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Abstract

New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict
their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one
cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-
density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and
mass, they approximate observed column density maps, and their distributions of column density (N-pdfs) are pole-
free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas
dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis
suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to
make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough
dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-
forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready
known.
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1. Introduction

1.1. Filamentary Clouds

Interstellar clouds are elongated and “filamentary” over a
wide range of scales of size and column density. In molecular
clouds, such filamentary structure is believed to play an
important role in the formation of dense cores and protostars
(Molinari et al. 2010; André et al. 2014).

Filamentary clouds are observed by dust extinction of
background starlight at optical and near-infrared wavelengths,
dust emission at far-infrared and submillimeter wavelengths,
and emission in spectral lines tracing a range of gas density.
Much of our recent knowledge of filamentary clouds and their
properties is based on observations with the Herschel Space
Observatory of nearby star-forming clouds within a few
hundred pc and more distant infrared dark clouds within a
few kpc (Arzoumanian et al. 2011, 2016, hereafter A11, A16;
Malinen et al. 2012; Peretto et al. 2012; Palmeirim et al. 2013;
Polychroni et al. 2013; Alves de Oliveira et al. 2014; Koch &
Rosolowsky 2015).

Spectral line observations indicate that some filaments that
appear monolithic in Herschel images can be better understood
as “bundles” of closely spaced “fibers” that are distinguished
by their velocities and incidence of dense cores (Hacar
et al. 2013; Tafalla & Hacar 2015). However, similar
observations of other filaments, including the Musca filament,
do not indicate multiple fibers (Kainulainen et al. 2016; Hacar
et al. 2016).

Simulations of turbulent fragmentation produce a spectrum
of filamentary structures under a variety of initial conditions
(Vazquez-Semadeni 1994; Klessen & Burkert 2001; Banerjee
et al. 2006; Girichidis et al. 2012; Federrath & Klessen 2013).
Filaments in simulations resemble observed filaments in some
ways (Smith et al. 2014; Kirk et al. 2015). There is a general
consensus that filaments can form from converging flows in
regions of supersonic turbulence and that self-gravitating
filament gas can condense into star-forming cores. However,
it remains unclear how filaments are formed and dispersed,

how they supply mass to dense cores, and how their properties
affect the star formation rate and protostar mass distribution.

1.2. Filament Models

The model of filament structure most often compared to
observations is the infinite self-gravitating isothermal cylinder
(Stodolkiewicz 1963; Ostriker 1964). Nonisothermal infinite
cylinders with radially increasing temperatures have been
considered by Recchi et al. (2013), and infinite polytropic
cylinders have been analyzed in both the nonmagnetic case
(Toci & Galli 2015a) and the magnetized case (Fiege &
Pudritz 2000; Toci & Galli 2015b). Other studies of filament
structure, including oscillating filaments, are summarized by
Gritschneder et al. (2016).
Models of filament formation and evolution include

instability in self-gravitating and magnetized layers (Miyama
et al. 1987; Hanawa & Tomisaka 2015), formation from
converging flow shocks (Pudritz & Kevlahan 2013), and
gravitational infall onto filaments (Heitsch 2013). Models of
filament fragmentation and core formation are discussed by
Larson (1985), Inutsuka & Miyama (1997), Nagai et al. (1998),
Curry (2000), and Chen & Ostriker (2015).
In contrast to the above physical models, “descriptive”

models of filament structure quantify observed features
independent of the models’ dynamical status. A well-known
descriptive model is the “Plummer-like” profile of the form

= + -[ ( ) ] ( )n n r r1 , 1p
0 0

2 2

where n0 is the maximum density and r0 is a fixed scale length
(Plummer 1911). In the limit r=r0, n has the constant value
n0. When r?r0, n declines as a power law in the radial
direction, n=n0 r

− p, with exponent p indicating the steepness
of the density decline.
Plummer-like profiles have been used to describe the density

distribution in stellar clusters, globular clusters, starless dense
cores, and, most recently, filaments (Plummer 1911; King 1962;
Nutter et al. 2008; A11; Fischera 2014, hereafter F14). For
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p=4, the Plummer-like profile matches the infinite isothermal
cylinder (Ostriker 1964), and, for 1<p<2, it corresponds to
a subisothermal polytropic cylinder (Toci & Galli 2015a).
Plummer-like cylinder models are henceforth called “PC
models.”

PC models fit JCMT/SCUBA submillimeter observations of
filament radial column density profiles in Taurus (Nutter
et al. 2008), Herschel observations in Aquila (A11), and
Herschel observations in many other nearby regions (A16).
The results have been used to estimate filament stability against
radial collapse by applying the stability properties of the
infinite isothermal filament, with p = 4, to the typical finite
filament, with p≈2. The nearly constant width of the
observed filaments, combined with their critical line mass for
stability, leads to agreement with the column density “thresh-
old” of ∼7× 1021 cm−2, above which the gas in nearby
molecular clouds tends to harbor young stars (André
et al. 2010, 2014; Lada et al. 2010).

Despite the physical insight they provide, 1D PC models are
too idealized to investigate the finite length and mass of
filaments and their development of dense cores and protostars.
PC models are also too idealized to match the distribution of
column densities (N-pdf) observed in filamentary regions. The
constant central column density of a PC implies a pole in its
column density distribution (N-pdf; F14). In contrast, N-pdfs of
observed filamentary regions generally have a declining power
law at high column density and no pole (Schneider
et al. 2013, 2015; Kainulainen et al. 2009).

To better understand how filaments evolve toward star
formation, this paper presents three new 2D axisymmetric
models of filamentary structure. These models have finite
spatial extent and mass, axial structure resembling either
spindles or cores, and N-pdfs that tend toward pole-free power
laws at high density. They retain approximately the same mean
radial structure as the PC model. They are used to model three
observed filamentary clouds and to estimate their star-forming
potential.

For each model, Section 2 gives the structure of volume
density n and column density N, contour maps of N, radial N-
profiles, and the N-pdf distribution. Section 3 defines the “star-
forming zone” (SFZ) of each model, in which the gas is dense
and extended enough to form low-mass stars. It describes a
Jeans-like fragmentation model that gives the mean spacing
and star formation efficiency (SFE) of the new stars that the
SFZ can produce. Section 4 applies these models to three
observed filamentary clouds. It estimates the number of low-
mass stars they can form and compares these numbers to their
already-known populations of young stars. Section 5 sum-
marizes the paper and discusses limitations and applications.

2.1. Axisymmetric 2D Filament Models

The models presented here are axisymmetric, where the
volume density depends on the radial extent r from the
symmetry axis and the axial distance ∣ ∣z from the center. Each
of the models has a density depending on radius as r−2, in the
limit where r is much greater than the scale length r0,
corresponding to the p=2 case for a PC.

More complex structures, including magnetized filaments
(Fiege & Pudritz 2000), bundles of fibers (Hacar et al. 2013),
and filament networks (Busquet et al. 2013), are beyond the

scope of this paper. The models presented here are condensed
in the radial and axial directions. They have no simple
equilibrium interpretation, in contrast to simple PC models,
which are radially condensed but axially uniform. The
dynamical evolution of these nonequilibrium models may be
a useful application for numerical simulations (e.g., Nelson &
Papaloizou 1993; Sigalotti & Klapp 2001; Burkert &
Hartmann 2004).
Sections 2.3.1 and 2.3.2 give expressions for density and

column density for each model considered. These expressions
are used to generate the column density maps, radial profiles,
and N-pdfs used in later sections. Readers more interested in
results may prefer to skip to Section 2.4.

2.2. Cylindrical Models

This section gives expressions for n and N for models whose
normalized radial density structure is cylindrical; i.e., n(r, z)/n
(0, z) is independent of axial position z. These consist of the 1D
PC (Nutter et al. 2008; A11), the 1D truncated Plummer
cylinder (TPC; F14), and the 2D truncated Plummer–Plummer
cylinder (TPPC) introduced in this work.

2.2.1. PC and TPC

The density structure of the p=2 PC is

= + -[ ( ) ] ( )n n r r1 2PC 0 0
2 1

for scale length r0, central density n0, and cylindrical radius
= +( )r x y2 2 1 2 in the range 0<r<R, where  ¥R . The

corresponding column density is obtained by integrating
Equation (2) along the y-axis, assuming that the symmetry
axis coincides with the z-axis:

p x= + + -[ ] ( )N N n r 1 , 3PC bk 0 0
2 1 2

where x º x r0 and a constant background column density Nbk

is assumed. Here NPC declines from its maximum NPC=Nbk

+ πn0r0 at x=0 to its minimum NPC = Nbk at = ¥x .
The TPC has the same density structure as the PC in

Equation (2),

= + -[ ( ) ] ( )n n r r1 , 4TPC 0 0
2 1

but its maximum radius R is finite rather than infinite. Then,
Equation (4) defines the bounding surface in terms of the
minimum density nmin by

X = -
⎡
⎣⎢

⎤
⎦⎥ ( )n

n
1 , 50

min

1 2

where X º R r0 is the maximum value of ξ=x/r0 at the
boundary, where x=R and y=0.
The TPC column density is obtained by integrating its

volume density along the y-axis, giving

x
x
x

= +
+

X -
+

-
⎪
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⎩
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⎫
⎬
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( )N N
n r2

1
tan

1
. 6TPC bk

0 0
2 1 2

1
2 2

2

1 2

Here NTPC declines from its maximum NTPC = Nbk +
2n0r0tan

−1Ξ at x = 0 to its minimum NTPC = Nbk at x = R.
Note that Equation (6) reduces to Equation (3) when R?r0,
as expected.
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2.2.2. Observational Constraints on 2D Models

To match the observed filament properties, the 2D models
presented here have density functions n(r, z) subject to three
observational constraints. (1) The N-pdf should be pole-free, as in
the column density observations of filamentary regions (Schneider
et al. 2015, 2016). This condition is met when the axis density
profile n(0, z) has sufficient variation with axial position z. (2) The
mean radial column density profile should be well fit by a PC
model with p≈2, as is typical of filaments observed in nearby
clouds with Herschel (A16). This condition is met when the
density n varies approximately as [1 + (r/r0)

2]−1. (3) The contour
maps of column density N should have high-N contours of
approximately ellipsoidal shape, elongated along the long axis, to
resemble observed contour shapes of cores and filamentary ridges.
This condition is met when the axial profile n(0, z) depends on z
with a form similar to the TPC dependence of n(r, 0) on r.

2.2.3. TPPC Model

The above constraints on 2D cylinder models are met in a
TPPC model,

x h z
=

+ + +[ ][ ( ) ]
( )n

n

a1 1
, 7TPPC

0
2 2 2

where n0 is the peak density at the origin and h º y r0 and
z º z r0. Here a is the aspect ratio of the bounding surface,
which is obtained from Equation (7) by setting

x h z+ + + = + X{[ ][ ( ) ]} ( )a1 1 1 , 8b
2 2 2 2

where

X = -
⎡
⎣⎢

⎤
⎦⎥ ( )n

n
1 . 90

min

1 2

Here Ξ is the maximum value of ξ, when η=ζ=0;
equivalently, Ξ is the maximum value of η, when ξ=ζ=0.
Then, Equation (8) gives the maximum value of ζ, denoted Z,
as

= X ( )Z a , 10

whence the bounding surface aspect ratio is X =Z a. Note
that the bounding surface is not a simple ellipsoid; instead, it
resembles a prolate figure with a central bulge.

The column density of the TPPC model is obtained by
integrating Equation (7) along the y-axis within the limits given
in Equation (8), giving

x z
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z
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+ +

´
+ X +

+
--

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

( ) [ ( ) ]

( ) ( )
( )

( )

N N
n r

a

a

2

1 1

tan
1 1

1
1 . 11

TPPC bk
0 0

2 1 2 2

1
2 2

2

1 2

Equation (11) indicates that the column density declines from
its maximum = + X-N N n r2 tanTPPC bk 0 0

1 at (x, z) = (0, 0) to
its minimum NTPPC=Nbk at the bounding column density
contour, defined by

x z+ + = + X{[ ][ ( ) ]} ( )a1 1 1 . 12b
2 2 2

Comparison of Equations (8) and (12) indicates that the
bounding column density contour is simply the intersection of
the bounding surface and the plane of the sky (the x=0

plane). Thus, the aspect ratio of the bounding contour is equal
to a, as in Equation (10).
To aid in visualizing the models, Figure 1 shows contour

maps of column density for the TPC, TPPC, truncated prolate
spheroid (TPS), and stretched truncated prolate spheroid
(STPS) models. They are all based on the same scale length
r0=0.04 pc, peak density n0=105 cm−3, maximum radius in
the radial direction R = 0.4 pc, and maximum radius in the
axial direction 2 pc. These values are chosen to be typical of
core and filament properties in nearby star-forming regions.
In the TPPC model, the column density contours change shape

from small radii to large radii. The contour aspect ratio increases
with increasing radius, and, in each quadrant, the contour shape is
concave at a small radius and convex at a large radius. The
bounding contour shape approaches that of an ellipse only in the
limit as ζ approaches its maximum value Z. The aspect ratio of
this limiting ellipse is aΞ; it is more elongated than the aspect
ratio a of the TPPC bounding contour and the aspect ratio a 2
of the innermost contour. These properties make the TPPC model
a useful description of an elongated filament with a large central
bulge, such as the integral-shaped filament in Orion A North
(e.g., Salji et al. 2015).

2.3. Spheroidal Models

This section describes TPS models, whose column density
contours are ellipses of constant aspect ratio, and STPS models,
whose contours are approximately ellipses whose aspect ratio
increases with radius.
Such spheroidal models with a constant aspect ratio may be

useful to describe filaments whose high-column-density gas is
mostly concentrated in elongated ridges, as in Chamaeleon I
(Alves de Oliveira et al. 2014) or Musca. Spheroidal models
with an outwardly increasing aspect ratio may also describe a

Figure 1. Contour maps of column density for the truncated filament models
TPC, TPPC, TPS, and STPS. Each model assumes parameter values r0 = 0.04
pc, n0 = 105 cm−3, R = 0.4 pc, and maximum aspect ratio a = 5. Contours of
constant column density are drawn at 1, 3, 9, and 27 × 1021 cm−2.
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filament that harbors a single low-mass core, as in L43
(Mathieu et al. 1988; Chen et al. 2009). In spheroidal models,
the density depends on axial and radial coordinates that are
summed in quadrature. They are not separable, as in the above
TPPC model. Therefore, their outer column density contours
are ellipses, in contrast to the TPPC model.

Oblate and prolate spheroidal models have been widely used
as analytic descriptions of galaxy structure (Binney &
Tremaine 1987). In some observed cases, the ellipticity is not
constant with radius (King 1978), requiring oblate models that
are not strictly spheroidal (Bohn 1983).

Prolate spheroidal models have been used to fit column
density structures in molecular cloud images to obtain the
volume density pdf of the cloud (n-pdf; Kainulainen
et al. 2014). Similar models have been used as initial states
for numerical calculations of collapse and fragmentation
(Nelson & Papaloizou 1993; Sigalotti & Klapp 2001). Prolate
spheroidal models have been studied to a lesser degree than
cylindrical models. The prolate spheroidal models of varying
ellipticity presented here do not appear to have been studied
previously.

2.3.1. TPS

The spheroidal models used here are Plummer-like in order
to approximate the radial profiles derived from Herschel
observations (A11; A16). Their volume density n depends on
space coordinates as

x h z
=

+ + + ( )
( )n

n

a1
, 13TPS

0
2 2 2

where, as in Section 2.2, the fixed parameters are the peak
volume density n0 and the radial scale length r0. The constant
parameter a is the ratio of the maximum radii in the axial and
radial directions. It is assumed that a>1 so that the spheroid is
prolate.

The density is truncated at a minimum value nmin by a
constant-pressure medium. Then, Equation (13) sets the
bounding surface, which is a prolate spheroid satisfying

x h z+ + = X[ ( ) ] ( )a , 14b
2 2 2 2

where Ξ is the maximum value of ξ, as defined in Equation (5).
The column density in the y-direction is obtained by

integrating the density in Equation (13), giving

m

m
m

= +
+

X -
+

- ( )N N
n r2

1
tan

1
, 15TPS bk

0 0

2

1
2 2

2

where the dimensionless coordinate μ is the quadrature sum of
the normalized coordinates in the x- and z-directions,

m x zº +[ ( ) ] ( )a , 162 2 1 2

and 0�μ�Ξ. The column density declines from its
maximum = + X-N N n r2 tanTPS bk 0 0

1 at (x, z) = (0, 0) to
its minimum NTPS=Nbk at the bounding column density
contour, defined by

x z+ = X[ ( ) ] ( )a . 17b
2 2 2

Equations (15)–(17) show that NTPS depends on ξ and ζ only
through μ. The contours of column density are concentric
ellipses of aspect ratio a nested in the bounding contour, as
shown in Figure 1. As a 1, the column density of the TPS

reduces to that for the truncated Plummer sphere (F14,
Equation (A.11)).

2.3.2. STPS

Many observed filaments have at least one embedded low-
mass core, a significant local maximum of column density
whose radial width is similar to that of its host filament and
whose aspect ratio is less than ∼2. For these systems, the PC,
TPC, and TPS models are not useful because they lack a
significant core, while the TPPC model is not useful because its
core is too extended.
A formulation that meets the three constraints of

Section 2.2.2 has the aspect ratio a in Equation (10) increasing
with z, so that column density contours progress from nearly
round near the center, where z = 0, to elongated near the
extreme values ±zmax. This result can be achieved if a
increases linearly from amin when ζ=0 to amax when
z z=∣ ∣ max , i.e.,

z z zº + -( ) ( )∣ ∣ ( )a a a a . 18min max min max

With this variable aspect ratio, the expression for the STPS
density becomes

x h z z
=

+ + + [ ( )]
( )n

n

a1
, 19STPS

0
2 2 2

where the bounding surface satisfies

x h z z+ + = X{ [ ( )] } ( )a . 20b
2 2 2 2

The column density becomes

n

n
n

= +
+

X -
+

- ( )N N
n r2

1
tan

1
, 21STPS bk

0 0

2

1
2 2

2

where the dimensionless coordinate ν for the stretched spheroid
is

n x z zº +[ [ ( )] ] ( )a , 222 2 1 2

and the bounding column density contour satisfies

x z z+ = X{ [ ( )] } ( )a . 23b
2 2 2

As in the TPC, TPS, and TPPC models, the column density
declines from its maximum value = + X-N N n r2 tanSTPS bk 0 0

1

at x=z=0 to its minimum NSTPS=Nbk at the bounding
contour.
The STPS contours in Figure 1 resemble ellipses that have

been “stretched” along the long axis by a factor that increases
with distance from the center. Thus, this model is denoted
STPS. Equations (18) and (23) indicate that the aspect ratio of
the bounding contour equals amax. The aspect ratio aHM of the
half-maximum contour for the STPS is much closer to unity
than for the TPS, as Equations (10) and (23) show. The STPS
model may give a useful description of a low-mass core with
nearly round contours embedded in a more elongated filament.

2.4. Radial N-profiles

The mean radial column density profile ¯ ( )N x of a
filamentary cloud has been used to characterize the radial
structure of observed clouds, to compare from cloud to cloud,
and to compare with theoretical models and simulations (A11;
A16; Smith et al. 2014; Kirk et al. 2015; Koch & Rosolowsky
2015). This section compares ¯ ( )N x for the TPC, TPPC, TPS,
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and STPS models. It finds that the mean profile shapes are
highly similar for all the models for relative amplitudes greater
than ∼20% of the peak amplitude. This similarity of shape
extends over a greater range for the TPC, TPPC, and TPS
models, down to ∼10% of the peak amplitude.

The typical analysis procedure first defines the “spine” of the
filament, taking into account its departures from a straight line,
using one of several available image-processing algorithms
(Koch & Rosolowsky 2015). Then, one obtains the mean
column density ò ò=¯ ( ) ( )N x dzN x z dz, , where x is the
distance perpendicular to the local spine direction, at each of a
sequence of equally spaced values of z along the spine.

The mean radial structure profile ¯ ( )N x is typically fit with a
PC model based on Equation (1) out to a radial distance where
the profile merges with the local background. Usually, it is
possible to obtain a good fit where the scale length r0 is a few
times 0.01 pc and the density exponent p lies in the range 1.5–2
(A11; A16). However, these parameters are not independent
(Smith et al. 2014; Kirk et al. 2015).

The mean radial profiles of the TPC, TPPC, TPS, and STPS
models were compared with those of the PC model by
calculating N(x, z) at 10 values of z extending in uniform steps
of 0.05 pc along the z-axis. The profiles N(x, z) were combined
in an unweighted average. At points where x extended beyond
the truncation boundary, N was set to zero before averaging
with neighboring scans. Each mean profile ¯ ( )N x was normal-
ized to its maximum value, giving the normalized mean column
density profile n º( ) ¯ ( ) ¯ ( )x N x N 0 .

The width and shape of the normalized profile n ( )x are
compared with those of the PC profile in Figures 2 and 3.
Figure 2 shows the five profiles when each model has the same
scale length r0 = r0(PC) = 0.04 pc, and Figure 3 shows the
profiles when the model scale lengths are adjusted so that each
profile has the same half-width at half-maximum (HWHM) of
x1/2 = x1/2(PC) = 0.069 pc. These figures show that the TPC,
TPPC, TPS, and STPS model profiles have similar widths and

shapes to those of the PC model, as well as to those of each
other. This similarity is expected, since each model has the
same basic dependence of density on radius as n∼[1 +
(r/r0)

2]−1. Furthermore, each model has the identical radial
column density profile at z=0, as can be seen from
Equations (11), (15), and (21) or by inspection of the contours
in Figure 1.
Figure 2 shows that, for a fixed scale length, the half-

maximum (HM) radii x1/2 of the four truncated models all
lie within a factor of 2 of the HM radius of the PC, from
x1/2(TPPC)=0.90 x1/2(PC) to x1/2(STPS) = 1.72 x1/2(PC).
The average ratio of the TPC, TPPC, TPS, and STPS widths to
the PC width is 1.2. This variation in width arises mainly
because the width of each model profile scales slightly
differently with scale length. Thus, each model can match the
mean width of an observed profile with a simple adjustment of
its scale length. Alternatively, if the observed profile has a well-
defined central maximum, it may be possible to match the
width of the central profile instead of the mean profile.
Figure 3 shows that model profiles with the same HM width

also have the same basic shape as the PC profile for relative
amplitudes above ∼0.2, or, equivalently, for a radial extent
within the first 2–3 HM radii from the filament axis. For larger
radial extents, the STPS profile diverges most from the PC
profile. In contrast, the TPS, TPPC, and TPC profiles remain
similar to each other down to a lower relative amplitude of
∼0.1. At this level, their departure from the PC model is due
mainly to the difference between truncation at a finite radial
distance (TPS, TPPC, and TPC) and at an infinite radial
distance (PC).

2.5. N-pdfs

This section presents N-pdfs for the TPC, TPPC, TPS, and
STPS models to compare with the typical observed properties
of a well-defined peak and a pole-free power-law decline at
high N. The main result is that each of the new models matches

Figure 2. Mean radial profiles of column density for the five models PC, TPC,
TPPC, TPS, and STPS, normalized to their maximum value, for fixed radial
scale length r0 = 0.04 pc.

Figure 3. Mean radial profiles of column density for the five models PC, TPC,
TPPC, TPS, and STPS, normalized to their maximum value, for scale lengths
r0 adjusted so that each profile has the same HWHM x1/2 = 0.069 pc.
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these properties, in contrast to the TPC model, whose pole at
high N conflicts with observations.

The number distribution of log column density in a region,
or its N-pdf, is a diagnostic of the dense gas and star-forming
properties in a molecular cloud (Kainulainen et al. 2009;
Federrath & Klessen 2013; Schneider et al. 2013, 2015). The
N-pdf is defined as Np(N), where p(N) is the probability density
that the column density lies between N and N + dN. Many N-
pdfs are observed to have a well-defined peak column density
and a negative power-law slope at high N. A shallower slope is
associated with a greater degree of star formation in a region
(Sadavoy et al. 2014; Stutz & Kainulainen 2015). The value of
the slope has been interpreted as an indicator of the dynamical
status of its dense gas (Federrath et al. 2013; Girichidis
et al. 2014) and of its degree of central concentration
(Myers 2015).

Some N-pdfs cannot be expected to represent the properties
of any simple structure because their corresponding observed
regions harbor too many clouds of diverse structure. However,
observations with finer resolution and sensitivity make it
possible to obtain the N-pdfs of regions whose emission is
dominated by one or a few filaments, such as the IC 5146
region (N. Schneider 2015, private communication) or the
Musca filament (Kainulainen et al. 2016). Thus, it is useful to
compute the N-pdfs of the filamentary models presented here
for comparison with observations.

The method of N-pdf calculation is similar to that described
in F14 and Myers (2015). However, it differs because the
TPPC, TPS, and STPS models have neither purely radial nor
purely cylindrical symmetry. Therefore, p(N) was found by
dividing the total area A within the bounding contour into axial
“slices” of area 2xmax(z)dz. Within each slice, the area was
found between z and z + dz and between the contours of N and
N + dN. This area was integrated numerically over all z to give
the differential area between N and N+dN. Then, the
probability p(N)dN that the column density lies between N
and N+dN is the ratio of differential to total area, or,
equivalently,

ò ò= -( ) ( ) ( ) ( )
( ) ( )

p N dz
dx

dN
z dzx z . 24

z N z N

0

max

0

max bk

max

Here zmax(N) is the maximum value of z in the contour of
constant N, zmax(Nbk) is the maximum value of z at the
bounding contour, and xmax(z) is the value of x(z) at the
bounding contour. For each calculation of the N-pdf, the
probability density p(N) was found to satisfy the normalization
condition ò =( )p N dN 1.

In Equation (24), the derivative dx/dN was obtained
analytically from Equations (11), (15), and (21) with an
approximation useful when Ξ is sufficiently large. In the
power-series representations for tan−1(x) and tan−1(xmax)
(Gradshteyn & Ryzhik (1980, #1.644 1), one may assume
that the ratio of hypergeometric functions [F 1 2, 1 2;

+( )]x x3 2; 12 2 to +[ ( )]F x x1 2, 1 2; 3 2; 1max
2

max
2 is

negligibly different from unity. Then, the function
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can be approximated by

x
x

=
X

X -
+

⎡
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⎤
⎦⎥ ( )f

1

1
, 26app

2 2

2

1 2

where 0�ξ�Ξ and 0�f�1. Here fapp matches f exactly at
ξ = 0 and ξ = Ξ, and fapp overestimates f slightly for all other
values of x. This approximation has an uncertainty smaller than
the usual observational uncertainties. When Ξ = 10, the mean
of fapp− f is 2% of the range of f.
Figure 4 shows N-pdfs for the cylindrical TPC and TPPC

models and for the spheroidal TPS and STPS models computed
as described above for the same parameters as in Figure 1. The
TPPC, TPS, and STPS models have pole-free N-pdfs with
power-law behavior at high N, in contrast to the TPC model,
which has a pole at the central column density. In addition,
these new N-pdfs have peaks and slopes that vary only slightly
from the N-pdfs of their purely spherical and cylindrical
counterparts.
The N-pdf for the axially nonuniform TPPC has no pole,

because in this case the peak column density for each slice
differs from the peak column densities of all the other slices.
The resulting probability p(N) contains an infinitesimally small
pole at each N, because p(N) is an average of the pole
probability for each slice with smaller probability values from
all the other slices. Thus, the TPC N-pdf has a pole because its
on-axis density is uniform, while the TPPC N-pdf is pole-free
because its on-axis density is sufficiently nonuniform. The TPS
and STPS N-pdfs are similarly pole-free because of their axial
nonuniformity.
All of the N-pdfs in Figure 4 have a power-law slope of 2 at

low N and a local maximum near N = 3× 1021 cm−2, or
approximately at N = 2n0r0/Ξ. Each of these properties is a
result known for pure Plummer cylinders and spheres (F14).
Evidently, the departures of these new models from pure

Figure 4. Column density distributions (N-pdfs) for the truncated models TPC,
TPPC, TPS, and STPS. Black curves indicate cylindrical models that are
axially uniform (TPC) or axially concentrated (TPPC). Blue curves indicate
spheroidal models that have a constant aspect ratio (TPS) or an aspect ratio that
increases outward from the center (STPS). Faint lines indicate the asymptotic
slopes expected for pure PCs (−1) or spheres (−2) at high density or for either
at low density (2).
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Plummer cylinders and spheres do not significantly change
these properties.

At high N, the N-pdf slopes of the TPC and TPPC models
tend toward −1, as expected for an axially uniform PC with
infinite radial extent (F14). At low N, the TPC and TPPC N-pdf
slopes are each 2, but the N-pdf of the TPPC extends to a lower
column density than does the N-pdf of the TPC. This difference
occurs because the TPPC density declines from its peak value
in both the axial and the radial directions, while the TPC
density declines only in the radial direction.

3. The Star-forming Zone

Section 2 shows that the TPPC, TPS, and STPS models can
approximate the large-scale density structure of simple
filamentary clouds without violating observational constraints
on their N-profiles and N-pdfs. In turn, this density structure
can be used to estimate a cloudʼs capacity to form new stars.
This section describes the SFZ for each model and gives an
estimate of the number of protostars it can form.

3.1. The SFZ of a Model Cloud

An SFZ is defined here as a region of a molecular cloud that
is dense and extended enough to form stars of typical mass, in
contrast to the surrounding cloud gas, which is less dense and
does not form such stars. These SFZ properties are based on
observations of nearby regions of low-mass star formation. On
small scales, dense cores harboring protostars have a mean
density of ∼3× 104 cm−3 over ∼0.05 pc, according to NH3

line observations and dust continuum emission (Myers &
Benson 1983; Beichman et al. 1986; Enoch et al. 2006;
Sadavoy et al. 2010). On larger scales, cloud regions extending
up to ∼1 pc are associated with multiple cores and young
stellar objects when their mean column density exceeds
∼6× 1021 cm−2, based on submillimeter dust emission (André
et al. 2010) and near-infrared extinction of background stars
(Lada et al. 2010). These observations indicate a relatively
sharp increase in the incidence of young stars above a
“threshold” column density.

A model SFZ can match these properties if its smallest
possible version has the mass and extent of a single dense core.
The core model adopted here is the critically stable isothermal
sphere (Bonnor–Ebert [BE] sphere; Ebert 1955; Bonnor 1956)
that forms a star with the mean mass of the initial mass function
(IMF), =M̄ 0.36IMF MSun (Weidner & Kroupa 2006). This
particular BE sphere is called the “mean-IMF sphere,” or MIS.
For simplicity, MIS properties are written with subscript S, and
SFZ properties are written with subscript Z.

The MIS properties depend on its core-star efficiency òS and
temperature TS. Here òS = Mstar/MS is assumed to be equal to
0.35, the mean of the values obtained from core mass functions
in the Pipe Nebula (Alves et al. 2007) and the Aquila complex
(Konyves et al. 2015). The MIS mass is then MS = 1.0 MSun.
Star-forming gas may tend to fragment into cores of about this
mass due to the thermal coupling of gas and dust (Larson 2005)
or converging magnetized flows (Chen & Ostriker 2015). The
temperature TS is close to 10 K in nearby regions of isolated
low-mass star formation. In young clusters and in regions of
more massive star formation, the temperature of star-forming
gas may exceed 20 K (Jijina et al. 1999; Rosolowsky
et al. 2008; Foster et al. 2009).

An MIS with MS = 1.0 MSun and TS = 10 K matches the
observed star-forming properties cited above, since its radius,
boundary density, and mean column density are, respectively,
RS = 0.05 pc, nmin = 1.3× 104 cm−3, and N̄S=6.8×
1021 cm−2. Thus, the SFZ model adopted here is a centrally
concentrated region that is dense and extended enough to form
at least one star of typical IMF mass, whose radius in each
direction is at least RS, whose minimum bounding density is
nmin, and whose mean column density is at least N̄S. It may
have any closed shape, and its extent may be much greater
than RS.
For fixed mass and increasing temperature, the MIS becomes

smaller and denser. If T = 20 K, the MIS properties are
RS = 0.025 pc, nmin = 1.0× 105 cm−3, and N̄S=27×
1021 cm−2. The SFZ mass MZ and volume VZ are obtained by
integrating the model cloud density over the SFZ. The mean
mass density of the SFZ is defined as r =¯ M VZ Z Z. The SFZ
“concentration” is the ratio of its mean to minimum density,
denoted r rº ¯q .Z Z min

3.2. Fragmentation of the SFZ

To estimate how many stars of typical mass the SFZ can
form, it is necessary to specify its fragmentation. The simple
model adopted here is based only on properties of the SFZ and
MIS discussed above and on mass and volume conservation. It
assumes that (1) the SFZ mass and volume are the same before
and after fragmentation, (2) the SFZ fragments only into MISs
and uniform gas of density nmin, and (3) each MIS collapses
into a star of final mass M̄IMF. A cartoon of a cloud whose SFZ
undergoes fragmentation and collapse is shown in Figure 5.
In the fragmented SFZ, the arrangement of MISs can be

visualized as closely spaced “chains of cores,” as observed in
B213 (Tafalla & Hacar 2015) and Aquila (Konyves
et al. 2015). The uniform inter-MIS gas density nmin can be
considered an average over the filament and interfilament gas
surrounding the cores. In the limit of an infinitely extended
isothermal medium, this inter-MIS gas has the pressure needed
to keep each MIS critically stable.
The number of MISs in the fragmented SFZ, NS, is found by

mass and volume conservation from the unfragmented SFZ
to the fragmented SFZ. The SFZ mass is =MZ
r - +( )V N V N Mmin Z S S S S, or, equivalently,

= ( )N
V

V
f , 27S

Z

S

Figure 5. Cartoon of fragmentation and collapse in an SFZ having density
n = nmin. The SFZ in the initial cloud (left) fragments into MISs in a uniform
medium of density nmin (center). Each MIS is a BE sphere that collapses to
form a protostar whose final mass is the mean mass of the IMF (right).
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where f is the volume filling factor of MISs,

º
-
-

( )f
q

q

1

1
, 28Z

S

and 0�f�1 or 1�qZ�qS=2.46. Thus, NS depends only
on the SFZ volume and its initial concentration qZ, since the
parameters qS and VS are constant properties of the MIS. Here
NS can be understood as the number of MISs needed to make
the mean density of the fragmented SFZ equal to the mean
density of the unfragmented SFZ.

The mean fragment spacing and SFE of the SFZ can be
expressed solely in terms of the initial SFZ concentration qZ
and on constant parameters. The mean fragment spacing in 3D
is l = ( )V NS Z S

1 3, whence Equations (27) and (28) give the
spacing in terms of MIS radius as

l p
=

⎛
⎝⎜

⎞
⎠⎟ ( )

R f

4

3
, 29S

S

1 3

and in terms of the Jeans length for the mean SFZ density as

l
l p

p
= ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )C

q

f

4

3
, 30

J

S
S

Z
1 2 1 3

where CS=RS(Gρmin)
1/2/σ=0.486 is a property of the BE

sphere with velocity dispersion σ (McKee & Ostri-
ker 2007 [MO07]).

The SFE, or the ratio of the final mass in the protostars to the
initial SFZ mass, is given by

e=
-

-

-

- ( )
q

q
SFE

1

1
. 31S

Z
1

S
1

This SFE refers only to new stars that can form in the SFZ and
does not include already-formed stars in the SFZ. It is
meaningful only when a substantial number of MISs are

predicted to form. The relations in Equations (29)–(31) are
shown in Figure 6.
Figure 6 and Equations (29)–(31) show that MISs in the

fragmented SFZ have a typical spacing of about three
MIS radii, or about one Jeans length, for the mean density
of the initial SFZ. The predicted SFE ranges from 0 to 0.3.
These SFE values span the range of observed estimates for five
large clouds with extinction AV>∼2 mag, where the SFE is
3%–6% (Evans et al. 2009); to smaller zones within these same
clouds with AV>∼6 mag, where the SFE is 5%–15%
(Jorgensen et al. 2008); to deeply embedded clusters, where
the SFE is 10%–30% (Lada & Lada 2003; Gutermuth et al.
2009). Analysis of simulations and observations indicates that
the SFE generally increases with decreasing size scale until one
reaches the dense core scale (Federrath & Klessen 2013;
Padoan et al. 2014), in accordance with this fragmentation
model.

3.3. Comparison of the SFZ Fragmentation Model with
Cluster Observations

This SFZ fragmentation model applies only to regions whose
concentration is less than the concentration of a single MIS, qZ,
max=qS=2.46 (MO07). This limit is probably consistent
with most star-forming regions. The typical range of qZ in
embedded clusters lies below this limit, according to an
analysis of a mid-infrared survey of embedded clusters within
1 kpc (Gutermuth et al. 2009, hereafter G09). For 27 of these
clusters, the concentration qZ was obtained from the ratio of the
peak to mean extinction, assuming that the gas density in each
cluster follows a truncated Plummer-like sphere. The resulting
concentration range is 1.00�qZ�2.05, which lies below the
MIS limit of qZ,max=2.46.
The relation between initial gas concentration and MIS

spacing predicted in Equation (29) is supported by the above
cluster data for embedded clusters in the sample of G09. For 22
values of qZ, the predicted 3D spacing of MISs, λS, has a mean
± standard error of 0.14±0.01 pc. The median projected
spacing of the protostars in each cluster given in Table 8 of
G09 is denoted here as λP2. This 2D spacing was converted to
3D spacing λP3 by assuming that the effective cluster radius
Rhull in G09 Table 8 encloses a spherically symmetric
distribution of stars, i.e., l l l= [ ( )]R4 3P3 P2 hull P2

1 3. The
mean±standard error of these 22 λP3 values is once again
0.14±0.01 pc, in good agreement with the typical predicted
MIS spacing.
For the same cluster sample, the typical predicted and

observed values of SFE also agree within statistical uncertainty.
The predicted SFE has a mean±standard error of
0.14±0.01, based on Equation (29) and the 22 values of qZ
from G09. The observed SFE has a mean±standard error of
0.16±0.02, based on 22 values of mean AK and the mean
surface density of protostars from G09.
This young cluster sample shows substantial consistency

between the mean predicted spacing of MISs and the observed
spacing of protostars and between the mean predicted and
observed SFE. The interpretation of this consistency depends
on the birth time distributions of the observed and predicted
protostars. If future protostars have a birth history similar to
that of the already-formed stars, the consistency suggests that
the model accurately describes a steady-state cluster, where the
rates of gas-mass gain and depletion in the SFZ are equal,
possibly due to accretion, star formation, and feedback

Figure 6. Mean fragment spacing in terms of radius (λS/RS) and initial Jeans
length (λS/λJ) (red curves) and SFE (blue curve) for a fragmented SFZ as
functions of its initial concentration º ¯q n n .Z min
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(Fletcher & Stahler 1994; Myers 2014). However, if the model
instead predicts only the number of protostars in one generation
while the observed population is the sum of many generations,
the consistency may indicate that the model predicts too many
stars for one generation.

The agreements between mean values of spacings and SFEs
do not extend to correlations between the individual predicted
and observed spacings or between the individual predicted and
observed SFEs from one cluster to the next. This lack of
correlation may occur because the present inference of cluster
gas concentration and protostar spacing relies on the assump-
tion of spherical symmetric distributions of gas and protostars.
For young clusters, this assumption is substantially more
accurate on average than in individual cases. A more accurate
analysis would require a more accurate model of the shape of
each SFZ, as is done in the following individual cloud models.

4. Application to Observed Filamentary Clouds

In this section, each of the three models introduced in
Section 2 is applied to an observed filamentary cloud of
corresponding shape. The choice of model is dictated by the
prominence of the filamentʼs central bulge, increasing from
TPS to STPS to TPPC. The observed cloud shapes presented
here are sufficiently distinct that the choice of the model with
the best-matching contours can be made visually for each
cloud. In closer cases, it may be preferable to choose the best
model by least-squares fitting of the model and observed
column density maps. In that case, it will be important to select
the model whose fit parameter values have the least
uncertainty.

4.1. TPS Model of the Musca Filament

The Musca filament appears as one of the simplest filaments
among nearby clouds, spanning some 6 pc at a distance of
∼150 pc (Knude & Hog 1998). Its central ridge and embedded
cores have column densities typical of nearby star-forming
regions, yet it has remarkably little star formation, with one T
Tauri star candidate (Vilas-Boas et al. 1994). According to
detailed near-infrared observations of its extinction structure,
its central region resembles an elongated ridge with a modest
axial concentration.

The TPS model parameters are determined by identifying the
lowest well-defined contour level as the background column
density Nbk and measuring its projected length L and width 2R.
The filament axis is assumed to lie in the plane of the sky. The
HWHM x1/2 is measured from the radial N-profile through the
position of peak column density Nmax. Then, model parameters
are obtained from Equation (18) and a=L/(2R). For the
observed properties Nbk = 4.5× 1021 cm−2, Nmax = 19×
1021 cm−2, R = 0.075 pc, L = 1.6 pc, and x1/2 = 0.035 pc, the
derived model properties are r0=0.027 pc,
n0 = 7.1× 104 cm−3, Ξ = 2.78, and a = 10.9. The contour
maps of the observed Musca filament central region and its
TPS model are shown in Figure 7.

The model contours in Figure 7 approximate the large-scale
shape and value of the observed contours within limitations due
to the assumed axisymmetry. They reflect the observed
filament width and elongation and the increase in column
density from the edge to the central ridge.

4.2. The SFZ in the Musca TPS Model

The boundary of the SFZ in a TPS model is a prolate
spheroid defined by

x h z+ + = X[ ( ) ] ( )a , 32b
2 2 2

Z
2

where

X º - ( )n

n
1 33

Z
Z
2 0

,min

in analogy with Equations (5) and (17) and nZ,min=nS,min. The
corresponding column density contour is obtained from
Equations (17) and (18), where μ = ΞZ.
For the Musca model parameters, ΞZ=2.11, giving

NZ=8× 1021 cm−2, as shown in Figure 7. The mass of gas
denser than nmin is then MZ = 10.8 MSun. However, most of
this mass is at the tapering ends of the filament model, where
the radial extent is less than that of an MIS. Considering only
gas whose radial extent exceeds RMIS, the SFZ can harbor ∼3
MISs. Thus, the central zone of the Musca filament has enough
mass and extent of dense gas to form at most a few low-mass
stars. Since this zone has no known protostars, it may be
considered to be in an early stage of its star formation history.
It is also possible that the central Musca filament is currently

starless and will remain so because it is magnetically
subcritical. However, no measurements of magnetic field
strength in this region are currently available. By contrast,
the high density and nearly thermal velocity dispersion of the
Musca filament gas make it a good candidate for low-mass star
formation (Kainulainen et al. 2014).
The mean spacing of MISs in this fragmentation model is

0.1 pc, according to Equation (29). This spacing is similar to the
mean spacing of 0.08 pc for the four dense cores in the B213
filament (Tafalla & Hacar 2015) and the median spacing of
0.09 pc for cores in Aquila (André et al. 2014). The Musca
central region was identified as being in the process of
fragmentation by Kainulainen et al. (2016). Their analysis in
terms of global instability in an isothermal filament implied
fragment spacing of ∼0.4 pc. A similar analysis of the infrared
dark cloud G11.11-0.12 gave the spacing as 0.2 pc due to local
Jeans instability and 0.4 pc due to global instability (Kainulainen
et al. 2013).

Figure 7. Observed column density contours of the central region of the Musca
filament (Kainulainen et al. 2016) and TPS model contours, increasing from
4.5 × 1021 cm−2 in steps of 3 × 1021 cm−2. Shading indicates the projected
SFZ whose gas is considered dense enough to form low-mass stars.
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4.3. STPS Model of the L43 Filament

The L43 filament in northern Ophiuchus is about 1.6 pc long,
with a central dense core harboring the young stellar object
(YSO) RNO 91 and an associated CO outflow. A second YSO,
RNO 90, is located a few times 0.1 pc away (Lynds 1962;
Mathieu et al. 1988; Benson & Myers 1989; Lombardi et al.
2008; Reipurth 2008). Figure 8 shows a contour map of L43’s
large-scale structure based on near-infrared extinction of
background stars (Dobashi 2011) and the corresponding STPS
model.

This STPS model shape was chosen because L43 is corelike
on small scales and filamentary on large scales, with greater
axial concentration than the Musca filament in Figure 7. The
model parameters were obtained with a procedure similar to
that for the Musca filament. However, the extinction map
resolution is several arcmin, so the peak is poorly resolved and
the peak column density Nmax is poorly determined. Instead,
the adopted model column density Nmax=10× 1021 cm−2

was inferred by adjusting Ξ until the lower-density model
contour positions approximately matched those observed. This
value of Nmax is a compromise between the peak value of the
extinction map and the peak value of a higher-resolution
observation (Chen et al. 2009). For the observed properties
Nbk = 1× 1021 cm−2, Nmax = 10× 1021 cm−2, R = 0.20 pc,
and L = 1.6 pc, the derived model properties are r0=0.067 pc,
n0 = 1.7× 104 cm−3, Ξ = 3.0, and amax = 4.0.

The SFZ in L43 was obtained as in Section 4.2. Its bounding
column density is 8× 1021 cm−2, as in Musca. However, the
extent of this SFZ, shown by the shading in Figure 8, is much
smaller than that in the Musca filament and smaller than the
extent of a single MIS. Thus, this SFZ does not have enough
dense gas to make a single low-mass star, assuming the usual
value of efficiency òS. The large values of λS/RS and λS/λJ in
Figure 6 indicate that this SFZ is too small to host another
fragment. Although finer resolution is desirable, these conclu-
sions are not likely to change as a result of improved resolution.
This result implies that L43, which has already formed two
low-mass stars, is unlikely to form further low-mass stars.
Consequently, it appears to be near the end of its star-forming
history, in contrast to the Musca filament.

4.4. TPPC Model of the Coronet Filament

The Coronet cluster is a dense group of eight protostars and
five YSO candidates extending over ∼0.1 pc in the R CrA
complex, which harbors some 116 protostars and YSO
candidates over ∼3.2 pc. These population numbers are based
primarily on Spitzer observations (Peterson et al. 2011). The
dense gas in the complex is filamentary, with one main filament
and several side branches. This region differs from the Musca
and L43 filaments discussed above, since it has a much greater
peak column density reaching ∼45× 1021 cm−2 (Chini
et al. 2003; Alves et al. 2014).
The dense gas of the Coronet and its filamentary environ-

ment (Chini et al. 2003) harbors 10 protostars and 10 YSOs
(Peterson et al. 2011). Its central gas temperature is ∼20 K,
decreasing to ∼10 K, according to NH3 line observations
(Kontinen et al. 2003), in contrast to the more nearly isothermal
gas in Musca and L43. The Coronet cluster’s map appearance
is dominated by the central core, with relatively faint
filamentary extensions. This shape differs from both the TPS
and STPS shapes but more closely matches the TPPC model
shape. The observed 1.2 mm emission map and associated
young stars are shown in Figure 9, along with the TPPC model
column density map.
The TPPC model parameters were obtained with the same

procedure as for the TPS model of the Musca filament in
Section 4.2. The lowest map contour was set as the bounding
contour. The length L was measured along the map ridge. The
radius R = 0.22 pc and half-maximum radius x1/2 = 0.034 pc
were measured along a line perpendicular to the long axis
through the map peak. The maximum column density peak is
45× 1021 cm−2, following the determination of the peak
extinction as AK = 5.4 by Alves et al. (2014). These properties
were used to obtain the model parameters as a=3.1,
Ξ=4.85, r0 = 0.024 pc, and n0 = 2.2× 105 cm−3. The

Figure 8. Contours of column density in L43 ranging from 1 × 1021 cm−2 in
steps of 1 × 1021 cm−2, according to extinction of 2MASS sources (Dobashi
2011) and the STPS model. The red circle indicates the protostar RNO 91, and
the blue circle indicates the YSO RNO 90. The model zone of gas dense
enough for further low-mass star formation is the small shaded circle, where the
column density exceeds 8 × 1021 cm−2. Figure 9. Maps of the Coronet cluster and associated filamentary cloud at

1.2 mm wavelength (Chini et al. 2003) and according to a TPPC model. The
red and blue circles indicate all associated protostars (10 Class I and flat-
spectrum) and YSOs (10 Class II) projected on the contour map (Peterson
et al. 2011). The 1.2 mm contours extend from 0.10 to 2.8 Jy beam−1 (Chini
et al. 2003), corresponding to column density (1.6–45) × 1021 cm−3 (Alves
et al. 2014). The TPPC column density contours represent 1.6, 6.1, 15, and
29 × 1021 cm−2. The light and dark shading in the TPPC map indicates the
SFZ, as in Figures 7 and 8, for gas kinetic temperatures TS = 10 and 20 K.
Most of the observed protostars and YSOs lie in the model SFZ.
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contours of the axisymmetric model depart from the more
complex observed shape, but the model contours capture the
dominant central concentration and faint filamentary extensions
of the observed core-filament system.

The model SFZ is presented in Figure 9 for gas temperatures
spanning the values derived from NH3 observations from 10 K
with nZ,min = 1.3× 104 cm−3 (light shading) to 20 K with nZ,
min=1.0× 105 cm−3 (dark shading). The 20 K part of the SFZ
corresponds roughly to the Coronet cluster with closer protostar
spacings, but it only contains enough dense gas mass to make
one new low-mass star, according to Equations (27) and (28).
The 10 K part corresponds to the surrounding, more
filamentary region with more evolved YSOs having greater
spacings. It contains enough dense gas mass to make ∼7 new
low-mass stars, with a mean spacing of 0.09 pc and SFE = 0.3.

These models of SFZ fragmentation suggest that the Coronet
region may be near the middle of its star-forming history, since
it has enough dense gas to add ∼8 protostars to the 10
protostars and 10 YSOs now known. The Coronet contrasts
with the Musca central region, which appears to be near the
start of its star-forming life, since it has no protostars or YSOs
but enough dense gas to add ∼3 protostars. The Coronet also
contrasts with L43, which appears to be near the end of its star-
forming life, since it has formed one protostar and one YSO but
has too little dense gas to form any further stars.

5. Summary and Discussion

5.1. Summary

The main points of this paper are

(1) Three axisymmetric models of core-filament density
structure are presented to describe large-scale filament
properties and improve our understanding of star
formation.

(2) These models are more realistic than the 1D PC models
often used to interpret filament observations. They can
match the finite length and mass of observed filaments,
and they can include embedded cores. They resemble
observed column density contour maps more closely than
do PC contour maps, and, at high N, their N-pdfs are
pole-free power laws, like observed N-pdfs but unlike PC
N-pdfs.

(3) Each model allows identification of an SFZ whose mean
density matches that of star-forming dense cores and
whose column density exceeds the “star formation
threshold” of ∼6× 1021 cm−2. This zone is modeled as
gas denser than nmin, the minimum density of an MIS, a 1
MSun BE sphere that forms a star of mean IMF mass
M̄IMF=0.36 MSun.

(4) The number NS of new low-mass stars that can form in an
SFZ is predicted by assuming that the initial SFZ
fragments into NS MISs in a uniform medium of density
nmin. In this thermal fragmentation model, the stars that
can form have a mean spacing and SFE depending only
on the concentration º ¯q n nZ min of the initial SFZ.

(5) The gas concentrations, protostar spacings, and SFE in a
sample of 22 embedded clusters (G09) match the
properties of the SFZ fragmentation model. The range
of qZ, 1.00�qZ�2.05, lies within the range of allowed
values, 1–2.46. The typical protostar spacing, 0.14 pc,
and the typical SFE, 0.16, each agree within statistical
error with the typical predicted value. The typical spacing

is close to the Jeans length for the mean density of the
initial SFZ, as expected for a fragmentation model based
on thermal gas properties.

(6) Application to filamentary clouds in L43, the Musca
center, and the Coronet provide simple models of their
large-scale structure of density and column density. In
turn, the models of the SFZ and its fragmentation indicate
that the Musca central filament is dense enough to form
its first few low-mass stars, the Coronet can add ∼8 stars
to the ∼20 already known, and L43 has too little dense
gas to add any new stars to the two already known. These
results suggest that the Musca central filament is near the
start of its star-forming life, the Coronet is near the
middle, and L43 is near the end.

5.2. Limitations

The models presented in this paper should be applied with an
understanding of their limitations.
The TPPC, TPS, and STPS density models are axisymmetric

and centrally condensed, so they cannot describe nonaxisym-
metric structure or filament fibers or networks. At best, these
models are large-scale averages over filament position and
velocity.
The mean radial N-profiles of the TPPC, TPS, and STPS

models approximate the shape of the p = 2 Plummer-like
cylinder profiles used to fit the observed N-profiles (A11; A16),
but they depart significantly when the region included in the
average extends to positions whose peak column density falls
below 0.1–0.2 of the central column density.
The three models presented here are variants of Plummer-

like structures with p = 2 only. The comparison of their N-
profiles with PC profiles remains untested for p values in the
broader range of ∼1.3–2.4 inferred from observations (A11).
Similarly, no comparison of high-N power-law slopes was
made between these three models and other models with ¹p 2
or between these three models and N-pdfs of observed
filamentary regions.
The properties of the SFZ are derived assuming that the mass

of the MIS is 1 MSun, based on core-star efficiency estimates
òS = 0.3–0.4 that follow from comparing the core mass
function and the IMF (Alves et al. 2007; Konyves et al. 2015).
However, estimates of òS based on counting protostars in
Ophiuchus and Perseus give a lower value, òS = 0.13–0.17
(Jorgensen et al. 2008). Adopting this value would decrease
nmin by a factor of ∼4, reducing the applicability of the SFZ
and fragmentation models.
The SFZ fragmentation model is restricted to BE spheres that

make protostars of a typical IMF mass, so it cannot account for
formation of massive stars or for the role of massive stars in
heating and dispersing the star-forming gas.
The SFZ fragmentation model does not explain the process

that transforms the unfragmented SFZ into the fragmented SFZ.
One suggestion requires supersonic anisotropic converging
flows along magnetic field lines, which form filaments that
have core seeds at birth. The cores grow in �∼1 Myr (Chen &
Ostriker 2015). A purely thermal mechanism is “geometrical
fragmentation,” where a straight isothermal filament is subject
to small-amplitude sinusoidal bending. For central density
>5× 104 cm−3, the filament forms self-gravitating cores at the
bends in ∼1 Myr (Gritschneder et al. 2016). It may be useful to
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test the SFZ fragmentation model with numerical simulations,
starting from the cloud models presented here as initial states.

5.3. Thermal Fragmentation

It may seem surprising that the simple model of thermal
fragmentation in Section 4 predicts typical cluster spacing and
SFE values that match those derived from observations of
young clusters by G09. In low-density gas, with 2<log
n<4, supersonic turbulent motions are believed to be essential
to form filaments, and to prevent stars from forming too rapidly
(Vazquez-Semadeni 1994; Klessen & Burkert 2001; Federrath
2015). However, in denser star-forming gas with log n>4,
thermal physics appears sufficient to describe many features of
star formation, perhaps because turbulent motions and magn-
etic forces have become less important than thermal pressure
and gravity (Larson 2005).

This view is supported by an increasing number of
observations that reveal that some dense regions with
“turbulent” line widths at low resolution have sonic or
transsonic line widths at high resolution (Pineda et al. 2010;
Hacar et al. 2013). It is also supported by a study of dense cores
in regions of massive star formation, indicating that, at high
resolution, their number of fragments correlates better with
their number of thermal Jeans masses than with their number of
turbulent Jeans masses (Palau et al. 2015).

By contrast, the number and masses of stars expected to form
in an SFZ must also depend on the initial spatial distribution of
the SFZ gas. A spherical SFZ has a deeper potential well than
an elongated SFZ with the same mass and the same number of
thermal Jeans masses. The deeper well will collapse into a
single massive object, while the shallower well will tend to
produce less-massive objects at its ends that later fall toward
each other (Nelson & Papaloizou 1993).

Thus, in the thermal fragmentation model presented here,
formation of the predicted number of objects seems to require a
decentralized gas distribution dominated by many small wells.
Then, nearly all star-forming collapses are “local,” and only a
small fraction gain significant mass from “global” collapse
(Wang et al. 2010). One may speculate that an SFZ whose
protostars have a mean spacing matching the thermal Jeans
length must arise from flows and gravity that structure most of
the SFZ into filaments and BE-like cores. The relative
proportion of ordered and chaotic structure in these flows is
therefore of great interest. Once the SFZ has this internal
structure, it can produce the number of low-mass stars
predicted by a simple thermal fragmentation picture.

The similarity of the model fragment spacings and the
thermal Jeans length noted in Section 3 reflects the thermal
physics assumptions of this fragmentation model. It does not
imply that the fragments form by a thermal Jeans instability.
Instead, the similarity of lengths is due to the definition of the
initial SFZ as gas that is denser than nmin, the minimum density
of a BE sphere. Since the Jeans length and the BE sphere
diameter have the same dependence on temperature and mean
density with slightly different coefficients, these SFZ defini-
tions guarantee that fragment spacing will approximate the
Jeans length for the mean SFZ density.

In Section 3, the Jeans length used for comparison with
predicted MIS spacings is the “local” Jeans length for fragmenta-
tion of a uniform medium with thermal velocity dispersion σ
and density ρ, l s p r= [ ( ) ]GJ

1 2 , and not the “global”
Jeans length for fragmentation of an infinite, self-gravitating

isothermal cylinder, l s p r= [ ( ) ]G1.25 2cyl
3 2

0
1 2 , where ρ0

is its maximum density (Larson 1985; MO07; Kainulainen
et al. 2013). At the temperature and density values consi-
dered here, the local value is ∼0.1 pc and is closer to observed
core spacings than the global value, which is significantly
greater (Kainulainen et al. 2013; André et al. 2014).

5.4. Model Applications

The models presented here describe the large-scale density
structure of observed star-forming clouds more realistically
than is possible with 1D models such as the PC, as discussed in
Section 2. This improved description of cloud density structure
allows identification of the SFZ as gas denser than the
minimum density of the BE sphere that makes a star of mean
IMF mass, as discussed in Section 3.
This definition ties the observed properties of star-forming

gas—dense core volume density and threshold column
density—to the typical IMF mass, implementing the ideas
of Larson (2005) and Bate & Bonnell (2005). Identification of
the SFZ allows a fragmentation model to estimate how many
low-mass stars can form from the available dense gas. This
estimate can differentiate star-forming clouds that are in the
early, middle, or late stages of their star-forming history, as
illustrated in Section 4.
A second application of these models is to provide more

realistic initial conditions for tests of fragmentation models
against simulations. Many simulations of star-forming
fragmentation rely on turbulent driving or colliding flows to
generate fragmentation, but their products do not necessarily
resemble the filamentary clouds analyzed here. Other simula-
tions start with simple geometric structures that lack the
central concentration of observed clouds. The cloud models
described here can extend the range of initial conditions
for simulations beyond those considered by Nelson &
Papaloizou (1993), Sigalotti & Klapp (2001), and Burkert &
Hartmann (2004).

Discussions with João Alves, Philippe André, Shantanu
Basu, Andi Burkert, Blakesley Burkhart, Alyssa Goodman,
Jouni Kainulainen, Vera Könyves, Charlie Lada, Nicola
Schneider, Zach Slepian, Jürgen Steinacker, and Qizhou Zhang
are gratefully acknowledged. Jouni Kainulainen and Nicola
Schneider also provided useful N-pdf data. Continuing support
from Terry Marshall is gratefully acknowledged. The referee
made useful comments and suggestions that improved the
paper.

References

Alves de Oliveira, C., Schneider, N., Merin, B., et al. 2014, A&A, 568, 98
Alves, J., Lombardi, M., & Lada, C. 2007, A&A, 462, L17
Alves, J., Lombardi, M., & Lada, C. 2014, A&A, 565, A18
André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and

Planets VI, ed. H. Beuther et al. (Tucson, AZ: Univ. Arizona Press), 27
André, P., Men’schikov, A., Bontemps, S., et al. 2010, A&A, 518L, 102
Arzoumanian, D., André, P., & Boulanger, F. 2016, in IAU S315, From

Interstellar Clouds to Star-forming Galaxies, ed. P. Jablonka, P. André, &
F. van der Tak (Cambridge: Cambridge Univ. Press), 57 (A16)

Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529L, 6 (A11)
Banerjee, R., Pudritz, R., & Anderson, D. 2006, MNRAS, 373, 1091
Bate, M., & Bonnell, I. 2005, MNRAS, 356, 1201
Beichman, C., Myers, P., Emerson, J., et al. 1986, ApJ, 307, 337
Benson, P., & Myers, P. 1989, ApJS, 71, 89
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton

Univ. Press)

12

The Astrophysical Journal, 838:10 (13pp), 2017 March 20 Myers

https://doi.org/10.1051/0004-6361/201423504
http://adsabs.harvard.edu/abs/2014A&amp;A...568A..98A
https://doi.org/10.1051/0004-6361:20066389
http://adsabs.harvard.edu/abs/2007A&amp;A...462L..17A
https://doi.org/10.1051/0004-6361/201322159
http://adsabs.harvard.edu/abs/2014A&amp;A...565A..18A
http://adsabs.harvard.edu/abs/2014prpl.conf...27A
https://doi.org/10.1051/0004-6361/201014666
http://adsabs.harvard.edu/abs/2010A&amp;A...518L.102A
https://doi.org/10.1051/0004-6361/201116596
http://adsabs.harvard.edu/abs/2011A&amp;A...529L...6A
https://doi.org/10.1111/j.1365-2966.2006.11089.x
http://adsabs.harvard.edu/abs/2006MNRAS.373.1091B
https://doi.org/10.1111/j.1365-2966.2004.08593.x
http://adsabs.harvard.edu/abs/2005MNRAS.356.1201B
https://doi.org/10.1086/164421
http://adsabs.harvard.edu/abs/1986ApJ...307..337B
https://doi.org/10.1086/191365
http://adsabs.harvard.edu/abs/1989ApJS...71...89B


Bohn, C. 1983, ApJ, 268, 646
Bonnor, W. 1956, MNRAS, 116, 351
Burkert, A., & Hartmann, L. 2004, ApJ, 616, 288
Busquet, G., Zhang, Q., Palau, A., et al. 2013, ApJ, 764, 26
Chen, C., & Ostriker, E. 2015, ApJ, 810, 126
Chen, J., Evans, N., Lee, J., & Bourke, T. 2009, ApJ, 705, 1160
Chini, R., Kampgen, K., Reipurth, B., et al. 2003, A&A, 409, 235
Curry, C. 2000, ApJ, 541, 831
Dobashi, K. 2011, PASJ, 63, 1
Ebert, R. 1955, ZfA, 36, 222
Enoch, M., Young, K., Glenn, J., et al. 2006, ApJ, 638, 293
Evans, N., Dunham, M., Jorgensen, J., et al. 2009, ApJS, 181, 321
Federrath, C., & Klessen, R. 2013, ApJ, 763, 51
Fiege, J., & Pudritz, R. 2000, MNRAS, 311, 85
Fischera, J. 2014, A&A, 565, A24 (F14)
Fletcher, A., & Stahler, S. 1994, ApJ, 435, 313
Foster, J., Rosolowsky, E., Kauffmann, J., et al. 2009, ApJ, 696, 298
Girichidis, P., Federrath, C., Allison, R., Banerjee, R., & Klessen, R. 2012,

MNRAS, 420, 3264
Girichidis, P., Konstandin, L., Whitworth, A., & Klessen, R. 2014, ApJ, 781, 91
Gradshteyn, I., & Ryzhik, I. 1980, Table of Integrals, Series, and Products

(New York: Academic), 51
Gritschneder, M., Heigl, S., & Burkert, A. 2016, arXiv:160400378
Gutermuth, R., Megeath, S., Myers, P., et al. 2009, ApJS, 184, 18 (G09)
Hacar, A., Kainulainen, J., Tafalla, M., Beuther, H., & Alves, J. 2016, A&A,

587, 97
Hacar, A., Tafalla, M., Kauffmann, J., & Kovacs, A. 2013, A&A, 554, A55
Hanawa, T., & Tomisaka, K. 2015, ApJ, 801, 11
Heitsch, F. 2013, ApJ, 769, 115
Jijina, J., Myers, P., & Adams, F. 1999, ApJS, 125, 161
Inutsuka, S., & Miyama, S. 1997, ApJ, 480, 681
Jorgensen, J., Johnstone, D., Kirk, H., et al. 2008, ApJ, 683, 822
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35
Kainulainen, J., Federrath, C., & Henning, T. 2014, Sci, 344, 183
Kainulainen, J., Hacar, A., Alves, J., et al. 2016, A&A, 586, 27
Kainulainen, J., Ragan, S., Henning, T., & Stutz, A. 2013, A&A, 557, A120
King, I. 1962, AJ, 67, 471
King, I. 1978, ApJ, 222, 1
Kirk, H., Klassen, M., Pudritz, R., & Pillsworth, S. 2015, ApJ, 802, 75
Klessen, R., & Burkert, A. 2001, ApJ, 549, 386
Knude, J., & Hog, E. 1998, A&A, 338, 897
Koch, E., & Rosolowsky, E. 2015, MNRAS, 452, 3435
Kontinen, S., Harju, J., Caselli, P., Heikkila, A., & Walmsley, M. 2003, in

SFChem 2002: Chemistry as a Diagnostic of Star Formation, ed.
C. Curry & M. Fich (Ottawa: NRC Press), 331

Konyves, V., André, P., Men’shchikov, A., et al. 2015, A&A, 584, 91
Lada, C., & Lada, E. 2003, ARA&A, 41, 57
Lada, C., Lombardi, M., & Alves, J. 2010, ApJ, 724, 687
Larson, R. 1985, MNRAS, 214, 379

Larson, R. 2005, MNRAS, 359, 211
Lombardi, M., Lada, C., & Alves, J. 2008, A&A, 489, 143
Lynds, B. 1962, ApJS, 7, 1 1955
Malinen, J., Juvela, M., Rawlings, M., et al. 2012, A&A, 544, 50
Mathieu, R., Benson, P., Fuller, G., Myers, P., & Schild, R. 1988, ApJ,

330, 385
McKee, C., & Ostriker, E. 2007, ARA&A, 45, 565 (MO07)
Miyama, S., Narita, S., & Hayashi, C. 1987, PThPh, 78, 1273
Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, 100
Myers, P. 2014, ApJ, 781, 33
Myers, P. 2015, ApJ, 806, 226
Myers, P., & Benson, P. 1983, ApJ, 266, 309
Nagai, T., Inutsuka, S., & Miyama, S. 1998, ApJ, 506, 306
Nelson, R., & Papaloizou, J. 1993, MNRAS, 265, 905
Nutter, D., Kirk, J., Stamatellos, D., & Ward-Thompson, D. 2008, MNRAS,

384, 755
Ostriker, J. 1964, ApJ, 140, 1056
Padoan, P., Federrath, C., Chabrier, G., et al. 2014, in Protostars and Planets

VI, ed. H. Beuther et al. (Tucson, AZ: Univ. Arizona Press), 77
Palau, A., Ballesteros-Paredes, J., Vazquez-Semadeni, E., et al. 2015, MNRAS,

453, 3785
Palmeirim, P., André, P., Kirk, J., et al. 2013, A&A, 550, A38
Peretto, N., André, P., Konyves, V., et al. 2012, A&A, 541, 63
Peterson, D., Garatti, A., Bourke, T., et al. 2011, ApJS, 194, 43
Pineda, J., Goodman, A., Arce, H., et al. 2010, ApJ, 712L, 116
Plummer, H. 1911, MNRAS, 71, 460
Polychroni, D., Schisano, E., Elia, D., et al. 2013, ApJL, 777, L33
Pudritz, R., & Kevlahan, N. 2013, RSPTA, 371, 20248
Recchi, S., Hacar, A., & Palestini, A. 2013, A&A, 558, A27
Reipurth, B. 2008, in Handbook of Star-forming Regions, Vol. II: The

Southern Sky), ed. B. Reipurth (San Francisco, CA: ASP), 856
Rosolowsky, E., Pineda, J., Foster, J., et al. 2008, ApJS, 175, 509
Sadavoy, S., Di Francesco, J., Bontemps, S., et al. 2010, ApJ, 710, 1247
Sadavoy, S., Di Francesco, J., André, P., et al. 2014, ApJL, 787, L18
Salji, C., Richer, J., Buckle, J., et al. 2015, MNRAS, 449, 1782
Schneider, N., André, P., Konyves, V., et al. 2013, ApJ, 766L, 17
Schneider, N., Bontemps, S., Motte, F., et al. 2016, A&A, 587, 74
Schneider, N., Csengeri, T., Klessen, R., et al. 2015, A&A, 578, 29
Sigalotti, L., & Klapp, J. 2001, A&A, 378, 165
Smith, R., Glover, S., & Klessen, R. 2014, MNRAS, 445, 2900
Stodolkiewicz, J. 1963, AcA, 13, 30
Stutz, A., & Kainulainen, J. 2015, A&A, 577L, 6
Tafalla, M., & Hacar, A. 2015, A&A, 574, 104
Toci, C., & Galli, D. 2015a, MNRAS, 446, 2110
Toci, C., & Galli, D. 2015b, MNRAS, 446, 2118
Vazquez-Semadeni, E. 1994, ApJ, 423, 681
Vilas-Boas, J., Myers, P., & Fuller, G. 1994, ApJ, 433, 96
Wang, P., Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27
Weidner, C., & Kroupa, P. 2006, MNRAS, 365, 1333

13

The Astrophysical Journal, 838:10 (13pp), 2017 March 20 Myers

https://doi.org/10.1086/160987
http://adsabs.harvard.edu/abs/1983ApJ...268..646B
https://doi.org/10.1093/mnras/116.3.351
http://adsabs.harvard.edu/abs/1956MNRAS.116..351B
https://doi.org/10.1086/424895
http://adsabs.harvard.edu/abs/2004ApJ...616..288B
https://doi.org/10.1088/2041-8205/764/2/L26
http://adsabs.harvard.edu/abs/2013ApJ...764L..26B
https://doi.org/10.1088/0004-637X/810/2/126
http://adsabs.harvard.edu/abs/2015ApJ...810..126C
https://doi.org/10.1088/0004-637X/705/2/1160
http://adsabs.harvard.edu/abs/2009ApJ...705.1160C
https://doi.org/10.1051/0004-6361:20031115
http://adsabs.harvard.edu/abs/2003A&amp;A...409..235C
https://doi.org/10.1086/309465
http://adsabs.harvard.edu/abs/2000ApJ...541..831C
https://doi.org/10.1093/pasj/63.sp1.S1
http://adsabs.harvard.edu/abs/2011PASJ...63S...1D
http://adsabs.harvard.edu/abs/1955ZA.....36..222E
https://doi.org/10.1086/498678
http://adsabs.harvard.edu/abs/2006ApJ...638..293E
https://doi.org/10.1088/0067-0049/181/2/321
http://adsabs.harvard.edu/abs/2009ApJS..181..321E
https://doi.org/10.1088/0004-637X/763/1/51
http://adsabs.harvard.edu/abs/2013ApJ...763...51F
https://doi.org/10.1046/j.1365-8711.2000.03066.x
http://adsabs.harvard.edu/abs/2000MNRAS.311...85F
https://doi.org/10.1051/0004-6361/201321417
http://adsabs.harvard.edu/abs/2014A&amp;A...565A..24F
https://doi.org/10.1086/174815
http://adsabs.harvard.edu/abs/1994ApJ...435..313F
https://doi.org/10.1088/0004-637X/696/1/298
http://adsabs.harvard.edu/abs/2009ApJ...696..298F
https://doi.org/10.1111/j.1365-2966.2011.20250.x
http://adsabs.harvard.edu/abs/2012MNRAS.420.3264G
https://doi.org/10.1088/0004-637X/781/2/91
http://adsabs.harvard.edu/abs/2014ApJ...781...91G
http://adsabs.harvard.edu/abs/1980tisp.book.....G
http://arxiv.org/abs/160400378
https://doi.org/10.1088/0067-0049/184/1/18
http://adsabs.harvard.edu/abs/2009ApJS..184...18G
https://doi.org/10.1051/0004-6361/201526015
http://adsabs.harvard.edu/abs/2016A&amp;A...587A..97H
http://adsabs.harvard.edu/abs/2016A&amp;A...587A..97H
https://doi.org/10.1051/0004-6361/201220090
http://adsabs.harvard.edu/abs/2013A&amp;A...554A..55H
https://doi.org/10.1088/0004-637X/801/1/11
http://adsabs.harvard.edu/abs/2015ApJ...801...11H
https://doi.org/10.1088/0004-637X/769/2/115
http://adsabs.harvard.edu/abs/2013ApJ...769..115H
https://doi.org/10.1086/313268
http://adsabs.harvard.edu/abs/1999ApJS..125..161J
https://doi.org/10.1086/303982
http://adsabs.harvard.edu/abs/1997ApJ...480..681I
https://doi.org/10.1086/589956
http://adsabs.harvard.edu/abs/2008ApJ...683..822J
https://doi.org/10.1051/0004-6361/200913605
http://adsabs.harvard.edu/abs/2009A&amp;A...508L..35K
https://doi.org/10.1126/science.1248724
http://adsabs.harvard.edu/abs/2014Sci...344..183K
https://doi.org/10.1051/0004-6361/201526017
http://adsabs.harvard.edu/abs/2016A&amp;A...586A..27K
https://doi.org/10.1051/0004-6361/201321760
http://adsabs.harvard.edu/abs/2013A&amp;A...557A.120K
https://doi.org/10.1086/108756
http://adsabs.harvard.edu/abs/1962AJ.....67..471K
https://doi.org/10.1086/156115
http://adsabs.harvard.edu/abs/1978ApJ...222....1K
https://doi.org/10.1088/0004-637X/802/2/75
http://adsabs.harvard.edu/abs/2015ApJ...802...75K
https://doi.org/10.1086/319053
http://adsabs.harvard.edu/abs/2001ApJ...549..386K
http://adsabs.harvard.edu/abs/1998A&amp;A...338..897K
https://doi.org/10.1093/mnras/stv1521
http://adsabs.harvard.edu/abs/2015MNRAS.452.3435K
http://adsabs.harvard.edu/abs/2003cdsf.conf..331K
https://doi.org/10.1051/0004-6361/201525861
http://adsabs.harvard.edu/abs/2015A&amp;A...584A..91K
https://doi.org/10.1146/annurev.astro.41.011802.094844
http://adsabs.harvard.edu/abs/2003ARA&amp;A..41...57L
https://doi.org/10.1088/0004-637X/724/1/687
http://adsabs.harvard.edu/abs/2010ApJ...724..687L
https://doi.org/10.1093/mnras/214.3.379
http://adsabs.harvard.edu/abs/1985MNRAS.214..379L
https://doi.org/10.1111/j.1365-2966.2005.08881.x
http://adsabs.harvard.edu/abs/2005MNRAS.359..211L
https://doi.org/10.1051/0004-6361:200810070
http://adsabs.harvard.edu/abs/2008A&amp;A...489..143L
https://doi.org/10.1086/190072
https://doi.org/10.1051/0004-6361/201219573
http://adsabs.harvard.edu/abs/2012A&amp;A...544A..50M
https://doi.org/10.1086/166478
http://adsabs.harvard.edu/abs/1988ApJ...330..385M
http://adsabs.harvard.edu/abs/1988ApJ...330..385M
https://doi.org/10.1146/annurev.astro.45.051806.110602
http://adsabs.harvard.edu/abs/2007ARA&amp;A..45..565M
https://doi.org/10.1143/PTP.78.1273
http://adsabs.harvard.edu/abs/1987PThPh..78.1273M
https://doi.org/10.1051/0004-6361/201014659
http://adsabs.harvard.edu/abs/2010A&amp;A...518L.100M
https://doi.org/10.1088/0004-637X/781/1/33
http://adsabs.harvard.edu/abs/2014ApJ...781...33M
https://doi.org/10.1088/0004-637X/806/2/226
http://adsabs.harvard.edu/abs/2015ApJ...806..226M
https://doi.org/10.1086/160780
http://adsabs.harvard.edu/abs/1983ApJ...266..309M
https://doi.org/10.1086/306249
http://adsabs.harvard.edu/abs/1998ApJ...506..306N
https://doi.org/10.1093/mnras/265.4.905
http://adsabs.harvard.edu/abs/1993MNRAS.265..905N
https://doi.org/10.1111/j.1365-2966.2007.12750.x
http://adsabs.harvard.edu/abs/2008MNRAS.384..755N
http://adsabs.harvard.edu/abs/2008MNRAS.384..755N
https://doi.org/10.1086/148005
http://adsabs.harvard.edu/abs/1964ApJ...140.1056O
http://adsabs.harvard.edu/abs/2014prpl.conf...77P
https://doi.org/10.1093/mnras/stv1834
http://adsabs.harvard.edu/abs/2015MNRAS.453.3785P
http://adsabs.harvard.edu/abs/2015MNRAS.453.3785P
https://doi.org/10.1051/0004-6361/201220500
http://adsabs.harvard.edu/abs/2013A&amp;A...550A..38P
https://doi.org/10.1051/0004-6361/201118663
http://adsabs.harvard.edu/abs/2012A&amp;A...541A..63P
https://doi.org/10.1088/0067-0049/194/2/43
http://adsabs.harvard.edu/abs/2011ApJS..194...43P
https://doi.org/10.1088/2041-8205/712/1/L116
http://adsabs.harvard.edu/abs/2010ApJ...712L.116P
https://doi.org/10.1093/mnras/71.5.460
http://adsabs.harvard.edu/abs/1911MNRAS..71..460P
https://doi.org/10.1088/2041-8205/777/2/L33
http://adsabs.harvard.edu/abs/2013ApJ...777L..33P
https://doi.org/10.1098/rsta.2012.0248
http://adsabs.harvard.edu/abs/2013RSPTA.37120248P
https://doi.org/10.1051/0004-6361/201321565
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..27R
http://adsabs.harvard.edu/abs/2008hsf2.book..847R
https://doi.org/10.1086/524299
http://adsabs.harvard.edu/abs/2008ApJS..175..509R
https://doi.org/10.1088/0004-637X/710/2/1247
http://adsabs.harvard.edu/abs/2010ApJ...710.1247S
https://doi.org/10.1088/2041-8205/787/2/L18
http://adsabs.harvard.edu/abs/2014ApJ...787L..18S
https://doi.org/10.1093/mnras/stv369
http://adsabs.harvard.edu/abs/2015MNRAS.449.1782S
https://doi.org/10.1088/2041-8205/766/2/L17
http://adsabs.harvard.edu/abs/2013ApJ...766L..17S
https://doi.org/10.1051/0004-6361/201527144
http://adsabs.harvard.edu/abs/2016A&amp;A...587A..74S
https://doi.org/10.1051/0004-6361/201424375
http://adsabs.harvard.edu/abs/2015A&amp;A...578A..29S
https://doi.org/10.1051/0004-6361:20011181
http://adsabs.harvard.edu/abs/2001A&amp;A...378..165S
https://doi.org/10.1093/mnras/stu1915
http://adsabs.harvard.edu/abs/2014MNRAS.445.2900S
http://adsabs.harvard.edu/abs/1963AcA....13...30S
https://doi.org/10.1051/0004-6361/201526243
http://adsabs.harvard.edu/abs/2015A&amp;A...577L...6S
https://doi.org/10.1051/0004-6361/201424576
http://adsabs.harvard.edu/abs/2015A&amp;A...574A.104T
https://doi.org/10.1093/mnras/stu2168
http://adsabs.harvard.edu/abs/2015MNRAS.446.2110T
https://doi.org/10.1093/mnras/stu2194
http://adsabs.harvard.edu/abs/2015MNRAS.446.2118T
https://doi.org/10.1086/173847
http://adsabs.harvard.edu/abs/1994ApJ...423..681V
https://doi.org/10.1086/174628
http://adsabs.harvard.edu/abs/1994ApJ...433...96V
https://doi.org/10.1088/0004-637X/709/1/27
http://adsabs.harvard.edu/abs/2010ApJ...709...27W
https://doi.org/10.1111/j.1365-2966.2005.09824.x
http://adsabs.harvard.edu/abs/2006MNRAS.365.1333W

	1. Introduction
	1.1. Filamentary Clouds
	1.2. Filament Models

	 
	2.1. Axisymmetric 2D Filament Models
	2.2. Cylindrical Models
	2.2.1. PC and TPC
	2.2.2. Observational Constraints on 2D Models
	2.2.3. TPPC Model

	2.3. Spheroidal Models
	2.3.1. TPS
	2.3.2. STPS

	2.4. Radial N-profiles
	2.5. N-pdfs

	3. The Star-forming Zone
	3.1. The SFZ of a Model Cloud
	3.2. Fragmentation of the SFZ
	3.3. Comparison of the SFZ Fragmentation Model with Cluster Observations

	4. Application to Observed Filamentary Clouds
	4.1. TPS Model of the Musca Filament
	4.2. The SFZ in the Musca TPS Model
	4.3. STPS Model of the L43 Filament
	4.4. TPPC Model of the Coronet Filament

	5. Summary and Discussion
	5.1. Summary
	5.2. Limitations
	5.3. Thermal Fragmentation
	5.4. Model Applications

	References



