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Abstract

We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method
and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters at 0.35 < z < 0.9
selected in the X-ray with the ROSAT PSPC 400 deg” survey, and a sample of 90 clusters at 0.25 < z < 1.2
selected via the Sunyaev—Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have
similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct
methods: centroid shifts (w) and photon asymmetry (Apnot). The latter technique provides nearly unbiased
morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the
X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a
statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the
redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find
that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or
SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology
(outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift
evolution in the X-ray morphology (both for observed and simulated clusters), over the range of z ~ 0.3to z ~ 1,
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seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.
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1. Introduction

Large-scale galaxy cluster surveys can make an important
contribution to understanding the growth of structure in the
universe, delivering precise constraints on the nature of dark
matter and dark energy, and providing insights into astrophysical
processes in clusters. The primary interest in studying galaxy
clusters from the cosmological point of view is in measuring
their abundance as a function of mass and redshift, though
alternative approaches to cluster-based cosmology that do not
rely on precise masses have recently been proposed (Caldwell
et al. 2016; Ntampaka et al. 2016; Pierre et al. 2016). The
abundance of galaxy clusters as a function of mass and redshift
currently provides constraints on cosmological models and
parameters, most importantly matter density 2y and the
normalization of the matter power spectrum og (see the review
by Allen et al. 2011). There are many subtleties, however, in
interpreting abundance information from cluster surveys. First,
cluster masses are a necessary ingredient for cosmological
analyses based on cluster abundances. The most accurate masses
are currently provided by weak lensing studies (e.g., Applegate

galaxies: clusters: intracluster medium — X-rays: galaxies: clusters

et al. 2014; Hoekstra et al. 2015), with the most careful analyses
achieving <5% systematic uncertainties. When weak lensing
mass estimates for all clusters are not available, the absolute
mass calibration from weak lensing is then typically tied to a
relative mass calibration coming from the selection observable
(e.g., X-ray luminosity, Sunyaev—Zeldovich (SZ) signal, optical
richness, etc.). Both scatter and potential biases in the weak
lensing analysis or cluster scaling relations can have an effect on
constraints when fitting cosmological models. Second, one needs
to understand the survey’s completeness and purity. Finally,
more subtle selection effects, such as increased sensitivity to a
particular sub-class of clusters, may play a role. An example of
such a bias would be an increased sensitivity of X-ray flux-
limited samples to cool core clusters: because cool core systems
have higher X-ray luminosity than non-cool core systems of the
same mass, a flux-limited sample can potentially be biased
toward cool core clusters (Hudson et al. 2010; Eckert et al. 2011;
Mittal et al. 2011). The ratio of cool core to non-cool core
systems at different redshifts is currently a subject of active
research (Vikhlinin 2006; Santos et al. 2010; McDonald 2011;
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Samuele et al. 2011; Semler et al. 2012; McDonald et al. 2013),
so this bias effectively limits our understanding of completeness
in the X-ray flux-limited samples.

Many of the biases implicit in the selection of various galaxy
cluster samples are well understood. X-ray luminosity is
proportional to gas density squared, so X-ray detection is
biased toward cool core systems that have high central
densities. In contrast, the majority of the SZ signal originates
from outside of the core. Consequently, SZ detection is biased
toward the large-scale gas properties in the cluster. Because
both X-ray and SZ detection methods are based on the physical
properties of the ICM, they may have some common biases
(Angulo et al. 2012; Maughan et al. 2012; Lin et al. 2015) that
are completely different from the optical detection methods
which are sensitive to a different component of galaxy clusters
(i.e., the galaxies). The finer details of each detection method’s
sensitivity to specific cluster morphology or dynamical state are
not well understood.

It has been suggested that SZ-selected clusters are more often
“morphologically disturbed” (i.e., ongoing mergers) than their
X-ray-selected counterparts. This line of reasoning stems from
(1) the presence of spectacular mergers among the first
discovered by the SZ effect, such as El Gordo (Menanteau
et al. 2012) and PLCKG214.6+37.0 (Planck Collaboration
et al. 2013a); and (2) an extensive discussion of newly
discovered mergers in the papers, which originated from the
Planck XMM-Newton follow-up program (Planck Collaboration
etal. 2011, 2012, 2013b). The latter program targeted 51 cluster
candidates and led to the confirmation of 43 candidates, two of
them being triple systems and four double systems. The 37
remaining objects had (1) lower X-ray luminosity than expected
from scaling relations and (2) shallower density profiles than the
mean density profiles of X-ray detected clusters. These two
observations served as the main arguments for Planck’s
increased sensitivity to mergers. Indeed, recent studies have
shown that Planck clusters are, on average, more morphologi-
cally disturbed (Rossetti et al. 2016) and have a lower
occurrence rate of cool cores (Jones et al. 2015) when compared
to X-ray-selected clusters.

While systems discovered by Planck do have interesting
morphological properties, the aforementioned findings do not
necessarily indicate an inherent sensitivity of the SZ effect to
merging clusters. The lower central density and luminosity of
clusters may be related to greater than previously thought
intrinsic scatter in these parameters, or factors other than
merging processes. Several of the double and triple systems
discovered by Planck are clusters overlapping in projection,
rather than interacting systems (though they still belong to the
same supercluster structure). The increased sensitivity of
Planck to such multiple systems is unsurprising due to its
large beam size and consequent inability to resolve multiple
systems.

Another question that has been extensively discussed in the
literature is whether cluster morphology depends on redshift.
The motivation for these studies is the connection of merger
rate (and consequently morphology) to the mean matter density
Om. The morphology—cosmology connection that was analy-
tically developed by Richstone et al. (1992) and then confirmed
in simulations by Evrard et al. (1993) and Jing et al. (1995)
predicted that clusters in low 2y models are much more regular
and spherically symmetric than those in €2 = 1 models.
Consequently, there were efforts to constrain €2 by finding the
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fraction of clusters with significant level of substructure as
defined by various substructure statistics: Mohr et al. (1995)
used centroid shifts, Buote & Tsai (1995) used power ratios,
and Schuecker et al. (2001) used a trio of tests which quantify
mirror symmetry, azimuthal symmetry, and radial elongation.
This approach of constraining cosmological parameters
through substructure rates has not been as successful as other
cluster-based cosmology tests owing to difficulties in robustly
defining “significant levels of substructure,” connecting
observable substructure measures to theoretical merger defini-
tions (Buote & Tsai 1995), and insufficiently low numbers of
observed and simulated clusters for these tests.

Modern halo abundance measurements provide much more
precise constraints on 2y than those obtained by merger
fraction studies. Nevertheless, the question of substructure
evolution in galaxy clusters is still relevant. The majority of
studies have reported statistically significant evolution in
cluster morphology (Jeltema et al. 2005; Andersson
et al. 2009; Mann & Ebeling 2012); while a smaller number
(e.g., Weimann et al. 2013; Mantz et al. 2015) arrived at the
conclusion that clusters at low- and high-z are consistent with
no morphological evolution. Weilmann et al. (2013) performed
a study of substructure evolution similar to ours, which is
described later, using a slightly different cluster sample and
substructure statistics, but arriving at similar results (See
Section 5 for more details).

Our objectives in this paper are to test for any evidence of a
difference in dynamical state between X-ray and SZ-selected
clusters, low-z and high-z clusters, and observed and simulated
clusters. The difference between X-ray and SZ-selected
samples is of particular interest if we wish to combine the
X-ray and SZ samples in order to obtain better statistics for
various studies of cluster properties. In Section 2, we describe
the three cluster samples used in this paper, from the South
Pole Telescope (SPT), ROSAT PSPC 400 deg” survey, and
from numerical simulations. In Section 3, we describe our
methodology for quantifying X-ray morphology and the
various tests that we will perform. In Section 4, we will
discuss results of these tests, focusing on the key questions of
whether or not X-ray- and SZ-selected clusters are statistically
different in terms of their X-ray morphology, whether
simulated and real clusters have statistically different morph-
ology, and whether there is any measurable redshift evolution
in X-ray morphology. In Section 5, we will discuss these
results, placing them in context of previous work and
considering their implications. We will conclude in Section 6
with a brief summary and look forward to future studies.

Throughout this work, we assume a flat ACDM cosmology
with Hy = 70km s~ ' Mpc™" and Qy = 0.27.

2. The Data
2.1. Observations

The basis of this study is a subsample of 90 galaxy clusters,
drawn from the larger sample of 516 galaxy clusters in the
2500 deg® SPT survey of Bleem et al. (2015). These 90 clusters,
which were among the most massive of the SPT-selected
clusters, all have uniform-depth Chandra observations, as
summarized in McDonald et al. (2013, 2014). X-ray observa-
tions of these clusters were obtained primarily via a Chandra
X-ray Visionary Project (PI B. Benson). Clusters in the SPT
sample span the redshift range of 0.25 < z < 1.2 and the mass
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Figure 1. Masses and redshifts for SPT, 400d, and simulated samples. Red and
blue dots show individual objects in the 400d and SPT samples, respectively.
Green histograms show the distributions of masses for simulated clusters in
three arbitrarily chosen redshifts bins—there are a total of 85 simulated clusters
used for comparison to the data. The SPT and 400d samples have a reasonable
overlap for z < 0.6; simulated clusters have a reasonable overlap with the
observed clusters at all redshifts. We will show in Section 4.2 that the slightly
different mass range for these samples should not significantly bias the
distribution of observed morphologies.

range 2 x 10" Mg < Mspy < 2 x 10'° Mg, where Ms is the
total mass within rsyy, and rsgg is the radius within which the
average enclosed density is 500 times the critical density. M5
here is derived from the Yx—M relation, following Andersson
et al. (2011). The median redshift and M5y, for this sample are
0.59 and 4.6 x 10'* M, respectively.

We use the high-z part of the ROSAT PSPC 400 deg” cluster
survey (Burenin et al. 2007), abbreviated hereafter as 400d, for
our X-ray-selected sample. This sample consists of 36 clusters in
the redshift range of 0.35 < z < 0.9 and the mass range of
10" Mgy < Msyy < 5 x 10" M. The median redshift and mass
of this sample are 0.48 and 2.6 x 10'* My respectively. The
masses (Msqg) for these clusters were determined in the same
way as for the SPT-selected clusters, using the same pipeline and
scaling relations. These X-ray-selected clusters have a distinct
lack of strong central density cusps at z > 0.5 (Vikhlinin
et al. 2007), similar to what is observed in SPT-selected clusters
(McDonald et al. 2013).

Figure 1 shows the distribution of SPT and 400d clusters in
the (z, Msqp) plane. There are fewer clusters at z > 0.6 in the
400d sample, due to the fact that it is flux limited. For a fair
comparison (which would be free of redshift evolution effects)
we will compare morphologies in the z < 0.6 subsamples for
both catalogs—we will return to this point later when we define
comparison samples. In this low-z subsample, the median
masses of the 400d and SPT samples are 2.8 and
5.3 x 10'* M, respectively. This figure highlights the overlap
in mass and redshift between the two observational samples,
along with the simulated clusters that will be described below.

Both samples have similar-quality Chandra observations.
Exposures are typically sufficient to obtain ~1500-2000 X-ray
source counts (see McDonald et al. 2014). The high-resolution
Chandra imaging with sufficient photon statistics is crucial to
detect substructure in galaxy clusters (Nurgaliev et al. 2013).
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The 400d and SPT samples are currently among the best
available samples of high-redshift clusters with clear selection
criteria and high-quality X-ray follow-up. Significant overlap in
the redshift and mass ranges allow us to directly compare
clusters in these two samples.

The X-ray data reduction steps for both samples are
equivalent to those described in Vikhlinin et al. (2009),
Andersson et al. (2011), and McDonald et al. (2013). Using
CIAO v4.7 and CALDB v4.7.1, we first filter data for flares,
before applying the latest calibration corrections. Point sources
are identified using an automated routine following a wavelet
decomposition technique (Vikhlinin et al. 1998) and then
visually inspected. Cluster centers are chosen to be the
brightest pixel after convolution with a Gaussian kernel with
o = 40 kpc, following Nurgaliev et al. (2013).

2.2. Simulations

We analyze mock Chandra observations of massive galaxy
clusters extracted from the Omega500 simulation (Nelson
et al. 2014). Below, we briefly summarize the main elements of
the Omega500 simulation and mock Chandra observations of
simulated clusters, and refer the readers to Nelson et al. (2014)
and Nagai et al. (2007), respectively, for further details.

The Omega500 simulation is a large cosmological hydro-
dynamic simulation performed with the Adaptive Refinement
Tree (ART) N-body+hydrodynamics code (Kravtsov 1999;
Kravtsov et al. 2002; Rudd et al. 2008). In order to achieve the
dynamic ranges necessary to resolve the cores of massive
halos, adaptive refinement in space and time and non-adaptive
refinement in mass (Klypin et al. 2001) are used. The
simulation has a co-moving box length of 5002~ Mpc and a
maximum co-moving spatial resolution of 3.8 = ! kpc (where
h =0.01Hy) and is performed in a flat ACDM model
with the WMAP five-year cosmological parameters (Komatsu
et al. 2009). The simulations include gravity, collisionless
dynamics of dark matter and stars, gas dynamics, star
formation, metal enrichment, SN feedback, advection of
metals, metallicity-dependent radiative cooling, and UV
heating due to a cosmological ionizing background. Some
relevant physical processes, including AGN feedback, magn-
etic fields, and cosmic rays were not included.

For each cluster with M5y > 10'* M., of which there are 85,
the regions within 5 X r; are re-simulated with high spatial
and mass resolution using the multiple mass resolution
technique. The resulting simulation has 2048> spatial elements,
allowing a corresponding dark matter particle mass of
1.09 x 10° h~'M, and maximum physical resolution of
5.4kpc. Herein we analyze the simulated galaxy clusters at
expansion factors a = 0.5014, 0.6001, 0.7511, 0.9764 corresp-
onding to redshifts z = 0.99, 0.66, 0.33, 0.02. The distribution
of masses of simulated clusters at each of these epochs is
shown on Figure 1.

For each simulated cluster, we analyze mock Chandra data.
We first generate X-ray flux maps for each of the simulated
clusters. We compute the X-ray emissivity, using the MEKAL
plasma code (Mewe et al. 1986; Kaastra & Mewe 1993;
Liedahl et al. 1995) and the solar abundance table from Anders
& Grevesse (1989). We multiply the plasma spectrum by the
photoelectric absorption corresponding to a hydrogen column
density of Ny =2 x 10%cm 2 We then convolve the
emission spectrum with the response of the Chandra ACIS-I
CCDs and draw photons from each position and spectral
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channel according to a Poisson distribution with the exposure
time necessary to achieve a similar total number of counts as in
the SPT and 400d samples. We project X-ray emission from
hydrodynamical cells along three perpendicular lines of sight
within three times the virial radius around the cluster center,
which will allow us to determine how projection affects the
determination of X-ray morphology. For z = 0.33, 0.66, 0.99,
the spatial resolution of the simulations correspond to 4.0, 3.3,
and 2.7 kpc, which is of higher resolution than the Chandra
PSF at these redshifts. For z = 0.02, we additionally displaced
each photon in the map by a Gaussian noise with width 10 kpc,
to approximate the spatial resolution we achieve for high-z
systems.

We generate 100 X-ray maps for each cluster, at each
redshift, and projection, choosing the exposure times so that the
distribution of the total number of photons within an annulus of
0.15-1 Rs5pp mimics the corresponding distribution of observed
counts in the SPT and 400d samples (see McDonald et al.
2014). This means that for each simulated cluster, we sample a
range in redshift, projection, and signal-to-noise that is
representative of the observed data. This effectively simulates
all possible variations in observation quality that are present in
the 400d and SPT samples and minimizes the effect of
observational S/N on the distribution of the substructure
statistics. For the purpose of substructure comparison, we treat
each simulated X-ray map as an independent object, therefore
having 85 (clusters) x 3 (projections) x 100 (iterations) =
2550 values of the substructure statistic for each of the
four epochs.

3. Methods
3.1. Measuring Apnhoy and w for Data

In this analysis, we utilize two morphological parameters
that trace the degree of cluster disturbance: photon asymmetry
(Aphot; Nurgaliev et al. 2013) and centroid shifts (w; Mohr et al.
1993). Briefly, Apnot quantifies the amount of asymmetry by
comparing the cumulative photon count distribution as a
function of azimuth for a given annulus to a uniform
distribution, computing a probability that these two distribu-
tions are different for each annulus using the nonparametric
Watson test (for a complete description of this test, see
Feigelson & Babu 2012; Pewsey et al. 2015). On the other
hand, w is a measure of how much the X-ray centroid moves
over some radial range (see Mohr et al. 1993 for a more
detailed description). Appor and w show a significant degree of
correlation with each other, and also with by-eye classification
of cluster morphology (Nurgaliev et al. 2013). Both are
sensitive to spatial irregularities in X-ray emission in the plane
of the sky. By design, Appo has more statistical power in
resolving substructure and is able to produce more consistent
results independent of the quality of observation (such as
exposure, background level, etc.). On the other hand, w is
better established in the literature as a widely used substructure
statistic, so we include it in our tests for comparison to these
other works.

In Tables 1 and 2, we provide asymmetry measurements
derived from Aph: and w for each galaxy cluster in the 400d
(Table 1) and SPT (Table 2) samples. These results will be used
for the remainder of the study, and are provided here to aid in
future studies that wish to isolate a relaxed/disturbed
subsample of galaxy clusters over a large range in redshift.
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Table 1
X-Ray Asymmetry Measurements for a Sample of 36 X-Ray-selected Clusters
from the ROSAT PSPC 400 deg” Survey

Name z Mg Aphot w
[10" M.]

¢10302m0423 0.350 3.7 0.06*5%3 0.005-9:301
cl1212p2733 0.353 62 0.0573% 0.018+0:003
¢l0350m3801 0.363 1.4 0.147997 0.026+9:949
¢l0318m0302 0.370 2.8 0.415089 0.02599%
cl0159p0030 0.386 25 0.01993 0.01053:003
cl0958p4702 0.390 1.8 0.05:9% 0.01570.002
cl0809p2811 0.399 3.7 0.63192% 0.05975:9%8
cl1416p4446 0.400 25 0.1179% 0.014+3:992
cl1312p3900 0.404 2.8 022795 0.041:9919
cl1003p3253 0.416 2.8 0.23+0:9¢ 0.028%9:903
cl0141m3034 0.442 12 0297918 0.091+3018
cl1701p6414 0.453 33 0.14+5%2 0.0227+993
cl1641p4001 0.464 1.7 0.0175:9¢ 0.015799%¢
cl0522m3624 0.472 22 0.0610% 0.013+5:9%2
c11222p2709 0.472 2.1 0.04+092 0.01179993
cl0355m3741 0.473 3.0 0.05+0%3 0.0160-90%
cl0853p5759 0.475 2.0 0.327949 0.051595%
c10333m2456 0.475 1.9 025192 0.023*+5:3%
cl0926p1242 0.489 3.0 0.07:9%2 0.010:33%3
cl0030p2618 0.500 3.4 0.07+0% 0.01329:00¢
c11002p6858 0.500 2.8 0.075938 0.02173:904
cl1524p0957 0.516 32 0.67+514 0.055+3.907
cl1357p6232 0.525 3.0 0.20+5:99 0.022+9.903
c11354m0221 0.546 23 0.267319 0.033+0007
cl1120p2326 0.562 2.5 0.467918 0.041+99%7
cl0956p4107 0.587 2.9 0.83+0:8 0.04215:9%8
¢10328m2140 0.590 3.4 0.08+0:92 0.01650:903
cl1120p4318 0.600 3.9 0.23*+94¢ 0.02473:902
c11334p5031 0.620 2.6 0094948 0.016"0.067
¢10542m4100 0.642 4.1 0.53*917 0.042+0:00¢
cl1202p5751 0.677 2.9 0257997 0.05379008
cl0405m4100 0.686 25 0.03*5% 0.008=9:0%2
c11221p4918 0.700 49 0.1473% 00195004
cl0230p1836 0.799 3.5 1297938 0.098799%
cl0152m1358 0.833 3.9 2.2780% 0.155+0018
cl1226p3332 0.888 7.6 0.1070% 0.01473:99!

3.2. Calibrating Aphor with Simulated Clusters

To measure how well photon asymmetry, Apno, correlates
with the dynamical state of a cluster, and to determine realistic
cutoff values for “disturbed” and “relaxed” systems, we consider
a set of simulated major mergers (M;/M, > 0.5) of massive
clusters from the Omega500 simulations (Kravtsov 1999;
Kravtsov et al. 2002; Rudd et al. 2008). For each of the 26
mergers, we produce X-ray photon maps along 3 different
projections and at 16 different times, starting at ~2 Gyr before
the first core passage and ending ~5 Gyr after. At each time step,
we compute Appoe from the simulated observations in the same
way that we do for the data. Figure 2 shows the results of this
study. For all 78 mergers (26 clusters x 3 projections), the
measured Appo increases dramatically immediately following the
merger, with the median cluster having Appo ~ 0.9 immediately
after the merger and Ao > 0.6 for ~1 Gyr after. We choose
Aphot = 0.6 as a reasonable threshold for a “disturbed” cluster,
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Table 2

X-Ray Asymmetry Measurements for a Sample of 90 SZ-selected Clusters

from the South Pole Telescope 2500 deg® Survey

Name

Z

Mseo
(10" M)

Aphol

SPT-CLJ0000-5748
SPT-CLJ0013-4906
SPT-CLJ0014-4952
SPT-CLJ0033-6326
SPT-CLJ0037-5047
SPT-CLJ0040-4407
SPT-CLJ0058-6145
SPT-CLJ0102-4603
SPT-CLJ0102-4915
SPT-CLJ0106-5943
SPT-CLJ0123-4821
SPT-CLJ0142-5032
SPT-CLJ0151-5954
SPT-CLJ0200-4852
SPT-CLJ0212-4657
SPT-CLJ0217-5245
SPT-CLJ0232-4421
SPT-CLJ0232-5257
SPT-CLJ0234-5831
SPT-CLJ0235-5121
SPT-CLJ0236-4938
SPT-CLJ0243-5930
SPT-CLJ0252-4824
SPT-CLJ0256-5617
SPT-CLJ0304-4401
SPT-CLJ0304-4921
SPT-CLJ0307-5042
SPT-CLJ0307-6225
SPT-CLJ0310-4647
SPT-CLJ0324-6236
SPT-CLJ0330-5228
SPT-CLJ0334-4659
SPT-CLJ0346-5439
SPT-CLJ0348-4515
SPT-CLJ0352-5647
SPT-CLJ0406-4805
SPT-CLJ0411-4819
SPT-CLJ0417-4748
SPT-CLJ0426-5455
SPT-CLJ0438-5419
SPT-CLJ0441-4855
SPT-CLJ0446-5849
SPT-CLJ0449-4901
SPT-CLJ0456-5116
SPT-CLJ0509-5342
SPT-CLJ0516-5430
SPT-CLJ0522-4818
SPT-CLJ0528-5300
SPT-CLJ0533-5005
SPT-CLJ0542-4100
SPT-CLJ0546-5345
SPT-CLJ0551-5709
SPT-CLJ0555-6406
SPT-CLJ0559-5249
SPT-CLJ0616-5227
SPT-CLJ0655-5234

0.702
0.406
0.752
0.597
1.026
0.350
0.864
0.772
0.870
0.348
0.620
0.730
1.049
0.499
0.640
0.343
0.284
0.556
0.415
0.278
0.334
0.635
0.330
0.580
0.460
0.392
0.550
0.581
0.850
0.730
0.442
0.450
0.530
0.358
0.670
0.590
0.422
0.590
0.630
0.421
0.790
1.182
0.792
0.570
0.461
0.295
0.296
0.768
0.881
0.642
1.066
0.423
0.270
0.609
0.684
0.500

4.4
55
54
3.7
1.4
5.7
3.1
2.8
16.8
42
33
7.2
29
55
3.6
42
10.8
59
7.0
8.0
4.0
4.8
4.1
43
10.4
6.2
4.4
5.7
10.6
4.1
4.4
55
4.1
39
3.7
4.0
6.0
49
3.8
10.3
4.0
3.6
5.1
4.4
5.7
124
3.7
2.4
1.6
5.7
5.0
3.0
5.6
5.5
45
4.8

0.07+004
0.66* (.66
1447933
005766
012403
0.06* 063
0.059%
0.687015
246700
0.14309%
0287093
033931
126708
0.43+0:13

L114013

1005919
0331092
0.30°%
0.15786¢
0221588
0.19769
0.17+5%
0.97+03¢
153503
0.509%7
0.1150%3
0.08%053
2467922
0.07:008
0.02583
0.0819:93
0.16+3:9%
0.12+0%
0.07:09%
0.0870%
0.377¢13
0.82+3:04
0.05"503
0.227937
0257004
0.0620:93
0214936
02743497
0115068
0.07"003
0.18%0%
0.22+09%
0.07"¢:0%
0.21%93§
0.55%03
0.104003
0.88701¢
0367013
0.391049
0.347980
0.30%027

0.0090:002
0.02970:003
0.101+3:0%8
0.02475:9%
0.0660:01¢
0.0090003
0.0255563
0.0745360
0.09475560
0.01745:003
0.03915.0603
0.028+5:908
0.055500%3
0.0339:0%8
0.07515,068
0.093* 5,06
0.01755501
0.04319:0%¢
0.007+0:002
0.0318:003
0.035793%8
0.0160003
0.0347001
0.068*0013
0.04475:9%
0.01050:002
0.015*45603
0.1367093%
0.01450003
001379003
0.040007
0.018+3:5%
0.023+5:904
0.0160502
0.017*0:03
0.05479:009
0.05745003
0.010°503
0.0460910
0.018+3:99!
0.0135503
0.0597931}
0.04613.9507
0.023730%3
0.0080:003
0.055793%
0.0160003
0.02430:003
0.04973:005
0.0417:608
0.0225303
0.08670:000
0.039* 599
0.04176665
0.031+3:9%3
0.018*4063
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Table 2
(Continued)
Name z M50 Aphot w
(10" M,

SPT-CLJ0658-5556 0.296 18.2 2411001 0.020+3:99
SPT-CLJ2011-5725 0.279 26 0.11*9% 0.006* 399!
SPT-CLJ2031-4037 0.330 7.4 0251904 0.017+39
SPT-CLJ2034-5936 0.946 4.4 0.05709 0.01473:99
SPT-CLJ2035-5251 0.520 4.1 0.07%943 0.0399918
SPT-CLJ2043-5035 0.723 5.1 0.11*9% 0.009+9:902
SPT-CLJ2106-5844 1.132 8.1 0.209% 0.02279:9%2
SPT-CLJ2135-5726 0.427 45 0.109% 0.01399%3
SPT-CLIJ2145-5644 0.480 5.7 0.0679%3 0.011+5:993
SPT-CLJ2146-4633 0.933 35 0.05+99% 0.026793%
SPT-CLJ2148-6116 0.571 5.0 0.0679% 0.018=99%4
SPT-CLJ2218-4519  0.650 49 0.0850%  0.027:58%
SPT-CLJ2222-4834 0.652 4.0 0.09+:92 0.015%93%3
SPT-CLJ2232-5959 0.594 3.3 0.1079%3 0.008=93%
SPT-CLJ2233-5339 0.480 6.4 029912 0.02619:993
SPT-CLJ2236-4555 1.161 2.7 0.90%318 0.06310:9%7
SPT-CLJ2245-6206 0.580 5.1 0.877513 0.11310:9%
SPT-CLJ2248-4431 0.351 16.7 021759 0.006-3958
SPT-CLJ2258-4044 0.864 4.0 0317953 0.036::3%07
SPT-CLJ2259-6057 0.750 43 0.11499% 0.020+3:902
SPT-CLJ2301-4023 0.730 24 0.617013 0.028+0:003
SPT-CLJ2306-6505 0.530 5.6 0.05+9% 0.02979:9%¢
SPT-CLJ2325-4111 0.358 8.2 0.36°9% 0.040+3:90¢
SPT-CLJ2331-5051 0.576 4.6 0.1479%3 0.0349%02
SPT-CLJ2332-5053 0.560 5.3 4107948 0.090739%
SPT-CLJ2335-4544 0.570 5.4 0.0410%3 0.015+3,904
SPT-CLJ2337-5942 0.775 5.9 0.09+5:92 0.01675:3%2
SPT-CLJ2341-5119 1.003 5.8 0.073% 0.017799%2
SPT-CLJ2342-5411 1.075 1.9 0.0815:93 0.011+3992
SPT-CLJ2344-4243 0.596 11.9 0.03+3.90 0.002+9:9%0
SPT-CLJ2345-6405 0.962 49 0331043 0.045799%8
SPT-CLJ2352-4657 0.783 4.0 0.0279%3 0.02079:90¢
SPT-CLJ2355-5055 0.320 3.9 0.07+5%2 0.01310:503
SPT-CLJ2359-5009 0.775 29 0.24+99% 0.01615:9%

due to the fact that ~70% (54/78) of our simulated systems
(combining all three projections) cross this threshold immedi-
ately following a major merger—we do not expect to identify
100% of merging systems with a 2D metric such as Appe due to
the fact that a significant fraction of systems will be merging
along the line of sight. We note that the median value of Apho
immediately after a line-of-sight merger is ~0.6.

Before and after the merger, the median value of Apho
fluctuates about ~0.2, indicating that this may provide a
reasonable threshold for “relaxed,” depending on how strict
one wants to be with that identifier (see Mantz et al. 2015, for a
more strict classification). We note that during this pre- and
post-merger phase, the measured Ap,, is inconsistent with
>0.6 for >85% of systems, meaning that we expect little
contamination in the “disturbed” sample from systems that are
not currently undergoing major mergers.

Based on these arguments, we infer that an elevated Apho
(>0.6) is an adequate proxy of a major merger within the past
~1-2 Gyr.
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Figure 2. Evolution of Appe for 26 simulated clusters over the course of a
major (M; /M, > 0.5) merger. The solid colored lines shows the median value
of Aphor as a function of time since the merger for all 26 clusters along three
different sight lines (blue and green are in the plane of the sky, while red is
along the line of sight), while the vertical bars show the 1o scatter. Horizontal
lines at 0.15 and 0.6 show our divisions for relaxed and disturbed clusters,
respectively. The vertical dotted line corresponds to the start of the merger. We
find that, within 1 Gyr of the merger, ~70% of the simulated images (over all
three projections) have Aphor > 0.6, while <15% of the pre- or post-merger
systems have such high values, making Appo > 0.6 a reasonable proxy for
ongoing mergers.

3.3. Statistical Comparisons

To judge the similarity of cluster subsamples with different
selections or redshifts, we use both the two-sample Kolmogorov—
Smimov (KS) and the Anderson—Darling (AD) tests for the
empirical distributions of measured substructure parameters. The
values for these statistics are converted to the p-value of the null
hypothesis (that these two empirical distributions come from the
same underlying distribution). Common practice is to reject the
null hypothesis for p < 0.05/N, where N is the number of tests
being conducted (the so-called “Bonferroni correction”). We have
tested that using more advanced methods for multiple hypotheses
p-value adjustments, such as the Benjamini-Hochberg False
Discovery Rate (Benjamini & Hochberg 1995), does not change
any of the conclusions of this paper.

We consider the following pairs of subsamples in our
comparisons:

(A) 400d low-z versus SPT low-z (z < 0.6; 27 and 50 clusters
respectively). Within this redshift range, we find no
correlation between mass and Appo (Pearson r = 0.11)
for simulated clusters, suggesting that poor overlap in mass
between the two samples will not drive any result.
Therefore, despite the minimal overlap in mass space,
these samples allow for the cleanest test of morphology
differences between X-ray- and SZ-selected cluster
samples.

(B) 400d versus SPT, all redshifts (36 and 90 clusters). Allows
a comparison of cluster morphologies in the complete SZ
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and X-ray selected catalogs, ignoring that these samples
have different redshift and mass ranges.

(C) SPT low-z versus SPT high-z (z < 0.6, z > 0.6; 50 and 40
clusters, respectively). This is the cleanest test for
substructure evolution, since the high-z SPT-selected
clusters can be considered the progenitors of the low-z
SPT-selected systems (see Figure 7 of McDonald et al.
2014). Given the relatively small change in angular size
between the low-z and high-z systems, we expect there to
be minimal redshift-dependent selection biases between
these two subsamples.

(D) 400d low-z versus SPT high-z (z < 0.6,z > 0.6; 27 and 40
clusters, respectively). This is a complementary test for
substructure evolution, which has the underlying evolution
convolved with redshift-dependent, mass-dependent, and
method-dependent selection bias. Naively, one might
assume that both SZ-selected clusters and high-redshift
clusters are more likely to be mergers, because mergers
can cause temporarily increased pressure, and the merger
rate is higher at early times (e.g., Fakhouri & Ma 2010).
This would lead to the high-z, SPT-selected clusters being
significantly more disturbed than the low-z, X-ray-selected
clusters, if these statements are true. A lack of difference in
morphology between high-z SZ-selected and low-z X-ray
selected clusters would indicate that the combination of
these effects is insignificant.

(E) 400d+SPT low-z versus 400d+SPT high-z (z < 0.6, z > 0.6;
75 and 49 clusters, respectively). If selection criteria are
indeed not important, this test increases the statistical power
of the substructure evolution test due to an increased number
of clusters in the combined samples.

(F, G, H) SPT+400d versus simulations. For these compar-
isons, we select real and simulated clusters within the
redshift intervals of z = 0.33 &£ 0.1, z = 0.66 + 0.1,
and z = 0.99 +£ 0.15.

4. Results
4.1. X-Ray—SZ Comparisons

Figure 3(A) shows histograms and cumulative distributions
of Appot and w for 400d and SPT subsamples with z < 0.6. In
general, the distribution of substructure statistics is closer to
log-normal than normal. High p-values (p > 0.1) of the KS and
AD statistics for Appoe and w indicate that the two samples
(400d and SPT; z < 0.6) are indistinguishable in terms of their
X-ray morphology. Under the assumption that mergers are
characterized by increased values of Appe and w, this means
that the fraction of merging systems detected by SPT is similar
to the amount of merging systems detected by their X-ray
emission. Assuming that ongoing mergers can be identified as
having Appe > 0.6, following Figure 2 (see also Figure 7 from
Nurgaliev et al. 2013), we find a low-z merging fraction of
2071% and 117 % in the SPT and 400d samples, respectively,
where the uncertainty range is the 1o binomial population
confidence interval (Cameron 2011). For comparison, Mann &
Ebeling (2012) find a merger fraction of 24™3% for a sample of
79 X-ray selected clusters spanning the same redshift
range (0.25 < z < 0.6).

We next compare clusters at low and high redshift, subject to
the same selection criteria. We consider z < 0.6 and z > 0.6
subsamples of the parent SPT sample only, because the 400d
sample only has nine clusters at z > 0.6. Figure 3(B) shows
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Figure 3. Distribution of morphological statistics for various partitions of clusters in the 400d and SPT catalogs. In each row, the left two plots show the histograms
and cumulative distribution functions for Apno, and the right two plots show the same for w. The p-value, based on the KS and AD tests, of the hypothesis that the
substructure statistic values come from the same distribution are shown in each plot. High values of p indicate that the distributions are similar, low values of p indicate
that the distributions are different. It is a common practice to exclude the null hypothesis at p < 0.05/(number of tests being conducted). The rightmost column
explains what samples are being compared. See Section 3 for the motivation of the subsamples to be compared and Section 4 for the description of the results.



THE ASTROPHYSICAL JOURNAL, 841:5 (11pp), 2017 May 20

that the distributions of both Appe and w for low-z and high-z
systems are indistinguishable (p > 0.3). Using the same
criterion as above, we find that 207]% and 18*$% of clusters
at low-z and high-z, respectively, are identified as ongoing
mergers.

Given that the SZ-selected clusters demonstrate weak, if any,
redshift evolution in their morphology, we next consider the
full 400d and SPT catalogs, without any redshift restrictions.
Figure 3(C) shows distribution functions for these two samples,
which are still indistinguishable (p > 0.3) for both Ay and w.
The fraction of systems with Appe > 0.6 over the full redshift

range is 1973% and 14*8% for the SPT and 400d samples,
respectively.

If there was only a weak dependence of X-ray morphology
on both selection and redshift, we might not have sufficient
statistical power to detect such dependencies with the tests
described above. In an effort to maximize the effects of these
two potential biases, we compare the low-z X-ray sample to the
high-z SZ sample. Figure 3(D) shows the result of this
comparison, demonstrating that there is no statistically
significant difference in the distribution of X-ray morphologies
between these two extreme subsamples (p > 0.3). This means
that, if clusters are, on average, more morphologically
disturbed in SZ-selected clusters and at high redshift, the
combined effects on the measured disturbed fraction are
small (<10%).

As a final test, we make the assumption that there is no
morphological bias due to selection, and combine the 400d
and SPT samples to maximize our ability to detect redshift
dependence. Figure 3(E) demonstrates that there is no
measurable redshift dependence even when the two samples
are combined, for both Ay and w (p > 0.2). In this combined
sample, we find that the fraction of clusters with Appe > 0.6

is 1773% and 19%]% for the low-z and high-z subsets,
respectively.

In summary, we find no statistically significant dependence
on either the distribution of X-ray morphologies or the fraction
of clusters classified as morphologically disturbed with redshift
or selection methods.

4.2. Data—Simulation Comparisons

Panels (F), (G), and (H) of Figure 3 show comparisons
between observed and simulated clusters at three redshifts:
z = 0.33, 0.66, and 0.99. We note a remarkable agreement in
the X-ray morphology between simulations and observations.
The lowest measured p-value is 0.20 (for KS test on Appo; at
z = 0.67). Given that we have made 16 individual compar-
isons, we require p < 0.003 to reject the null hypothesis that
these two distributions come from the same parent distribution.
From the similarity in the data and simulations, we can arrive at
two conclusions. First, the lack of evolution in X-ray
morphology is observed in both simulations and observations,
suggesting that this is not due to a selection bias. Second, the
observed morphology is relatively insensitive to complex
physics (e.g., cooling, AGN feedback, etc.), and appears to be
primarily driven by gravitational processes (i.e., mergers),
which simulations adequately describe.

In Figure 4, we show the X-ray morphology, as quantified by
Aphot and w, as a function of redshift for the 400d and SPT
samples, as well as for the Omega500 simulations. For w, we
compare to the low-z REXCESS cluster sample (Bohringer
et al. 2010). Our definition of w (Nurgaliev et al. 2013) is
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slightly different than that used by Bohringer et al. (2010)—to
make our results comparable, we compute w for all clusters in
the 400d and SPT samples using both methods and found that
scaling by a factor of 1.5 brings the two into excellent
agreement. After the applied correction, the range and median
values of w in the study of Bohringer et al. (2010) are similar to
those for low- and high-z clusters in the 400d and SPT samples.

Figure 4 demonstrates that the amount of substructure, as
quantified by w and App, is remarkably similar for four
different samples: 400d, SPT, REXCESS, and the Omega500
simulations. Furthermore, there is no statistically significant
redshift evolution over the combined samples. We note that the
mild (20) redshift evolution measured in w is consistent with
our earlier findings that w is biased high for low-quality X-ray
data (Nurgaliev et al. 2013). Given that the most distant clusters
have higher background and fewer net counts than their low-z
counterparts, we expect them to be biased high in w.

In Figure 5, we show the same measurements of Appe and w
as in Figure 4, but now as a function of cluster mass. We find
no statistically significant dependence of cluster morphology
on cluster mass, over the mass range of 10"-10" M, for both
simulated and real clusters. Importantly, the fact that there is no
mass trend in the simulated clusters means that we are justified
in comparing the simulated and real clusters despite the fact
that their mass distributions are not identical.

5. Discussion
5.1. X-Ray, SZ Selection Biases

We have demonstrated in Figures 3-5 that there is no
measurable difference between the distribution of X-ray
morphology in the 400d X-ray-selected sample and the SPT
SZ-selected sample. Furthermore, both of these selections
appear to be unbiased with respect to simulations, suggesting
that we are probing the full population of massive galaxy
clusters. These results are consistent with work by Mantz et al.
(2015) who found no difference in the relaxed fraction between
the 400d and SPT samples, and with Sifén et al. (2013, 2016)
who used dynamical tracers of substructure to show that the
dynamical state of SZ-selected clusters from the Atacama
Cosmology Telescope (ACT) were consistent with those of
simulated massive clusters.

There persists a misconception that SZ-selected clusters are,
on average, more often mergers than X-ray-selected clusters.
We propose that this perceived bias stems from two facts
pertaining to Planck-selected clusters that were summarized
briefly in the introduction. First, Planck has a significantly
more extended PSF (~7') compared to ground-based arcmi-
nute-resolution SZ experiments such as SPT and the ACT
(Swetz et al. 2011). This means that, at high-z, Planck does not
resolve close pairs (or triplets) of galaxy clusters (e.g.,
PLCKG214.6+37.0), thereby capturing an “inflated” SZ
signal, where an instrument with a smaller beam such as SPT
or ACT would see multiple independent systems with lower
individual significance. Because the SPT beam (~1’) is
matched to the angular size of rich clusters at z > 0.3, it is
unlikely that the SPT sample contains similar blended systems.
Second, several major mergers in the Planck catalog received a
great deal of initial attention, due to the fact that there were
very few such systems previously known (i.e., triple clusters).
However, the detection of a few dozen previously unknown
mergers compared to more than 800 confirmed objects in
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Figure 4. Redshift evolution of Apyo and w. Red triangles and blue circles represent 400d and SPT clusters respectively. Black error bars show the median values in
four redshift bins ([0.25-0.5], [0.5-0.7], [0.7-0.9], [0.9-1.2]). We measure Pearson R coefficients for the left and right panels of 0.02 and 0.19, respectively, indicating
a lack of a statistically significant correlation. The error bars on the median value are obtained by the Median Absolute Devitation method and demonstrate that there is
no significant difference in the median value between bins. The slopes, derived by a simple linear regressions of Appo and w with z, are consistent with no redshift
evolution at ~0.50 and ~20 respectively. The shaded green regions show the 68% and 95% ranges for Appo and w in simulated clusters, with the medians shown as
green squares. The orange circles in the right panel show the values of w for the REXCESS sample presented in Bohringer et al. (2010), accordingly corrected for the

different w definition used in this study.

Planck’s catalog is not a statistically significant indication of
morphological bias in SZ-selected cluster samples.

The results presented here are also consistent with recent work
by Lin et al. (2015), who showed that the bias due to the
presence or lack of a cool core is small (<1%) for the majority of
systems, with exceptionally rare systems like the Phoenix cluster
(McDonald et al. 2012) having biases as high as 10%. Applying
the results of Lin et al. (2015) to the HIFLUGCS sample of low-
z clusters (Reiprich & Bohringer 2002; Vikhlinin et al. 2007), we
estimate that 1 in ~100 clusters has an SZ bias as high as ~10%.
This bias is strongly redshift dependent, due to the combined
effects of cool cores filling a smaller fraction of the beam at
high-z, and being in general less cuspy at early times (McDonald
et al. 2013; Mantz et al. 2015). As such, we expect the fraction
of cool cores in the SPT-selected cluster sample to be nearly
representative of the true underlying population. Convolving this
very weak bias with the noisy correlation between X-ray
morphology and the presence or lack of a cool core, we do not
expect a cool core bias to drive a statistically significant
difference in morphology between our X-ray- and SZ-selected
samples.

We conclude that the common misconception that SZ-selected
samples contain a non-representative fraction of mergers stems
from some combination of these two points. We find no
morphological bias in an SPT-selected sample, and would not
expect any similarly selected samples to be biased either (see
also, Motl et al. 2005; Lin et al. 2015).

5.2. Evolution of Substructure with Redshift

In Section 4.1, we demonstrated that low- and high-redshift
systems show the same amount of substructure. This is
somewhat surprising—in the standard growth of structure
scenario, the fraction of disturbed clusters increases with
increasing redshift. Additionally, these findings are in contra-
diction with some earlier works, specifically Jeltema et al.
(2005) and Andersson et al. (2009), which both rely on power
ratios to quantify morphology. Both Nurgaliev et al. (2013) and

Weilmann et al. (2013) have shown that shot noise can
strongly influence the measured power ratios. This may explain
the results found by Andersson et al. (2009), who did not apply
any shot noise correction.

One possible explanation for the lack of observed X-ray
morphology evolution may be that there is not a one-to-one
correspondence between substructure statistics such as w or
P;/Py and the dynamical state of the cluster. Indeed,
simulations have shown that substructures statistics may vary
significantly on short timescales during cluster mergers
(O’Hara et al. 2006; Poole et al. 2006; Hallman & Jeltema
2011). For example, simulations by O’Hara et al. (2006) and
Poole et al. (2006) show that w can easily vary in the range
of 0.01 < w < 0.1 over a fraction of characteristic merger
time. In addition w shows similarly big fluctuations as a
function of line of sight.

Another possibility (as pointed out by Weilmann et al.
2013) is that earlier studies that used power ratios might not
account correctly for the insufficient photon statistics of high-z
clusters. For example, Jeltema et al. (2005) analyzed redshift
evolution using a relatively small sample of 40 -clusters
divided into low andhigh-redshift subsamples. The low-redshift
sample contained 26 clusters with z < 0.5 and (z) = 0.24. The
high-redshift sample contained 14 clusters with z > 0.5 and
(z) = 0.71. They used the power ratio method and found the
amount of substructure to be significantly different between the
subsamples as measured by P;/Py. They also fit the P;/Py—z
relation and found the slope to be positive with high
(p =~ 0.005) significance. Their results are surprising in light
of new studies of the properties of the power-ratios method.
Both Nurgaliev et al. (2013) and Weilmann et al. (2013) find
that P; /P, are fully consistent with zero for a majority of high-
redshift clusters due to the insufficient quality of observations.

Weillmann et al. (2013) performed a similar study using the
same high-z 400d sample and a subsample of the SPT sample
used in Andersson et al. (2011), combined with a low-z sample
published in Weimann et al. (2013). They quantified
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Figure 5. Similar to Figure 4, but now considering cluster mass rather than redshift. We measure Pearson R coefficients for the left and right panels of 0.19 and —0.11,
respectively, indicating a lack of a statistically significant correlation. There is no significant correlation between cluster asymmetry and mass, regardless of the

asymmetry estimator used or whether we consider real or simulated clusters.

morphology via centroid shifts and power ratios, finding a
result consistent with no redshift evolution. Weilmann et al.
(2013) emphasized bringing both high-redshift and low-
redshift subsamples to the same quality of observations. To
achieve that, they artificially degrade higher-quality observa-
tions of the low-redshift sample. This is not necessary in our
analysis because (1) the observations of both samples were
targeted for 2000 counts per cluster and (2) as shown in
Nurgaliev et al. (2013) w is not sensitive to number of counts
above ~1000 counts (this is also confirmed in Weiimann
et al. 2013) and Appe has even better stability than w with
respect to the number of X-ray counts. Indeed, the Appo
quantity was derived explicitly to avoid any bias due to data
quality. The work presented here extends on that of
Weilmann et al. (2013) by including a larger number of
distant, SPT-selected clusters, by splitting high-redshift
clusters into multiple selection (X-ray, SZ, simulation) bins,
and by using a new substructure statistic, Aphor.

A similar study was also conducted by Mantz et al. (2015),
utilizing data from both the SPT and 400 deg” surveys along
with data for RASS and Planck clusters. A direct comparison to
the results of this study is not straightforward, because it was
focused on the “relaxed fraction” using a conservative
estimator for relaxedness, while this work focuses on the
evolution of the full distribution of morphologies. Nonetheless,
Mantz et al. (2015) find that the relaxed fraction does not
evolve significantly between z ~ 0 and z ~ 1, and that there is
no statistically significant difference between the morphologies
of SPT-selected and 400d-selected clusters, consistent with
this work.

Although we do not find evidence for a change in the amount
of substructure with redshift based on a robust nonparametric
statistical test, one can speculate about the fact that there are a
larger fraction of systems in the low-z subsample with
unusually low w and Appe, compared to the high-z subsample.
Based on the KS and AD tests, and a robust comparison of the
medians in different subsamples, however, we cannot call this
a significant effect. Both subsamples could be drawn from the
same underlying distribution.
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5.3. Comparison with Simulated Clusters

In general, the simulated clusters studied here (Nagai
et al. 2007) look quantitatively similar to the observed clusters.
Distributions of both w and Appo for real and simulated clusters
of the same mass and redshift were statistically indistinguish-
able. Given that these simulations did not include complex
astrophysics, such as AGN feedback, we can conclude that,
while the development of dense cool cores is sensitive to
the specifics of the feedback prescriptions (e.g., Gaspari
et al. 2014), overall asymmetry in the ICM is not. This is
perhaps not surprising, given that gravitational processes (i.e.,
mergers) are the dominant source of asymmetry in the ICM.

We can conclude from this work that no more complicated
physics is necessary to broadly match the morphology of real
and simulated clusters than was included in the Omega500
simulations. The combined effects of physical processes
including AGN feedback, non-ideal inviscid fluids, and cosmic
rays are minimal, and do not significantly bias the observed
morphology.

6. Conclusions

Using samples of 36 X-ray selected clusters from the
400 deg® ROSAT survey, 91 SZ-selected clusters from the SPT
2500 deg® survey, and 85 simulated clusters from the
OmegaS00 simulations, all observed (or mock observed) to
roughly equal depth with the Chandra X-ray Observatory, we
investigated whether these samples have any bias toward
cluster morphological type, and whether high-redshift clusters
are more disturbed than their low-redshift counterparts. We
considered two well-defined substructure statistics and tested
for statistically significant differences in their distributions
between different subsamples. In the mass and redshift range
studied, we find no evidence for a statistically significant
difference in the X-ray morphologies of clusters selected via
X-ray or SZ, or at low or high redshift. Furthermore, we found
that simulated clusters had quantitatively similar morphology
to X-ray- and SZ-selected systems, considering only the
asymmetry of the hot gas (i.e., ignoring central cusps).
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Our results demonstrate that there is no significant bias for or
against preferentially selecting mergers in high resolution (~1)
SZ surveys. For SZ surveys with larger beam size (e.g.,
Planck), morphological biases may exist due to the fact that
multiple clusters or extended structures can contribute to the
integrated signal.
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