxes
(Rempel 2017), and hence can reduce the numerical diffusion
during the long quasi-static phase of the evolution. Therefore,
with regard to the second effect, the simulation without the
Boris correction and the reduced speed of light may not be
“more accurate” or considered a “reference” solution. Through
test simulations with varying c, we find that if we reduce c too
much, to below about one-half of the Alfvén speed of the flux
rope apex cross-section, we begin to see a significant decrease
in the peak acceleration of the flux rope during the onset of the
eruption. We find that if we use c comparable to or greater than
the peak Alfvén speed in the apex cross-section of the flux rope
(as is the case here with c= 1951 km s−1), the dynamic
evolution of the eruption remains very close to that obtained
without the Boris correction.

3. Results

3.1. The Initial Helmet Streamer Fields

For the initial state of the simulations, we initialize two
different 2D quasi-steady solutions of a coronal streamer with a
background solar wind. We initialize a wide-streamer (WS)
solution and a narrow-streamer (NS) solution, for which the
normal magnetic flux distributions at the lower boundary are
bipolar bands with q f q=( ) ( )B R B, ,r s , where the q( )Bs used

4

The Astrophysical Journal, 844:26 (19pp), 2017 July 20 Fan



for the WS and NS solutions are shown in Figures 2(a) and (b),
respectively. With the lower boundary normal magnetic field
distribution given above, we first construct an initial potential
magnetic field together with a hydrostatic atmosphere with a
specified temperature profile that increases linearly from
´5 105 K at the lower boundary to ´1.5 106 K at 22.5 Mm

height, and then remains constant to the outer boundary at
about R11.5 . The initial potential field is a 2D arcade field
(invariant in f) given by q q= F( ) ( )B r r, ,p , where the
potential Φ satisfies the Laplace equation q F =( )r, 02 .
Discretizing the 2D Laplace equation for Φ with the appropriate
boundary conditions leads to a block tridiagonal system, which

is solved using the routine blktri.f in the FISHPACK math
library of the National Center for Atmosphereic Research
(NCAR) based on the generalized cyclic reduction scheme
developed by P. Swatztrauber of NCAR. We then lower the
pressure at the outer boundary of the initial static state to
initiate an outflow and let the system relax with time (following
the MHD equations) until a quasi-steady state is reached and
the potential field is stretched out into a streamer configuration.
The relaxed WS initial streamer solution is shown in Figure 3,
where we see a helmet streamer with a denser helmet dome of
closed magnetic field in approximately static equilibrium, in an
ambient low density open-field region with a solar wind

Figure 2. Lower boundary normal magnetic field q( )Bs used for the WS (panel (a)) and NS (panel (b)) initial streamer solutions.

Figure 3.WS initial state: (a) density in the meridional cross-section, (b) radial velocity in the meridional cross-section overplotted with contours of the magnetic field
lines, (c) parallel velocity V, Alfvén speed Va, the sound speed Cs along an open-field line (the green line shown in panel (a) and (b)), and (d) 3D view of the initial
field lines in the simulation domain with the lower boundary spherical surface colored based on the normal magnetic field Br.
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outflow. The outflow speed, and the sound speed and the
Alfvén speed along an open-field line (indicated by the green
field line in the top two panels) are shown in panel (c) of
Figure 3. The wind speed becomes supersonic at about R4
and super-Alfvénic at about R9 , reaching a peak speed of
about 250 km s−1 at the outer boundary at about R11.5 . The
solar wind obtained here is a thermally driven wind heated by
the highly simplified empirical coronal heating function given
in Equation (14). The peak wind speed reached at R11.5 is
significantly lower than that reached by the fast wind in solar
coronal holes because here we have not included the
acceleration and heating by the Alfvén wave turbulence (e.g.,
van der Holst et al. 2014). However, with our simple initial
solar wind solution, we obtain the partially open coronal
magnetic field configuration of a helmet streamer with a
denser helmet dome compared to the open-field region, in
qualitative agreement with observations. Similarly, the NS
initial streamer solution is shown in Figure 4, where we
obtained a significantly smaller and narrower streamer config-
uration by using a lower boundary normal flux distribution
(Figure 2(b)) of a narrower and thinner pair of bipolar bands.
The solar wind speed in the open-field region is similar to that
for the wider steamer case.

Into the dome of the initial streamer field configuration we
drive the emergence of an arched flux rope with varying
lengths and (hence) total twists to study the subsequent
evolution of the transition from quasi-equilibrium to eruption
of the helmet dome. We vary the length and total twist of the
emerging flux rope by changing the curvature radius ¢R of the
magnetic torus Btorus used in specifying the lower boundary

electric field driving the flux emergence as described in
Section 2. The three numerical simulations carried out, where
we use either the WS and NS solution as the initial state, and
the emergence of the magnetic torus with different curvature
radii ¢R imposed to obtain an emerging flux rope with different
lengths and total twists are summarized in Table 1. The label of
each run is such that the first two letters are either “WS” or
“NS” denoting which initial helmet streamer solution is used,
and the third letter is “L” (for Long), “M” (for Medium), or “S”
(for Short), which corresponds to setting the curvature radius ¢R
to R0.75 , R0.5 , or R0.25 , respectively. The other varying
parameters used for each of the runs, i.e., the axial field strength

¢B a Rt of the emerging torus used for specifying the lower
boundary electric field, the domain size fmax in the azimuthal
(longitudinal) direction, and the total field line twist reached in

Figure 4. Same as Figure 3 but for the NS initial state.

Table 1
Summary of Simulations

Case
Label

Initial
Streamer ¢R (Re)

a ¢B a Rt (G)b fmax
c

Emerging Twist
(winds)d

WS-L Wide 0.75 100 75° 1.83
WS-M Wide 0.5 103 37°. 5 1.1
NS-S Narrow 0.25 90 37°. 5 0.6

Notes.
a Curvature radius of the torus.
b Axial field strength of the torus.
c Domain size in f: f f-[ ],max max .
d Total field line twist about the axial field line in the corona between the
anchored ends when the emergence is stopped.
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the emerging flux rope when the emergence is stopped, are also
listed in Table 1.

3.2. Eruption Under a Wide and a Narrow Streamer

Panels (a)–(f) of Figure 5 show the 3D magnetic field
evolution obtained from the simulation case WS-L, where we
drive the emergence of a long flux rope at the lower boundary
into the wide-streamer initial state in an azimuthally long
domain. Panels (g) and (h) of Figure 5 show the corresponding
evolution of the magnetic energy Em, the kinetic energy Ek, and
the rise velocity vr tracked at the apex of the axial field line of
the emerging flux rope. A movie corresponding to Figure 5
showing the 3D field evolution and the evolution of Em, Ek, and
vr, is available. The field lines and their colors are selected in
the following way. We use a set of fixed footpoints in the pre-
existing arcade bands outside the emerging flux region and
trace the field lines in red. To trace the field lines (green, blue,
and black field lines) from the emerging flux region on the
lower boundary, we track a set of footpoints that connect to a
fixed set of field lines of the subsurface emerging torus and
color the field lines based on the flux surfaces of the subsurface
torus. The “axial field line” refers to the field line that is traced
from the footpoints at the lower boundary that connect to the
curved axis of the subsurface emerging torus Btorus. We track
the apex position of this field line to evaluate the vr in panel (h)
of Figure 5. After the axial field line has reconnected during its
coronal evolution, we continue to track the Lagrangian
evolution of this apex element by using its velocity, and
continue to refer to it as the “apex of the axial field line”. In
panel (g) of Figure 5, we initially see (from about t= 0 hr to
t = 8.82 hr) that the magnetic energy increases as the coronal
flux rope builds up quasi-statically under the streamer (see also
panels (a) and (b) of Figure 5) as a result of flux emergence
driven at the lower boundary. The driving flux emergence is
stopped at t = 8.82 hr when the total field line twist about the
axial field line of the emerged flux rope reaches 1.83 winds,
which is above the critical twist (about 1.25 winds) for the
onset of the kink instability (Hood & Priest 1981). Subse-
quently, the flux rope becomes kinked due to the development
of the helical kink instability (panels (c) and (d) of Figure 5).
However, the rope remains confined with its apex rising quasi-
statically at a low, significantly sub-Alfvén speed, and Em

decreases slowly, until roughly t = 17.5 hr (see panels (g) and
(h) of Figure 5), when the flux rope’s rise speed begins a
significant acceleration, Em begins a rapid decrease, and Ek

begins a significant increase. The period of slow rise phase
(from t = 8.82 hr to roughly t = 17.5 hr) after the emergence is
stopped is found to be significantly longer than the Alfvén
transit time t » 0.136A hr along the flux rope (estimated by
computing the Alfvén transit time along the axial field line
between the anchored footpoints at the time the emergence is
stopped), which is a measure of the dynamic timescale. The
slow rise phase lasts about 64 tA. This suggests that the flux
rope remains in quasi-equilibrium for the slow rise phase.
There is a clear transition at the time of roughly t = 17.5 hr
from the slow rise phase to a dynamic eruption phase, as can be
seen in panels (g) and (h) in Figure 5. The flux rope accelerates
to a terminal speed of about 600 km s−1, much higher than the
ambient solar wind speed, and begins to exit the domain upper
boundary at R11.47 at about t = 21 hr.

The 3D coronal magnetic field evolution of another
simulation case, WS-M, is shown in Figure 6, for which we

drive the emergence of a shorter, anchored flux rope, and stop
the emergence when the total field line twist about the axial
field line reaches 1.1 winds between the anchored ends (at
t = 8.82 hr; Figure 6(b)). For this case, we see that the flux rope
remains stable and well confined in quasi-equilibrium under the
streamer for the subsequent evolution of over 20 hr simulated,
which corresponds to about t268 A, where tA is the Alfvén
transit time along the flux rope estimated at the time the
emergence is stopped, showing no signs of eruption (see panels
(c)–(f) in Figure 6). Panels (g) and (h) of Figure 6 show the
evolution of the magnetic energy Em, the kinetic energy Ek, and
the rise velocity vr tracked at the apex of the flux rope axial
field line. Again, we see the build up of the magnetic energy in
the flux emergence phase (from t= 0 to t = 8.82 hr), when the
emergence of the magnetic torus is imposed at the lower
boundary. However, subsequently after the emergence is
stopped, the rise velocity remains very small, showing some
small oscillations (panel (h) of Figure 6). The magnetic energy
Em shows a slow decline, which later becomes steady, and the
total kinetic energy Ek remains fairly steady (with the ambient
solar wind). All these indicate that the magnetic flux rope in
this case is settling into a stable equilibrium under the helmet.
The results of the above two simulation cases indicate that the
wide-streamer (WS) pre-existing field is very confining, such
that the flux rope does not erupt until a sufficiently high twist
(significantly higher than one wind of field line twist) is built
up for the kink instability to set in, which brings the apex of the
kinked flux rope to a rather high height for it to erupt
dynamically.
In contrast, Figure 7 shows the evolution for the simulation

case NS-S, where we use the narrow-streamer (NS) field as the
initial state, and drive the emergence of an even shorter flux
rope with the total field line twist about the axial field line
reaching only about 0.6 winds between the anchored ends
when the emergence is stopped (panel (b) of Figure 7). Panels
(g) and (h) of Figure 7 again show the evolution of the
magnetic energy Em, the kinetic energy Ek, and the rise velocity
vr tracking the Lagrangian element at the apex of the flux rope
axial field line. Even though in this case the twist is well below
that for the onset of the kink instability when the emergence is
stopped, we see subsequently, similar to the WS-L case, that
the flux rope undergoes a stage of slow, quasi-static rise with
sub-Alfvénic speed for a time span (from about 8.82 hr to about
16 hr in panel (h) of Figure 7, also panels (b)–(d) in Figure 7)
that is significantly longer than the Alfvén crossing time tA,
about t180 A. At roughly t = 16 hr, a transition to dynamic
eruption occurs with the flux rope undergoes a significant
acceleration to a terminal speed of about 600 km s−1 and with
the total magnetic energy Em showing a significant decrease
and the total kinetic energy Ek showing a significant increase
(see panels (g) and (h) in Figure 7 and panels (d)–(f) of
Figure 7). Since the total twist of the flux rope is significantly
below the critical limit for the onset of the kink instability, the
dynamic eruption in this case is most likely due to the onset of
the torus instability when the flux rope rises to a critical height
of sufficiently steep decline of the corresponding potential field
(e.g., Kliem & Török 2006; Isenberg & Forbes 2007). In this
case, the smaller streamer field is less confining and the flux
rope is able to reach the (lower) critical height for the torus
instability to set in first.
The quasi-static rise of the flux rope after the emergence is

stopped is due to the tether-cutting reconnection in a current
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Figure 5. Evolution obtained from simulation case WS-L. Panels (a)–(f) show snapshots of the 3D magnetic field lines. The lower boundary surface is colored with Br.
The colors of the field lines are based on the original flux surfaces as described in the text. Panel (g) shows the evolution of the total magnetic energy Em and total
kinetic energy Ek. Panel (h) shows the evolution of the rise velocity vr tracked at the apex of the emerged flux rope axis. A movie for this figure showing the evolution
of the 3D magnetic field, and the evolution of Em, Ek, and vr throughout the course of the simulation (from t = 0 to about t = 21 hr) is available.

(An animation of this figure is available.)
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sheet that forms underlying the flux rope, similar to what was
found in Fan (2010). The reconnection continually add
“detached” flux to the flux rope as described in Fan (2010),
reducing its anchoring and allowing it to rise quasi-statically to

the critical height for the onset of torus instability. The thermal
signature of the tether-cutting reconnection is the formation of
a hot channel threading under the flux rope, containing heated
twisted flux added to the flux rope, as represented by the hot

Figure 6. Same as Figure 5 but for the simulation case WS-M.
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field lines shown in Figure 8. The left panel of the figure shows
the same field lines as those in Figure 7(c), but colored in
temperature and with the addition of the field lines in the hot

channel, and the right panel shows the hot channel field lines
alone. An animation of a rotating view of the field lines in both
panels is also available. Note that the hot channel field lines are

Figure 7. Same as Figure 5, but for the simulation case NS-S. A movie for this figure is available.

(An animation of this figure is available.)
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rooted in the arcade field bands, and therefore represent twisted
flux newly added to the flux rope as a result of multiple
reconnections of the original arcade field lines with the flux
rope field lines. These heated field lines, which display a
sigmoid shape, may correspond to the hot channel observed by
SDO/AIA before and during CMEs described in Zhang et al.
(2012) and Cheng et al. (2013). The temperature reached by the
hot channel in our simulation is about 3.3MK, significantly
lower than the observed case, which is reported to be as high as
10MK. However, this may be due to a much weaker field
strength of the flux rope and confining helmet field considered
in our simulation. Because of the significantly lower temper-
ature of 3.3 MK, which is not picked up by the hot peaks of the
temperature responses of the AIA 131Å channel (about
11MK) and AIA 94Å channel (about 7 MK), and in fact, it
is at the local valleys of these two channels’ temperature
responses, we do not see the sigmoid brightening corresp-
onding to the hot channel field lines in the modeled emission
(not shown here) in these channels.

The top panel of Figure 9 shows the radial acceleration of the
tracked Lagrangian element at the apex of the flux rope axial
field line as a function of its height, comparing the NS-S case
(red curve) and the WS-L case (black curve). It can be seen that
the monotonic and significant acceleration for the dynamic
eruption sets in at a much lower height for the NS-S case
compared to the WS-L case. The lower panel of Figure 9 shows
the decay rate ( ) ( )dln B dln Hp of the corresponding potential
field Bp with height above the solar surface H along the vertical
line through the center of the apex cross-section of the flux
rope, for the WS-L (black curve) and NS-S (red curve) cases,
when the emergence is stopped (and hence no more change in
the lower boundary normal flux distribution and the corresp-
onding potential field afterwards). The decline with height of
the potential field for the narrow-streamer case NS-S is
significantly steeper compared to that for the wide-streamer
case WS-L, explaining why for the NS-S case the torus
instability sets in first at a lower height. From the two panels of

Figure 9, we see that for the NS-S case the onset of significant
acceleration takes place when the tracked apex of the axial field
line reaches about R1.25 , where the field decay rate is about
−1.9, within the range of critical decline rates (about −1.0 to
−2.0) for the onset of torus instability obtained from several
theoretical calculations with simplified current loop models
(e.g., Titov & Démoulin 1999; Kliem & Török 2006; Démoulin
& Aulanier 2010). For the WS-L case, on the other hand, the
onset of significant acceleration of the flux rope takes place at a
much higher height at about R1.55 , where the field decay rate
is about −2.3, more than the nominal range of the critical decay
rate for the onset of torus instability. But here, the flux rope has
already become significantly kinked due to the onset of the
kink instability first and its final loss of equilibrium and
eruption cannot be simply described by the onset of the torus
instability assuming a simple current path. However, the need
for a sufficiently steep spatial decline of the background
potential field in order to achieve an ejective eruption of the
flux rope through the onset of the kink instability has also been
found in previous MHD simulations of kink-unstable flux ropes
(e.g., Török & Kliem 2005).

3.3. Formation and Eruption of Prominence

The explicit inclusion of the optically thin radiative loss term
(Equation (13)) in the energy equation provides the driver for
the development of radiative (thermal) instability or non-
equilibrium (e.g., Priest 2014), which allows the formation of
cool dense prominence plasma in the hot rarefied corona. As
described in Priest (2014, Section 11.6.3 and references
therein), the physical form of the optically thin radiative loss
term implies that if a coronal plasma cools locally, the radiative
loss increases further, leading to runaway cooling. This is true
even if the cooling function Λ is constant with T (let alone
increasing with decreasing T at certain temperature ranges),
because the density N would increase with a temperature
decrease, assuming that the pressure is unchanged at the
perturbation. This would further enhance the cooling because

Figure 8. The left panel shows the same field lines as those in Figure 7(c), but colored in temperature and with the addition of the field lines in the hot channel. The
right panel shows the hot channel field lines alone. An animation of a rotating view of the field lines is available.

(An animation of this figure is available.)
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of the N2 dependence on the radiative loss. The instability can
be suppressed by thermal conduction but only if the length
scale of the perturbation is not too long. Thus, for sufficiently
long coronal loops, radiative instability or non-equilibrium will
develop. We find that in both the WS-L and WS-M cases, cool
prominence condensations with temperature as low as

´7.3 104 K and density as high as ´ -5.6 10 cm9 3 develop
in the corona in the dips of the flux rope field lines. Figure 10
shows the synthetic SDO/AIA 304Å channel emission,
computed by integrating along the line of sight (which is the
same as that for the view of panels (a)–(f) of Figure 5) through
the simulation domain

ò= ( ) ( ( )) ( )I n l f T l dl, 23eAIA304
2

AIA304

where l denotes the length along the line of sight through the
simulation domain, IAIA304 denotes the emission intensity at each
pixel in units of DN/s/pixel (shown in log scale in the images), ne
is the electron number density, and ( )f TAIA304 is the temperature
response function that takes into account the atomic physics and
properties of the AIA 304Å filter. We have obtained the
temperature-dependent function ( )f TAIA304 using the SolarSoft
routine get_aia_response.pro. The response function

( )f TAIA304 peaks at the temperature of about ´8 104 K. A

movie of the evolution of the synthetic AIA 304 Å emission is
also available. We see from Figure 10 and the movie that the
prominence plasma with temperature around ´8 104 K forms
suspended in the much hotter corona. It lengthens and develops
into a suspended loop-like structure during the slow quasi-static
rise phase. At the onset of the dynamic eruption of the flux rope,
the prominence loop also erupts with its apex rising upward while
also showing substantial draining and falling of the prominence
plasma at the legs of the prominence loop. Such eruption
morphology of a loop-like structure with substantial draining at
the legs of the loop is often observed in prominence eruptions.
Although the flux rope field lines, especially those belonging to
the original inner flux surfaces (e.g., the blue field lines in
Figure 5), become significantly kinked through the slow rise
phase and the onset of the eruption (with a rotation of ∼90°), the
prominence appears as a loop-like structure without showing
significant kinking when viewed from the same perspective as the
flux rope.
Figure 11 shows the same snapshots of the 3D field lines as

those shown in Figure 5 but with the field lines colored by the
temperature (instead of based on the original flux surfaces) and
also with additional prominence-carrying field lines that are
traced from grid points sampled in the region where the
temperature is below 105 K. The dark blue field line segments
are where prominence plasma is located, which are somewhat
hard to see in panels (b) and (c), as they are still small and
partially obscured by other field lines. The location of the
prominence condensations is more clearly seen in Figure 12,
which shows the prominence-carrying field lines alone, during
the quasi-static rise phase. Comparing to the AIA 304 Å images
at the corresponding time instants in Figure 10, we see that the
same prominence condensations begin to form in the field line
dips in the lower middle part of the flux rope (see panels (b)
and (c) of Figure 11 or more clearly panels (a) and (b) of
Figure 12). The prominence continues to lengthen during the
quasi-static rise phase (panels (c)–(f) in Figure 12) and later
erupts into a loop-like structure (see the blue field line segments
in panels (d)–(f) of Figure 11). Figure 13 shows the same top
view of the same prominence-carrying field lines as those in
Figure 12 during the quasi-static rise phase. It can be seen that
as soon as the prominence condensations develop into
an elongated filament (the dark blue segments in panels (b)–
(f) in Figure 13), its apparent orientation makes a small angle
(about 30°) with the orientation of the magnetic field lines. This
is consistent with the magnetic field configuration of the solar
prominences as inferred from spectropolarimetric observations
(e.g., Leroy et al. 1983; Bommier et al. 1994; Orozco Suárez
et al. 2014)
Figures 14 and 15 are snapshots showing the evolution of a

tracked prominence field line colored with temperature and
density, respectively, along the field line. Movies showing the
evolution corresponding to each of these two figures are also
available. Figure 16 shows the evolution of the temperature,
density, and internal energy at the center of the dip of the
tracked field line shown in Figures 14 and 15 from a time soon
after the emergence of the dip to about the time it disappears
due to the onset of eruption. We can see that soon after the
emergence of the dip (Figures 14(a) and 15(a)), the plasma in
the dip has a coronal temperature of about ´7 105 K and a
density of about ´ -1.1 10 cm9 3, and it is already not
in thermal equilibrium, showing a cooling with decrease in

Figure 9. (Top panel) Acceleration at the apex of the axial field line as a
function of its height position for the WS-L (black curve) and NS-S (red curve)
cases, and (bottom panel) the decay rate with height of the corresponding
potential field for the WS-L (black curve) and NS-S (red curve) cases when the
emergence is stopped (and hence no more change in the lower boundary
normal flux distribution and the corresponding potential field).
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T and e (see the top and bottom panels of Figure 16 at about
t = 7.7 hr). The density shows a brief initial decrease as an
initial dynamic adjustment due to the rise of the dip and then
shows a steady increase (middle panel of Figure 16 at about
t = 7.7 hr). At about t = 8.25 hr, an even faster phase of
cooling sets in with a sharper decrease of temperature and
pressure, and a sharper increase of density, until about
t = 8.6 hr, when the dip settles into thermal equilibrium for
the remainder of the quasi-static phase. We have also evaluated
the criterion for the isobaric thermal instability as given in Xia
et al. (2011 and references therein):
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where rº -( )L Q H with Q and H given by Equations (13)
and (14), respectively, k k= T0

5 2 is the thermal conductivity,
and k is the wavenumber for the thermal perturbation.
Equation (24) is the criterion for the thermal instability
assuming fixed pressure (isobaric), which is suitable under
the condition that hydrostatic balance is maintained. We
evaluate Cisobaric at the dip, where we use the width of the
dip as the half wavelength for k, and estimate the width as the
distance along the field line between the two points where T has

risen to twice the value at the bottom of the dip. We assume H
is unchanged since it is only a function of height. The result of
Cisobaric is shown in Figure 17, where we find that the thermal
instability criterion is met soon after the emergence from
t = 7.7 hr until about t = 8.4, when T at the dip has dropped to
about = ´T 7.3 104 K at which the steep decline of cooling
function with decreasing temperature provides a strong
stabilizing effect to suppress the instability. Thus, the plasma
at the dip undergoes thermal non-equilibrium soon after the
emergence and does not find an equilibrium until it cools down
to about ´7 104 K. The sharper decrease of T that sets in at
about t = 8.25 hr is due to the enhanced cooling as Λ increases
sharply with decreasing T at ~ ´T 4 105 K (see Figure 1)
compounded by the increase in density. We also find that the
cooling timescale (estimated from e/Q at the dip) decreases to
become comparable to the sound-crossing time of the width of
the dip at about this time (t = 8.25 hr), which may be the cause
of the onset of the sharper drop in e or pressure, because
the hydrostatic balance is no longer well maintained. Through
the course of the thermal non-equilibrium, we find that the
temperature at the dip drops from about ´7 105 K to about
= ´T 7.3 104 K, and remains there for the rest of the quasi-

static rise phase (Figure 16 and panels (b)–(d) of Figure 14).

Figure 10. Synthetic SDO/AIA 304 Å channel emission images viewed from the same line of sight as that of panels (a)–(f) of Figure 5 at the same time instants,
computed from the simulation case WS-L. A corresponding movie showing the evolution of the synthetic AIA 304 Å emission from t = 7.93 hr to t = 18.4 hr is also
available.

(An animation of this figure is available.)

13

The Astrophysical Journal, 844:26 (19pp), 2017 July 20 Fan



Figure 11. Same as panels (a)–(f) of Figure 5 but with the field lines colored by the temperature, instead of based on the original flux surfaces of the subsurface torus.
Also, additional prominence-carrying field lines are added by tracing the field lines from the grid points evenly sampled in the region where the temperature is below
105 K. All images are viewed from the same perspective as the AIA 304 Å images in Figure 10.

Figure 12. Prominence-carrying field lines colored in temperature during the quasi-static rise phase. Field lines are traced from the grid points evenly sampled in the
region where the temperature is below 105 K. Note that panels (a), (b), and (f) here correspond to the same time instants and view as in panels (b)–(d) of Figure 11,
respectively, but showing only the prominence-carrying field lines by themselves.
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Figure 13. Same as Figure 12, but viewed from the top.

Figure 14. Evolution of a prominence-carrying field line colored with temperature T. The lower boundary sphere is colored with Br. A movie of this figure showing
the evolution from t = 6.14 hr to t = 18.4 hr is available.

(An animation of this figure is available.)
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The density increases from about ´ -1. 10 cm9 3 to a peak
value of about ´ -5 10 cm9 3 and remains above about
´ -3 10 cm9 3 while the dip is present (Figure 16 and panels

(b)–(d) of Figure 15). When the dip disappears due to the onset
of eruption, the density is drastically reduced and part of the
condensation drains down along the left leg of the field line
while part of the mass erupts with the top portion of the loop
(panels (e) and (f) of Figures 14 and 15).

In our simulation, we find that the peak density for the
prominence condensations that form in the coronal domain
reaches about ´ -5.6 10 cm9 3, about 30 times the density of
the surrounding coronal plasma. In the solar corona, the density
ratio between the prominence and the surrounding corona can
be more than 100 (e.g., see review in Priest 2014). The reason
that our simulation of the prominence condensation does not
reach the observed density is most likely due to the imposed
suppression of the radiative cooling for  ´T 7 104 K as
shown in Figure 1, which prevents the temperature at the
prominence dip from going below ´7 104 K. This prevents
the pressure at the dip from dropping lower to draw more
prominence mass from the field line footpoints. It also limits
how high the density can be increased for the same pressure at
the dip. Furthermore, the way the lower boundary condition is
imposed, where the radial velocity needs to accelerate from
nearly zero from the lower boundary mass reservoir given the
specified pressure, may constrain the mass flow to the
condensation at the dips.

It is difficult to estimate the percentage of prominence mass that
is ejected versus drained down during the eruption because the
temperature of the plasma is changing. Here we compute an

integrated mass flux of cool prominence mass across a certain
constant height surface. For this we consider cool prominence
mass with temperature below 105 K. We find that the total cool
prominence mass in the coronal domain reaches a peak value of

= ´M 5.46 10 gpeak
14 at time =t 16.3peak hr, with the promi-

nence apex reaching the height of = r R1.264peak . Then,
starting from tpeak, we compute the prominence mass flux

ò r= <( )f v dSr T Kprom 105 through the constant height surface S at
rpeak and integrate this flux over time to obtain the net prominence

mass transport through S over time: ò=( )M t f dt
t

t
transport prom

peak
.

The results for fprom and Mtransport are shown in Figure 18. We see
an outward prominence flux fprom from =t 1.63peak hr to
»t 17.5 hr, and an inward flux fprom from »t 17.5 hr to
»t 18.36 hr, after which there is no more flux of the cool

prominence material. Thus, the net prominence mass transport
Mtransport out of the surface S at rpeak reaches a final value of about

´2.1 1014 g, which is about 40% of the peak prominence mass
formed below S. However, there is uncertainty with this estimate
because the prominence material could have heated up to above
105 K before rising through (or falling through) the surface S,
which would result in an underestimate (overestimate) of the
erupted prominence mass. For this estimate, we are only taking
into account the net transport of mass that remains below T
of 105 K.
We find that in the field line dips of the flux rope where the

prominence condensations form, the magnetic field becomes
significantly non-force-free because of the prominence weight.
Figure 19 shows the various radial forces (top), density
(middle), and total magnetic field strength (bottom) along the

Figure 15. Same as Figure 14 but the field line is colored with density. A movie of this figure showing the evolution from t = 6.14 hr to t = 18.4 hr is available.

(An animation of this figure is available.)
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central vertical line through the middle of the flux rope shown
in Figure 5(c). The vertical line also goes through the middle of
the prominence-carrying field lines shown in Figure 12(b). We
can see from Figure 19 that in the height range where the
prominence has formed (indicated by the high density bump in
the middle panel), the downward gravity Fgrav (red curve in the
upper panel) of the prominence plasma counteracts a significant
portion of the upward tension force Ften (black curve in the
upper panel) of the magnetic field. In the flux rope, the
magnetic tension Ften and the total pressure gradient FPtot

(where the total pressure is largely made up of the magnetic
pressure) are well balanced and hence force-free outside of the
prominence-carrying region, as can be seen by comparing the
black and the blue curves in the top panel. The sum +F Ften Ptot

(green curve), which is approximately the net Lorentz force, is
nearly zero except in the prominence-carrying region, where it
has a significant positive net force to counteract the downward
gravity force. Thus, despite the fact that the plasma β is low
throughout the flux rope (about 0.01 to 0.1 in the prominence
region), the magnetic field is significantly non-force-free in the
region of the prominence, where the prominence weight is
counteracting a major portion of the upward magnetic tension,
with the remainder balanced by the downward magnetic
pressure gradient force. Note that the magnetic pressure
gradient force (blue curve) is downward in the prominence
region to counteract partly the upward tension, changing sign in
the upper part of the flux rope where the curvature changes
sign. Thus, the magnetic field strength is increasing with height
in the prominence (see the lower panel of Figure 19). This
would be an observational signature from the prominence
magnetic field measurement that indicates that the prominence
is associated with dipped or concave upturning magnetic field
lines. Our result for the significantly non-force-free field in the
low-β plasma supporting the weight of the prominence in the
field line dips is consistent with the findings in previous MHD
models of prominences by Xia et al. (2012) and Hillier & van
Ballegooijen (2013).

Figure 16. Evolution of temperature T, density N, and internal energy e at the
center of the dip of the tracked field line shown in Figures 14 and 15.

Figure 17. Evaluation of Cisobaric for the criterion for isobaric thermal
instability at the center of the dip (see text).

Figure 18. (Top) prominence mass flux and (bottom) time-integrated net
prominence mass transported across the constant height surface at = r R1.264 .
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4. Discussion

We improved upon previous simulations of flux rope
destabilization and eruption by using a helmet streamer pre-
existing coronal field, and incorporating a more sophisticated
treatment of the thermodynamics that explicitly include the

non-adiabatic effects: an empirical coronal heating, optically
thin radiative losses, and field-aligned thermal conduction.
Depending on the size of the pre-existing streamer, we find
different scenarios and mechanisms for the transition from
quasi-equilibrium to ejective eruption for the flux rope. For a
broad streamer with a slow decline of the magnetic field with
height, the flux rope is found to remain well confined until its
emerging twist is sufficiently high for the kink instability to set
in first. The kinked flux rope can still remain confined and goes
through a quasi-static, slow rise phase until its kinked apex
reaches a certain height with sufficient decline of the confining
field, where it develops a “hernia-like” ejective eruption. On
the other hand, with a narrow streamer with a steeper decline of
the field with height, the flux rope can erupt with a twist that is
significantly below the onset of the kink instability. It
undergoes a quasi-static rise phase where tether-cutting
reconnections convert arcade flux into twisted flux of the flux
rope, reducing the confinement, and develops an ejective
eruption when it reaches the critical height for the onset of torus
instability. The above mechanisms for the onset of eruption are
in qualitative agreement with previous findings in simulations
using a potential pre-existing field and with a simplified
treatment of the thermodynamics (e.g., Török & Kliem 2005;
Fan & Gibson 2007; Aulanier et al. 2010; Fan 2010). Our
simulations confirm that the fast decay with height of the
confining helmet magnetic field is a key factor for achieving an
ejective eruption of the underlying flux rope. Our simulations
also show that with the more realistic adiabatic index of
g = 5 3, which produces a stronger adiabatic cooling of the
expanding erupting flux rope, and with an explicit treatment of
the heating and heat transport, the erupting flux rope is still able
to accelerate to a typical CME terminal speed (∼600 km s−1 in
our ejective eruption cases) in excess of the ambient solar wind
speed.
We also achieved a simulation of the prominence eruption. With

the explicit inclusion of the optically thin radiative losses, we
found the formation of prominence condensations with a
temperature as low as ´7.3 104 K and density as high as

´ -5.6 10 cm9 3 in the field line dips of the significantly twisted
flux ropes (in the WS-L and WS-M cases) during the quasi-static
phase. The prominence condensations are formed in the field line
dips after the emergence into the corona, as a result of the onset of
radiative instability or non-equilibrium. The prominence condensa-
tions develop into an elongated structure suspended in the corona
as viewed in SDO/AIA 304Å emission. The elongated
prominence structure makes an acute angle of about 30° with
the orientation of the field lines supporting the prominence,
consistent with observations. However, once formed due to
runaway radiative cooling, the pressure scale height of the coolest
part of the prominence condensations (reaching a minimum of
4.4 Mm) is only resolved by about two grid points given our
numerical resolution and hence not well resolved. Thus, their
evolution is likely significantly impacted by numerical diffusion
and is probably reflecting an averaged collective motion of the
condensations. We find that because of the weight of the
prominence condensations that formed, the prominence-carrying
field becomes significantly non-force-free (despite having low
plasma β), with a significant fraction of the magnetic tension force
counteracting the gravity force of the prominence, and with the
remaining upward tension force of the concave field lines balanced
by a downward magnetic pressure gradient force. This confirms

Figure 19. Radial forces (top), density (middle), and total magnetic field
strength (bottom) along the central vertical line through the middle of the flux
rope shown in Figure 5(c). It also goes through the middle of the prominence-
carrying field lines shown in Figure 12(b). The radial forces shown in the top
panel are the magnetic tension force Ften (black curve), the total pressure
gradient force FPtot (blue curve), where the total pressure is mostly made up of
the magnetic pressure, the sum +F Ften Ptot (green curve), which is
approximately the net Lorentz force, and the gravity force of the plasma
Fgrav (red curve).
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the previous findings by Xia et al. (2012) and Hillier & van
Ballegooijen (2013). Thus, the formation of the prominence may
be playing a significant role in increasing the confinement of the
flux rope.

With the eruption of the flux rope in the WS-L case and the
disappearance of the dips, we find that the prominence plasma
shows substantial draining along the legs of the erupting field
lines, developing into an erupting loop structure as viewed in
AIA 304Å emission. The erupting prominence obtained here
does not show a kinked morphology, even though the flux rope
becomes significantly kinked when viewed from the same
perspective. We find that the cool prominence condensation
(with <T 105 K) reaches a peak mass of about ´5.46 10 g14

in the corona and estimate that roughly 40% of the cool
prominence mass is transported out with the eruption. These
results on the evolution of the prominence need to be further
investigated with higher-resolution simulations that better
resolve the prominence condensations that develop.

In the case with the shorter, less twisted flux rope (NS-S
case), which eventually erupts due to the onset of torus
instability, we do not find the formation of prominence
condensations. Instead, we find the formation of a sigmoid-
shaped hot channel which contains heated, twisted flux added
to the flux rope as a result of tether-cutting reconnections
during the quasi-static rise phase. This thermal signature of
tether-cutting reconnection may explain the hot channels
observed by SDO/AIA before and during the onset of CMEs
as described in, e.g., Zhang et al. (2012) and Cheng et al.
(2013). However to quantitatively produce the observed
temperature of the hot channels (about 10MK) so as to be
able to model the bright emissions of the hot channels seen in
the AIA 131Å and AIA 94Å images, simulations with a
significantly increased field strength for the flux rope and the
confining helmet streamer are needed.
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supported in part by the Air Force Office of Scientific Research
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ERDC under the project AFOSR4033B701.

References

Amari, T., Canou, A., & Aly, J.-J. 2014, Natur, 514, 465
Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485
Athay, R. G. 1986, ApJ, 308, 975
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, ApJ, 708, 314
Bommier, V., Landi Degl’Innocenti, E., Leroy, J.-L., & Sahal-Brechot, S.

1994, SoPh, 154, 231
Chatterjee, P., & Fan, Y. 2013, ApJL, 778, L8
Cheng, X., Zhang, J., Ding, M. D., Liu, Y., & Poomvises, W. 2013, ApJ,

763, 43
Démoulin, P., & Aulanier, G. 2010, ApJ, 718, 1388
Downs, C., Roussev, I. I., van der Holst, B., Lugaz, N., & Sokolov, I. V. 2012,

ApJ, 750, 134
Fan, Y. 2010, ApJ, 719, 728
Fan, Y. 2012, ApJ, 758, 60
Fan, Y. 2016, ApJ, 824, 93
Fan, Y., & Gibson, S. E. 2007, ApJ, 668, 1232
Gibson, S. 2015, in Solar Prominences, Astrophysics and Space Science

Library, Vol. 415, ed. J.-C. Vial & O. Engvold (Cham: Springer), 323
Gombosi, T. I., Tóth, G., De Zeeuw, D. L., et al. 2002, JCoPh, 177, 176
Hillier, A., & van Ballegooijen, A. 2013, ApJ, 766, 126
Hollweg, J. V. 1978, RvGSP, 16, 689
Hood, A. W., & Priest, E. R. 1981, GApFD, 17, 297
Isenberg, P. A., & Forbes, T. G. 2007, ApJ, 670, 1453
Kliem, B., & Török, T. 2006, PhRvL, 96, 255002
Landi, E., Del Zanna, G., Young, P. R., Dere, K. P., & Mason, H. E. 2012,

ApJ, 744, 99
Leroy, J. L., Bommier, V., & Sahal-Brechot, S. 1983, SoPh, 83, 135
Linker, J. A., Lionello, R., Mikic, Z., Riley, P., & Titov, V. 2007, BAAS,

39, 168
Low, B. C. 2001, JGR, 106, 25141
Mackay, D. H., & van Ballegooijen, A. A. 2006, ApJ, 641, 577
Meyer, C. D., Balsara, D. S., & Aslam, T. D. 2012, MNRAS, 422, 2102
Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. 2014, A&A,

566, A46
Pagano, P., Mackay, D. H., & Poedts, S. 2014, A&A, 568, A120
Pagano, P., Mackay, D. H., & Poedts, S. 2015, JApA, 36, 123
Priest, E. 2014, Magnetohydrodynamics of the Sun (Cambridge: Cambridge

Univ. Press)
Rempel, M. 2017, ApJ, 834, 10
Rempel, M., Schüssler, M., & Knölker, M. 2009, ApJ, 691, 640
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 791
Titov, V. S., & Démoulin, P. 1999, A&A, 351, 707
Török, T., & Kliem, B. 2005, ApJL, 630, L97
Török, T., & Kliem, B. 2007, AN, 328, 743
Török, T., Panasenco, O., Titov, V. S., et al. 2011, ApJL, 739, L63
van der Holst, B., Sokolov, I. V., Meng, X., et al. 2014, ApJ, 782, 81
Webb, D. F., & Hundhausen, A. J. 1987, SoPh, 108, 383
Withbroe, G. L. 1988, ApJ, 325, 442
Xia, C., Chen, P. F., & Keppens, R. 2012, ApJL, 748, L26
Xia, C., Chen, P. F., Keppens, R., & van Marle, A. J. 2011, ApJ, 737, 27
Xia, C., & Keppens, R. 2016, ApJ, 823, 22
Xia, C., Keppens, R., Antolin, P., & Porth, O. 2014, ApJL, 792, L38
Zhang, J., Cheng, X., & Ding, M.-D. 2012, NatCo, 3, 747

19

The Astrophysical Journal, 844:26 (19pp), 2017 July 20 Fan

https://doi.org/10.1038/nature13815
http://adsabs.harvard.edu/abs/2014Natur.514..465A
https://doi.org/10.1086/306563
http://adsabs.harvard.edu/abs/1999ApJ...510..485A
https://doi.org/10.1086/164565
http://adsabs.harvard.edu/abs/1986ApJ...308..975A
https://doi.org/10.1088/0004-637X/708/1/314
http://adsabs.harvard.edu/abs/2010ApJ...708..314A
https://doi.org/10.1007/BF00681098
http://adsabs.harvard.edu/abs/1994SoPh..154..231B
https://doi.org/10.1088/2041-8205/778/1/L8
http://adsabs.harvard.edu/abs/2013ApJ...778L...8C
https://doi.org/10.1088/0004-637X/763/1/43
http://adsabs.harvard.edu/abs/2013ApJ...763...43C
http://adsabs.harvard.edu/abs/2013ApJ...763...43C
https://doi.org/10.1088/0004-637X/718/2/1388
http://adsabs.harvard.edu/abs/2010ApJ...718.1388D
https://doi.org/10.1088/0004-637X/750/2/134
http://adsabs.harvard.edu/abs/2012ApJ...750..134D
https://doi.org/10.1088/0004-637X/719/1/728
http://adsabs.harvard.edu/abs/2010ApJ...719..728F
https://doi.org/10.1088/0004-637X/758/1/60
http://adsabs.harvard.edu/abs/2012ApJ...758...60F
https://doi.org/10.3847/0004-637X/824/2/93
http://adsabs.harvard.edu/abs/2016ApJ...824...93F
https://doi.org/10.1086/521335
http://adsabs.harvard.edu/abs/2007ApJ...668.1232F
http://adsabs.harvard.edu/abs/2015ASSL..415..323G
https://doi.org/10.1006/jcph.2002.7009
http://adsabs.harvard.edu/abs/2002JCoPh.177..176G
https://doi.org/10.1088/0004-637X/766/2/126
http://adsabs.harvard.edu/abs/2013ApJ...766..126H
https://doi.org/10.1029/RG016i004p00689
http://adsabs.harvard.edu/abs/1978RvGSP..16..689H
https://doi.org/10.1080/03091928108243687
http://adsabs.harvard.edu/abs/1981GApFD..17..297H
https://doi.org/10.1086/522025
http://adsabs.harvard.edu/abs/2007ApJ...670.1453I
https://doi.org/10.1103/PhysRevLett.96.255002
http://adsabs.harvard.edu/abs/2006PhRvL..96y5002K
https://doi.org/10.1088/0004-637X/744/2/99
http://adsabs.harvard.edu/abs/2012ApJ...744...99L
https://doi.org/10.1007/BF00148248
http://adsabs.harvard.edu/abs/1983SoPh...83..135L
http://adsabs.harvard.edu/abs/2007BAAS...39..168L
http://adsabs.harvard.edu/abs/2007BAAS...39..168L
https://doi.org/10.1029/2000JA004015
http://adsabs.harvard.edu/abs/2001JGR...10625141L
https://doi.org/10.1086/500425
http://adsabs.harvard.edu/abs/2006ApJ...641..577M
https://doi.org/10.1111/j.1365-2966.2012.20744.x
http://adsabs.harvard.edu/abs/2012MNRAS.422.2102M
https://doi.org/10.1051/0004-6361/201322903
http://adsabs.harvard.edu/abs/2014A&amp;A...566A..46O
http://adsabs.harvard.edu/abs/2014A&amp;A...566A..46O
https://doi.org/10.1051/0004-6361/201424019
http://adsabs.harvard.edu/abs/2014A&amp;A...568A.120P
https://doi.org/10.1007/s12036-015-9322-4
http://adsabs.harvard.edu/abs/2015JApA...36..123P
https://doi.org/10.3847/1538-4357/834/1/10
http://adsabs.harvard.edu/abs/2017ApJ...834...10R
https://doi.org/10.1088/0004-637X/691/1/640
http://adsabs.harvard.edu/abs/2009ApJ...691..640R
https://doi.org/10.1086/191681
http://adsabs.harvard.edu/abs/1992ApJS...80..791S
http://adsabs.harvard.edu/abs/1999A&amp;A...351..707T
https://doi.org/10.1086/462412
http://adsabs.harvard.edu/abs/2005ApJ...630L..97T
https://doi.org/10.1002/asna.200710795
http://adsabs.harvard.edu/abs/2007AN....328..743T
https://doi.org/10.1088/2041-8205/739/2/L63
http://adsabs.harvard.edu/abs/2011ApJ...739L..63T
https://doi.org/10.1088/0004-637X/782/2/81
http://adsabs.harvard.edu/abs/2014ApJ...782...81V
https://doi.org/10.1007/BF00214170
http://adsabs.harvard.edu/abs/1987SoPh..108..383W
https://doi.org/10.1086/166015
http://adsabs.harvard.edu/abs/1988ApJ...325..442W
https://doi.org/10.1088/2041-8205/748/2/L26
http://adsabs.harvard.edu/abs/2012ApJ...748L..26X
https://doi.org/10.1088/0004-637X/737/1/27
http://adsabs.harvard.edu/abs/2011ApJ...737...27X
https://doi.org/10.3847/0004-637X/823/1/22
http://adsabs.harvard.edu/abs/2016ApJ...823...22X
https://doi.org/10.1088/2041-8205/792/2/L38
http://adsabs.harvard.edu/abs/2014ApJ...792L..38X
https://doi.org/10.1038/ncomms1753
http://adsabs.harvard.edu/abs/2012NatCo...3E.747Z

	1. Introduction
	2. The Numerical Model
	3. Results
	3.1. The Initial Helmet Streamer Fields
	3.2. Eruption Under a Wide and a Narrow Streamer
	3.3. Formation and Eruption of Prominence

	4. Discussion
	References



