
II. Transport of Nearly Incompressible Magnetohydrodynamic
Turbulence from 1 to 75au

L. Adhikari1, G. P. Zank1,2, P. Hunana1,2, D. Shiota3, R. Bruno4, Q. Hu1,2, and D. Telloni5
1 Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899, USA

2 Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899, USA
3 Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601, Japan

4 INAF-IAPS Instituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
5 INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese, Italy
Received 2017 January 9; revised 2017 April 21; accepted 2017 April 23; published 2017 May 26

Abstract

The thermal plasma beta in the solar wind and the solar corona is of the order of 1b ~ and 1b  . Zank et al.
developed 2D and slab turbulence transport model equations of the order of 1b ~ and 1b  using nearly
incompressible (NI) theory. We solve the Zank et al. NI MHD coupled turbulence transport equations for the
inhomogeneous solar wind from 1 to 75 au, and compare the numerical solutions to Voyager 2 observations. We
find that (1) the 2D turbulent energies are larger than the slab energies throughout the heliosphere; (2) the 2D
turbulent energies decrease more slowly than the slab turbulent energies within ∼4 au, while the slab energies
increase and the 2D energies flatten in the outer heliosphere; (3) the 2D normalized cross-helicity decreases faster
than the slab normalized cross-helicity within ∼4 au; (4) the 2D normalized residual energy is more magnetically
dominated than the slab; (5) the variance of density fluctuations decreases more rapidly than r 4- within ∼10 au,
and more slowly in the outer heliosphere; and (6) the observed variance in magnetic field fluctuations as a function
of the thermal plasma beta is described by the two-component turbulence transport model. In summary, the NI
MHD two-component Zank et al. turbulence transport model captures the behavior of the forward, backward, and
total energies in the fluctuating Elsässer variables, the variance in the magnetic field, kinetic energy, and density
fluctuations, the cross-helicities and residual energies, the thermal temperature and plasma beta, and the various
correlation lengths.
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1. Introduction

Turbulence transport equations describe the evolution of
fluctuations in the solar wind, specifically the solar wind
velocity, magnetic field, and solar wind density. Turbulence
transport models have been developed or applied by Marsch &
Tu (1989), Zhou & Matthaeus (1990a, 1990b), Matthaeus et al.
(1994, 1999, 2004), Williams et al. (1995), Zank et al. (1996),
Oughton et al. (2001), Smith et al. (2001, 2006a, 2006b),
Isenberg et al. (2003, 2010), Isenberg (2005), Breech et al.
(2005, 2008), Ng et al. (2010), Usmanov et al. (2011),
Zank et al. (2012a), Adhikari et al. (2014, 2015a, 2015b),
Wiengarten et al. (2015), and Shiota et al. (2017). The transport
models usually derive from the 3D incompressible magneto-
hydrodynamic (MHD) equations, and are therefore appropriate
to order 1b  plasma, where β is the plasma beta (Zank &
Matthaeus 1993). However, the solar wind typically has a
plasma beta of the order of 1b ~ or 1b  in the solar wind
and solar corona, therefore making the above turbulence
transport model equations inapplicable to the solar wind. A
turbulence transport model should reflect a plasma beta
ordering of 1b ~ or 1b  . Turbulence transport equations
appropriate to a plasma beta of the order of 1b ~ or 1b  can
be derived using nearly incompressible (NI) MHD theory
(Zank & Matthaeus 1992b, 1993). In the NI MHD description,
the leading-order incompressible turbulence transport model
equations are 2D, in the sense that the fluctuations are in a
plane orthogonal to the large-scale magnetic field.

NI magnetohydrodynamics is a formulation of the MHD
equations in a weakly compressible or NI regime. In this case, the
total turbulence description is a superposition of 2D and slab

turbulence with a ratio between 2D and slab energies of the order
of 80:20 (Zank & Matthaeus 1992b; Bieber et al. 1996). The
separation between 2D and slab turbulence introduces an
anisotropy in the energy spectrum (Zank et al. 2017) in that the
variance in a direction perpendicular to the magnetic field is larger
than the variance in the direction parallel. The NI theory was
developed largely in the early 1990s by Klainerman & Majda
(1981, 1982), Montgomery et al. (1987), and Zank & Matthaeus
(1991, 1992a, 1992b, 1993) for homogeneous flows, and by
Hunana et al. (2006, 2008) and Hunana & Zank (2010) for
inhomogeneous flows. Zank et al. (2017) recast homogeneous and
inhomogeneous NI MHD in an Elsässer formulation, from which
they derived 2D and slab turbulence transport equations for the
energy in forward and backward propagating modes, the residual
energy, and the corresponding correlation functions for the
inhomogeneous flows. Details of the MHD turbulence theory and
transport in the NI description are presented in Zank et al. (2017).
Oughton et al. (2006, 2011) and Wiengarten et al. (2016) also

developed 2D and slab turbulence transport model equations, but
their model is derived from the 3D incompressible MHD
equations. Their transport equations apply to the regime 1b  ,
and also include the large-scale Alfvén velocity within the 2D
description. However, Zank et al. (2017) showed that the 2D
turbulence transport equations for the cases of 1b ~ or 1b  do
not contain the large-scale Alfvén velocity. Zank et al. (2017)
applied their turbulence transport model equations to study
turbulence in the super-Alfvénic solar wind flow. Moreover, these
models can be applied in the solar corona where 1b  , and to
study cosmic-ray transport in the heliosphere (Zank et al. 1998;
Engelbrecht & Burger 2013a, 2013b; Wiengarten et al. 2016).
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Zank et al. (2017) considered different forms of the
turbulence source terms and presented a preliminary analysis
of solutions to the turbulence transport model equations,
yielding general descriptions of the behavior of 2D and slab
turbulence throughout the heliosphere. Zank et al. (2017) used
the previous data analysis of Adhikari et al. (2015a) to illustrate
that certain model assumptions, particularly in the form of
turbulence source terms, can be inconsistent with the general
observational trends in the data. Here, we both investigate the
turbulence transport model equations in greater detail and
extend the data analysis of Adhikari et al. (2015a) to address
the more sophisticated model quantities developed by Zank
et al. (2017). Adhikari et al. (2015a) use the R, T, and N
components of the magnetic field and the solar wind velocity to
calculate various turbulent quantities. Here, we use the R and N
component of the magnetic field and the solar wind velocity to
calculate the turbulent quantities. This corresponds to the
assumption that those fluctuations lie in a plane perpendicular
to the T-component of the magnetic field, and represent a
superposition of 2D and slab turbulence. The T-component
magnetic field is dominant in the outer heliosphere (Burlaga &
Ness 1994, 1996; Adhikari et al. 2015b), and is therefore used
to find the direction for the large-scale or mean magnetic field.
In addition, we compare the theoretically predicted and
observed solar wind density fluctuation variance, the solar
wind temperature, and the correlation lengths corresponding to
the energy in forward and backward propagating modes, the
residual energy, the fluctuations of the velocity and the
magnetic field, and the cross-correlation between the velocity
and the magnetic field fluctuations as functions of heliocentric
distance. In the Results section, we also compare the theoretical
and observed thermal plasma beta β (≡plasma pressure/
magnetic pressure) as a function of heliocentric distance, and
the fluctuating kinetic energy and magnetic variance as a
function of the thermal plasma beta.

In this manuscript, Section 2 describes the 2D and slab (NI)
turbulence transport model equations. Section 3 describes the
magnetic field and solar wind velocity fluctuations versus
plasma β. Section 4 describes the data analysis. We present
results in Section 5. Finally, Section 6 presents a discussion and
conclusions.

2. 2D and Slab Turbulence Transport Model Equations

Zank et al. (2017) derived 2D and slab (NI) turbulence
transport equations by taking moments (Zank et al. 1996, 2012a)
of an Elsässer formulation for homogeneous (Zank & Matthaeus
1991, 1992b, 1993) and inhomogeneous (Hunana & Zank 2010)
NI MHD flows. For inhomogeneous flows, the turbulence
transport model is described by 12 coupled turbulence transport
equations (Zank et al. 2017). Of the 12 transport equations, 6
describe the transport of the 2D component. As mentioned above,
because the 2D plane is orthogonal to the large-scale mean
magnetic field, the Alfvén velocity is naturally absent in the
2D description (in contrast with the Oughton et al. (2006, 2011),
Wiengarten et al. (2016) model). Instead, magnetic and velocity
fluctuations are governed entirely by nonlinear interactions
associated with the 2D incompressible Elsässer variables z =¥

u B 0m r¥ ¥ , where u¥ is the 2D leading-order incompres-
sible fluid velocity, B¥ is the 2D incompressible magnetic field,
and ρ is the large-scale background solar wind density. Similarly,
six of the twelve equations describe the transport of the minority

slab fluctuations. The slab fluctuations are described in terms of
the 3D Elsässer variables z u B1 0* * m r=  , where u1 is the
incompressible component of the NI velocity correction, i.e.,

u 01 =· and B* is the incompressible component of the NI
magnetic field correction (see Zank et al. 2017). Zank et al. (2017)
showed that slab fluctuations were passively mixed as they were
advected by the 2D z¥ fluctuations while being swept by Alfvén
waves. As shown by Zank et al. (2017), the critical balance
parameter (Goldreich & Sridhar 1995) serves to separate one
regime from the other. The slab turbulence transport equations
admit, at a higher order, the nonlinear term z z* *  · . The
interaction of two interacting wave packets drives a zero-
frequency 2D mode, meaning that they act as sources of 2D
fluctuations. Such a “source” term serves to couple the six slab
turbulence equations back to the 2D transport equations.
The dominant 2D 1D steady-state core transport Equations

(99)–(102) of Zank et al. (2017) are given by
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where z 2á ñ¥+ and z 2á ñ¥- are the energies corresponding to
forward and backward propagating modes, respectively, ED

¥,
the energy difference between the fluctuating kinetic and
magnetic energy, is the residual energy, L¥

 are correlation
functions corresponding to z 2á ñ¥ , and LD

¥ is a correlation
function for ED

¥. We assume that all turbulence quantities
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depend only on heliocentric distance r i.e., z 2á ñ=¥

z r2á ñ¥ ( ), z z r2 2* *á ñ = á ñ  ( ), E E rD D=¥ ¥ ( ) etc. The third
terms on the right sides (RHS) of Equations (1) and (2) are
stream shear sources of turbulence. The sources vary as r 2- ,
where r is the heliocentric distance, and the parameters Csh



and C E
sh

D are parametrized strengths of the shear source of
turbulence. A parameter r 1 au0 =( ) is a reference point, UD is
the difference between fast and slow solar wind speed, and
VA0 is the Alfvén velocity at 1 au. The shear source terms used
here differ from previous studies (Zank et al. 1996, 2012a;
Smith et al. 2001, 2006a, 2006b; Isenberg et al. 2003, 2010;
Matthaeus et al. 2004; Breech et al. 2005, 2008; Isenberg
2005; Ng et al. 2010; Usmanov et al. 2011; Adhikari
et al. 2014, 2015a, 2015b; Wiengarten et al. 2015) in that
they are independent of the forward/backward energy z 2á ñ¥

(and are therefore not simply amplification terms). A similar
source term is introduced for the residual energy, also
independent of ED

¥. The formulation of the source terms
allows us to distinguish between shear sources of turbulence
that generate different levels of inward or outward propagat-
ing turbulence (C Csh sh¹+ -). The normalized cross-helicity is
defined as E E 0c C Ts º ¹¥ ¥ ¥( ) , where E zC

2= á ñ-¥ ¥+(
z 22á ñ¥- ) is the cross-helicity and E zT

2= á ñ+¥ ¥+(
z 22á ñ¥- ) is the total turbulent energy. A preliminary
investigation that included the different possible source terms
was presented by Zank et al. (2017) to elucidate the nature of
solutions.

The 1D steady sate slab turbulence transport model
equations (103)–(106) of Zank et al. (2017) are given by
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where z 2*á ñ+ and z 2*á ñ- are energies corresponding to forward
and backward propagating slab modes, respectively, ED* is the
slab residual energy, L

*
 are the correlation functions

corresponding to z 2*á ñ , and LD* is the correlation function
for ED*. ET* is the total slab turbulent energy, and EC* is the slab
cross-helicity. The parameter L ~( 8 au) is the ionization cavity
length scale, and fD is the fraction of pickup ion energy
transferred into excited waves (Isenberg 2005). The parameter
n 0.1H =¥ cm−3 is the number density of interstellar neutrals,

10 sion
0 6t = is the neutral ionization time at 1 au, n 5sw

0 = cm−3

is the solar wind density at 1 au, and b0 1< < is a constant.
The Alfvén velocity convective term appears only in the slab
component. Terms such as V VA Ar r

 º ¶
¶

· ( ) contain the radial
component of the interplanetary magnetic field only—to
include the azimuthal component would require a 2D model,
which is beyond the scope of the manuscript. Since the radial
magnetic field decreases rapidly with increasing heliocentric
distance (r 2- ), the termsVA · are not important. However, we
retain them for completeness and solve the turbulence transport
model equations from 1 to 75 au. The third term on the RHS of
Equation (5) is a pickup ion source of turbulence. Note that
there are no shear sources of turbulence in the NI Equations
(5)–(6) and no pickup ion sources in the 2D Equations (1)–(2).
Moreover, the pickup ion source term in (6) is zero (Adhikari
et al. 2015a, 2015b; Zank et al. 2017).
The transport equation for the variance of the density

fluctuations, Equation (108) of Zank et al. (2017), is
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where u 2á ñ¥ is the fluctuating 2D kinetic energy and ul
¥ is the

correlation length for the 2D velocity fluctuations. The
parameters 1h and 2h are constants, and 2

0rá ñ¥ is the density
fluctuation variance at 1 au. Both terms can be expressed
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through the core 2D variables as
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are the 2D correlation lengths corresponding to forward and
backward propagating modes, and the residual energy,
respectively. Similarly, L z 2

* * *l º á ñ+ + +( ), L z 2
* * *l º á ñ- - -( ),

and L ED D D* * *l º( ) are the NI or slab correlation lengths for
forward and backward propagating modes, and the residual
energy. The first term on the RHS of (9) is a nonlinear
dissipation term. It shows that the larger the kinetic energy, the
faster the decrease in the variance of the density fluctuations.
This term was neglected by Zank et al. (2012b). Conversely, if
the magnetic energy dominates i.e., 1Ds ~ -¥ , as it does within
∼10 au (Adhikari et al. 2015a, 2015b), then the density
turbulence will cease to evolve (mix) statistically. The second
and third terms on the RHS of (9) are shear and pickup ion
sources of turbulence.

Finally, note that there are six nonlinear dissipation terms
associated with 2D and slab turbulence transport Equations
(1)–(2) and (5)–(6). Including all the dissipation terms, the
transport equation for the solar wind temperature is given by
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where 5 3g = is the adiabatic index, mp is the proton mass, kB
is the Boltzmann constant, and α is the von Kármán–Taylor
constant. We choose 0.2a = . We solve the coupled turbulence
transport Equations (1)–(11) using a 4th-order Runge–Kutta
method from 1 to 75 au, and compare the numerical solutions
with Voyager 2 observations.

3. Magnetic Field and Solar Wind Velocity Fluctuations
versus Plasma Beta

The plasma beta β is defined as the ratio of the thermal
pressure and the magnetic pressure, i.e.,
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where n is the solar wind density, kB is the Boltzmann constant,
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is the magnetic permeability. We calculate the plasma beta
theoretically and observationally using Equation (12). To
compute β theoretically, we use n n r r0 0
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field (Weber & Davis 1967),
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where the subscript a represents the reference point. The
reference point in Equation (13) is the distance (Alfvénic
critical point), beyond which we can neglect the solar
gravitation and outward acceleration by the high coronal
temperature, so the solar wind velocity becomes approximately
constant (Parker 1958; Weber & Davis 1967). We assume the
reference point ∼ R10 , where R is a solar radius. We use
U=400 km s−1, 2.9 10a

6w = ´ - rad s−1, and 90q = . Simi-
larly, we use B 2.08 10a

3= ´ nT, which is obtained from
B B r r0 0

2= ( ) , where B0=4.5 nT and r 1 au0 = .
If we consider n r 2~ - , T r 4 3~ - (adiabatic temperature),

and B r 2~ - (i.e., a radial magnetic field), Equation (12) yields
r2 3b ~ . Furthermore, if we assume a WKB model so that

b r2 3á ñ ~ - , then we immediately find that

b , 142 9 2bá ñ ~ - ( )

showing that in the WKB approximation the fluctuating
magnetic energy decreases with increasing β. i.e., an anti-
correlation between the fluctuating magnetic energy and the
plasma beta. For B r 1~ - (i.e., an azimuthal magnetic field),
we find r 4 3b ~ - , and hence

b , 152 9 4bá ñ ~ ( )

indicating that the fluctuating magnetic energy increases with
increasing plasma beta, i.e., a positive correlation between b2á ñ
and β.

4. Data Analysis

We use Voyager 2 1 hr resolution data sets from 1977
through 2004 to calculate turbulence parameters throughout the
heliosphere. The magnetic field in the outer heliosphere is
mostly azimuthal (Burlaga & Ness 1994, 1996; Burlaga
et al. 1995). We use the T-component magnetic field BT to
find the direction of the magnetic field, and calculate the
observed values for an inward magnetic field, i.e., B 0T < and
an outward magnetic field, i.e., B 0T > . Like Zank et al. (1996)
and Adhikari et al. (2014, 2015a, 2015b), we calculate the
variances from 1 to ∼75 au. However, because we consider
2D and slab turbulence, we use only the R and N components
of the magnetic field since these are perpendicular to the
T-component magnetic field. This assumption allows us to
regard the turbulent quantities as a superposition of 2D and slab
fluctuations.
We calculate correlation lengths corresponding to outward and

inward propagating modes, i.e., l+ and l-, respectively, residual
energy Dl , velocity variance ul , magnetic field variance bl , and
the cross-correlation between the covariance of the velocity and
magnetic field fluctuations ubl . To calculate the correlation
lengths, we follow Adhikari et al. (2015a, 2015b). We first
consider a 20 hr interval data set, and calculate R and N
components of the Elsässer variables z, the velocity fluctuations
u and magnetic field fluctuations b. The 20 hr interval data set
contains all the 20 good data points for B 0T < and B 0T > . We
use them to calculate the auto-correlation and cross-correlation
functions. The auto-correlation function is used to find correlation
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lengths for forward and backward propagating modes, velocity
variance, and magnetic field variance. Similarly, the cross-
correlation function is used to find correlation lengths for the
residual energy and the cross-correlation between the covariance
of the velocity and magnetic field fluctuations. The correlation
length is the lag r where the auto- or cross-correlation function
becomes 1/e of the maximum value.

We also calculate the observed thermal plasma beta β from
the Voyager 2 measurements. We take the solar wind density,
solar wind temperature, and the R, T, and N components (i.e.,
BR, BT, and BN, respectively) of the magnetic field from the
Voyager 2 measurements. We first calculate the total magnetic
field B B B BR

2
T
2

N
2 1 2º + +( ( ) ), and then the thermal plasma

beta using Equation (12). Finally, we smooth the observed
thermal plasma beta over 100 hr intervals.

5. Results

In this section, we compare numerical solutions of our
theoretical model equations to Voyager 2 observations.
Numerical solutions are obtained using the boundary condi-
tions shown in Table 1, and assuming that the 2D and slab
energies are in the ratio 80:20 at 1 au. This estimate was first
provided theoretically by Zank & Matthaeus (1992b), and later
confirmed observationally by Bieber et al. (1996) in the case of
slow wind (see also Wanner & Wibberenz 1993). Note that the
slow and fast winds can contain different levels of 2D and slab
components (Dasso et al. 2005). Furthermore, Smith (2003)
found that the distribution of energy between the two
populations of slab (1D) and 2D wavevectors is roughly
equally distributed at high latitudes during solar minimum.
Since we address an NI MHD model, however, we will assume
theoretically the 80:20 ratio of 2D to slab energy. As noted
above, Zank et al. (2017) presented general solutions of the
new turbulence transport model equations in which a basic set
of boundary conditions and sources of turbulence were
chosen. The results of the turbulence model can differ
according to the choice of initial conditions and the form and
strength of the turbulence source terms. To ensure a good fit of
the model to the observations, we choose a specific form of the
shear source term parameter C 0E

sh
D < , since, as shown in Zank

et al. (2017), the opposite choice leads to kinetic energy rather
than magnetic-energy-dominated solutions. The initial condi-
tions shown in Table 1 are chosen such that the numerical
solutions are in good agreement with observations. Also, note
that the observed values of this manuscript are different from
the observed values of the Zank et al. (2017). The values for the
various parameters used in the numerical solutions are given
in Table 2. The parameters such as U, UD , VA0, iont¥ , nH

¥,

and nsw
0 are canonical and are taken from previous studies

(Zank et al. 1996; Breech et al. 2008). The other parameters
Csh

,C E
sh

D, 1h , 2h , and α are adjusted to find a reasonable fit to the
observations. fD is estimated by Isenberg (2005), and we use
such a value.
Figure 1 compares the theoretical results and the observed

values of z 2á ñ , cs , and Ds as a function of heliocentric distance.
The top left and right plots of Figure 1 show the energy in
forward and backward propagating modes, respectively. In the
plots, the solid curves represent 2D energies, the dashed curves
represent the slab energies, and the dashed–dotted–dashed
curves represent the total energies, i.e., a superposition of 2D
and slab energies. The scatter triangles are the corresponding
observed values. The forward and backward 2D energies
decrease gradually with increasing heliocentric distance, and
then flatten in the outer heliosphere. However, the forward
and backward slab energies decrease rapidly within 3–4 au, and
then increase in the outer heliosphere. The rapid decrease in
forward and backward energies is due to the absence of a shear
source of turbulence, and the increase in the outer heliosphere
is due to the creation of pickup ions. The corresponding
flattening of the 2D energy is because the 2D components are
driven by the generation of 2D fluctuations due to the nonlinear
interaction of counter-propagating Alfvén wave/slab packets in
the outer heliosphere. The theoretically computed energy in
forward and backward propagating modes shows that the
majority of the energy is 2D, and the minority is slab
throughout the heliosphere. The comparison between the
theoretical and observed total energy in forward and backward
propagating modes shows that the theoretical and observed
energies are in good agreement.
The bottom left and right plots of Figure 1 show the

theoretical and observed normalized cross-helicity and residual
energy as a function of heliocentric distance. In the bottom left
plot of Figure 1, both the 2D and slab normalized cross-
helicity, i.e., cs

¥ (solid curve) and c*s (dashed curve),
respectively, decrease with increasing heliocentric distance.
We find that cs

¥ decreases faster than c*s within 3–4 au because
the shear source of turbulence drives the 2D component.
Beyond ∼4 au the shear source is weak, so cs

¥ decreases more
slowly than it does within 3–4 au. In the region within
∼3–4 au, the theoretical normalized cross-helicity is larger than
the observed normalized cross-helicity. However, beyond
∼3–4 au the theoretical and observed values exhibit similar
behavior. As shown in the bottom right plot of Figure 1, the
solid red curve Ds

¥ decreases initially, approximately flattens
between ∼2–10 au, and then increases toward zero, i.e., it
eventually becomes equipartitioned between the fluctuating

Table 1
Boundary Values at 1 au

2D Core Model Equations Slab Model Equations

z 2á ñ¥+ 4000 km2 s−2 z 2*á ñ+ 1000 km2 s−2

z 2á ñ¥- 800 km2 s−2 z 2*á ñ- 200 km2 s−2

ED
¥ −100 km2 s−2 ED* −25 km2 s−2

2rá ñ¥ 1.4 cm−6

L¥
+ 2.97 109´ km3 s−2 L

*
+ 7.43 108´ km3 s−2

L¥
- 1.33 109´ km3 s−2 L

*
+ 6.05 108´ km3 s−2

LD
¥ −5.27 108´ km3 s−2 LD* −3.17 107´ km3 s−2

T 8 104´ K

Table 2
Model Parameters. E E2D slab is the Ratio of the Energy

between 2D and Slab Turbulence

Parameters Values Parameters Values

b 0.26 fD 0.25
Csh

+ 0.9 ion
0t 106 s

Csh
- 0.9 nsw

0 5 cm−3

C E
sh

D −0.5 nH
¥ 0.1 cm−3

U 400 km s−1
1h 1.8 10 2´ -

UD 200 km s−1
2h 5 10 5´ -

VA0 40 km s−1 α 0.2
r0 1 au E E2D slab 80:20
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magnetic and kinetic energy. Similarly, the dashed red curve
for the slab residual energy D*s also decreases initially up to
∼3–4 au, and then increases toward zero. The increase of D*s
toward zero is due to the presence of a pickup ion source of
turbulence, and the increase in Ds

¥ is due to the consequent
increase in the interaction between 2D and slab components.
The theoretical normalized residual energy exhibits similar
trends to that of the observed normalized residual energy.

The top left and right plots of Figure 2 illustrate the
theoretical and observed fluctuating velocity and magnetic
energy variance, respectively, as a function of heliocentric
distance. In the plots, the solid curves represent 2D fluctuating
kinetic and magnetic energies, the dashed curves represent the
slab energies, and the dashed–dotted–dashed curves represent
the total energies, i.e., a superposition of 2D and slab energies.
Again, the results show that the slab components of the
fluctuating velocity and magnetic field variances, i.e., u 2*á ñ and
B 2*á ñ, decrease more rapidly than the 2D components, i.e.,
u 2á ñ¥ and B 2á ñ¥ , within ∼3–4 au. The variance u 2*á ñ then starts
increasing beyond ∼3–4 au, whereas u 2á ñ¥ increases beyond

9 10 au~ – . Similarly, the slab magnetic field variance B 2*á ñ
decreases faster within ∼3–4 au than beyond ∼3–4 au. The
comparison shows that the theoretical fluctuating velocity and

magnetic field variances agree well with the corresponding
observed values (scatter triangles).
The bottom left and right plots of Figure 2 compare the

theoretical and observed Alfvén ratio and total turbulent energy
as a function of heliocentric distance. Again, the comparison
shows that the theoretical Alfvén ratio (left plot) and the total
turbulent energy (right plot) exhibit similar trends as those of
the observed values.
Figure 3 shows the theoretical and observed correlation

lengths, and the correlation functions as a function of
heliocentric distance. In the top left plot of Figure 3, the solid
and dashed black curves describe the 2D and slab correlation
lengths of forward propagating modes, respectively. Similarly,
on the same plot the solid and dashed red curves show the
correlation length for the backward propagating modes, and the
solid and dashed blue curves show the correlation length for
the residual energy. The black, red, and blue scatter triangles
describe the corresponding observed correlation lengths.
The top right plot of Figure 3 shows the correlation lengths

for the velocity variance, magnetic field variance, and the
cross-correlation between velocity and magnetic field fluctua-
tions. The solid and dashed black curves describe the
theoretical 2D and slab correlation lengths of the velocity
variance, the red curves correspond to the magnetic field

Figure 1. Comparison of theoretical results and observed values as a function of heliocentric distance. Top left: the energy in forward propagating modes. Top right:
the energy in backward propagating modes. Bottom left: the normalized cross-helicity. Bottom right: the normalized residual energy. The solid curves represent the 2D
quantities, the dashed curves represent the slab quantities, and the dashed–dotted–dashed curves represent the total quantities, i.e., 2D+slab.
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variance, and the blue curves the cross-correlation between the
covariance between velocity and magnetic field fluctuations.
The black, red, and blue scatter triangles identify the
corresponding observed correlation lengths.

The bottom plot of Figure 3 shows the correlation functions of
the forward and backward propagating modes, and the residual
energy as a function of heliocentric distance. The solid and dashed
black curves illustrate the 2D and slab correlation functions for
forward propagating modes, the red curves correspond to backward
propagating modes, and blue curves to the residual energy.

The left plot of Figure 4 shows the density variance as a
function of heliocentric distance. The solid curve is the
theoretical 2rá ñ¥ , the scatter triangles are the observed density
variance, and the dashed curve is the r 4- line. The theoretical

2rá ñ¥ decreases faster than r 4- within 10 au, and begins to
flatten beyond 10 au, which is due to the presence of a pickup
ion source of turbulence. The r 4- line describes the decay of

2rá ñ¥ by radial expansion of the solar wind exclusively, i.e., in
the absence of mixing and dissipation associated with velocity
fluctuations. These results differ from those of Bellamy et al.
(2005) and Zank et al. (2012b). Bellamy et al. (2005) and Zank
et al. (2012b) found that the density variance 2rá ñ¥ increases
beyond ∼30 au, which is not observed in the Figure 4 (left).
Bellamy et al. (2005) calculated the density variance using a
spectral analysis method. To explain the results of Bellamy

et al. (2005), Zank et al. (2012b) neglected mixing due to
velocity fluctuations, unlike the Zank et al. (2017) model. The
mixing due to velocity fluctuations is responsible for the
general decrease in the density variance, where the velocity
variance is associated with 2D turbulence (Equation (10)).
The right plot of Figure 4 shows the solar wind temperature as

a function of heliocentric distance. The solar wind temperature is
calculated using all six dissipation terms associated with the 2D
and slab turbulence transport model equations. The comparison
between the theoretical and observed solar wind temperature
shows very reasonable agreement.
Figure 5 shows a comparison between the theoretical and

observed thermal plasma beta β as a function of heliocentric
distance.6 In Figure 5, the scatter plus symbols are the observed
thermal plasma beta, where each observed β is associated with
a 100 hr interval of the Voyager 2 spacecraft data sets. Figure 5

Figure 2. Comparison of theoretical results and observed values as a function of heliocentric distance. Top left: the fluctuating velocity variance. Top right: the
fluctuating magnetic variance. Bottom left: the Alfvén ratio. Bottom right: the total turbulent energy. See Figure 1 for details.

6 Note that the plasma beta is computed on the basis of the background
thermal solar wind measurements only. Voyager 2 cannot measure interstellar
pickup ions, which form the dominant thermal component of the solar wind
(Zank 1999) beyond ∼10 au. However, the PUI plasma is not thermally
equilibrated with the thermal solar wind plasma (Zank et al. 2014, 2017; Zank
2015) and the incompressible 2D and slab fluctuations are largely decoupled
from the PUI component (Zank et al. 2014). The inclusion of PUIs formally
makes the plasma beta 1 ( 4b ~ ) in the outer heliosphere, but the
nonequilibration of thermal and PUI plasma makes it meaningful to consider
the relationship of different variances with respect to the thermal solar wind
plasma β (Zank et al. 2014).
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shows that the observed thermal β is less than 1 typically
(dashed black line). In the figure, the solid red curve is the
theoretical β. The solid red curve indicates that β increases
initially toward approximately 1, followed by a decrease, and
then increases again beyond ∼30 au. It also means that the
thermal and magnetic pressure are approximately equal in the
beginning, however, the magnetic pressure starts dominating
the thermal pressure beyond ∼2 au. As discussed, if the pickup
ion pressure is included, the plasma beta will be larger than 1.
Since the thermal and PUI plasmas are not equilibrated, the
incompressible fluctuations respond primarily to the thermal
solar wind plasma beta. A comparison shows that the red curve
exhibits similar trends to that of the observed thermal plasma β.

Figure 6 shows a comparison between the theoretical (and
observed) fluctuating magnetic and kinetic energies as a
function of the theoretical (and observed) plasma beta. This
is similar to a plot and the corresponding analysis presented by
Bale et al. (2016) who considered both b2 bá ñ( ) and u2 bá ñ( ) at
1 au to determine bounds on the two components. In the figure,
the scatter plus symbols are the observed values, and the solid
red curve is the theoretical value, using the same convention as
before. The solid red curve shows that b2á ñ has a complex
multivalued relation to the plasma β, whose shape is

remarkably similar to that of the left boundary of the observed
values. Bale et al. (2016) suggests that the b2 1 4bá ñ ~ - (black
line) bounds the right region of the observed plasma beta
values at 1 au. Squire et al. (2016) argued that a high-beta
collisionless plasma cannot support linearly polarized shear-
Alfvén fluctuations above a critical amplitude, deriving a
relationship b2 1 4bá ñ ~ - when 10b , with a possible
deviation for 10b . In our case, the plasma beta varies over
a range between ∼10−2 and ∼10, i.e., the maximum β is ∼10.
In Figure 6 (left), the cyan and magenta lines describe
Equations (14) and (15). Although there is freedom in
specifying the origin of curves (14) and (15), both lines
certainly bound the data. Evidently, b2 1 4bá ñ ~ - does not
bound the right region of the plasma beta for values derived for
r 1 au . We would conclude that the turbulent transport
model satisfactorily captures the relation between b2á ñ and
plasma beta for r 1 au .
Figure 6 (right) compares the theoretical (and observed) u2á ñ

as a function of the theoretical (and observed) plasma β. The
same color and curve convention is followed. The multivalued
solid red curve u2 bá ñ( ) passes through the center of the
observed values, which is consistent with observations. Taken
together with Figure (6) (left) and Figure 5, we would conclude

Figure 3. Top left: plots of the correlation lengths corresponding to forward (black curves) and backward (red curves) propagating modes for the 2D (solid curves) and
slab (dashed) components, and the residual energy (blue curves). Top right: correlation lengths corresponding to the velocity variance, magnetic field variance, and the
cross-correlation between covariance of velocity and magnetic field fluctuations. Bottom: plots of the correlation functions corresponding to forward and backward
propagating modes, and the residual energy. The parameter L0 is the normalization constant for the correlation functions.
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that the turbulent-transport model predictions of u2 bá ñ( ) are
reasonably consistent with the observations, despite exhibiting
greater scatter.

6. Discussion and Conclusions

A very general system of coupled turbulence transport
equations has been solved numerically from 1 to 75 au, and the
solutions have been compared to Voyager 2 observations. The
comparison yields good agreement between theory and
observations. The turbulence transport model Equations
(1)–(8) are 1D steady-state models obtained by assuming
constant solar wind speed. However, in reality the solar wind is
not so simple. Extending our 1D steady-state model to a 3D
time-dependent model is therefore interesting and important if
we are to understand the latitudinal and longitudinal depend-
ence of heliospheric turbulence (Shiota et al. 2017). In doing
so, the comparison of the theoretical results with the Voyager 2
measurements will be more reasonable than the 1D results
because Voyager 2ʼs latitude has changed significantly ( 30~ )
in the course of its mission. However, the 1D results are useful

for understanding the transport of turbulence in the heliosphere.
The coupled turbulence transport Equations (1)–(8) describe
the transport of energy in forward and backward propagating
modes, the residual energy, and the corresponding correlation
functions for the 2D and slab cases. These transport equations
were developed on the basis of an NI theory. Equations (1)–(4)
describe the majority 2D core model, and (5)–(8) describe the
minority slab model. An important difference between the 2D
and NI model equations is the absence of the Alfvén velocity in
the 2D transport equations, and its presence in the NI model
equations. Thus, the 2D core model equations are completely
2D in that the fluctuations are in a plane orthogonal to the
direction of the magnetic field. It is important to note that the
2D components are advected only by the large-scale solar wind
flow, whereas the slab components are both advected by solar
wind flow and propagate with the Alfvén velocity.
In this work, the observed turbulence values were calculated

with respect to the T-component of the magnetic field. We
chose the R and N component solar wind velocity and magnetic
field, the solar wind density, and the solar wind temperature,
and calculated various turbulence quantities from 1977 through
2004. We assumed that the calculated observed fluctuations of
the R and N component solar wind velocity and magnetic field
correspond to a plane orthogonal to the direction to the
magnetic field. The calculated observed quantities may
represent a superposition of both 2D and slab values. Finding
a wavevector k would help us to calculate 2D and slab
turbulence quantities. Bellan (2012, 2016) have discussed the
evaluation of a wavevector k from a single spacecraft
measurement. However, since Voyager 2 does not measure
the electric field E or current J , finding k is not possible. Zank
et al. (2017) presented a very preliminary comparison of
theoretical solutions to the turbulence transport Equations
(1)–(11) with observations, based on prior observations
(Adhikari et al. 2015a, 2015b). Here, we studied the model
equations in great detail, focusing on relating the theoretical
results to the observed values. In addition, we compared the
theoretical and observed density variance, the solar wind
temperature, the correlation lengths corresponding to forward
and backward propagating modes, residual energy, velocity
variance, magnetic field variance, and the cross-correlation

Figure 4. Left: comparison between the theoretical (solid curve) and observed 2rá ñ¥ as a function of heliocentric distance. The dashed curve shows an r 4- line. Right:
comparison between the theoretical and observed solar wind temperature T as a function of heliocentric distance. The dashed red curve shows an adiabatic temperature
profile, i.e., T r 4 3~ - .

Figure 5. Comparison between the theoretical and observed thermal plasma
beta β as a function of heliocentric distance. The solid red curve indicates the
theoretical plasma β. The scatter “+” symbols represent the observed values.
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between the covariance of the velocity and magnetic field
fluctuations as functions of heliocentric distance. We list our
findings as follows.

(1) The 2D and slab turbulent intensities such as the energy
in forward and backward propagating modes, the total
turbulent energy, the fluctuating kinetic and the magnetic
energy are calculated as a function of heliocentric
distance. The 2D energies are dominant in comparison
to the slab energies throughout the heliosphere.

(2) The 2D ( z 2á ñ¥ , ET
¥)/slab ( z 2*á ñ , ET*) energies decrease

with increasing heliocentric distance within ∼3–4 au), and
flatten/increase in the outer heliosphere. The slab energies
decrease more rapidly in comparison to the 2D energies
within 3–4 au. However, the slab energies increase, and the
2D energies flatten in the outer heliosphere. We find that the
theoretical z z z2

tot
2 2*á ñ ºá ñ + á ñ+ ¥+ +( ) varies approxi-

mately as r 1.012- and r0.002 from 1 to ∼10 au and from
∼10 to 75 au, respectively. Similarly, z z2

tot
2á ñ ºá ñ +- ¥+(

z 2*á ñ+ ) varies as r 0.66~ - and r0.04~ , and ET
¥ as r 0.88~ -

and r0.02~ within and beyond 10 au, respectively. It indicates
that the energy in forward propagating modes decreases more
rapidly than the energy in backward propagating modes
within ∼10 au. However, both energies are approximately
the same and flatten in similar fashion in the outer
heliosphere.

(3) The 2D normalized residual energy decreases faster than
the slab normalized residual energy with increasing
heliocentric distance. For both normalized residual
energies, the fluctuations are dominated by the fluctuating
magnetic energy within ∼3–4 au, and are in approximate
equipartition in the outer heliosphere. The 2D normalized
residual energy is more strongly dominated by the
fluctuating magnetic energy than is the slab normalized
residual energy throughout the heliosphere.

(4) The fluctuating slab kinetic and magnetic energy decrease
faster than the 2D fluctuating kinetic and magnetic energy
within ∼3–4 au. The fluctuating slab kinetic energy begins
to increase beyond ∼4 au, whereas the 2D fluctuating
kinetic energy decreases until ∼10 au, and then increases.

The theoretical u 2á ñ¥ behaves approximately as r 1.16-

within ∼10 au, and increases approximately as r0.38

beyond ∼10 au. Similarly, B 2á ñ¥ varies as r 2.91~ - and
r 2.30~ - from 1 to ∼10 au, and from ∼10 to 75 au,

respectively, indicating that B 2á ñ¥ decreases more slowly
in the outer heliosphere than within ∼10 au.

(5) The correlation lengths corresponding to magnetic field
fluctuations and the cross-correlation between velocity
and magnetic field fluctuations increase slowly with
increasing heliocentric distance. The correlation length
corresponding to the velocity fluctuations decreases in the
outer heliosphere, which may be due to the increase in the
u 2á ñ¥ in the outer heliosphere.

(6) The variance in the density fluctuations decreases with
increasing heliocentric distance. The density variance
varies approximately as r 4.94- within ∼10 au and r 2.69-

beyond ∼10 au. In response to adiabatic expansion and in
the absence of mixing associated with velocity fluctua-
tions, the density variance decays as r 4- . However, in the
presence of mixing, the density variance decreases faster
than r 4- . In the outer heliosphere, the density variance
flattens or decreases more slowly due to the presence of
pickup ions.

(7) The theoretical solar wind temperature exhibits similar
trends to that of the observed solar wind temperature. The
temperature profile is obtained by including all the
nonlinear dissipation terms associated with forward and
backward propagating modes and the residual energy for
both 2D and slab cases. The solar wind temperature
decreases approximately as r 1.05- from 1 to 10 au and
increases approximately as r0.42 beyond 10 au.

(8) The thermal plasma beta β increases from 1 to ∼2 au, and
then decreases up to ∼20 au, after which it increases
beyond ∼20 au with increasing heliocentric distance. The
plasma β is smaller than 1 beyond ∼3 au, although it
would be larger than 1 if the pickup ion pressure were
included. The magnetic field fluctuation variance is a
multivalued function of plasma beta exhibiting good
agreement with the distribution of the observed b2 bá ñ( ).
Although bounded by curves corresponding to an adiabatic
temperature profile, it is clear that a turbulent transport

Figure 6. Left: comparison of the theoretical and observed fluctuating magnetic energy as a function of thermal plasma beta. Right: comparison of the theoretical and
observed fluctuating kinetic energy as a function of thermal plasma beta. The solid red curves correspond to the theoretical results. The solid magenta line corresponds
to b2 9 4bá ñ ~ (Equation (15)) and the cyan line corresponds to b2 9 2bá ñ ~ - (Equation (14)). The black line shows b2 1 4bá ñ ~ - , the physical relevance of which is
discussed below.
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model best captures the b2 bá ñ( ) relationship for r 1 au .
We note too that the relationship suggested by Squire et al.
(2016) (and also Bale et al. 2016) to bound b2á ñ as a
function of β does not appear to be validated observation-
ally beyond 1 au, possibly because the thermal plasma beta
is O(1) or less. The predicted u2 bá ñ( ) curve, also
multivalued, clearly splits the observed distribution of
u2 bá ñ( ) but the spread is large. If taken together with the
predicted and observed b2 bá ñ( ), the predicted and
observed u2 bá ñ( ) is consistent with a turbulence transport
model.

Based on the Zank et al. (2017) model, we find that the
predicted variances B2á ñ, 2rá ñ, u2á ñ, the Elsässer energies z 2á ñ ,
ET, and the temperature T, match the observed quantities
surprisingly well given the simplicity of the model and the
extended time and distance over which the observations were
taken. Some of the derived quantities, cs , Ds , and rA, and the
correlation lengths, do not compare as well to the observed
values, which exhibit significant scatter. Part of the large scatter
may derive from the low-resolution plasma data sets.

We acknowledge the partial support of NASA grants
NNX08AJ33G, Subaward 37102-2, NNX14AC08G,
NNX14AJ53G, A99132BT, RR185-447/4944336, and
NNX12AB30G.

References

Adhikari, L., Zank, G. P., Bruno, R., et al. 2015a, ApJ, 805, 63
Adhikari, L., Zank, G. P., Bruno, R., et al. 2015b, JPhCS, 642, 012001
Adhikari, L., Zank, G. P., Hu, Q., & Dosch, A. 2014, ApJ, 793, 52
Bale, S., Bowen, B., Chen, C., & Hellinger, P. 2016, AGU, Thursday

Afternoon Session
Bellamy, B. R., Cairns, I. H., & Smith, C. W. 2005, JGRA, 110, 10104
Bellan, P. M. 2012, JGRA, 117, A12219
Bellan, P. M. 2016, JGRA, 121, 8589
Bieber, J. W., Wanner, W., & Matthaeus, W. H. 1996, JGR, 101, 2511
Breech, B., Matthaeus, W. H., Minnie, J., et al. 2005, GeoRL, 32, 6103
Breech, B., Matthaeus, W. H., Minnie, J., et al. 2008, JGRA, 113, 8105
Burlaga, L. F., & Ness, N. F. 1994, JGR, 99, 19341
Burlaga, L. F., & Ness, N. F. 1996, JGR, 101, 13473
Burlaga, L. F., Ness, N. F., & McDonald, F. B. 1995, JGR, 100, 14763
Dasso, S., Milano, L. J., Matthaeus, W. H., & Smith, C. W. 2005, ApJL,

635, L181
Engelbrecht, N. E., & Burger, R. A. 2013a, ApJ, 772, 46
Engelbrecht, N. E., & Burger, R. A. 2013b, ApJ, 779, 158
Goldreich, P., & Sridhar, S. 1995, ApJ, 438, 763
Hunana, P., & Zank, G. P. 2010, ApJ, 718, 148

Hunana, P., Zank, G. P., Heerikhuisen, J., & Shaikh, D. 2008, JGRA, 113,
A11105

Hunana, P., Zank, G. P., & Shaikh, D. 2006, PhRvE, 74, 026302
Isenberg, P. A. 2005, ApJ, 623, 502
Isenberg, P. A., Smith, C. W., & Matthaeus, W. H. 2003, ApJ, 592, 564
Isenberg, P. A., Smith, C. W., Matthaeus, W. H., & Richardson, J. D. 2010,

ApJ, 719, 716
Klainerman, S., & Majda, A. 1981, CPAM, 34, 481
Klainerman, S., & Majda, A. 1982, CPAM, 35, 629
Marsch, E., & Tu, C.-Y. 1989, JPlPh, 41, 479
Matthaeus, W. H., Minnie, J., Breech, B., et al. 2004, GeoRL, 31, 12803
Matthaeus, W. H., Oughton, S., Pontius, D. H., Jr., & Zhou, Y. 1994, JGR, 99,

19267
Matthaeus, W. H., Zank, G. P., Smith, C. W., & Oughton, S. 1999, PhRvL,

82, 3444
Montgomery, D., Brown, M. R., & Matthaeus, W. H. 1987, JGR, 92, 282
Ng, C. S., Bhattacharjee, A., Munsi, D., Isenberg, P. A., & Smith, C. W. 2010,

JGRA, 115, 2101
Oughton, S., Dmitruk, P., & Matthaeus, W. H. 2006, PhPl, 13, 042306
Oughton, S., Matthaeus, W. H., Dmitruk, P., et al. 2001, ApJ, 551, 565
Oughton, S., Matthaeus, W. H., Smith, C. W., Breech, B., & Isenberg, P. A.

2011, JGRA, 116, 8105
Parker, E. N. 1958, ApJ, 128, 664
Shiota, D., Zank, G. P., Adhikari, L., et al. 2017, ApJ, 837, 75
Smith, C. W. 2003, in AIP Conf. Ser. 679, Solar Wind Ten, ed. M. Velli et al.

(Melville, NY: AIP), 413
Smith, C. W., Isenberg, P. A., Matthaeus, W. H., & Richardson, J. D. 2006a,

ApJ, 638, 508
Smith, C. W., Matthaeus, W. H., Zank, G. P., et al. 2001, JGR, 106, 8253
Smith, C. W., Vasquez, B. J., & Hamilton, K. 2006b, JGRA, 111, 9111
Squire, J., Quataert, E., & Schekochihin, A. A. 2016, ApJL, 830, L25
Usmanov, A. V., Matthaeus, W. H., Breech, B. A., & Goldstein, M. L. 2011,

ApJ, 727, 84
Wanner, W., & Wibberenz, G. 1993, JGR, 98, 3513
Weber, E. J., & Davis, L., Jr. 1967, ApJ, 148, 217
Wiengarten, T., Fichtner, H., Kleimann, J., & Kissmann, R. 2015, ApJ,

805, 155
Wiengarten, T., Oughton, S., Engelbrecht, N. E., et al. 2016, ApJ, 833, 17
Williams, L. L., Zank, G. P., & Matthaeus, W. H. 1995, JGR, 100, 17059
Zank, G. P. 1999, SSRv, 89, 413
Zank, G. P. 2015, ARA&A, 53, 449
Zank, G. P., Adhikari, L., Hunana, P., et al. 2017, ApJ, 835, 147
Zank, G. P., Dosch, A., Hunana, P., et al. 2012a, ApJ, 745, 35
Zank, G. P., Hunana, P., Mostafavi, P., & Goldstein, M. L. 2014, ApJ, 797

87
Zank, G. P., Jetha, N., Hu, Q., & Hunana, P. 2012b, ApJ, 756, 21
Zank, G. P., & Matthaeus, W. H. 1991, PhFlA, 3, 69
Zank, G. P., & Matthaeus, W. H. 1992a, JPlPh, 48, 85
Zank, G. P., & Matthaeus, W. H. 1992b, JGR, 97, 17189
Zank, G. P., & Matthaeus, W. H. 1993, PhFl, 5, 257
Zank, G. P., Matthaeus, W. H., Bieber, J. W., & Moraal, H. 1998, JGR,

103, 2085
Zank, G. P., Matthaeus, W. H., & Smith, C. W. 1996, JGR, 101, 17093
Zhou, Y., & Matthaeus, W. H. 1990a, JGR, 95, 14881
Zhou, Y., & Matthaeus, W. H. 1990b, JGR, 95, 14863

11

The Astrophysical Journal, 841:85 (11pp), 2017 June 1 Adhikari et al.

https://doi.org/10.1088/0004-637X/805/1/63
http://adsabs.harvard.edu/abs/2015ApJ...805...63A
https://doi.org/10.1088/1742-6596/642/1/012001
https://doi.org/10.1088/0004-637X/793/1/52
http://adsabs.harvard.edu/abs/2014ApJ...793...52A
https://doi.org/10.1029/2004JA010952
http://adsabs.harvard.edu/abs/2005JGRA..11010104B
https://doi.org/10.1029/2012JA017856
http://adsabs.harvard.edu/abs/2012JGRA..11712219B
https://doi.org/10.1002/2016JA022827
http://adsabs.harvard.edu/abs/2016JGRA..121.8589B
https://doi.org/10.1029/95JA02588
http://adsabs.harvard.edu/abs/1996JGR...101.2511B
https://doi.org/10.1029/2004GL022321
http://adsabs.harvard.edu/abs/2005GeoRL..32.6103B
https://doi.org/10.1029/2007JA012711
http://adsabs.harvard.edu/abs/2008JGRA..113.8105B
https://doi.org/10.1029/94JA01513
http://adsabs.harvard.edu/abs/1994JGR....9919341B
https://doi.org/10.1029/96JA00523
http://adsabs.harvard.edu/abs/1996JGR...10113473B
https://doi.org/10.1029/95JA01557
http://adsabs.harvard.edu/abs/1995JGR...10014763B
https://doi.org/10.1086/499559
http://adsabs.harvard.edu/abs/2005ApJ...635L.181D
http://adsabs.harvard.edu/abs/2005ApJ...635L.181D
https://doi.org/10.1088/0004-637X/772/1/46
http://adsabs.harvard.edu/abs/2013ApJ...772...46E
https://doi.org/10.1088/0004-637X/779/2/158
http://adsabs.harvard.edu/abs/2013ApJ...779..158E
https://doi.org/10.1086/175121
http://adsabs.harvard.edu/abs/1995ApJ...438..763G
https://doi.org/10.1088/0004-637X/718/1/148
http://adsabs.harvard.edu/abs/2010ApJ...718..148H
https://doi.org/10.1029/2007JD009276
http://adsabs.harvard.edu/abs/2008JGRA..11311105H
http://adsabs.harvard.edu/abs/2008JGRA..11311105H
https://doi.org/10.1103/PhysRevE.74.026302
http://adsabs.harvard.edu/abs/2006PhRvE..74b6302H
https://doi.org/10.1086/428609
http://adsabs.harvard.edu/abs/2005ApJ...623..502I
https://doi.org/10.1086/375584
http://adsabs.harvard.edu/abs/2003ApJ...592..564I
https://doi.org/10.1088/0004-637X/719/1/716
http://adsabs.harvard.edu/abs/2010ApJ...719..716I
https://doi.org/10.1002/cpa.3160340405
http://adsabs.harvard.edu/abs/1981CPAM...34..481K
https://doi.org/10.1002/cpa.3160350503
http://adsabs.harvard.edu/abs/1982CPAM...35..629K
https://doi.org/10.1017/S0022377800014033
http://adsabs.harvard.edu/abs/1989JPlPh..41..479M
https://doi.org/10.1029/2004GL019645
http://adsabs.harvard.edu/abs/2004GeoRL..3112803M
https://doi.org/10.1029/94JA01233
http://adsabs.harvard.edu/abs/1994JGR....9919267M
http://adsabs.harvard.edu/abs/1994JGR....9919267M
https://doi.org/10.1103/PhysRevLett.82.3444
http://adsabs.harvard.edu/abs/1999PhRvL..82.3444M
http://adsabs.harvard.edu/abs/1999PhRvL..82.3444M
https://doi.org/10.1029/JA092iA01p00282
http://adsabs.harvard.edu/abs/1987JGR....92..282M
https://doi.org/10.1029/2009JA014377
http://adsabs.harvard.edu/abs/2010JGRA..115.2101N
https://doi.org/10.1063/1.2188088
http://adsabs.harvard.edu/abs/2006PhPl...13d2306O
https://doi.org/10.1086/320069
http://adsabs.harvard.edu/abs/2001ApJ...551..565O
https://doi.org/10.1029/2010JD014679
http://adsabs.harvard.edu/abs/2011JGRA..116.8105O
https://doi.org/10.1086/146579
http://adsabs.harvard.edu/abs/1958ApJ...128..664P
https://doi.org/10.3847/1538-4357/aa60bc
http://adsabs.harvard.edu/abs/2017ApJ...837...75S
http://adsabs.harvard.edu/abs/2003AIPC..679..413S
https://doi.org/10.1086/498671
http://adsabs.harvard.edu/abs/2006ApJ...638..508S
https://doi.org/10.1029/2000JA000366
http://adsabs.harvard.edu/abs/2001JGR...106.8253S
https://doi.org/10.1029/2006JA011651
http://adsabs.harvard.edu/abs/2006JGRA..111.9111S
https://doi.org/10.3847/2041-8205/830/2/L25
http://adsabs.harvard.edu/abs/2016ApJ...830L..25S
https://doi.org/10.1088/0004-637X/727/2/84
http://adsabs.harvard.edu/abs/2011ApJ...727...84U
https://doi.org/10.1029/92JA02546
http://adsabs.harvard.edu/abs/1993JGR....98.3513W
https://doi.org/10.1086/149138
http://adsabs.harvard.edu/abs/1967ApJ...148..217W
https://doi.org/10.1088/0004-637X/805/2/155
http://adsabs.harvard.edu/abs/2015ApJ...805..155W
http://adsabs.harvard.edu/abs/2015ApJ...805..155W
https://doi.org/10.3847/0004-637X/833/1/17
http://adsabs.harvard.edu/abs/2016ApJ...833...17W
https://doi.org/10.1029/95JA01261
http://adsabs.harvard.edu/abs/1995JGR...10017059W
https://doi.org/10.1023/A:1005155601277
http://adsabs.harvard.edu/abs/1999SSRv...89..413Z
https://doi.org/10.1146/annurev-astro-082214-122254
http://adsabs.harvard.edu/abs/2015ARA&amp;A..53..449Z
https://doi.org/10.3847/1538-4357/835/2/147
http://adsabs.harvard.edu/abs/2017ApJ...835..147Z
https://doi.org/10.1088/0004-637X/745/1/35
http://adsabs.harvard.edu/abs/2012ApJ...745...35Z
https://doi.org/10.1088/0004-637X/797/2/87
http://adsabs.harvard.edu/abs/2014ApJ...797...87Z
http://adsabs.harvard.edu/abs/2014ApJ...797...87Z
https://doi.org/10.1088/0004-637X/756/1/21
http://adsabs.harvard.edu/abs/2012ApJ...756...21Z
https://doi.org/10.1063/1.857865
http://adsabs.harvard.edu/abs/1991PhFl....3...69Z
https://doi.org/10.1017/S002237780001638X
http://adsabs.harvard.edu/abs/1992JPlPh..48...85Z
https://doi.org/10.1029/92JA01734
http://adsabs.harvard.edu/abs/1992JGR....9717189Z
https://doi.org/10.1063/1.858780
http://adsabs.harvard.edu/abs/1993PhFl....5..257Z
https://doi.org/10.1029/97JA03013
http://adsabs.harvard.edu/abs/1998JGR...103.2085Z
http://adsabs.harvard.edu/abs/1998JGR...103.2085Z
https://doi.org/10.1029/96JA01275
http://adsabs.harvard.edu/abs/1996JGR...10117093Z
https://doi.org/10.1029/JA095iA09p14881
http://adsabs.harvard.edu/abs/1990JGR....9514881Z
https://doi.org/10.1029/JA095iA09p14863
http://adsabs.harvard.edu/abs/1990JGR....9514863Z

	1. Introduction
	2.2D and Slab Turbulence Transport Model Equations
	3. Magnetic Field and Solar Wind Velocity Fluctuations versus Plasma Beta
	4. Data Analysis
	5. Results
	6. Discussion and Conclusions
	References



