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Abstract

We introduce the dense basis method for Spectral Energy Distribution (SED) fitting. It accurately recovers
traditional SED parameters, including M*, SFR, and dust attenuation, and reveals previously inaccessible
information about the number and duration of star formation episodes and the timing of stellar mass assembly, as
well as uncertainties in these quantities. This is done using basis star formation histories (SFHs) chosen by
comparing the goodness-of-fit of mock galaxy SEDs to the goodness-of-reconstruction of their SFHs. We train and
validate the method using a sample of realistic SFHs at z=1 drawn from stochastic realizations, semi-analytic
models, and a cosmological hydrodynamical galaxy formation simulation. The method is then applied to a sample
of 1100 CANDELS GOODS-S galaxies at < <z1 1.5 to illustrate its capabilities at moderate S/N with 15
photometric bands. Of the six parametrizations of SFHs considered, we adopt linear-exponential, bessel-
exponential, log-normal, and Gaussian SFHs, and reject the traditional parametrizations of constant (Top-Hat) and
exponential SFHs. We quantify the bias and scatter of each parametrization. 15% of galaxies in our CANDELS
sample exhibit multiple episodes of star formation, with this fraction decreasing above >*M M109.5 . About 40%
of the CANDELS galaxies have SFHs whose maximum occurs at or near the epoch of observation. The dense basis
method is scalable and offers a general approach to a broad class of data-science problems.
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1. Introduction

The integrated light of a galaxy offers a vast amount of
information. When measured with sufficient precision and suitably
analyzed, the spectral energy distribution (SED) offers insights
about a galaxy’s composition from its birth to its time of
observation (Conroy & Gunn 2010; Acquaviva et al. 2011). This
can be used to estimate the galaxy’s star formation rate as a
function of time, which traces its evolution and merger history
(Heavens et al. 2000; Tojeiro et al. 2007; Chevallard &
Charlot 2016; Leja et al. 2016). Combined with other observa-
tions, this provides valuable knowledge of cosmic structure
formation.

Existing methods of SED fitting use a variety of sophisticated
techniques. These include inversion methods (Heavens et al. 2000),
bayesian codes for estimating uncertainties and covariances
(Acquaviva et al. 2015; Chevallard & Charlot 2016), machine
learning methods with training sets (Leistedt & Hogg 2016), and
template-based models (Bolzonella et al. 2000). To search the large
parameter spaces of the variables in consideration, Markov Chain
Monte Carlo methods have become increasingly popular.

These advances have been necessitated by the increasing detail
provided by theoryand the expanding size of galaxy catalogs
available through surveys. A large amount of (spectro) photo-
metric data of unprecedented quality will be generated in
upcoming surveys, like LSST (Ivezic et al. 2008), HETDEX
(Papovich et al. 2016), and J-PAS (Benitez et al. 2014). SDSS
(Eisenstein et al. 2011) has already measured spectrophotometry
for~106 objects. The HETDEX/SHELA field will cover roughly
600,000 objects with multi-band photometry and fiber
spectroscopy. J-PAS will cover 9000 square degrees with 59
filters (ugriz+54 narrow-band filters across optical) for~ ´9 107

galaxies. Large regions covered in the NIR with Euclid (Laureijs
et al. 2010) and WFIRST (Green et al. 2012) will overlap with

LSST, which leads to SEDs for ~108 objects by 2022, many of
which will have panchromatic photometry. In keeping with the
large amounts of reduced data generated by these collaborations, it
is imperative that advanced methods of analysis are developed in
order to gain useful information from the integrated light of the
galaxies under consideration.
The star formation history (SFH) of a galaxy can sometimes

be poorly constrained through different approaches to SED
fitting. Typical methods assume a predetermined parametriza-
tion, like constant star formation or exponentially declining star
formation to estimate physical quantities of interest like the
stellar mass, star formation rate (SFR), or the time at which the
galaxy started forming stars. A few approaches instead seek to
reconstruct the SFH from the data, using methods that include
reducing the dimensionality of the parameter space using data
compression methods (Heavens et al. 2000), fine-binning the
interval that makes the maximum contribution to flux (Tojeiro
et al. 2007), mapping the discretized-time photometric fitting to
a linear inversion problem (Dye 2008), or comparing against a
large basis of realistic model SEDs using a Bayesian method
(Pacifici et al. 2012). In the current work, we aim to show that
using a well-motivated basis allows us to reconstruct robust
SFHs from galaxy SEDs.
The paper is organized as follows. In Section 2, we introduce

the Dense Basis formalism of SED Fitting, and how it can be
applied to the specific problem of reconstructing SFHs,
including the motivation for a particular choice of basis and
the fitting procedure with a particular basis set. We describe the
training of the atlas using different sources of realistic SFHs:
SAMs andhydrodynamic simulations, and stochastic SFHs in
Section 3. In Section 4,we validate the method on both
synthetic SEDs from the SAMs as well as real SEDs from the
CANDELS GOODS-S field. We then present results in
Section 5 including the number of episodes of star formation
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in the galaxy’s past and constraints on the timing and duration
of star formation activity, quantities that were previously
inaccessible through SED fitting. In Section 6, we discuss
biases introduced by adopting single parametrizations of SFHs,
compare with other SFH reconstruction methods, and mention
the application of the dense basis method to larger data sets.

2. The Dense Basis Formalism

The Dense Basis SED fitting method reconstructs SFHs of
individual galaxies using an atlas comprised of SEDs
corresponding to well-motivated families of SFHs that
effectively cover the space of all physical SFHs.1 It does so
by training the atlas on mock catalogs prior to fitting the full
data set. This allows us to use the reconstructed SFHs to
perform novel analyses and to tackle problems that were
previously intractable with SED fitting, such as estimating the
number and duration of star formation episodes in a galaxy’s
past. To avoid any bias due to choice of prior, the method is
currently implemented in a frequentist manner. In this section,
we briefly describe the dense basis methodology and training of
the basis set. An overview of the process is described in
Figure 1.

2.1. A Well-motivated Basis of SFHs

The collection of multiple families of well-motivated SFHs
and their corresponding SEDs with which we fit galaxies;
henceforth, the atlas of SEDs and SFHsshould be designed to
utilize the dense basis method to its full potential. The choice of

appropriate families of functions to best describe the formation
of stars in the galaxy in SFH space (SFR versus t) determines
how the SED-fitting procedure encodes realistic star formation.
We employ seven major considerations in the choice of
thebasis that should be satisfied for every functional family
under consideration.

1. Physically or empirically motivated: The functional form
of the SFH needs to be realistic, arising either from
statistical analysis of star formation in model galaxies, or
deduced from observed galaxies. For the latter, as in
Gladders et al. (2013), skewed distributions such as linear
rise followed by exponential decline and log-normal rise
in physical processes restricted to non-negative domains.
In this case, SFHs should also satisfy ∣ ~=SFR 0t 0 at the
big bang.

2. Robustness of reconstruction: The family of basis SFHs
should be chosen such that a good fit in an SED space
([ ]lnF , ) should correspond to a good reconstruction in SFH
space ([ ( ) ]t tSFH , ). This correspondence can be tested in
various ways and could potentially be different for different
data sets since the representative form of the SFH could
differ across epochs. It is a useful metric for eliminating
SFH families that fit SEDs well but yield biased SFH
results, such as exponentially declining SFH parametriza-
tions, which describe star formation reasonably well at
recent times, but bias quantities such as age and t50, the
lookback time at which the galaxy accumulates 50% of its
observed mass, (Pacifici et al. 2012). Analogous to
isochrone synthesis and matrix inversion methods, this is
possible since the SEDs are piecewise linear in their
dependence on the SFH and can be decomposed into
multiple representations using different functional families.

3. Dense in SFH space: To avoid degeneracies and
biases(i.e., to better reveal the local minima of the

Figure 1. Schematic workflow describing the current implementation of the dense basis method to the reconstruction of star formation histories through photometric
SED fitting.

1 While an expansion using an infinite number of polynomials or a fourier
decomposition would provide a true basis in the sense of spanning the space of
all possible curves, our basis functions only do so approximately; however,
since they can reconstruct any SFH to the level of precision attainable with
spectrophotometric data, they provide an effective basis.
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likelihood surface in parameter space), we need to ensure
thatthe basis is sufficiently dense in the space of n-
parameter curves spanning SFR(t) in the inter-
val [ ]Ît t0, obs .

4. Minimal number of parameters: The number of para-
meters used to describe the functional form of the SFH
basis functions will determine the amount of data
compression possible in reconstructing the spectrum of
the galaxy from its best-fit coordinates in parameter
space: ( ( ) ( ) )¼*M t Z t ASED , SFR , , ,v . For the present
application, we model the SFH as a sum of star formation
basis functions, each needing three parameters to describe
each reconstructed episode of star formation, the timing
of the peak, the timescale, and the stellar mass formed.

5. Temporally consistent: The families should be chosen
such that they produce consistent results for an SFH,
independent of when the galaxy is observed, within
uncertainties.

6. Positive definite: Any functional used to describe the
SFH should be positive definite, since ( ) tSFR 0,

[ ]Ît t0, obs , which allows us to extract physical
information from multicomponent solutions to the
reconstructed SFH, as opposed to methods like PCA
(Ferreras et al. 2006) or piecewise-linear matrix inversion
(Dye 2008), which need regularization to yield physical
solutions.

7. Robust to noise: The atlas spans the space of physically
motivated SFHs, but not the space of all possible SEDs.
This makes it robust to noise in the sense that distortions
due to noise that are not accessible through the physically

motivated families of SFHs under consideration do not
bias the fits, as described in Appendix D.

We describe a few of the two-parameter families of curves
for the current analysis. An overall normalization corresp-
onding to the stellar mass acts as a third parameter. A visual
representation of these families is shown in Figure 2.

1. Top-Hat: Historically, simple stellar populations (SSPs)
assumed that a galaxy’s stellar population formed in a
single instantaneous burst (Tinsley 1980). An improve-
ment over that was the extension to constant star
formation (CSF) from a start time through the time of
observation at a fixed rate. Here we use a two-parameter
version of this parametrization, with a start time and a
width.2 This is also useful for comparison with quantities
in the literature computed using CSF histories, which
correspond to setting t - t tobs 0.

( ) ( )( ( )) ( )t t= Q - - Q - -t t t t t tSFR , , 1 10 0 0

where ( )Q t denotes the Heaviside function with ( )Q =t 1
for t 0 and ( )Q =t 0 for <t 0, t0 is the time at which
star formation starts, and τ is the width of the Top-Hat.

2. ESF: Exponentially declining star formation rates, a
parametrization that performs well for local ellipticals and
for comparison with older literature, wheret0is the time
at which star formation starts and τisthe rate constant of

Figure 2. Representative examples of the SFHs at z=1 for the different functional families described in Section 2.2. The full atlas for the dense basis method is
constructed using all physical combinations of the Linexp, Besselexp, Gaussian, and log-normal families. A representative curve is shown in bold for each family.

2 Since this is a positive definite version of the Top-Hat wavelet, this
illustrates the possibility of extending our method to a wavelet basis.
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the exponential decline.

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )t

t
= Q - -

-
t t t t

t t
SFR , , exp . 20 0

0

3. Linexp: The delayed exponential (Gavazzi et al. 2002;
Behroozi et al. 2010; Lee et al. 2010) with an additional
parametrized start-time t0 (henceforth Linexp) giving the
time at which star formation starts and τ setting the width
of the episode of star formation.

( ) ( )(( ) ) ( )( )t t= Q - - t- -t t t t t t eSFR , , . 3t t
0 0 0 0

4. Gaussian: A parametrization that is useful for describing
symmetric episodes of star formation, where tpeak is the
time at which star formation peaks and τ is the standard
deviation, which sets the width of the episode of star
formation.

⎛
⎝⎜

⎞
⎠⎟( )

( )
( )t

t
=

- -
t t

t t
SFR , , exp

2
. 4peak

peak
2

2

5. Log-normal: (Gladders et al. 2013; Dressler &
Abramson 2014)A two-parameter statistical distribution
that appears in many physical processes, t0 is the time at
which star formation starts and τ sets the width of the
episode of star formation.

( ) ( ) ( ( )) ( )t
t

= Q -
- -

t t t t
t

t t
SFR , ,

1
exp

ln

2
. 50 0

0
2

2

6. Besselexp: Bessel-function rise, followed by exponential
decline (henceforth Besselexp). The order of the Bessel
function of the first kind, ν determines when the SFR
peaks,3 and τ sets the width of the episode of star
formation.

( ) ( ) ( )n t t a= +n
t-t J t e tSFR , , . 6t

We add a linear piece such that ( ( )a t= - nt J tminmin

)t-e t ), to ensure that the set of functions described by

this family remains positive definite, while also satisfying
( )= =tSFR 0 0 at the big bang.

These functions offer the advantages of being able to model
short episodes of star formation at specific times (small t) or long
periods of star formation, where the rate rises and then falls (e.g.,
Pacifici et al. 2012; Tomczak et al. 2016). Figure 3 shows a
typical SFH drawn from simulations and fits using the six families
of SFHs described above. It can be seen that the standard
parametrizations of constant star formation and exponentially
declining star formation under- and overestimate the stellar mass
of the galaxy, while the other families show an improved
estimation of the general trend of star formation. Additionally, the
expansion of the basis to include all physically motivated
combinations of single-component SFHs will allow us to describe
SFHs with multiple episodes of star formation separated by
periods of relative quiescence in a galaxy’s SFH.

2.2. The SED Fitting Problem: Reconstruction of SFHs

For an SSP, which assumes that all of its stars form at a
single lookback time (T) and with the same metallicity (Z), the
luminosity at a given wavelength (λ) is simply

( ) ( )

( ) ( )

ò d= ¢ - ¢ - + ¢

= -

l l

l

º
L dt L t t Z T t t

L t T Z

,

, 7

t

t

0

SSP
obs obs

SSP
obs

bb

obs

where ¢t is the time since the big bang, -t Tobs is the age of the
galaxy at tobs, and ( )lL t Z,SSP is the spectrum giving the
luminosity of an SSP of metallicity Z at age t since formation.
The SSP spectrum contains assumptions for the IMF, stellar
tracks, and metallicity, which we hold constant in the current
study. Some of the effects of relaxing this assumption are noted
in Section 4.3, and are discussed further in Section 6.2.
Generalizing from SSPs to composite stellar populations

(CSPs), we can then represent the SED for a galaxy with a
given SFH (SFH≡ψ(t)) as an integral over all of the star
formation events that occurred at different times from the birth
of the universe to the time of observation. CSPs are written as a
sum over a non-orthogonal set of SFHs that satisfy the

Figure 3. Reconstruction of SAM mock star formation history using the six SFH parametrizations being considered as candidates for the dense basis method. Left
panel: theblue curve shows the true spectrum at z=1. Red data points show the noisified SED obtained by multiplying with filter transmission curves and adding
photometric noise realized from a quadrature sum of CANDELS photometric and zeropoint uncertainties (10% for the U_CTIO, Ks and IRAC ch1, 2 bands, and 3%
for the remaining photometric bands: f435w, f606w, f775w, f850lp, f105w, f125w, f160w). Colored circles show the best-fit SEDs corresponding to each
reconstructed star formation history. Right panel: theblack dashed curve shows the SAM star formation history. Colored curves indicate SFR at a given lookback time
at z=1 for SFHs from each family that are best fits to the noisified SED. The top-hat parametrization underestimates the stellar mass of the galaxy by~60%, while
the exponentially declining SFH overestimates the stellar mass by ~46%.

3 Although there is no closed form expression for this, it can be easily
determined from a lookup table for the zeros of ( )t¢nJ t , and thelinear
approximation is ( )n~t 1.5 10peak

8 year.
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constraints outlined in Section 2.1, such that

( ) ( { }) ( )åy y tº t t t, , 8
k

k k 0

with  0k denoting an overall normalization corresponding to
the stellar mass formed by the SFH ( )y tk . Given a basis of
SFHs that spans this space, we can expand this instead as a sum
over the parameter space, akin to a Fourier expansion, as

( ( { } ) ( )å y t=l lL L t t Z, , , 9
k

k
k

k 0

where the contribution to the luminosity from an episode of star
formation ( { })y tt t, ,k 0 described by a family of curves from
Equations (1)–(6) with the parameters { }t t, 0 is given by

( ) ( ) ( )ò y= ¢ - ¢ ¢l l
º

L dt L t t Z t, . 10k

t

t

k
0

SSP
obs

bb

obs

Dust reddening and nebular emission lines are then applied
to the spectrum as described in Section 2.3, denoted by the
notation lL R, . The photometry in passband j from the kth basis
SFH ( )y tk parametrized by { }t t, 0 , is then given by

( )
( )

( ) ( ( { } )) ( )òå

p

l l y t

=
+

´ l

F
d z

d T L t t Z

1

4 1

; , , . 11

j
k

L

k
j k R

i
k

2

, 0

Using this as a mapping from the basis of SFHs to the space
of all physically motivated SEDs, we can then define a c2

surface, which denotes the metric distance in the vector space
of photometry between the observed SED and its closest match
in the atlas. Finding the reconstructed SFH in the basis is then
reduced to an optimization problem on the likelihood surface.
For example, with a surface defined using a c2 metric, we get

In the following sections, we train the basis set using different
mock data sets for which we can quantify both the goodness-
of-fit in SED space, given by c2 as well as the goodness-of-

reconstruction in SFH space, given by Γ, defined in Section 3.
We choose basis functions that show sufficient correspondence
between the optima of these two quantities, which lets us
reconstruct SFHs in the presence of model degeneracies,
systematics, and instrumental noise.

2.3. Generating the Atlas

In order to implement the dense-basis algorithm, it is
necessary to first generate an atlas of template SEDs and then to
use it to fit the observed SEDs. This is done as follows.

1. Basis SFHs belonging to the functional families described
in Section 2.1 are generated on a grid of well-chosen
discrete parameter values.

2. SEDs corresponding to these SFHs are then generated
using the isochrone synthesis code BC03. (Bruzual &
Charlot 2003), using input parameter ranges as described
in Table 1.

3. Nebular emission is added according to the prescription
in Orsi et al. (2014) using MAPPINGS III, a one-
dimensional shock and photoionization code for model-
ing nebular line and continuum emission. (Allen
et al. 2008). We usein this work the precomputed H II
region model grid described in Kewley et al. (2001), with
the incident ionization spectra computed using Staburst
99 (Leitherer et al. 1999), at =Z Z0.2cold gas , from
which we compute the ionization parameter using

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )= ´
-

q Z
Z

2.8 10
0.012

. 137 cold
1.3

This prescription does not add effective degrees of
freedom to the atlas and could be expanded to
accommodate more realistic emission in future work
with higher S/N SEDs.

4. Calzetti Dust Attenuation (Calzetti 2001) is applied to
atlas SED spectra with discrete values of Av to extend
parameter space in dust for procedures where dusty SEDs

Table 1
Parameter Space for Vetting Using Mock SEDs

Parameter Choice Range

IMF Chabrier/Salpeter L
SED generation: BC03 L
Bands fit 11 L
Tracks Padova’94 L
Metallicity Z0.2 L
Dust law Calzetti [ ]Î =A R0.0, 2.5 , 4.05v v

SFH form Linexp [ ]t Î 0.014, 138 Gyr, [ ]Ît 0.02, 5.90 Gyr
” Gaussian [ ]t Î 0.014, 4.36 Gyr, [ ]Ît 0.02, 5.9peak Gyr

” Besselexp [ ]t Î 1.38, 4.36 Gyr, [ ]Ît 0.05, 5.66peak Gyr

” log-normal [ ]t Î 1.38, 4.36 Gyr, [ ]Ît 0.05, 5.660 Gyr
” exponential [ ]t Î 0.014, 138 Gyr, [ ]Ît 0.02, 5.90 Gyr
” top-hat [ ]t Î 0.014, 13.8 Gyr, [ ]Ît 0.02, 5.90 Gyr

⎡

⎣

⎢⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦

⎥⎥⎥( )
( ( )) ( ) ( ( { } )

( )
ò

å
å

c
p l l y t

s
=

+ -l
- d z d T L t t Z F

min min
4 1 ; , ,

12
j

k L j k R
i

k j

j

2

2 1
, 0

obs
2

2
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are fit, using

( )( )=l l
l-L L 10 14R

k A R
,

0.4 V V

where

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

[ ]

[ ]

l
l l l

l

l
l

= - + - +

+ Î

= - +

+ Î

k

R

R

2.659 2.156
1.509 0.198 0.0011

0.12, 0.63

2.659 1.857
1.04

0.63, 2.2

V

V

2 3

with RV=4.05 and the coefficients adjusted for λ in
microns. Since attenuation inferred from nebular emission
lines differs from that inferred from the continuum (UV
spectral slope), we use =A A0.44v v,stars ,gas (Calzetti 2001),
where Av,gas is applied to both UV nebular continuum and
nebular emission lines.

5. After nebular emission lines are added to the spectrumand
dust attenuation is applied, the photometry for the basis
SEDs Fj

k, where j denotes the photometric bands, or
spectroscopic bins, at a redshift z is given by

( )
( )

( ) ( ( { } )

( )

( )òl
p

l l y t=
+

l +F
d z

d T L t t Z
1

4 1
; , ,

15

j
L

j z R k2 1 , 0

where Tj is the transmission curve of passband j (the
spectroscopic equivalent would be the resolution element
lD and throughput at that λ), and dL is the luminosity

distance (a dL of 10 parsecs is assumed when z= 0, as in
BC03). For convenience, the flux densities are obtained as
the ratio of the number of photons corresponding to the
fluxes (l lF ) to the number of photons produced by a 1 μJy
flat spectrum in passband j. This yields the observations,
predictions,and uncertainties in identical units. The
notation lL R, indicates that nebular emission and dust
reddening have been applied to the spectrum.

2.4. Choosing the Number of Basis Functions

In practice, galaxies rarely have sufficiently smooth SFHs to
be perfectly fit by a functional form,as inferred from our mock
data sets as well as Hammer et al. (2005), Kelson (2014),
Weisz et al. (2011), Sparre et al. (2015), andDiemer et al.
(2017). In addition, considering the errors in the photometry,
incomplete empirical knowledge of the mapping from SFH to
SED spaces, and degeneracies between the SFH and other
factors like dust and metallicity, we need to assess methods of
reconstruction using multiple basis SFHs to reconstruct as close
to the true SFH as possible given the quality of available data.
Considering a solution to the minimization problem in
Equation (12), we can express the best-fit SED as

( ( )) ( ( )) ( )å åy y= »
= =

 F F t F t 16j
k

N

k j
k

k
k

N

k j
k

k
obs

1 1

Fbasis

where NF is the number of components determined using the
F-test, given by

( )
( ) ( )

( ) ( )

/

/
c c

c c

c
=

- -

<





d d

d

p d d

,

reject if , , 0.5. 17

N N
N N

N

2 2
2 2

2 1

2
2

1 2

1 2

1 2

2

This is used to determine the number of components in the SFH
space that the SED should be fit with. The F-test assesses the
null hypothesis that the fit with a larger number of parameters is
not a statistical improvement over a fit with a smaller number
of parameters,4where = - = -d N N d N N3 , 3j j2 2 1 1 are
degrees of freedom corresponding to the number of compo-
nents (N N,1 2) being fit,withNj denoting the number of
photometric bands.
We then reconstruct the SFH according to the optimal

components of the likelihood surface for the chosen Nf.

2.5. Estimating Uncertainties

We estimate uncertainties for the reconstructed SFHs via a
fully forward modeled frequentist approach using the like-
lihood surface of the fit, after rescaling the best-fit c2 to correct
for artificially low c2 obtained for very noisy galaxies and
artificially high c2 values for the brightest galaxies.
A subsurface of the complete likelihood surface is then

obtained by imposing a cutoff using a procedure similar to that
of (Avni 1976). We compare the SFH corresponding to each
point in the subsurface to the median SFH and exclude outlier
SFHs that have an excursion greater than 1.5 times the
maximum value, yielding robust confidence intervals as in Xie
& Singh (2013) and Zhao & Ma (2016). The uncertainties in
SFR at each point in time are then found using a distribution of
the remaining acceptable SFHs. Our tests using the sample of
1200 mock SFHs show that this method robustly estimates the
confidence bounds, such that,for a formal 68% confidence
interval, the true SFH lies within the confidence interval~79%
of the time. We show the c2 surface computed using this
procedure for a single family in Figure 4, showing the best-fit
SFH and threshold for uncertainties. In Figure 5, we show
some representative examples of the uncertainties with the top
panel demonstrating the method’s ability to constrain an older
episode of star formation and the bottom panel showing the
case of uncertainties with multiple episodes of star formation.

2.6. Choice of Parameter Space and Photometric Bands

For the initial implementation of the method in this work, we
have used the Bruzual & Charlot (2003) library of stellar
tracks, with the parameter space as described by Table 1. The
Dense Basis formalism can be applied equivalently with any set
of free parameters, including the set of SSP models, to use
the training and validation steps to help constrain the variable
parameters, as discussed in Section 6.2. All three data sets
are standardized to contain a sample of 400 galaxies with the
same realistic distribution of stellar mass.

4 To motivate the choice of p=0.5 as our bounding value, it helps to think of
the case with an equal number of degrees of freedom ( =N N1 2), where a better
statistical model has >F 1, which corresponds to >p 0.5. For the general
case of ¹N N1 2, the >p 0.5 cutoff provides a metric where statistical
improvement is sufficient to justify the extra degrees of freedom.
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For training and validation, we consider fitting 11 of the 17
CANDELS GOODS-S (Guo et al. 2013) bands: [u_ctio, HST/
ACS F435w, F606w, F775w, F850lp, HST/WFC3 F105w,
F125w, F160w, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6,
4.5μm], excluding u_vimos, F814w, F098w, and Isaac Ks for
the maximum photometric orthogonality, excluding IRAC 5.8
and 8.0μm since the BC03 tracks do not account for the PAH
emission that appear in those bands at z=1. Once the method
was tested, we expanded to include the u_vimos, F814w,
F098w, and Isaac Ks bands as well, leading to fits using 15-
band photometry in Section 4.2. The training is performed on
the mock data sets described in Section 3, the validation is
performed using both the mocks data sets as well as the
CANDELS sample for which SpeedyMC results are available.
Finally, the results are compiled using the full CANDELS
sample at < <z1 1.5.

We present results at z=1 in the current work since it
allows us to analyze rest-UV information that comes into the
UBV bands as well as the Balmer 4000 A break, while avoiding
dust re-emission in the mid-IR. This choice of redshift and filter
set is compatible with the BC03 SPS models while providing a
moderate S/N regime in which to test the reconstruction of
SFHs. The procedure can be generalized to all redshifts and is
discussed in Section 6.3.

3. Training the SFH Families

To inform the choice of a functional form for the SFH basis,
we train and validate the method with three mock data sets

To inform the choice of a functional form for the SFH basis,
we train and validate the method with three mock data sets of
400 galaxies each, drawn from semi-analytic models (SAMs),
hydrodynamical simulations, and stochastic realizations of
SFHs. We work with multiple data sets to minimize the effect
of any single training set on our choice of SFH families. Using
these three mock catalogs, we look at various families of two-
parameter curves, and their combinations, to find the families
that perform best at reconstructing SFHs. The atlas generated
using that basis is then used to fit the real catalog. Before we go

into the details of the training procedure, we first briefly
describe the three data sets being used.

3.1. Training with SAMs

The first data set is drawn from mock catalogs with known
realistic SFHs from state-of-the-art SAMs (Somerville
et al. 2015). These simulations use dark matter halo “merger
trees” extracted from dissipationless N-body simulations in a
ΛCDM universe (Klypin et al. 2011) to determine the masses of
dark matter halos collapsing at a given epoch, following which
halos merge to form larger structures. In this framework, SAMs
use analytic recipes to model the radiative cooling of gas,
suppression of gas infall, and cooling due to the presence of a
photoionizing background, collapse of cold gas to form a
rotationally supported disk, conversion of cold gas into stars, and
feedback and chemical enrichment from massive stars and
supernovae. A more recent generation of SAMs also includes
prescriptions for the growth of supermassive black holes and the
impact of the energy they release on galaxies and their
surroundings (Bower et al. 2006; Croton et al. 2006; Somerville
et al. 2008). Recent comparisons have shown that SAMs
produce similar predictions for fundamental galaxy properties to
those of numerical hydrodynamic simulations, perhaps because
of the common framework of ΛCDM, which dictates grav-
itationally driven gas accretion rates (Somerville et al. 2015).
However, SAMs require orders of magnitude less computing
time for a given volume than hydrodynamical cosmological
simulations. The resulting galaxy star formation and enrichment
histories are outputs. We then use these SFHs to produce SEDs
to train and validate against, using a realistic mass distribution of
galaxies with *M M109 .

3.2. Training with Hydrodynamic Simulations

We also train the method against a set of SFHs obtained
from the MUFASA meshless hydrodynamic simulations (Davé
et al. 2016), which satisfies multiple observational constraints
like the stellar mass—halo mass relation (Behroozi et al. 2013;
Munshi et al. 2013), the mass–metallicity relation (Steidel

Figure 4. Plot showing the full c2 surface for an individual SAM galaxy, computed using the single component basis consisting of the Linexp, Besselexp, Gaussian,
and Log-normal families of SFHs. Each point represents a single SFH; the SFH corresponding to the global minimum c2 is the best-fit SFH and SFHs from all
families below a threshold are used in computing the uncertainties on the reconstruction. The curves seen within each family denote c2 for different values of τ with
adjoining points differing by D ~t 0.1 dex0 .
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et al. 2014; Sanders et al. 2015), and the SFR– *M relation
(Speagle et al. 2014; Kurczynski et al. 2016). The SFHs are
reported as instantaneous star formation events that take place,
ranging from ( ) 10 to ( ) 105 events for different galaxies. We
restrict the fits to galaxies with *M M109 , which have well-
defined SFHs in the simulation. To ensure thatthe SFHs are
not artificially stochastic, we generate the SFHs by convolving
the instantaneous star formation events using an Epanechnikov
kernel with a width of 100Myr (R. Dave,2017, private
communication) The galaxies in MUFASA follow a realistic
mass distribution that we use to sample all three mock data sets.
We restrict the fits to galaxies with *M M109 , which have
well-defined SFHs in the simulation.

3.3. Training with Stochastic SFHs

Following the prescription of Kelson (2014), we generate
stochastic SFHs with different values for the Hurst parameter H,
which quantified the autocorrelation of the SFH. A value of
H=0.5 corresponds to a random walk inD DtSFR , >H 0.5
is correlated and <H 0.5 is anti-correlated (Mandelbrot & Van
Ness 1968). This provides a sample for testing the other families
against to determine possible biases. We generate different SFHs
by varying the Hurst exponent, which encodes the long-time
correlation of the stochastic SFHs in [ ]ÎH 0.5, 1 , sampling
galaxies with the same mass distribution as the SAM and
hydrodynamic SFH samples. We exclude from the sample SFHs

with a Hurst parameter <H 0.5 since these do not correspond to
realistic looking SFHs.

3.4. Training Procedure and Results

We quantify the correspondence between the goodness-of-fit
in SED space and the goodness-of-reconstruction in SFH space
as a metric to judge the success of each family of basis
functions. For the SED goodness-of-fit, we use cSED

2 , given by
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where the index k sums over the entire basis of SFHs, with a
number of components determined using the F-test as described
in Section 2.4 and the index j sums over the photometric bands.
The k is optimized for each basis function, effectively making
stellar mass the normalization. The global minima of the c2

surface corresponds to the maximum likelihood, given
by µ c- e 2SED

2
.

To quantitatively compare how well the families perform at
reconstructing the SFHs of the galaxies in the three mock
catalogs, we quantify the accuracy of reconstruction of the SFH
by computing the R2 statistic, given by
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Figure 5. Representative examples of SFH reconstructions with the uncertainties computed using the outlier-clipped likelihood surface, as described in Section 5.4.
The examples show that it is possible to reasonably constrain even older episodes of star formation (top row), as well as to obtain robust uncertainties on multiple
episodes (bottom row). Spectra are shown without nebular emission for clarity.
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where R2 (Anderson-Sprecher 1994) quantifies the amount of
variance explained by the fit. We set an ambitious goal for the
reconstruction by asking if it does as well as direct fits in SFH
space to the true SFHs using polynomials of the same order.
Since the true SFHs exhibit a large amount of stochasticity, the
question of good R2 due to overfitting does not usually occur
and is handled by the F-test in Section 4.1. We define the R2

statistic in logarithmic time; since the SED is sensitive to
changes in the SFR over roughly equal logarithmic intervals of
time, this provides a more sensitive estimator. To handle all
three data sets on the same footing, since they contain SFHs
with differing amounts of structure and stochasticity, we apply
a small nonparametric smoothing (Cleveland 1979) to the
SFHs. This statistic has proved to be the most robust for the
current application, matching the qualitative results with other
statistics, as detailed in Appendix C. R2 ranges from [ ]0, 1 , with
the most successful reconstruction given by R 12 .

In the noiseless regime, most galaxies show the expected
correspondence between the goodness-of-fit and goodness-of-
reconstruction, especially in the regime of high likelihood
( /c <dof 1SED

2 ). Since we can access only cSED
2 observation-

ally, this correspondence is important since it allows us to obtain
a good reconstruction for a galaxy whose SED is well fit. In
order for an SFH family to be robust, we require that the SFHs
for the ensemble of galaxies should be reconstructed as well as
possible, comparing with direct fits to the true SFH using a
polynomial with the same number of degrees of freedom.

In Figure 6, we show the R2 computed for each mock data
set using all six SFH families, showing that the Linexp,
Besselexp, Gaussian and Lognormal families perform better
overall at SFH reconstruction in comparison to the traditional
parametrizations of constant and exponentially declining SFHs.
On the basis of this, we prune our basis SFH set to retain only
the Linexp, Besselexp, Gaussian, and log-normal families,
hereafter denoted as “Best4 basis,” to be used in further work.
As an additional step of validating our training statistic, we

examine the correspondence between ( )cmin SED
2 and a related

statistic, ( )cmin SFH
2 , computed using the uncertainties obtained

through the method outlined in Section 2.5 and in Appendix E.
We also study the possible biases that could arise in the
reconstruction with a particular family, and how our choice of
basis mitigates them.

4. Validation

4.1. Validation Using Three Data Sets: Hydrodynamic
Simulations, Semi-analytic Models and Stochastic SFHs

Having trained our method to arrive at an optimal basis for the
data set in consideration, we now apply the SED Fitting method
to the full sample of 1200 SFHs drawn from the hydrodynamic
simulation, SAM, and the stochastic realizations.
Realistic simulated photometric noise has been applied to the

mock SEDs to simulate observing conditions. The noise consists
of a multiplicative factor corresponding to the zeropoint
uncertainty in each band: 3% for the space-based bands,

Figure 6. Boxplots showing the accuracy of reconstruction of each SFH family to each mock data set using the R2 statistic, with the red line denoting the median and
the box denoting the interquartile range. For reference, we also show the R2 from direct polynomial fits to the SFH, with its median forming the horizontal dotted line.
We see that, on average, fits to the SEDs using the Linexp, Besselexp, Gaussian, and Log-normal families perform as well as,or better than, direct fits to the SFHs
with third-order polynomials.
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(HST/WFC3 and HST/ACS) and 10% for the ground-based
bands (U ctio, U vimos, Isaac Ks, HawkI Ks) and IRAC Ch.1–4,
as well as a photometric additive factor corresponding to the
median errors in each band computed from the CANDELS data
set. With these added in quadrature to yield the si for each band
i, simulated fluxes were drawn from a Gaussian distribu-
tion ( )sn F ,i i

2 .
We show fits using the Best4 basis that is a combination of

Linexp, Besselexp, Gaussian, and log-normal families, as was
determined through the training step in Section 3.1. The galaxy
SEDs have been fit with an atlas consisting of two component

basis SFHs. This basis is constructed using all physical
combinations of elements from the single episode basis and
is seen to have a smaller scatter around the true values, as
described in Section 6.1. In Figure 7, we show the
reconstructed SFHs for two randomly selected galaxies from
each mock data set, illustrating the recovery of both recent
episodes of star formation, as well as the overall trend of star
formation, including periods of relative quiescence.
In Figure 8, we illustrate the recovery of four physical

quantities: the stellar mass (M*), the star formation rate
averaged over the last 100Myr (SFR100), the lookback time

Figure 7. The plots show a randomly drawn sample from the semi-analytic models (top rows), stochastic realizations (middle rows), and hydrodynamic simulations
(bottom rows) used for the training and validation of the dense basis method, showing individual examples from the ensemble results shown in Figure 8. Left: plots
show the true spectrum (black line) from the mock catalogs, their corresponding noisified photometry (red error bars), and the best-fit SED (blue open circles) using
the dense basis method. Right: plots show the true SFH (black dashed line) and its reconstruction (blue solid line) with 68% confidence intervals (gray shaded region)
computed using the method described in Section 2.5. SAM galaxy 30is identified as a oneepisode galaxy in the current realization of noise, constituting a false
negative result of the F-test. However, many noisy realizations allow us to currently identify the second episode at ~t e6 8 years. The episodes of star formation for
the hydro.galaxy 2 is distorted either due to noise or dust. The additional peaks in Stochastic galaxy 106 and hydro. galaxy 183 require a basis with more components.
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over which the galaxy accreted 50% of its observed stellar mass
(t50), and dust extinction (Av). The top row depicts the results
for the stochastic realizations, the middle row for the
hydrodynamic simulations, and the bottom row for the SAMs.
All ofthe fits show the bias to now be significantly smaller
than the scatter that may occur from using a single family of
SFHs, as discussed in Section 6.1. The scatter in stellar mass
increases at lower mass, corresponding to more noisy SEDs,
while the increased scatter in SFR as compared to the values in
Section 6.1 is moredue to the presence of dust than noise since
fits without dust show a much smaller scatter of ∼0.05 dex.
The 0.3 dex scatter in the reconstruction of t50 is reasonable.
However, the distributions for the SAMs and the hydrodynamic
simulations look poor due to the narrow range of true values for
these models with the top row being more representative of the
method’s performance with a broader distribution of t50.
Reconstruction of simulated dust drawn from an exponential
distribution is done using an atlas containing 25 values of dust
ranging from Av=0 to Av=2.5 using the Calzetti dust law,
with a reasonable scatter of –0.09 0.13 dex and negligible bias
of ~0.01 dex.

We find that our choice of basis yields comparablygood
results to all three mock data sets, with the bias in the
estimation of these physical quantities derived from the SFH
not exceeding 0.05 dex, as seen in Figure 8. This is an

important criterion to be met before the method is applied to
observational data, since it lets us relax the assumption that the
SFHs corresponding to the training SEDs match the actual
SFHs of galaxies at a given epoch, in favor of the slightly
weaker assumption that the SFHs are drawn from a similar
distribution. The ensemble results show that the reconstruction
is nearly unbiased for the physical parameters of interest and
can be used to extract a variety of derived quantities from the
SED of distant galaxies in a robust manner.
We also present results in Figure 9 for the fraction of a

sample of galaxies that are reconstructed with a second episode
of star formation. For our three data sets, we perform the F-test
using Equation (18), with = =N N1, 21 2 , and obtain the
fraction of galaxies that are significantly better fit with a second
component of star formation. In some cases, the second
component has similar peak time and serves only to modify the
SFH shape, e.g., Gaussian + log-normal, with a single peak;
we term these single episode SFHs. We then find the fraction of
the mock galaxies that have a distinct second peak to their
reconstructed SFH, which can only happen when the
reconstruction prefers a second component. We compare this
number to the number of galaxies in the sample whose true
SFH has two episodes of star formation, computed using a peak
finding routine. Since the true SFHs show a large amount of
stochasticity, only the most prominent peaks with a separation

Figure 8. We show the comparison of reconstructed against true values of the stellar mass (M*), SFR100, and t50 for three data sets: the stochastic realizations (top
row), MUFASA hydrodynamic simulations (middle row), and Semi-Analytic Model SFHs (bottom row), using the 2 episode Best4 basis fit using the dense basis
method. For each data set, we use a sample of 400 galaxies drawn from a realistic mass distribution. The shading indicates the likelihood of the fit, with darker shades
denoting better fits to the SED.
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greater than 100Myr are selected by smoothing over the local
variations as in Section 3.1 and finding the lookback times at
which the SFH peaks, using ( )¢ =tSFR 0 and ( ) <tSFR 0.
The results are summarized as boxplots in Figure 9, for two
mass bins chosen such that roughly half the sample lies in each
mass bin. For the high-mass bin, the higher S/N leads to more
accurate predictions of the fraction of SEDs with more than one
episode of star formation. Since our atlas is restricted to SEDs
corresponding to physically motivated SFHs, we generally do
not overfit the noise, as is seen by the small number of false
positive results.5 However, a large amount of noise makes it
more difficult for the F-test to detect a statistically significant
improvement to the fit. This leads to a systematic under-
estimation of the fraction of galaxies with more than a single
episode of star formation, as shown in our results for the lower-
mass galaxies. The decreased S/N also results in the fraction of
fits with false negatives6 being higher in this mass bin.

4.2. Validation Against SpeedyMC Results for CANDELS SEDs

We now apply the method to a sample of 1100 CANDELS
galaxies in the GOODS-S field at < <z1 1.5 from
Kurczynski et al. (2016), for which we have physical quantities
derived using SpeedyMC7 (Acquaviva et al. 2011, 2015) for
742 galaxies. This sample provides a good representative
redshift to test the method for the recovery of SFHs at moderate
S/N, as discussed toward the end of Section 2.6. We perform
the fitting with discrete values for z and Av, which adds some
scatter to the results. For redshift, we choose bin edges at
[ ]1.0, 1.1, 1.2, 1.3, 1.4, 1.5 , and we let Av vary from 0 to 2.5 in
increments of 0.1. The purpose of this comparison is to ensure
that our SED fitting code,developed to implement the dense
basis method, which was also used to generate mock SEDs,
does not contain circular errors. Additionally, it is a useful test

to match the physical quantities that can be recovered through
traditional SED fitting before presenting previously inacces-
sible quantities.
In order to make the comparison as consistent as possible, we

match the initial conditions of the fitting procedure to the
SpeedyMC parameter space, as summarized in Table 2, and limit
our SFH basis to single-component Linexp curves. In Figure 10,
we show the results comparing our fits to the SpeedyMC results
for the stellar mass (M*), SFR100 and t50. The slight bias in t50
could be due to the difference in the way the two codes
implement nebular emission. The colorbars denote the spectro-
scopic redshifts corresponding to the observed galaxies.

4.3. Validation Against SAM SEDs with Multiple Metallicities

We address a final possible source of systematic bias in the
fits: the assumption of a single metallicity ( Z0.2 ) in building
the atlas and performing the fits at z 1. To take into account
the distribution of metallicities found in real galaxies, we go
back to the SAM SFHs and consider the individual metallicity
components of the overall SFHs. We generate spectra corresp-
onding to each of these metallicities using six values of
metallicity available for the Padova’94 tracks in BC03, given by

[ ]=Z 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05 . Using this
procedure, we obtain spectra corresponding to the SFH in each
metallicity bin and use a weighted sum to obtain SEDs

Figure 9. We find the number of galaxies that show a statistical improvement upon being fit with a second component of star formation using the Best4 basis from
Section 3.1, determine which of those correspond to a second episode of star formation, and present results for noisy realizations of four data sets of galaxies from the
hydrodynamic simulations, stochastic realizations, Semi-Analytic Model, and the realistic metallicity generalization of the Semi-Analytic Model described in
Section 4.3. The blue values are obtained directly from the true SFHs using a smoothing algorithm to account for stochasticity and then running a peak finder
algorithm, while the black crosses quantify the number of false positive predictions using the F-test. The results are divided into two mass bins, showing that the
method is reliable in predicting the number of episodes at the high-mass end, due to sufficient S/N.

Table 2
Comparison of Dense Basis and SpeedyMC

Parameter Spaces Used in Section 4.2

Dense Basis SpeedyMC

IMF Salpeter Salpeter
GoF: c2 c2

SPS: BC03 BC03
Bands fit 17 17
Metallicity Z0.2 Z0.2
Dust law Calzetti Calzetti
Nebular emission MAPPINGS III custom
SFH form Linexp Linexp

5 Excluding the SAM (realZ) results, which we discuss further in Section 4.3.
6 Which can be expressed as ~ - -f f f ffn true rec fp, where f f,fn fp are the
fractions of false negatives and positives, and f f,true rec are the true and
reconstructed fractions of galaxies with multiple episodes of star formation.
7 A much faster version of the GalMC Markov Chain Monte Carlo algorithm
(Acquaviva et al. 2011) is available:http://www.ctp.citytech.cuny.edu/
~vacquaviva/web/GalMC.html.
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corresponding to galaxies with realistic metallicity histories,
which we denote as SAM (realZ). We then fit these SEDs with
our single-metallicity basis to test how robust our fits are
at z=1.

In the left panel of Figure 11, we show the distributions of
observed metallicities at z 1 in the SAMs, weighted using
the dominant contribution to the total mass of the galaxy for
realistic sampling in stellar mass (M*) used in Section 4.1.
Upon examining the SEDs corresponding to a sample of
galaxies of different ages generated by combining the spectra
corresponding to the SFHs in each of BC03ʼs six metallicity
bins, we find that older, more massive galaxies are more metal-
rich at the observed epoch and thus show a greater deviation
from the template SEDs, which currently assume =Z Z0.2
for the entire SFH.

In the four panels to the right of Figure 11, we show the
reconstruction of physical quantities (M*, SFR100, t50,and Av)
for the cumulative SEDs with realistic metallicities. The
increased bias in the t50 appears to be the result of poorly
fitting older galaxies, which have much higher metallicities
than those in the atlas. For ~t 350

true Gyr and older, galaxies
tend to have >Z Z0.4 at the time of observation. This effect,
in addition to the narrow distribution of true t50,causes the
scatter in t50 to appear poor even though it is comparable to the
fits in Section 4.1. The recovered SFHs themselves are still
representative of the true SFH of the galaxy up to a lookback
time of ~3 Gyr, after which the degeneracies in the c2 surface
due to the contributions from older stars, dust, and differing
metallicities impose larger uncertainties on the reconstruction
by a factor of ∼1.22.

In Figure 9, we now focus on the results in the last columns
in each mass bin. The results agree well in the high-mass bin,
due to roughly equal numbers of false negatives and positives.
The net results in both mass bins are still acceptable, as a result
of which the method is still valid even in its current simple
realization with a singlemetallicity.

5. Results

The dense basis method of SEDfitting allows us to
reconstruct the SFHs of galaxies in a nonparametric fashion,
not being restricted to the choice of a particular number or
family of basis SFHs, while being able to compress the
reconstructed SFHs using a small number of parameters to
describe a best fit. We show the results of applying this method

to our sample of CANDELS galaxies at < <z1 1.5 and mock
SAM galaxies at ~z 1.

5.1. Going Beyond “Age” and Instantaneous SFR

The “age” of a galaxy, defined as the lookback time at which
the galaxy first started forming stars ( )ºt0 , is not as meaningful
with realistic SFHs as it used to be with SSPs, which formed all
their stars at a single lookback time, given by the age
(Tinsley 1980; Bruzual & Charlot 2003). Realistic SFHs as
seen in the SAM and the hydrodynamic simulations may
maintain a small amount of star formation before ramping up to
a major episode of star formation, which results in the true age
for most galaxies approaching the age of the universe. Since the
SED of a galaxy is most sensitive to its largest episodes of star
formation, with its sensitivity decreasing as we go back in
lookback time, the “age” recovered through SED fitting
methods is not a robust physical quantity. However, if we
were to estimate the lookback time at which the galaxy
accumulated the first 10% of its observed stellar mass, we
estimate the lookback time at which any major star formation
activity in the galaxy started. While the distributions of the age
and t10 are similar for a given sample of galaxies, the latter is a
more meaningful quantity in terms of studying galaxy growth
and evolution and is more robustly estimated through SED
fitting(Pacifici et al. 2015, 2016). This can be seen from the
top panels of Figure 12, with the right panel showing noiseless
reconstructions of the age, and the left panel showing noiseless
reconstructions of t10 for all three samples of galaxies used in
Section 4.1 using the same basis set and format for the plots.
The latter quantity is more robust, as can be seen from the
reduced bias and scatter in the estimation of t10.
In a similar manner, due to the large amount of stochasticity

that realistic SFHs show, it is more robust to estimate the star
formation rate (SFR) averaged over the last 100Myr in lookback
time, rather than the instantaneous SFR, as shown in the bottom
panels of Figure 12. The panel on the left denotes SFR100, which
has less scatter than SFRinst, shown on the right. It is widely
appreciated that broadband SED fitting is primarily sensitive
to SFRs averaged over the past 100Myr8 (Conroy 2013;
Johnson et al. 2013), but SED fitting traditionally reports SFRinst

in its chosen parametrization nonetheless. With rapid rises and

Figure 10. Comparison of physical quantities derived through the Dense Basis fits against the results of the SpeedyMCMarkov Chain Monte Carlo code applied to the
CANDELS data set at < <z1 1.5 from Kurczynski et al. (2016), comparing the stellar mass (M*), star formation rates, and the lookback time at which the galaxies
accumulated 50% of their observed mass (t50). The color table indicates the redshifts of the galaxies being fit.

8 However, when nebular emission lines are strong enough to contribute
significantly to the broadband photometry, SED fitting can probe ∼10 Myr
timescales.
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exponential declines possible, these quantities can differ
significantly, leading to the extra scatter in the bottom right
panel of Figure 12.

5.2. The Number of Episodes of Star Formation Experienced
by < <z1 1.5 CANDELS Galaxies

It is an important feature of the densebasis method to be
able to recover the number of strong episodes of star formation
in a galaxy. Doing so allows us to detect recent bursts of star
formation, or a period of relative quiescence between episodes
of continuous star formation, with the amount of data that can
be extracted depending upon the S/N. This can then be used to
infer valuable information about the galaxy’s evolution and
merger history.

In this paper, we have demonstrated the use of an F-test to
detect if the addition of a second component of star formation
is a statistically significant improvement to the fit. This is then
used to infer the fraction of galaxies whose SFHs contain a
second major episode of star formation, and was validated for
the mock galaxies in the high S/N regime in Section 4.1. For
our current sample of 1100 CANDELS GOODS-S galaxies, we
can reliably fit 790 galaxies, with the remaining galaxies either
having poor c2 or with missing fluxes in multiple filters,
preventing robust estimation of the SFH and its uncertainties.
The F-test then determines that 134 galaxies out of the sample
of 790 galaxies show a statistical improvement upon being fit
with a second component, of which 117 galaxies contain a
second episode of star formation. This corresponds to roughly
15% of the sample, similar to the results for the mocks.
Figure 13 shows six examples of the procedure, showing three
galaxies that were fit by a single basis SFH and three with two
components.

Additionally, we provide a breakdown of the fraction of
galaxies in each mass bin from [ ] M10 , 108 10 shown in
Figure 14. This figure reveals a significant decrease in the
fraction of galaxies that are fit with two major episodes of star
formation as the stellar mass increases above M109.5 . As seen
in Section 4.1,we expect to underestimate the fraction of two-
episode galaxies at lower masses in the CANDELS sample.
Hence the increased number of two-episode galaxies at

<*M M109.5 is a robust indication that two-episode galaxies
are more common at lower mass. This discrepancy between the
data and simulations is intriguing.

5.3. Constraints on Timing and Duration of Episodes

Using the reconstructed SFHs for our CANDELS sample, we
can obtain constraints on the timing and duration of episodes of
star formation. This is possible since the reconstructed SFH
using our well-motivated basis SFH set captures the general
trend of star formation, even if the finer stochastic details are
lost. For each fit, we obtain the number of episodes of star
formation, the lookback time of peak star formation, and the
FWHM of that episode, thus obtaining the timescale of star
formation episodes both on a galaxy-by-galaxy, as well as an
ensemble basis, as shown in Figure 15. For ~40% of the
galaxies, we find that the SFH is still rising at the time of
observation, comparable to ~30% for galaxies from the SAM
and hydrodynamic simulations. In estimating the width of an
episode of star formation, we estimate the width of an episode up
to the time of observation, leading to truncated widths for the
subsample of galaxies whose SFHs are still rising, shown in red
in the histogram. We find that the widths for our sample are
smaller by a factor of∼10 than those for the mock galaxies. This
discrepancy bears further investigation, with a similar difference
seen in Diemer et al. (2017). Additionally, we can also find the
interval between episodes of star formation for the galaxies that
are reconstructed with two episodes of star formation.

5.4. Statistics of t t t, ,10 50 90 and Uncertainties

The reconstructed SFHs for the CANDELS galaxies com-
puted using the dense basis method are used to compute the
lookback times at which the galaxy accumulates a certain
fraction of its observed mass. These quantities, defined tx, satisfy
the equality,

( ) ( ) ⟹ ( )

( ) ( )

ò òy y¢ ¢ = ¢ ¢

=

*

*

t dt
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t dt M t

x
M t

100

100
. 20

t

k

t

k x
0 0
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Generalizing t10 from Section 5.1, this lets us follow the mass
assembly using the lookback times at which the ensemble of
galaxies accumulated a certain fraction of its observed mass.
We do this for the CANDELS sample at < <z1 1.5 in
Figure 16, providing histograms showing the overall lookback
times at which the individual galaxies accumulated 10%, 50%,
and 90% of their observed stellar mass. This allows us to infer
the overall growth and evolution of galaxies at that epoch.

Figure 11. Left: mass-weighted metallicity distribution at present epoch, binned using the BC03 Z range. Solid bars denote the distribution for the sampling in mass
used in Section 4.1, while the dashed lines denote the distribution for a uniform sampling in stellar mass.Right:SED fits to the ensemble of SAM galaxies taking the
range of realistic metallicity values into account. The t50 reconstruction has a reasonable scatter of 0.28 dex that looks poor due to the small distribution of true values.
The fits are further complicated by dust, but still comparable to the ones with a single metallicity value.
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6. Discussion

6.1. Biases from Using Single SFH Parametrizations

The flexibility in the choice of SFH family used for SED
fitting makes it possible to quantify the bias introduced in the
estimation of physical quantities due to the choice of SFH
parametrization used. We briefly list these biases at ~z 1 for the
six families of SFHs presented in this work, highlighting the
particular families that perform best at the estimation of a
particular quantity. For the seven physical quantities Qi listed in
Tables 3 and 4 below, we formulate the bias and scatter as the
median and standard deviation of the histogram ( )=b Q
{ }- Q Q1 i i

rec true , which gives the scatter after taking the bias
into account. This is done using physical quantities computed
using the reconstructions of the SFHs of the 1200 mock galaxies
from Section 4.1 with a realistic mass distribution, using fits
without dust or noise to highlight the bias due to the SFH
parametrization. We have included the CSF, Top-Hat, and
Exponential biases in Table 3 below in an effort to standardize
quantities in comparison to older literature, while also listing the
reduced bias and scatter with the full dense basis method with up
to two components of basis SFHs from the Linexp, Besselexp,
Gaussian, and log-normal families. In order to ensure a fair
comparison, all families contain the same number of basis SFHs
and are dense enough to converge, i.e., a denser grid on the
parameter space does not change the results significantly.

Almost all the families tend to underestimate the stellar
mass. However, the scatter in M* is generally larger than this
bias except for the Top-Hat family. The scatter is even larger
for SFR100, and thus the bias does not significantly affect the
results except at the low SFR ( < - -MSFR 10 . yr100

1 1) end, as
seen from Figure 8. Age has the greatest bias of all the
estimated quantities, and it can be seen that it decreases when
we estimate t10, which is a more robust quantity, as we
proposed in Section 5.1. About 40% of the mock galaxies form
<10% of their mass at >t 3 Gyrlookback . The small contribution
to the observed flux from these older stars is dominated by
more recent contributions, as a result of which the method does
detect these older stars and underestimates the age. Since most
of the mock galaxies start forming stars at ~t tbb, the
distribution of true ages is extremely narrow and can only be
underestimated, since the method does not allow >t tage bb. An
artifact of this bias is also seen in t10, though it is smaller.
However, since the dense basis method recovers the major
episodes of star formation and the bias is largely due to the
distribution of the true ages, the reconstructed SFHs are robust.
In a similar vein, the bias decreases in considering t50 and even
further with t90. Age has a lower scatter than t10, since most
galaxies start forming stars at ~t t0 bb, and this creates a narrow
distribution for the true ages. For SED fitting methods that use
age, setting = tAge bb would lead to a bias of -23% and a
scatter of 32%, fully competitive with any of the single
families. The scatter in t10 for the dense basis method is also in

Figure 12. Top: plots showing the ability to extract t10, the lookback time at which the galaxy has accumulated 10% of its observed mass, is much more reliably
estimated than the “age ( )ºt0 ” of that galaxy with both reduced bias: −0.13 dex for t10 vs. −0.19 dex for age, and reduced scatter: 0.24 dex for t10 vs. 0.31 dex for
Age. Bottom: an illustration of a similar robust measure with SFR100 showing less scatter than SFRinst. For the SFR100, the bias is −0.03 dex and the scatter is
0.11 dex. For the SFRinst, the bias is −0.04 dex and the scatter is 0.37 dex. The three different colors show fits to the three different mock data sets, with blue for
galaxies from the SAM, yellow for the stochastic galaxies, and red for galaxies from the hydro.simulations, using the same notation as Figure 8.
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part due to expanding to a larger parameter space, which yields
a smaller bias at the expense of increased scatter regulated by
the F-test. The Top-Hat, exponential, and Linexp parametriza-
tions have a large bias in age, and should be accounted for in
comparisons of ages in the literature. t90 is the most robust of
the mass-assembly times, with the Linexp and log-normal
families performing best in its estimation. The dense basis
method offers the least scatter inM*, SFR, and t90 and is nearly
unbiased in these quantities, as well as t50.

6.2. Comparison with Other Methods

The dense basis method offers an SED fitting approach that
minimizes the bias and scatter introduced due to traditional

SFH parametrizations. In this section, we consider comparisons
with existing methods of SFH reconstruction. MOPED
(Heavens et al. 2000) fixes logarithmic time bins and finds
the SFR in each bin with a piecewise constant SFH using fitting
with data compression, giving more weight to those pixels in
the spectrum that carry most information about a given
parameter. VESPA (Tojeiro et al. 2007) adaptively bins the
lookback time, i.e., the ti in Equation (11), provided there are
enough free parameters to avoid overfitting. Dye’s (2008)
method adopts a similar approach with photometry, but uses
regularization in order to the make the SFR in each bin
positive, which might bias the likelihood surface and is
computationally more expensive. None of these methods
reconstructs smooth SFHs; the fits do not provide us with

Figure 13. Plots showing a randomly drawn sample from the 790 CANDELS galaxies at < <z1 1.5 used for the validation and results sections of this paper. Left:
plots show photometry from CANDELS at < <z1 1.5 (red error bars) and the best-fit SED (blue open circles) using the dense basis method. Right: plots show the
single Linexp SFH fit with SpeedyMC in (Kurczynski et al. 2016; green line) and the dense basis reconstruction (blue solid line) with 68% confidence intervals (gray
shaded region) computed using the method described in Section 2.5. The c2 of the fit for each of the galaxies is12.7, 7.0, 30.8, 8.7, 40.7, and 41.5, for fits with 15 of
the 17 CANDELS bands, excluding IRAC Ch.3,4 since we have not modeled for PAH emission in our atlas. The spectroscopic redshifts of the various galaxies are
1.0910, 1.1300, 1.2510, 1.3810, 1.0760, and 1.2210, respectively.
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SFHs that allow us to analyze the number of episodes of star
formation or to analyze the peak times and widths of star
formation episodes. The method introduced here uses a
physically motivated functional form of SFHs that requires a
smaller number of free parameters to fit the SFH, thus
obtaining smooth SFHs with multiple components through
photometric SED fitting, comparable to what was previously
accessible with spectroscopy or CMD reconstruction (Weisz
et al. 2011). Another advantage is the ability to use real SEDs
to test functional forms for a best match against star formation
mechanisms at a given redshift. The usage of well-motivated
parametrized functional forms instead of time bins with
variable heights allows us to obtain a smooth reconstruction
of the SFH with a smaller number of parameters without the
need for regularization, since the basis SFHs are smooth and
positive definite.

6.3. Possible Extensions of the Dense Basis Method

In addition to the two parameter families described in
Section 2.2, it is possible to extend the approach to a larger
parameter space by using families of curves including the four-
parameter families described in Simha et al. (2014) and the
Exponential+ power law (Behroozi et al. 2013),

( ) ( )(( ) ) ( )( )t a t= Q - - a t- -f t t t t t t e, , , 21t t
0 0 0 0

where t a Î +, , and t0 indexes the time at which star
formation begins.

Currently, however, we restrict our attention to the two
parameter families since we also consider combinations of curves
from these families, which let us model a much more versatile set
of trajectories in SFH space.

An advantage of our method is that it will recover only as
many SFH basis components as are needed to produce a good
fit to the SED, thus enabling us to extend the procedure to
reconstructing metallicity histories, and to use multiple dust
extinction models. It is also possible to extend the code to
additional SPS models, which is naturally incorporated with the
Conroy FSPS models (Conroy & Gunn 2010) that contain the
BaSTI and Padova isochrone sets. Model dependency due to

the choice of tracks and IMF is also an issue that could be
incorporated into future versions, which will have more data
available that can be used to address degeneracies between
different sets of isochrone synthesis models, stellar evolution
tracks, and IMF choices.
Additionally, the superposition of “stochastic” bursts on top

of these smooth functional forms has been better shown to
reproduce the observed spectroscopic properties of individual
galaxies (Kauffmann et al. 2003; Brinchmann et al. 2004). This
can be explored in future applications of the dense basis
method to spectroscopic data, using realistic stochastic SFHs as
in the approach of Pacifici et al.(2015), or the theoretical
stochastic SFHs from Kelson (2014).
The current formulation is frequentist, and the training and

validation produce parameter uncertainty estimates consistent
with this approach. A Bayesian formulation of the method is
certainly possible, but since the priors on SFHs are poorly
known, significant care would be required.

6.4. Handling Big Data

A large amount of data will be generated from the upcoming
generation of surveys including LSST (Ivezic et al. 2008),
HETDEX/SHELA (Papovich et al. 2016), and J-PAS (Benitez
et al. 2014), which will yield a mixture of broadband
photometry and spectroscopy for ( )~ N 108 galaxies.
Methods for analyzing these galaxies using SED Fitting

techniques need to be both computationally efficient as well as
capable of handling and storing large volumes of data in a
memory-efficient manner.
The dense basis method was designed with these two

requirements in mind. It takes ( ) s0.1 for a single run on a
2.9 GHz laptop, albeit with large memory requirements for
storing the two-component basis, which runs to ( ) Gb200 with
18 values of τ and 99 values of t0. After the initial generation of
the atlas, the fits themselves can be stored simply by saving the
index of the best-fit SED and the normalization for each
component, leading to efficient storage of the fits as
( )*N 3component coefficients for each reconstructed SFH.

6.5. Broader Data Science Applications

This method can be used to solve problems of the general
type

( ) ( )òå åå= ºd m mt dt a 22
i t

i
i j

j ij

where d represents a vector of observables, i.e., galaxy SEDs in
the current work, and the functionals mi represent possible
SFHs. The index i sums over basis functions and j refers to
multiple photometric bands. We adopt functionals that can be
shifted by varying t0 and scaled by varying τ because this is
reasonable for the underlying physics of star formation. This is
not a requirement for solving Equation (22) and additional
constraints upon the functionals will depend upon the problem
being considered. Upon generalization, this formulation is
particularly useful for the class of problems where constrained
observed data is used to recover quantities in an otherwise
inaccessible parameter space, such as single-epoch observa-
tions of historical processes. In the absence of a known analytic
mapping from the parameter space { ( )}m ti to the space of
observables { }dj and the lack of a definite correlation between

Figure 14. We find the number of galaxies that show a statistical improvement
upon being fit with a second component of star formation using the Best4 basis
from Section 3.1, and then determine which of those correspond to a second
episode of star formation. For the sample of 790 CANDELS GOODS-S
galaxies, 15% of the galaxies are fit with multiple episodes of star formation,
with the histogram showing the distribution of the fraction of galaxies that are
fit with a second episode of star formation across different ranges in stellar
mass. The Poisson error bars denote the possible uncertainties due to limited
sample size.
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the goodness of estimation in these two spaces, traditional
methods like Monte-Carlo estimation through the parameter
space need not lead to accurate estimation of the mi, since a
good fit need not correspond to an accurate reconstruction of
the functional. Methods like principal component analysis may
be used in the parameter space, but the principal components
do not always correspond to physical representations of the
observables. Such situations can frequently arise due to the
presence of noise and degeneracies between different para-
meters that affect the observables.

In such cases, it is possible to apply the training method
described in the current work, based on pruning a training atlas
from a large space of informed estimates from empirical
observations and statistical motivations, leading to an over-
sampled non-orthogonal “dense basis.” This lets us perform
any subsequent fitting to the data in a subset of parameter space
where the correspondence between the goodness-of-fit and
goodness-of-reconstruction exists and is well defined. Since the
functionals in the parameter space are well motivated, they do
not span the space of all observables and are robust to noise
that would correspond to “unphysical” results. In the current
framing, the method is readily applicable to timeseries
problems, where the observables are integrated quantities
depending on the overall nature of the timeseries.

In an expanding arsenal of data-science tools, the dense basis
method provides a convenient formalism to solve the above
class of problems in a tractable manner, and to train and
implement a solution finding method. The advantages of using
this method include not having the constraints of regularization
imposed by matrix inversion methods or suffering from the
lack of correlation between observables and principal vectors in
solution space that techniques like PCA exhibit, while also
being robust to noise.

7. Conclusions

The standard assumption of a simple parametric form for
galaxy SFHs during SED fitting biases estimations of physical
quantities and underestimates their true uncertainties. In this
paper, we introduce the dense basis method, which offers a
general approach when a vector of observed data points d can
be modeled as a sum of positive-definite, continuous

functionals miobeying ( )ò= åd m t dti t i . Here we apply it
to the case where d represents a galaxy SED and the
functionals are possible SFHs.
We train the method using SFHs from mock catalogs at
~z 1 from three different sources: a SAM, meshless hydro-

dynamic simulations, and stochastic realizations. We do this to
ensure that the method can successfully reconstruct a wide
variety of SFHs, allowing us to relax the assumption that our
training SFHs are perfectly representative of the true SFHs of
galaxies at that epoch. The training step allows us to compare
the goodness-of-fit in SED space to the goodness-of-recon-
struction in SFH space. We use this comparison to eliminate
SFH families that provide poor or biased reconstructions,
leading us to drop the Top-Hat and Exponential families from
our basis, while keeping the Linexp, Besselexp, Gaussian, and
Lognormal families.
A basis consisting of these four families and their

combinations is then used to apply the dense basis method to
the broadband CANDELS photometry of a sample of galaxies
at < <z1 1.5. The method allows us to accurately estimate
physical quantities of interest that explicitly depend on the
SFH, notably stellar mass ( *M ), and SFR100, which we note is
more robust than SFRinst and dust attenuation. The method also
allows us to estimate previously inaccessible quantities,
including the number and duration of star formation episodes
in a galaxy’s past, and the lookback times at which the galaxy
accumulates 10%, 50%, 90% of its observed mass, which are
more robust quantities than the age of a galaxy, and allow us to
track the galaxy’s growth and evolution as a function of
lookback time. The current frequentist implementation of the
method allows us to estimate confidence intervals for these
quantities. We quantify the bias and scatter in these quantities
due to various SFH parametrizations including the traditional
parametrizations of constant and exponentially declining SFHs.
The method can be expected to have broad data science

applications, and can be scaled and applied to high S/N
spectrophotometry from upcoming surveys across all redshift
ranges to reconstruct the SFHs of individual galaxies, as well as
to infer the growth and evolution of the ensemble of galaxies at
various epochs.
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Figure 15. Left: histogram of the lookback time at which the reconstructed SFH for the sample of CANDELS galaxies peaks. The blue histogram denotes the peak
times for the galaxies with a single episode of star formation while the smaller yellow histogram shows the peak times whose reconstructed SFH contains two episodes
of star formation. A significant fraction of the galaxies have SFHs that are still rising at the epoch of observation, and represent~90% of the first bin in the histogram,
shown in red. Middle: histogram of the widths of star formation episodes corresponding to the same sample obtained at the FWHM of the reconstructed SFH, with the
red histogram representing the portion of the reconstructed SFHs that are still rising, with their widths truncated at the time of observation. Right: histogram of the
separation between the two peaks for the SFHs with two episodes of star formation.
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Appendix A
Consistency Across Filter Curves

It is possible to perform fits to the mock galaxies observed at
different redshifts and ensure that the reconstructed SEDs yield
physical quantities that are robust independent of the redshift.
This analysis can be extended to determine the redshift range
across which a given atlas is robust, since the amount of
information contained within the filters changes with redshift.

Since we restrict our mock data set to z=1 and the observed
data set to < <z1 1.5 in current work, we perform this
consistency check, fitting the same mock galaxies whose rest-
frame spectra are computed considering them to be at z=1 and
z=2. We perform dense basis fitting on the galaxies, and
compare the derived quantities t t t, ,10 50 90 and find that the
estimation of these quantities remains robust within uncertainties.

Appendix B
Dot-product SED Fitting as a Computational Speedup

We present an additional approach to finding the optimal
reconstruction given an atlas of SEDs using a non-orthogonal
dot-product, i.e., a projection product, that might prove to be a
useful computational speedup for dealing with large data sets.

Since the projection product is done in a non-orthogonal basis,
reconstruction of the original vector using the dot-product
coefficients is more involved than the procedure in the case of
the inner product in an orthogonal space. Various methods have
been tested for this reconstruction, including iteratively refitting
the residuals as long as they remain above the noise level,
constructing a reduced orthogonal space by projecting out
components of vectors along a principal component, and
constructing an expanded basis of linear combinations of the

basis functionals. This method is expected to operate on the
timescale of ( )´ N M operations, where N is the size of the
basis and M is the number of bands of the photometry in
consideration.
The best fit is estimated through a non-orthogonal equivalent

of a dot-product in the photometric vector space, through a
mapping given by

( )
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where f is a mapping such that f ´ + + : N N, ,filt filt [ ] 0, 1 .
For an equivalent orthogonal basis, the dot-product coeffi-

cient is given by the same mapping, with an additional
constraint imposed due to orthogonality, which is,

( ) ( )f =F F, 0 24i j i j1 2

which allows us to reconstruct the original vector simply using

( )å=


F a F . 25ij
i

N N

i ij
obs

basis bands

However, in the absence of orthogonality, we turn to more
involved methods of reconstruction, bounded by both compu-
tational costs and error margins on the photometry, which
could lead to overfitting if not accounted for.
Other factors held constant, the coefficient of the photo-

metric dot-product indicates the projection of the true SFH of
the galaxy onto the basis SFH. Therefore, without any
degeneracies in the basis SEDs, a higher coefficient would
mean that the SFH is closer to the true SFH of the galaxy, with
ai=1 denoting a perfect match with basis vector i. The
procedure returns similar results to the c2 fitting procedure
described in Section 2.4, with a slight computational speedup
requiring ~1 3rd of the time for fitting an SED, which might
be helpful in fitting large data sets of SEDs from upcoming
surveys.

Appendix C
Alternative Methods of Defining

Goodness-of-reconstruction

Given that the SFHs are not a directly measurable quantity,
care must be taken in comparing the reconstructed SFHs to the
true ones, accounting for the unequal sensitivity of the SEDs to
the same interval of time at different epochs, as well as the
large amount of stochasticity present in the simulated SFHs

Figure 16. Distributions of the timescales at which the galaxies in the CANDELS sample assembled 90%, 50%, and 10% of their observed mass, showing the fraction
of the sample vs. lookback time. The purple histogram shows t90, the yellow histogram shows t50, and the blue histogram shows t10.
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(SAM, hydro., stochastic). We outline some of the methods
viable for this as alternatives to be considered in other
applications of the dense basis method. These statistics, while
useful for comparing how well a given reconstruction
approximates the true SFH, are significantly affected by
stochasticity. Since we are only interested in the relative
performance of the families of curves in current work, we
choose to compare the goodness-of-reconstruction to that of a
polynomial fit with the same number of degrees of freedom as
the parametrizations under consideration.

1. R2 and R2adjusted:The coefficient of determination is
among the simplest ways to compare two sets of points,
comparing how well the reconstructed SFH approximates
the true one. This gives the first indication of the fact that
some families of SFHs may be more useful than others
for a given data set at SFH reconstruction. The R2 statistic
is given by

( ( ( )) ( ( )))
( ( ( )) ( ( )) )

( )å
å

y y

y y
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- á ñ
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t log t

t t
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log

log log
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which quantifies the amount of variance explained by the
fit. Since the stochasticity of the different mocks differs,
the median R2 for fits to the three data sets can vary
widely, with the SAM galaxies doing the best and the
MUFASA galaxies doing the worst. It is possible to
adjust this by smoothing the true SFHs using a
nonparametric method until they all exhibit an equal
level of stochasticity, or simply by rebinning the SFH
with a time interval of the order of the least stochastic
sample. Another improvement, as implemented in the
current work, is to compare the R2 of the reconstruction

with a reference R2 with the same number of degrees of
freedom, such as a fit using a polynomial.

2. The Pearson correlation coefficient: (rp) Since the
standard implementation of R2 as a goodness-of-recon-
struction metric fails to account for the different amounts
of stochasticity present in the different mock data sets, we
consider the Pearson correlation coefficient, which
accounts for the inherent stochasticity of an SFH through
a normalization. As an alternative to the previous method,
we can present the results for the training step as
likelihood versus the Pearson correlation coefficient,
written as
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since this could better provide an estimate of the
goodness-of-reconstruction for highly stochastic SFHs
without the need for an additional R2 adjustment step.
However, the coefficient in this form assumes Gaussian
statistics, whichare not always applicable for our
data sets.

3. Spearman’s correlation coefficient: (rs) Pearson’s corre-
lation coefficient assumes a Gaussian distribution of noise
around a linear relation, and finds the degree of
correlation around it. However, the relation we seekto
compare two time-ordered sets of curves, needs to be
more robust. Therefore,we considered the Spearman
coefficient, which compares two monotonic functions
using ranks in order to find the degree of correlation
between them. For distinct ranks, the coefficient is given
by ( )= - å -r d n n1 6 1s i

2 2 , where di is the difference
between the two ranks of each observation. This,
however does not work very well at describing the fit
for young galaxies, where a significant fraction of the two
SFHs is tied at the same rank due to long periods of
vanishing SFRs at early times.

4. MISE:The mean integrated square error given by
( ( ))– ( ( ))y y= å t tMISE log logt rec true also provides a

method to quantify the goodness-of-reconstruction.
However, it does have a well-defined range to compare
different quantities, and provides no accounting for the
varying amounts of stochasticity of the different data sets.
The concept of minimum distance estimation that this
method implements can also be generalized to the
Kolmogorov–Smirnov statistic, which depends on the

Table 3
Bias in the Estimation of Physical Quantities Due to Different SFH Parametrizations at ~z 1. [No Dust or Noise]

M* SFR100 SFRinst t90 t50 t10 Age

CSF −14% 5% 4% −24% −13% −19% −43%

top-hat −17% 2% −11% −27% −24% −41% −59%
exponential −20% −2% −7% −21% −34% −55% −70%
Linexp −18% −1% −7% −18% −28% −39% −50%
Gaussian −16% −1% −7% −20% −31% −27% −16%
log-normal −14% 2% −3% −16% −25% −33% −26%
Besselexp −19% −1% −7% −21% −34% −42% −43%

Dense Basis −6% 4% 1% −4% −4% −22% −29%

Table 4
Scatter in the Estimation of Physical Quantities Due to Different SFH

Parametrizations at ~z 1. [No Dust or Noise]

M* SFR100 SFRinst t90 t50 t10 Age

CSF 28% 43% 40% 36% 48% 51% 37%

top-hat 28% 50% 49% 35% 44% 46% 32%
exponential 27% 16% 20% 34% 36% 36% 26%
Linexp 29% 23% 25% 34% 38% 37% 29%
Gaussian 24% 26% 24% 29% 31% 28% 28%
log-normal 26% 16% 20% 35% 34% 31% 26%
Besselexp 23% 16% 18% 29% 30% 25% 27%

Dense Basis 13% 7% 10% 18% 43% 34% 20%
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maximum absolute difference between the true and estimated
cumulative SFHs, but does not provide sufficiently sensitive
results to make a distinction between the different families
using a correspondence between the statistic and the
goodnessoffit.

Appendix D
Robustness to Noise

The dense basis method performs SED fitting using an atlas
of SEDs corresponding to well-motivated basis SFHs that
satisfy the conditions in Section 2.2. Although the mapping
from SFH space to the observed photometry is theoretically
bijective, an SED at a given noise level for a given set of
photometric bands is degenerate in SFH space to the extent that
all the SFHs that produce the same SED within error limits are
an acceptable fit. Our formulation then ensures that the basis is
effectively dense in SFH space, allowing us to reconstruct the
overall trend of star formation even if it does not capture the
finer stochastic details. However, even though the basis is
effectively dense in SFH space, it is not dense in SED space,
since a large region of the photometry space is not accessible
through any physically motivated SFH. This allows our method
to ignore all noise that is “unphysical” while performing the
SED-Fitting step. Even though this yields worse c2 and the

noise biases the reconstruction to an extent documented in
Figure 8, it does not overfit the SED by fitting for any noise that
does not correspond to a physically motivated SFH. This
allows our method to be robust to a large fraction of the noise,
as is seen in Figure 17, where we show an example of 1000
noisy realizations to a SAM spectrum in red and the
corresponding reconstruction in blue, which successfully
ignores major outliers in fitting the SED. Extended to the
entire ensemble of 1200 mock galaxies, we find that the ratio of
the residuals to the noise is~45%, with a standard deviation of
~9%, i.e.,

∣ ∣
∣ ∣

( ) ( )
-

-
» 

F F

F F
0.45, 0.09 . 28

j
k

j

j j

true

obs true

The decomposition of this quantity into the sensitivity to noise
in individual bands in Figure 18 shows that the F160w is the
most sensitive to noise, with the method being remarkably
robust to the noise in the ground-based bands. The maximum
deviation due to noise is computed and found to be in the
bounding bands (u ctio and IRAC 4.5 μm). This is expected,
since the endpoints are the most unconstrained in the fitting
process.

Figure 17. Left: fits using the dense basis method (blue circles) to 1000 noisy realizations (red circles) of the photometry corresponding to a galaxy with true spectrum
(black dotted line) showing the robustness of the method to noise that corresponds to unphysical regions of the SFH space. Spectra are shown without nebular
emission for clarity. Right: the pointwise 68% intervals of the reconstructed SFHs for each noisy realization (blue shaded region) compared to the true SFH (red solid
line) showing that the reconstructions are also largely robust to the noise.

Figure 18. Boxplots showing the results of fitting the ensemble of mocks with multiple noisy realizations and comparing the residuals of the fits to the noise.
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Figure 19. Plot of the correspondence between cSED
2 and cSFH

2 for three randomly selected galaxies from each mock data set, using all six families as the basis. The top
three rows are galaxies drawn from SAMs(galaxy id=204, 278, 243), the middle three rows from the hydrodynamical simulations (galaxy id=270, 5, 228) and the
last three rows from stochastic realizations (galaxy id=74, 109, 60).
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Appendix E
Examining the –c cSED

2
SFH
2 Correspondence

for Individual Galaxies

We examine the correspondence between cSED
2 and cSFH

2 for
individual galaxies in greater detail. We provide examples for
three randomly chosen galaxies from each mock catalog as
examples in Figure 19, and discuss possible biases and how
they should be minimized. We compute cSFH

2 as follows.

( )
( )

( ) ( )

( )
( )ò

å
c

y y

s
=

-
=


d t
t t

t
log , 29

k

N
k k

SFH
2 1 true

2

SFH
2

F

where the index k sums over the entire basis of SFHs as above,
and k denotes the stellar mass normalization. The ( )s tSFH denote
symmetric pointwise uncertainties computed through the proce-
dure described in Section 2.5 for each family being tested. Since
the code is implemented over a grid, the integral over time is
effectively a sum over discrete time intervals as described in
Section 2.2. The R2 statistic computes the accuracy of
reconstruction and is better for training the basis families, since
it does not reward SFH families that yield larger uncertainties, as
opposed to cSFH

2 , which does so. However, we can use this
statistic to observe the correspondence between fits in SED space
and reconstructions in SFH space on a galaxy by galaxy basis, and
study sources of biases in the reconstruction.

We encounter two types of biases in the c2 plots, summarized
as follows.

1. DegeneratecSED
2 : If, in addition to the correspondence,

some good fits to the SED (c <dof 1SED
2 ) correspond to

bad reconstructions of the SFH (c >dof 1SFH
2 ), the SFH

reconstruction may be biased. However, these are often
removed as outliers in the procedure used to compute
uncertainties, as described in Section 2.5.

2. Sub-optimal cSFH
2 : The best fit to the SED corresponds to

a significantly worse reconstruction than the best possible
reconstruction of the SFH with that basis. However, like
the true SFH, the best possible reconstruction is generally
within our reported uncertainties around the bestfit
determined via cSED

2 .

For the first point, we quantify the two kinds of biases using the
c2 surface generated for each galaxy in the ensemble of 1200
galaxies using each SFH family. An example of the two kinds
of biases is shown in Figure 20, showing the –c cSED

2
SFH
2 plot

for a single galaxy with a single SFH family. Since there is a
certain amount of degeneracy introduced in SED fitting due to
noise, we consider the set of all good fits (c <dof 1SED

2 )
instead of the best fit ( )cmin dofSED

2 . As shown in Figure 19,
we see that there is generally a good correspondence between
cSED

2 and cSFH
2 in the regime of good fits. We then find the

families that minimize the two types of biases in SFH
reconstruction.
We quantify the degenerate cSED

2 bias by examining the
histogram of the set { ∣ }c c= <S 1i iSFH,

2
SED,
2 . Since this is the

set of good fits, we then say that a galaxy has a type 1 bias if it
has multiple peaks in this histogram, separated by a minimum
distance of 1 dex in cSFH

2 . This is the more common type of
bias, and the probability that it will bias the fit toward a poorer
reconstruction depends on the ratio of the areas under the two
peaks. We show the number of occurrences of this type of bias
for each family in Table 5, finding that the exponential and
CSF families have the highest occurrence of this behavior.
While these biases are more common than sub-optimal cSFH

2

biases, they only indicate the possibility of a bias due to noise,
and are usually much milder than the example shown.
For sub-optimal cSFH

2 bias, we find the distance =d
( ∣ – ∣ )( ) ( )c cc cSFH

2
min SFH

2
minSFH

2
SED
2 for each galaxy with each SFH

family. This distance denotes the difference between the best
cSFH

2 possible in the basis and the cSFH
2 corresponding to the

best-fit SED in the basis. If the latter quantity is much worse
than the former, we say that a galaxy has a bias due to sub-
optimal cSFH

2 . We find that this is best quantified by the
condition >d 0.4 dex. We show the number of these biases for
each family in Table 5, finding much lower rates of occurrence
and that the Top-Hat family shows the highest occurrence of
this behavior.
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