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Abstract

Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on
the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at
the stellar surface. This type of model has been relatively successful in describing the overall properties of the
accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand,
the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the
dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore
the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates
the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the
thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary
conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged
spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light
on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the
relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-
Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.
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1. Introduction

Accretion-powered X-ray pulsars are among the most
luminous X-ray sources in the sky, and now number in the
hundreds (e.g., Caballero & Wilms 2012). The availability of
the unprecedented resolution provided by modern X-ray
observatories is opening up new areas for study involving the
coupled formation of the continuum emission and the cyclotron
absorption features observed in accretion-powered X-ray pulsar
spectra. These sources are of special interest because of the
unique combination of extreme physics, including strong
gravity, relativistic velocities, high temperatures, strong magn-
etic fields, and locally super-Eddington radiation luminosities.
Although these sources have been studied observationally and
theoretically for over five decades, several fundamental issues
remain unresolved by the current generation of models. One
question that has received considerable attention in the past few
years is the possible relation between the luminosity of the
source and the energy of the fitted cyclotron absorption feature,
driven by observations of correlated (or anticorrelated)
variability between these two quantities observed on both
pulse-to-pulse timescales, and on much longer timescales (e.g.,
Staubert et al. 2007, 2014; Becker et al. 2012).
In the standard model for accretion-powered X-ray pulsars,

originally developed by Lamb et al. (1973), the kinetic energy
of the infalling gas is converted into observable radiation as the
flow is channeled onto one or both magnetic poles by the
strong magnetic field (B∼1012 G), forming “hot spots” on the
stellar surface. The X-rays were initially assumed to emerge as
fan-shaped beams, generated as the photons escaped through
the vertical walls of the accretion column, but it soon became
clear that a pencil-beam component (representing escape
through the column top) was sometimes necessary in order to

obtain adequate agreement with the observed pulse profiles
(Tsuruta & Rees 1974; Tsuruta 1975; Bisnovatyi-Kogan &
Komberg 1976).
The typical X-ray pulsar spectrum is a combination of a

power-law continuum, combined with an iron emission line
and an apparent cyclotron absorption feature, terminating in a
high-energy exponential cutoff. The earliest spectral models,
based on the emission of blackbody radiation from the hot
spots, were unable to reproduce the observed nonthermal
power-law continuum. The observation of the putative
cyclotron absorption features led to the development of more
sophisticated models, based on a static slab geometry, in which
the emitted spectrum is strongly influenced by cyclotron
scattering (e.g., Yahel 1980a, 1980b; Nagel 1981; Mészáros &
Nagel 1985a, 1985b). While the magnetized slab models are
able to roughly fit the shape of the observed cyclotron
absorption features, a remaining problem was the inability to
reproduce the observed nonthermal power-law X-ray
continuum.
The pioneering literature from the 1970s established the

basic theoretical framework for the accretion of matter as the
fundamental mechanism powering the emission from hot spots
at the magnetic poles in X-ray pulsars (e.g., Pringle & Reese
1972; Davidson 1973; Lamb et al. 1973; Basko &
Sunyaev 1976). Later work by Wang & Frank (1981) and
Langer & Rappaport (1982) improved our understanding of the
details of the fluid flow and its relation to the radiation
production. The Wang & Frank (1981) model is based upon a
dipole field geometry, and comprises two adjacent flow zones,
separated in radius. The upper region is a single-fluid, 2D
regime in which the field-aligned, inflowing free-fall plasma is
decelerated by radiation pressure. The lower 1D “collisional
regime” is located just above the stellar surface, and is a two-
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fluid zone in which the deceleration is created by a strong
gradient in the gas pressure. The main weakness of the model is
the lack of a detailed treatment of the radiation spectrum, which
results in the inability of the model to either predict observed
X-ray spectra, or to properly account for the exchange of
energy between the radiation and the gas. Hence their
dynamical results cannot be viewed as self-consistent.

The model of Langer & Rappaport (1982) focuses solely on
low-luminosity sources (  -M 10 g s16 1˙ ), in which the radia-
tion field exerts negligible pressure on the infalling material.
Their two-fluid dipole model investigates the field-aligned
hydrodynamics between the stellar surface and the upper
boundary, which is assumed to be a classical, gas-mediated
shock. Although X-ray spectra are computed, the lack of
coupling between the hydrodynamics and the radiative transfer
means that the results are not necessarily self-consistent. In
particular, their model is unable to describe how the
characteristic power-law shape of the observed X-ray spectra
is developed, nor can it conclusively establish the conditions
under which a discontinuous shock is expected to form. The
results obtained by Langer & Rappaport (1982) suggest that
most of the escaping radiation consists of cyclotron line
photons, in the low-luminosity sources that they treated.
However, we find in West et al. (2017, hereafter Paper II)
that in the high-luminosity sources, the observed spectrum is
dominated by Comptonized bremsstrahlung emission.

It became clear in later work that the power-law continuum
was the result of a combination of bulk and thermal
Comptonization occurring inside the accretion column. The
first physically motivated model based on these principles that
successfully described the shape of the X-ray continuum in
accretion-powered pulsars was developed by Becker & Wolff
(2007, hereafter BW07). This new model allowed for the first
time the computation of the X-ray spectrum emitted through
the walls of the accretion column based on the solution of a
fundamental radiation transport equation. While the BW07
model has demonstrated success in reproducing the observed
X-ray spectra for several higher luminosity sources, the model
is nonetheless quite simplified from a physical perspective, and
it does not include, for example, a thermodynamic calculation
of the electron temperature variation, or a hydrodynamical
calculation of the variation of the bulk inflow (accretion)
velocity.

Kawashima et al. (2016) developed a 2D accretion model in
spherical coordinates for a neutron star with canonical mass
M*=1.4Me, though they did not assume that the flow
follows the magnetic field exactly. Their model includes the
existence of a radiation-dominated shock located approxi-
mately 3 km above the stellar surface, and the emission of fan-
beam radiation at and below the sonic surface. The model
exhibits an exponential increase in the gas density as the
material enters the extended sinking regime, in agreement with
Basko & Sunyaev (1976). However, the Kawashima et al.
(2016) model does not include radiative transfer, or the
Compton exchange of energy between the photons and gas.
Hence, although the general features of the model provide
some interesting clues regarding the hydrodynamical behavior
of the flow, it does not provide a self-consistent picture of the
relationship between the hydrodynamics and the formation of
the observed phase-averaged X-ray spectra.

The availability of copious high-quality spectral data for
accretion-powered X-ray pulsars, combined with the lack of a

fully self-consistent radiation-hydrodynamical model, has
motivated us to investigate the importance of additional
radiative and hydrodynamical processes beyond the scope of
those considered by BW07. The complexity of the resulting
mathematical model precludes the analytical treatment carried
out by BW07, and we must therefore solve the problem within
the context of a detailed numerical simulation. The new
simulation described here includes the implementation of a
realistic dipole geometry, rigorous physical boundary condi-
tions, and a self-consistent treatment of the energy transfer
between electrons, ions, and radiation. We refer to the
formalism as a “two-fluid” model, due to the explicit treatment
of the separate dynamical effects of the gas and radiation
pressures, which is analogous to the two-fluid treatment of
cosmic-ray acceleration in supernova-driven shock waves (e.g.,
Becker & Kazanas 2001).
This is the first in a series of two papers in which we describe

in detail the new coupled radiative-hydrodynamical model. The
integrated approach involves an iteration between an ODE-
based hydrodynamical code that determines the dynamical
structure, and a PDE-based radiation transport code that
computes the X-ray spectrum. The iterative process converges
to yield a self-consistent description of the dynamical structure
over the full length of the accretion column, as well as the
energy distribution in the emergent radiation field. In this paper
(Paper I), we focus on solving the coupled hydrodynamical
conservation equations to determine the column structure, and
in PaperII we present the results obtained for the X-ray spectra
for three sources.
The flow velocity and electron temperature profiles com-

puted here are used as input for the spectral analysis conducted
in PaperII, which focuses on solving the fundamental photon
transport equation in a dipole geometry using the COMSOL
multiphysics environment. The linkage between the two
simulation components is carried by the inverse-Compton
temperature profile, which depends on the shape of the
radiation energy distribution. The inverse-Compton temper-
ature profile, which is an output from the COMSOL
environment, is used as an input to a Mathematica code that
computes the accretion column hydrodynamical structure by
solving the ODEs. The output velocity and electron temper-
ature profiles computed using Mathematica are then used as
input to the COMSOL simulation, and the process is repeated
until the inverse-Compton and electron temperature profiles
converge, as discussed in detail below. In PaperII, we present
and discuss the phase-averaged X-ray spectra computed using
our model for Her X-1, Cen X-3, and LMC X-4, and compare
the results with the observational data in order to determine the
model parameters for sources covering a wide range of
luminosities.
This paper is organized as follows. In Section 2, we discuss

the relation between the accretion disk and the pulsar
magnetosphere, and the approximations we will use to treat
the effect of the cyclotron resonance on the electron scattering
occurring in the strong magnetic field. We also discuss the
equation of state used to describe the thermodynamics of the
coupled gas and radiation. In Section 3, we introduce the
conservation relations for mass, momentum, and energy, and
we discuss the fundamental energy exchange processes that
couple the electrons with the ions and the radiation field. In
Section 4, we derive the fundamental boundary conditions
applied at the top of the accretion column, at the stellar surface,
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and at the thermal mound surface. In Section 5, we describe the
procedure used to solve the coupled set of conservation
relations to obtain a self-consistent description of the radiative
and hydrodynamical structure of the accretion column. The
new model is applied to three sources in Section 6, and in
Section 7 we discuss our results and describe our plans for
future research.

2. Physical Background

The analytical model developed by BW07 has proven to be
quite useful in the physical interpretation of the X-ray spectra
observed from a number of accretion-powered X-ray pulsars,
including Her X-1, Cen X-3, and LMC X-4 (BW07; Wolff
et al. 2016), by providing an alternative to the commonly used
ad hoc mathematical forms, such as power laws, exponential
cutoffs, and Gaussian emission and absorption features. In
addition to providing good spectra fits, the BW07 model also
yields meaningful estimates for key source parameters, such as
the electron temperature Te, the hot-spot radius r0, and the
scattering cross-sections for photons propagating either
perpendicular or parallel to the magnetic field axis, denoted
by σ⊥ and σP, respectively. However, the success of the BW07
model leads to further questions about how the underlying
assumptions built into the model may be affecting the estimates
for the fitting parameters. This is a multi-faceted question since
a number of different idealizations and assumptions had to be
incorporated into the BW07 model in order to make an
analytical solution tractable. We shall discuss these assump-
tions below and relate them to the work presented in this paper.

In the BW07 model, the accretion column radius r0 is treated
as a constant, so that the accretion column is cylindrical. This is
perhaps a reasonable assumption near the base of the column,
but if the height of the column becomes a significant fraction of
the stellar radius, which we shall see is true in the case of our
new models, then the effects of the dipole curvature of the
magnetic field cannot be ignored. Beyond the cylindrical
geometry, the mathematical formalism employed by BW07
also incorporates two additional idealizations in order to make
the problem amenable to analytical solution. The first is that the
actual physical profile of the accretion velocity, v, was replaced
with the ad hoc form v∝τ, where τ is the scattering optical
depth measured upward from the stellar surface. This profile
correctly results in the stagnation of the flow at the stellar
surface, but it does not merge smoothly with the free-fall
velocity profile that characterizes the infalling material above
the top of the accretion column.

The second key assumption made by BW07 is that the
electrons in the accretion column comprise an isothermal
distribution, with no vertical variation of the temperature. This
constant temperature assumption is required in order to separate
the transport equation for the radiation field, which is almost
certainly wrong at some level, but is not clear a priori how
much variation in the temperature is expected since Compton
scattering is likely to regulate the temperature and cool the
electrons, whereas bulk compression and the Coulomb transfer
of kinetic energy from the protons will tend to heat the
electrons. There are also additional effects due to the heating
and cooling that occur via bremsstrahlung and cyclotron
emission and absorption. The entire accretion scenario over the
full length of the accretion column, including the dynamics, the
energy transfer, and the solution for the radiation field, is in

reality far more complicated than could be represented by the
idealized mathematical model developed by BW07.
Our goal here is to relax some of the key assumptions

incorporated into the BW07 model and reexamine the resulting
structure of the accretion column using a more realistic
physical description. The problem is quite complex because
of the dominant role the radiation pressure plays in mitigating
the accretion velocity as the infalling material decelerates
toward the stellar surface. Hence one must employ a self-
consistent methodology in which the nonlinear coupling
between the radiation spectrum and the flow dynamics is
treated explicitly. In the present paper, we will model X-ray
pulsar accretion flows in a dipole geometry, including the
vertical variation of the electron temperature, and the
thermodynamic effects of all of the relevant coupling
mechanisms (see Figure 1). We also incorporate the dynamical
effect of the individual pressure components due to the ions,
the electrons, and the radiation, and we allow for the possible
presence of a hollow cavity within the accretion column.

2.1. Accretion Power and X-Ray Luminosity

The ultimate power source for the observed X-ray emission
from accretion-powered pulsars is gravity, and therefore the
total power available is equal to the accretion luminosity,
defined by

*
*

ºL
GM M

R
, 1acc

˙
( )

where G is the gravitational constant, Ṁ denotes the accretion
rate, and M* and R* are the stellar mass and radius,
respectively. If no kinetic or thermal energy enters the star
(Lenzen & Trümper 1978), then the X-ray luminosity LX is

Figure 1. Accretion column formation in the two-fluid model. Ions and
electrons enter at the top of the column as coupled and interacting fluids. X-ray
photons are produced in the column and escape through the top and the sides as
pencil and fan-beam components, respectively. Also indicated are the thermal
mound surface (where the absorption optical depth in the parallel direction
equals unity, t = 1abs ), and the radiation sonic surface, where the radiation
Mach number M = 1r .
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given by the relation

=L L , 2X acc ( )

although we note that Basko & Sunyaev (1976) have argued
that some energy may diffuse down into the star.

Becker et al. (2012) have shown there is a critical luminosity,
Lcrit, below which the pressure of the radiation alone is
insufficient to bring the matter to rest, and therefore Coulomb
interactions must cause the final deceleration to stagnate at the
stellar surface. Additionally, very low-luminosity sources
(LX1034 erg s−1) can potentially exhibit the presence of a
gas-mediated (discontinuous) shock downstream from the
(smooth) radiation shock (Langer & Rappaport 1982). The
precise locations of the radiation and gas shocks largely depend
upon the source luminosity and the upstream and downstream
boundary conditions. Hence, in order to fully understand the
hydrodynamic and thermodynamic processes that determine
the structure of the accretion column over the full range of
observed luminosities (LX∼1034–38 erg s−1), it is essential to
include the effect of gas pressure in the model. In this paper, we
focus on treating three well-known luminous X-ray pulsars,
and we defer discussion of low-luminosity sources, such as X
Persei, to a later paper.

2.2. Pulsar Magnetosphere

The magnetic field surrounding a neutron star is well
approximated by a dipole configuration, with spherical vector
components given by (e.g., Jackson 1962)

* * * *q q
= - = - =q fB

B R

r
B

B R

r
B

cos
,

sin

2
, 0, 3r

3

3

3

3
( )

where the polar angle θ is measured from the magnetic field
axis, B* denotes the field strength measured at the magnetic
pole on the surface of the star, and R* is the stellar radius. The
magnitude of the field, B∣ ∣, varies with the spherical radius r
according to

* * q= +B
B R

r2
1 3 cos , 4

3

3
2∣ ∣ ( )

and therefore the field strength decreases by a factor of two
between the magnetic pole (θ=0) and the magnetic equator
(θ=π/2), so that

*=B B
1

2
, 5eq ( )

where Beq denotes the magnitude of the field at the stellar
surface along the magnetic equator.

In the scenario considered here, the accreting gas is entrained
onto magnetic field lines from the surrounding disk, and fed
onto the magnetic poles of the star. The detailed density
distribution inside the accretion column is influenced by a
variety of unknown geometrical factors, such as the angle
between the star’s rotation and magnetic axes (Lamb
et al. 1973; Elsner & Lamb 1977; Ghosh et al. 1977). In some
sources, the entrainment of matter from the disk results in a
partially filled column, but in other sources, such as Her X-1,
an alternate accretion mode seems to be at play, in which the
gas is introduced into the polar cap region from a dense
atmosphere concentrated above the cap, and the accretion
column is completely filled (Boroson et al. 2001).

We define the physical extent of the accretion column at the
stellar surface using the polar angles θ1 and θ2, which are
measured from the magnetic field axis and delineate the inner
and outer boundaries of the dipole accretion column at the
stellar surface, respectively. The corresponding inner and outer
arc-length surface radii, denoted by ℓ1 and ℓ2, respectively, are
given by (see Figure 2)

* *q q= =ℓ R ℓ R, . 61 1 2 2 ( )

Note that the column is partially hollow if 0<ℓ1<ℓ2, and it is
completely filled if ℓ1=0. The solid angle subtended by the
accretion column at the stellar surface, Ω*, is related to θ1 and
θ2 via

* p q qW = -2 cos cos . 71 2( ) ( )

The variable solid angle, Ω(r), subtended by the accretion
column at radius r increases in proportion to r in the dipole
field geometry, so that

*
*W = Wr

r

R
. 8( ) ( )

Lamb et al. (1973) provide some insight into the upper limit
of the outer polar cap arc-radius ℓ2. The stellar surface “hot
spot” has an area that must be less than or equal to

* *p R R RA
2( ) , and therefore

⎛
⎝⎜

⎞
⎠⎟*
*
* pW R

R

R
R , 92

2

A

2 ( )

where RA is the Alfvén radius and Ω2 is the solid angle
subtended by a filled polar cap of radius ℓ2 on the surface of the
star, given by

p qW º -2 1 cos . 102 2( ) ( )

Figure 2. Geometry of the dipole accretion column. The inner and outer arc-
radii of the accretion column at the stellar surface are denoted by ℓ1 and ℓ2,
respectively, with associated surface angles θ1 and θ2. The magnetic field axis
is tilted by angle j with respect to the rotation axis. The fan component is
formed by photons diffusing through the side walls, and the pencil component
is formed by photons that free-stream through the upper surface of the column
at radius rtop.
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It follows that the solid angle of the polar cap is restricted by
the condition

* pW
R

R
. 112

A
( )

Since the stellar radius is much larger than the polar cap radius
(R*?ℓ2), and the Alfvén radius is much larger that the stellar
radius (RA?R*), we can use the small angle approximation,
sin θ≈θ, along with Equations (6), (10), and (11), to conclude
that the outer polar cap arc-radius, ℓ2, is constrained by the
condition

⎛
⎝⎜

⎞
⎠⎟*
*ℓ R

R

R
. 122

A

1 2

( )

In the dipole field geometry, the radius r along a field line
(which is also a flow streamline in the pulsar application) is a
function of the angle θ measured from the magnetic pole via

q q=r R sin , 13eq
2( ) ( )

where Req is the radius of the field line in the magnetic-
equatorial plane (θ=π/2). The field lines connected with the
inner and outer surfaces of the accretion column have
magnetic-equatorial radii Req equal to R1 and R2, respectively,
where R1>R2 (see Figure 3). We can relate R1 and R2 to the
corresponding polar angles, θ1 and θ2, respectively, by setting
r=R* in Equation (13), which yields

* *
q q

= =R
R

R
R

sin
,

sin
. 141 2

1
2 2

2
( )

We define the coordinate z as the altitude above the
magnetic-equatorial plane, measured along the field line that
connects with the outer wall of the accretion funnel and with
the inner accretion radius in the Keplerian disk. We therefore
have

q q q q q= =z r Rcos sin cos , 152
2( ) ( ) ( )

where the final result follows from Equation (13). The dipole
field reaches its maximum altitude, zc, at the critical angle
θ=θc, and then turns over to extend downward toward the
disk. By setting the derivative of Equation (15) with respect to

θ equal to zero, we find that the critical angle is given by

⎛
⎝⎜

⎞
⎠⎟q = = -cos

1

3
57.74 . 16c

1 ( )

The corresponding maximum altitude is therefore

q= =z r Rcos
2

3 3
, 17c c c 2 ( )

where the corresponding spherical radius, rc, is related to the
magnetic-equatorial plane radius, R2, via (see Equation (13))

=r R
2

3
. 18c 2 ( )

A fundamental geometrical restriction of our model is that the
spherical radius at the top of the accretion funnel, denoted by
rtop, must be below the dipole turnover radius, rc, associated
with the outer-wall field line. Hence we must satisfy the
condition

r r . 19ctop ( )

2.3. Entrainment from the Disk

The pulsations observed from an X-ray pulsar result from a
misalignment between the magnetic and rotation axes of the
star. The angle between these two axes is denoted by j in our
model. The misalignment causes the magnetic field at the
surface of the star in the plane of the accretion disk, Bdisk, to
sweep between minimum and maximum values during the
star’s rotation, as observed from a standard reference direction,
which we take to be the direction to the companion star. Based
on Equation (4), we find that

* a= +B
B

2
1 3 sin , 20disk

2 ( )

where

a
p

qº -
2

21( )

represents the magnetic latitude in the accretion disk (in the
direction toward the companion star), which varies between
±j as the star rotates, such that −j�α�j (see Figure 3).

Figure 3. Dipole magnetic field of a neutron star is shown at an inclination j with respect to the rotation axis. The maximum height of a dipole field line above the
magnetic-equatorial plane occurs at the critical polar angle θ=θc=57.74°. The outer wall of the accretion funnel corresponds to the field line that crosses through
the plane of the dipole field at radius R2, and through the plane of the accretion disk at radius R2,disk.
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Matter is picked up from the disk and entrained onto the
magnetic field lines at the Alfvén radius, RA, located where the
pressure of the magnetic field balances the ram pressure of the
accreting gas (Lamb et al. 1973). Outside this radius, the
magnetic field of the neutron star is effectively shielded, and
therefore it does not significantly influence the flow structure.
Inside the Alfvén radius, the strong magnetic field channels the
plasma onto the magnetic poles of the star. Due to the complex
structure of the pulsar magnetosphere and the uncertainties
regarding its interaction with the matter in the disk, it is difficult
to precisely compute the value of RA (e.g., Romanova
et al. 2003). However, a useful estimate is provided by Lamb
et al. (1973), who find that

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

*

* x

~ ´

´
-

-



R
B R

M

M

L

2.6 10 cm
10 G 10 km

10 erg s
, 22

A
8 disk

12

4 7 10 7

1 7
X

37 1

2 7

( )

where ξ is a constant of order unity. Based on Equations (20)
and (22), we observe that the oscillation of the disk-plane
surface magnetic field, Bdisk, in the direction toward the
companion star, will generate a corresponding oscillation in the
Alfvén radius, RA, in the same direction. Since the matter is
picked up from the accretion disk and entrained onto the
magnetic field lines at radius RA, it follows that the pick-up
radius in the disk oscillates between minimum and maximum
values as the star rotates.

We denote the radii where the magnetic field lines connected
with the inner and outer walls of the accretion column cross the
accretion disk as R1,disk, and R2,disk, respectively, where

>R R1,disk 2,disk. The corresponding radii at which these field
lines cross the equatorial plane of the magnetic dipole are R1

and R2, respectively. By setting the magnetic-equatorial
crossing radius, Req, equal to either R1 or R2 in Equation (13),
we find that the corresponding disk-crossing radii for the two
field lines in question are given by

q a
q a

= =

= =

R R R

R R R

sin cos ,

sin cos , 23
1,disk 1

2
1

2

2,disk 2
2

2
2 ( )

where α is the magnetic latitude in the accretion disk, and the
final results follow from Equation (21). Equation (23) indicates
that the disk-crossing radii R1,disk and R2,disk oscillate as the star
rotates and α varies between ±j. By combining Equations (14)
and (23), we can eliminate R1 and R2 to express the disk-
crossing radii in terms of the angles θ1 and θ2, which yield

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟* *

a
q

a
q

= =R R R R
cos

sin
,

cos

sin
. 241,disk

1

2

2,disk
2

2

( )

Equation (24) allows us to study the variation of the two
disk-crossing radii as the star spins and the disk-plane latitude
α oscillates between ±j. This is important because the matter
is picked up from the disk at the Alfvén radius, RA, and
therefore material is fed onto the inner and outer walls of the
accretion column when =R R1,disk A and =R R2,disk A, respec-
tively. For intermediate values, the matter is fed into the central
part of the column, between the inner and outer walls. Hence,
as the star rotates, matter is cyclically fed into the entire volume
of the accretion column.

In order to close the system and ensure that we are
generating self-consistent models for the pulsar accretion
column and its connection with the surrounding accretion disk,
we must therefore set R1,disk and R2,disk equal to the maximum
and minimum values for the oscillating Alfvén radius, which is
obtained by combining Equations (22) and (20). Essentially,
we must find that during the spin of the star, RA varies in the
range of

 R R R . 252,disk A 1,disk ( )

We should emphasize that our model does not include a
complete description of the entire pulsar magnetosphere and
the associated accretion disk, and therefore we must interpret
expressions such as Equation (25) as approximations, rather
than strict quantitative relations. However, these expressions
are nonetheless valuable in assessing the overall validity of our
model and the related parameters, which we will discuss in
more detail in Section 7.3.

2.4. Quantization and Electron Scattering Cross-section

Quantum mechanical effects play an important role in the
strong magnetic fields (B∼1012 G) inherent to X-ray pulsars
because the cyclotron energy, òcyc, separating the ground state
from the first excited Landau level,

⎜ ⎟⎛
⎝

⎞
⎠

p
= »

eBh

m c

B

2
11.57

10 G
keV, 26

e
cyc 12

( )

is in the range of òcyc∼10–50 keV, where me, e, h, and c
denote the electron mass and charge, Planck’s constant, and the
speed of light, respectively. The resulting cyclotron absorption
feature can be clearly identified in many X-ray pulsar spectra
(e.g., White et al. 1983).
The strong magnetic field inside the accretion column

differentiates the photons into ordinary and extraordinary
polarization modes. In the case of the ordinary mode, the
electric field vector is oriented in the plane formed by the
magnetic field and the photon propagation direction. In the case
of the extraordinary mode, the electric field vector is aligned
perpendicular to this plane. The details of the photon–electron
scattering process depend on the relationship between the
photon energy ò and the cyclotron energy òcyc, and also on the
propagation direction and polarization state of the photon
(Chanan et al. 1979; Ventura 1979; Nagel 1980).
In the ordinary polarization mode (m=1), the scattering

cross-section is given by

s s q q= += fsin cos , 27s
m

s s s
1

T
2 2[ ( ) ] ( )

and the extraordinary mode (m=2) scattering cross-section
can be written as

s s= + Y= f , 28s
m

s
2

T ( ) ( )

where σT is the Thomson cross-section, θs is the angle between
the photon propagation direction and the magnetic field, Ψ is
the resonant contribution, and the function fs(ò) is defined in
terms of the cyclotron energy, òcyc, by

⎧⎨⎩
 

   


º
<

f
1, ,

, .
29s

cyc

cyc
2

cyc
( )

( )
( )
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A complete treatment of the energy and angular dependence of
the scattering of the ordinary and extraordinary mode photons
is beyond the scope of this paper, and therefore we follow
Wang & Frank (1981) and BW07 by splitting the photons into
two populations: those propagating either parallel or perpend-
icular to the magnetic field direction.

Photons propagating perpendicular to the magnetic field
(θs=π/2) are dominated by the ordinary polarization mode
(m=1) if ò is below the cyclotron energy, òcyc, because in this
case the resonant portion of Equation (28) makes no
contribution, and we find that s s s< == =

s
m

s
m2 1

T. In this
situation, we can therefore set the perpendicular scattering
cross-section equal to the Thomson value (Ventura 1979;
Becker 1998),

s s=^ . 30T ( )

For photons propagating parallel to the magnetic field
(θs=0), with energy ò<òcyc, both modes see the Thomson
cross-section reduced by the ratio  cyc

2( ) . In this case, we
follow Arons et al. (1987) and remove the energy dependence
of the parallel scattering cross-section by replacing ò with the
radius-dependent mean photon energy,  r¯ ( ), so that σP(r)
varies as

⎧⎨⎩
 

   


s
s

s
»

<
, ,

, .
31

T cyc

T cyc
2

cyc

¯
( ¯ ) ¯

( )

In our computational approach, the value of σP is obtained as
part of an iterative parameter variation procedure in which we
self-consistently compute the radiation spectrum and the
hydrodynamic structure of the accretion column, and attempt
to fit the observational spectral data with adherence to the
appropriate boundary conditions (see Section 4). However, as a
check on the validity of the model parameters, we will refer to
Equation (31) in our discussion in Section 7 in order to verify
that the resulting values for σP are physically reasonable. We
also require that the angle-averaged cross-section, s, used in
the solution of the photon transport equation, must satisfy the
constraint s s s< < ^ (Canuto et al. 1971; BW07).

2.5. Equation of State

The magnetic field near the surface of an accreting neutron
star is so strong that the cyclotron energy given by
Equation (26) becomes comparable to the thermal energy of
the electrons. Consequently, the electron energy distribution is
quantized in the direction perpendicular to the magnetic field,
and therefore the electrons possess a one-dimensional Max-
wellian distribution along the magnetic field direction, with a
mean thermal energy equal to (1/2) kTe, where k is Boltz-
mann’s constant. On the other hand, the proton energy is not
quantized, and therefore the protons are described by a three-
dimensional Maxwellian distribution, with a mean thermal
energy equal to(3/2) kTi. The ion and electron internal energy
densities are therefore given by

= =U n kT U n kT
3

2
,

1

2
, 32i i i e e e ( )

where ni and ne denote the ion and electron number densities,
respectively. In principle, the ion and electron temperatures Ti
and Te are not necessarily equal, and therefore in our two-
temperature model we implement separate energy equations for

each species, including a term describing their Coulomb
coupling.
The magnetic field pressure is orders of magnitude stronger

than either the gas pressure or the radiation pressure in an X-ray
pulsar accretion column, and therefore the charged particles are
constrained to follow the curved dipole magnetic field as the
plasma flows downward toward the stellar surface. Charge
neutrality ensures that ni = ne at all locations. From the point of
view of the accretion hydrodynamics, the relevant pressure is
the total pressure parallel to the local magnetic field direction,
given by the sum of the electron, ion, and radiation
components,

= + +P P P P , 33e i rtot ( )

where

= =P n kT P n kT, , 34i i i e e e ( )

denote the ion and electron pressures, respectively. The
radiation pressure, Pr, is not given by a thermal formula since
the X-ray pulsar radiation field is nonthermal. Hence the
radiation pressure must be computed using a conservation
relation. The pressure components are related to their
corresponding energy densities via

g g g= - = - = -P U P U P U1 , 1 , 1 ,
35

i i i e e e r r r( ) ( ) ( )
( )

where it follows from Equations (32), (34), and (35) that
γe=3 and γi=5/3. The ratio of specific heats for the
radiation is γr=4/3.

3. Conservation Equations

Our self-consistent model for the hydrodynamics and the
radiative transfer occurring in X-ray pulsar accretion flows is
based on a fundamental set of conservation equations
governing the flow velocity, v(r), the bulk fluid mass density,
ρ(r), the radiation energy density, Ur(r), the ion energy density,
Ui(r), the electron energy density, Ue(r), and the total energy
transport rate, E r˙ ( ). The mathematical model can be reduced to
a set of five first-order, coupled, nonlinear ordinary differential
equations satisfied by v, Ė , and the ion, electron, and radiation
sound speeds, ai, ae, and ar, respectively, defined by

g
r

g
r

g
r

= = =a
P

a
P

a
P

, , , 36i
i i

e
e e

r
r r2 2 2 ( )

where the ion and electron temperatures, Ti and Te, are related
to the respective sound speeds via (see Equation (34))

g g
= =a

kT

m
a

kT

m
, . 37i

i i
e

e e2

tot

2

tot
( )

Here, = +m m me itot denotes the total particle mass, assuming
the accreting gas is composed of pure, fully ionized hydrogen,
with ne = ni for charge neutrality. There is no corresponding
relation for the radiation sound speed since the radiation
distribution inside the accretion column is not expected to
approach a blackbody, except near the surface of the star.
Solving the five coupled conservation equations to determine

the radial profiles of the quantities v, Ė , ai, ae, and ar requires
an iterative approach, because the rate of Compton energy
exchange between the photons and the electrons depends on the
relationship between the electron temperature, Te, and the
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inverse-Compton temperature, TIC, which in turn is determined
by the shape of the radiation distribution. In order to achieve a
self-consistent solution for all of the flow variables, while
taking into account the feedback loop between the dynamical
calculation and the radiative transfer calculation, the simulation
must iterate through a specific sequence of steps. The steps
required in a single iteration are (1) the computation of the
dynamical structure of the accretion column by solving the five
conservation equations, (2) calculation of the associated
radiation distribution function by solving the radiative transfer
equation, (3) computation of the inverse-Compton temperature
profile from the radiation distribution, and then (4) re-
computation of the dynamical structure, etc. The iterative
process is discussed in detail in Section 5.3. Here we describe
the physics contained in each of the coupled conservation
equations that form the core of the dynamical model.

3.0.1. Mass Flux

In the one-dimensional case considered here, the cross-
sectional structure of the accretion column is not considered in
detail, and all of the densities and temperatures represent
averages across the column at a given radius r. Hence the mass
continuity equation can be written in dipole geometry as (e.g.,
Langer & Rappaport 1982)

r
r

¶
¶

= -
¶
¶

r

t A r r
A r r v r

1
, 38

( )
( )

[ ( ) ( ) ( )] ( )

where v<0 denotes the radial inflow velocity, and the cross-
sectional area of the column, A(r), is related to the solid angle,
Ω(r)=(r/R*)Ω*, by

*
*

= W =
W

A r r r
r

R
. 392

3
( ) ( ) ( )

In a steady state, we see from Equation (38) that A(r)ρ(r)v(r) is
a conserved quantity, i.e., the mass accretion rate Ṁ is
conserved and is related to the density ρ and velocity v via

r= WM r v , 402˙ ∣ ∣ ( )

which can be combined with Equation (8) to obtain for the
mass density

*
*

r =
W

MR

r v
. 41

3

˙
∣ ∣

( )

This algebraic relation for the density is used to supplement the
set of differential conservation equations in our hydrodynami-
cal model for the column structure.

We assume that the accreting gas is composed of pure, fully
ionized hydrogen, and therefore the electron and ion number
densities are given by

*
*

r
= = =

W
n n

m

MR

m r v
, 42e i

tot tot
3

˙
∣ ∣

( )

where = +m m me itot .

3.0.2. Total Energy Flux

The total energy flux in the radial direction, averaged over
the column cross-section at radius r, is given by

*

r

s
r

= + + + + + +

-
¶
¶

-


F r v v P P P U U U

c

n

P

r

GM v

r

1

2

, 43

i e r i e r

e

r

3( ) ( )

( )

where the energy flux is defined to be negative for energy flow
in the downward direction, and the accretion velocity v is
negative (v<0). The terms on the right-hand side of
Equation (43) represent the kinetic energy flux, the enthalpy
flux, the radiation diffusion flux, and the gravitational energy
flux, respectively. The total energy flux F is related to the total
energy transport rate in the radial direction, denoted by Ė , via

= µ -E r A r F r erg s , 441˙ ( ) ( ) ( ) ( )

where the column cross-sectional area A(r) is given by
Equation (39).
We can derive a first-order differential equation for the

radiation sound speed, ar, by substituting for the energy
densities and pressures in Equation (43) using Equations (35)
and (36), substituting for the electron number density ne using
Equation (42), and substituting for F using Equation (44). After
some algebra, we obtain in the steady-state case

⎛
⎝⎜

⎞
⎠⎟
*

s g

g g g

= + -
W

+

+
-

+
-

+
-

-

da

dr

a

r

a

v

dv

dr

M

m ca r

E

M

v

a a a GM

r

3

2 2

1

2 2

1 1 1
. 45

r r r r

r

i

i

e

e

r

r

tot
2

2

2 2 2

˙ ˙
˙

( )

3.0.3. Ion and Electron Energy Equations

The variation of the internal energy density of the ionized
gas is influenced by adiabatic heating, energy exchange
between the ions and electrons, and the emission and
absorption of radiation. Averaging over the cross-section of
the column at radius r, the energy equations for the ions and
electrons can be written as

g
r

r
g

r
r

= + = +
DU

Dt

U D

Dt
U

DU

Dt

U D

Dt
U, , 46i

i
i

i
e

e
e

e˙ ˙ ( )

respectively, where the first terms on the right-hand side
represent adiabatic compression, the final terms represent
thermal coupling with the other species, and the comoving
(Lagrangian) time derivative D/Dt is defined by

º
¶
¶

+
¶
¶

D

Dt t
v

r
. 47( )

The thermal coupling terms appearing in Equation (46)
represent the net heating due to a variety of combined
processes, which are broken down as follows,

= + + + + +

=-

U U U U U U U

U U

,

. 48

e

i

brem
emit

brem
abs

cyc
emit

cyc
abs

Comp ei

ei

˙ ˙ ˙ ˙ ˙ ˙ ˙
˙ ˙ ( )

The terms in the expression for Uė denote, respectively,
bremsstrahlung (free–free) emission and absorption, cyclotron
emission and absorption, photon–electron Comptonization, and
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electron–ion Coulomb energy exchange. The ions do not
radiate appreciably, and therefore they only experience
adiabatic compression and Coulomb energy exchange (see
Langer & Rappaport 1982). In our sign convention, a heating
term is positive and a cooling term is negative. These energy
transfer rates are discussed in more detail in Section 3.1.

In a steady state, Equation (46) can be written as

g
r

r
g

r
r

= + = +
dU

dr

U d

dr

U

v

dU

dr

U d

dr

U

v
, . 49i

i
i i e

e
e e˙ ˙

( )

We can derive equivalent differential equations satisfied by the
electron and ion sound speeds by using Equations (35), (36),
and (41) to substitute for the energy and mass densities in
Equation (49), obtaining

⎜ ⎟⎛
⎝

⎞
⎠g g g= - - + - -

Wda

dr

a

v

dv

dr

a

r

r

M

U

a
1

2

3

2

1

2
1 ,

50

i
i

i i
i i

i

i

2
( ) ( ) ˙

˙

( )

⎜ ⎟⎛
⎝

⎞
⎠g g g= - - + - -

Wda

dr

a

v

dv

dr

a

r

r

M

U

a
1

2

3

2

1

2
1 .

51

e
e

e e
e e

e

e

2
( ) ( ) ˙

˙

( )

3.0.4. Momentum Equation

The ionized, accreting gas is constrained to spiral around the
magnetic field lines by the Lorentz force. Since there is no
component of the Lorentz force parallel to the local B-field, the
remaining acceleration in the parallel direction is due to the
total pressure gradient and the gravitational field of the neutron
star. If we average over the cross-section of the accretion
column at radius r, then the comoving acceleration in the radial
direction can be written as (e.g., Langer & Rappaport 1982),

*
r

= -
¶
¶

-
Dv

Dt

P

r

GM

r

1
, 52tot

2
( )

where = + +P P P Pr i etot is the total pressure, and the
Lagrangian time derivative D/Dt is defined by Equation (47).
Substituting for the mass density ρ and the pressure
components Pi, Pe, and Pr using Equations (41) and (36),
respectively, we can derive a first-order differential equation
satisfied by the fluid velocity v involving the sound speeds ai,
ae, and ar, and the energy transport rate Ė . After some algebra,
the result obtained in a steady state is

⎧⎨⎩
⎛
⎝⎜

⎞
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⎫⎬⎭

*

*

s

g g g

g g

=
- +

+

- +
W

+

+
-

+
-

+
-

-

+
W

- + -



dv

dr

v

v a a

a a

r

GM

r

M

m c r
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2
tot

2

2
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2

( )
( )

˙ ˙
˙

˙ [( ) ˙ ( ) ˙ ] ( )

where we have also made use of Equations (45), (50), and (51).

3.0.5. Radiative Losses

The value of the energy transport rate Ė (Equation (44))
varies as a function of the radius r in response to the escape of
radiation energy through the walls of the accretion column,
perpendicular to the magnetic field direction. In our one-
dimensional model, all quantities are averaged over the cross-
section of the column, and therefore we use an escape-
probability formalism to account for the diffusion of radiation
through the walls of the column. We therefore utilize a total
energy conservation equation of the form

⎜ ⎟⎛
⎝

⎞
⎠*r

r¶
¶

+ + + -

=-
¶
¶

+

t
v U U U

GM

r

A r r
A r F r U

1

2
1

, 54

i e r
2

esc( )
[ ( ) ( )] ˙ ( )

where the total energy flux is given by =F r E r A r( ) ˙ ( ) ( ) (see
Equation (44)), and the energy escape rate per unit volume is
given by

= - =
^

U
U

t
t

ℓ

w
, . 55r

esc
esc

esc
esc˙ ( )

Here, tesc(r) represents the mean escape time for photons to
diffuse across the column and escape through the walls, w⊥(r)
is the perpendicular diffusion velocity, and ℓesc(r) denotes the
perpendicular escape distance across the column at radius r,
computed using (see Figure 2)

⎛
⎝⎜

⎞
⎠⎟*

= -ℓ r ℓ ℓ
r

R
, 56esc 2 1

3 2

( ) ( ) ( )

so that at the stellar surface, we obtain = -ℓ ℓ ℓesc 2 1, as
required. The perpendicular diffusion velocity w⊥ cannot
exceed the speed of light, and therefore we compute it using
the constrained formula

⎛
⎝⎜

⎞
⎠⎟t

t s= =^
^

^ ^w c
c

n ℓmin , , , 57e esc ( )

where τ⊥ denotes the perpendicular optical thickness of the
column at radius r.
In a steady state, Equation (54) reduces to

⎛
⎝⎜

⎞
⎠⎟tW

= -
^r r

dE

dr

U

ℓ
c

c1
min , . 58r

2
esc( )

˙
( )

By combining Equations (35), (36), (40), and (58), we can
obtain the final form for the energy transport differential
equation,

⎛
⎝⎜

⎞
⎠⎟g g t

= -
- ^

dE

dr

a M

ℓ v
c

c

1
min , . 59r

r r

2

esc

˙ ˙
( ) ∣ ∣

( )

3.1. Energy Exchange Processes

The energy exchange rates per unit volume introduced in
Equations (48), denoted byUbrem

emit˙ ,Ubrem
abs˙ ,Ucyc

emit˙ ,Ucyc
abs˙ ,UComp˙ , and

Uei˙ , describe a comprehensive set of heating and cooling
processes experienced by the gas and radiation, including
Coulomb coupling between the ions and electrons, the
Compton exchange of energy between the electrons and
photons, and the emission and absorption of radiation energy
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via thermal bremsstrahlung and cyclotron. In this section, we
provide additional details regarding the computation of these
various rates.

3.1.1. Bremsstrahlung Emission and Absorption

Thermal bremsstrahlung emission plays a significant role in
cooling the ionized gas, and in the case of luminous X-ray
pulsars, it also provides the majority of the seed photons that
are subsequently Compton scattered to form the emergent
X-ray spectrum (BW07). Assuming a fully ionized hydrogen
composition for the accreting gas, with ne = ni, the total power
per unit volume emitted by the electrons is given by (see
Rybicki & Lightman 1979, Equation (5.14)),

⎛
⎝⎜

⎞
⎠⎟

p p
= -U

kT

m

e

hm c
n

2

3

2

3
, 60e

e e
ebrem

emit
1 2 5 6

3
2˙ ( )

where we have set the Gaunt factor equal to unity. The negative
sign appears in Equation (60) because this term represents a
cooling process in which heat is removed from the electrons.
We can write an equivalent expression for the bremsstrahlung
cooling rate in terms of the electron sound speed, ae, by using
Equation (37) to eliminate the electron temperature Te in
Equation (60), thereby obtaining, in cgs units,

r= - ´U a3.2 10 , 61ebrem
emit 16 2˙ ( )

where we have also used Equation (42).
The electrons in the accretion column also experience

heating due to free–free absorption of low-frequency radiation,
which plays an important role in regulating the temperature of
the gas. The heating rate per unit volume due to thermal
bremsstrahlung absorption, integrated over photon frequency,
is given by

a=U U c, 62rbrem
abs

R˙ ( )

where αR is the Rosseland mean absorption coefficient for fully
ionized hydrogen, expressed in cgs units by (Rybicki &
Lightman 1979)

a = ´ µ- - -T n1.7 10 cm . 63e eR
25 7 2 2 1 ( )

Note that we have set the Gaunt factor equal to unity and
assumed that the gas is composed of fully ionized hydrogen.
By combining Equations (62) and (63) and substituting for

g= -U P 1r r r( ), ne, and Te, using Equations (36), (37), and
(42), respectively, we obtain, in cgs units

r= ´ -U a a9.8 10 . 64e rbrem
abs 62 7 2 3˙ ( )

The sign of this quantity is positive since it represents a heating
process for the electrons.

3.1.2. Cyclotron Emission and Absorption

The electrons in the accretion column also experience
heating and cooling due to the emission and absorption of
thermal cyclotron radiation. At any given time, most of the
electrons are found in the ground state, but they can be excited
to the first Landau level via collisions, or via the absorption of
radiation at the cyclotron energy, òcyc. At the densities and
temperatures prevalent in pulsar accretion columns, radiative
excitation is followed immediately by radiative de-excitation
back to the ground state, so that in net terms, cyclotron

absorption can be interpreted as a resonant scattering process,
which results in no net change in the angle-averaged photon
distribution (Nagel 1980; Arons et al. 1987). Hence, on
average, cyclotron absorption does not result in the net heating
of the gas, due to the rapid radiative de-excitation, and we
therefore set =U 0cyc

abs˙ in our dynamical calculations. However,
near the surface of the accretion column, photons scattered out
of the outwardly directed beam are not replaced, and this leads
to the formation of the observed cyclotron absorption features,
in a process that is very analogous to the formation of
absorption lines in the solar spectrum (Ventura et al. 1979). The
formation of the cyclotron absorption features is further
considered in PaperII.
While cyclotron absorption does not result in the net heating of

the gas, due to the rapid radiative de-excitation, cyclotron
emission will cool the gas. In this process, kinetic energy is
converted into excitation energy via collisions, and the subsequent
emission of cyclotron radiation removes heat from the electrons.
To compute the cyclotron cooling rate, Ucyc

emit˙ , we begin with the
cyclotron emissivity, n

cyc˙ , which gives the production rate of
cyclotron photons per unit volume per unit energy. Using
Equations (7) and (11) from Arons et al. (1987), we have

⎛
⎝⎜

⎞
⎠⎟


 

r d= ´ -- -n B H
kT

e2.1 10 ,

65

cyc

e

kTcyc 36 2
12

3 2
cycecyc˙ ( )

( )

where B12=B∣ ∣/(1012 G) is evaluated using Equation (4) with
θ = 0, and H(x) is a piecewise function defined by

⎧⎨⎩
º
<

H x x
x x

0.15 7.5 , 7.5,
0.15 , 7.5.

66( ) ( )

The total cyclotron cooling rate is obtained by multiplying
Equation (65) by the photon energy ò and integrating over all
energies, which yields, in cgs units,

⎛
⎝⎜

⎞
⎠⎟

 r= - ´ - -U B H
kT

e2.1 10 , 67
e

kT
cyc
emit 36 2

12
3 2

cyc
cyc

ecyc˙ ( )

where the negative sign indicates this is a cooling process for
the electrons.

3.1.3. Compton Heating and Cooling

Compton scattering plays a fundamental role in the
formation of the emergent X-ray spectrum. It is also critically
important in establishing the radial variation of the electron
temperature profile through the exchange of energy between
the photons and electrons. Equation (7.36) from Rybicki &
Lightman (1979) gives the mean change in the photon energy ò
during a single scattering as

  áD ñ = -
m c

kT4 , 68
e

e2
( ) ( )

and the associated mean rate of change of the photon energy is
therefore

 s= áD ñ
d

dt
n c , 69e

Comp

¯ ( )

where s -n ce
1( ¯ ) denotes the mean-free time between scatterings

for the photons, and s̄ is the angle-averaged electron scattering
cross-section (BW07). The corresponding rate of change of the
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electron energy density due to Compton scattering can
therefore be written as

   òs= - áD ñ
¥

U n c f r d, , 70eComp
0

2˙ ¯ ( ) ( )

where the distribution function, f (r, ò), is the solution to the
photon transport equation introduced in PaperII, which is
related to the total radiation number density, nr, and energy
density, Ur, via

     ò ò= =
¥ ¥
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Combining Equations (68) and (70), we find that the net
Compton cooling rate for the electrons is given by
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which vanishes if the electron temperature, Te, is equal to the
inverse-Compton temperature, TIC, defined by
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In the present paper, we are primarily interested in the
implications of Compton scattering for the heating and cooling
of the gas, and its effect on the dynamical structure of the
accretion column. The electron cooling rate can be rewritten as

s= -U n c
kT

m c
g r U

4
1 , 74e

e

e
rComp 2

˙ ¯ [ ( ) ] ( )

where we introduce g(r) as the temperature ratio function,

ºg r
T

T
. 75

e

IC( ) ( )

The sign of UComp˙ depends on the value of g. If g<1 (i.e.,
TIC<Te), then the electrons experience Compton cooling;
otherwise, the electrons are heated via inverse-Compton
scattering. We can obtain the final form for the Compton
cooling rate in terms of the mass density, ρ, the electron sound
speed, ae, and the radiation sound speed, ar by combining
Equations (34)–(36), and (74), which yields
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g g g
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3.1.4. Electron–Ion Energy Exchange

The electrons can also be heated or cooled via Coulomb
collisions with the protons, depending on whether the electron
temperature Te exceeds the ion temperature Ti. The net heating
rate per unit volume for the electrons is given by (Langer &
Rappaport 1982)
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and the Coulomb logarithm is given by
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We can further simplify Equation (77) by substituting for ne
using Equation (42) and substituting for Te and Ti using
Equation (37), obtaining
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which in cgs units becomes
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Note that when Te = Ti, the second factor in Equation (81) is
zero, and thus =U 0ei˙ , as expected. Based on the symmetry of
the energy exchange between the particle species, we
immediately conclude that the energy transfer rate per unit
volume for the protons is given by = -U Ui ei˙ ˙ (see
Equation (48)).

4. Boundary Conditions

In order to solve the coupled set of conservation equations,
we must specify a variety of physical boundary conditions that
fall into two major categories. The first category is the set of
boundary conditions required to solve the system of dynamical
equations using Mathematica, and the second category is the
set of boundary conditions required to solve the partial
differential equation for the photon distribution function f
using COMSOL. We will focus primarily on the first set of
conditions here, and defer detailed discussion of the COMSOL
boundary conditions to PaperII.
As part of the dynamical model implemented in Mathema-

tica, we need to impose boundary conditions based upon the
physics occurring at the top of the accretion column (r=rtop)
and at the stellar surface (r=R*). At the top of the column
(Boundary 1), we impose conditions related to the flow velocity
and its acceleration, the free-streaming radiation field, and the
conservation of bulk fluid momentum. At the stellar surface
(Boundary 2), we impose conditions related to the stagnation of
the accretion velocity, and the attenuation of the total energy
transport rate into the star.

4.1. Boundary Conditions at the Upper Surface

The upper surface of the dipole-shaped accretion funnel is
located at radius r=rtop, which must be below the radius
corresponding to the turnover height of the dipole field, rc, as
discussed in Section 2.2 (see Equation (19)). In analogy with
the theory of stellar atmospheres, the top of the accretion
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column represents the last scattering surface for photon–
electron interaction as photons travel out the top of the column,
implying that the scattering optical depth from rtop to rc should
equal unity. Defining the parallel scattering optical depth, τP, so
that it increases in the downward direction for bulk fluid
entering at the top of the column and flowing downward, from
τP=0 at r=rtop, we have

òt s= ¢ ¢ r n r dr . 82
r

r

e
top

( ) ( ) ( )

Since the top of the accretion column is the last scattering
surface, we can also write

ò s¢ ¢ =n r dr 1, 83
r

r

e
c

top

( ) ( )

where rtop<rc.
We can use Equation (83) to constrain the radius at the top of

the accretion column, rtop, as follows. We assume the gas is in
free-fall above rtop, with velocity
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Using Equation (84) to substitute for v in Equation (42) yields
for the variation of the electron number density ne the result
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where = +m m me itot .
By utilizing Equation (85) to substitute for the electron

number density ne in Equation (83) and carrying out the radial
integration, we obtain the condition
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where the left-hand side is positive definite, since rtop<rc, and
the dipole turnover radius rc is given by Equation (18). By
rearranging Equation (86), we can obtain an explicit expression
for rtop, given by
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This relation allows us to self-consistently compute the value of
rtop in terms of the parameters Ω*, rc, and σP in our model.

At the top of the accretion column, the inflow velocity v
equals the local free-fall velocity, so that

⎛
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We also assume that at the top of the accretion column, the
local acceleration of the gas is equal to the gravitational value,
so that

= -
=

v
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which implies that
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By assuming pure gravitational acceleration at the top of the
accretion column, we are implicitly neglecting the effects of the
radiation pressure gradient, which will partially counteract the
downward gravitational force. We revisit this issue in Section 7,
where we conclude that this assumption is warranted, since
most of the radiation escapes out the sides of the accretion
column as a fan beam in the high-luminosity sources of interest
here. However, in lower-luminosity sources, a larger fraction of
the radiation may escape out the top of the column via a pencil-
beam component, but even in this case, the effect of radiation
deceleration at the top of the column is still likely to be
negligible.
Although our calculation allows for the possibility of two-

temperature flow, with unequal values of Ti and Te, in luminous
X-ray pulsar accretion columns, significant deviation between
the two temperatures is not expected, because the thermal
equilibration timescale is much smaller than the dynamical
timescale (BW07). We therefore assume that Ti = Te for the
inflowing gas at the top of the column (Elsner & Lamb 1977),
so that

=T T . 91i e,top ,top ( )

The electron and ion sound speeds at the top of the column are
given by (see Equation (37))

g g
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and therefore our assumption that =T Ti e,top ,top leads to the
relation
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The radial component of the radiation energy flux, averaged
over the cross-section of the column at radius r, is given
by

s
= - +


F r
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dU
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vU

3

4

3
, 94r

e

r
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where the first term on the right-hand side represents the
upward diffusion of radiation energy parallel to the magnetic
field, and the second term represents the downward advection
of radiation energy toward the stellar surface (with v<0). The
fact that the top of the accretion column is the last scattering
surface implies photon transport makes a transition from
diffusion to free streaming at r=rtop, so that we make the
following replacement in Equation (94),

s
-  
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By incorporating this transition into Equation (94), we see that
the radiation energy flux at the upper surface is given by

⎜ ⎟⎛
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⎠= +F r c v U r

4

3
. 96r rtop top top( ) ( ) ( )

The form of the total energy transport rate is derived from
Equation (43), using Equations (35), (36), (39), and (40), which
yields
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The expression for the total energy transport rate at r=rtop is
simplified once we implement the free-streaming boundary
condition in Equation (96), and use Equations (35) and (36) to
substitute for the radiation energy density Ur in terms of the
radiation sound speed ar. The result obtained is
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where we have also utilized Equations (88) and (93).

4.2. Boundary Conditions at the Stellar Surface

The ionized gas flows downward after entering the top of the
accretion funnel at radius r=rtop, and eventually passes
through a standing, radiation-dominated shock, where most of
the kinetic energy is radiated away through the walls of the
accretion column (Becker 1998). Below the shock, the gas
passes through a sinking regime, where the remaining kinetic
energy is radiated away (Basko & Sunyaev 1976). Ultimately,
the flow stagnates at the stellar surface, and the accreting matter
merges with the stellar crust.

The surface of the neutron star is too dense for radiation to
penetrate significantly (Lenzen & Trümper 1978), and therefore
the diffusion component of the radiation energy flux must
vanish there. Furthermore, due to the stagnation of the flow at
the stellar surface, the advection component should also vanish,
and consequently we conclude that the radiation energy flux

F 0r as *r R . We refer to this as the “mirror” surface
boundary condition, which can be written as

*
==F r 0. 99r r R

( ) ( )

The stagnation of the flow at the stellar surface also implies
there is no flux of kinetic energy into the star. Hence, at the
stellar surface, the total energy transport rate, Ė , reduces to the
addition of (negative) gravitational potential energy to the star.
The surface boundary condition for the total energy transport
rate is therefore given by (see Equations (43) and (44))

*
**
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=

E r
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R
. 100

r R
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˙
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The stagnation boundary condition formally requires that v=0
at the stellar surface, where r=R*. However, in practice, it is
not possible to perfectly satisfy this condition due to the

divergence of the mass density ρ implied by stagnation.
Therefore, we approximate stagnation at the stellar surface in
our simulations using the condition

*




v r clim 0.01 . 101
r R

∣ ( )∣ ( )

4.3. Boundary Conditions at the Thermal Mound Surface

As the flow decelerates near the base of the accretion
column, the density increases and the opacity becomes
dominated by free–free absorption, leading to the formation
of a dense “thermal mound” (e.g., Davidson 1973). The
thermal mound, with a temperature between 107 K and 108 K,
is the source of the blackbody seed photons that scatter
throughout the column and contribute to the emergent
Comptonized spectrum. The upper surface of the thermal
mound is located at radius r=rth, which is defined as the
radius at which the Rosseland mean of the free–free optical
depth, t

ff , measured from the top of the column, is equal to
unity.
In general, the vertical variation of t

ff is computed using the
integral

òt a= ¢ ¢ r r dr , 102
r

r
ff

R
top

( ) ( ) ( )

where αR is the Rosseland mean free–free absorption
coefficient for fully ionized hydrogen. Equation (102) implies
that the Rosseland mean free–free optical depth at the top of the
column is zero, so that

t = r 0. 103ff
top( ) ( )

At the upper surface of the thermal mound, we have

òt a= ¢ ¢ = r r dr 1. 104
r

r
ff

th R
th

top

( ) ( ) ( )

Between the thermal mound surface and the stellar surface,
t > 1ff , leading to an approximate balance between thermal
emission and absorption, though the balance is not perfect due
to the escape of photons through the sides of the accretion
column. The various thermal transfer rates and corresponding
timescales are further discussed in Section 7.6.

5. Solving the Coupled System

The set of five fundamental hydrodynamical differential
equations that must be solved simultaneously using Mathema-
tica comprise Equations (45), (50), (51), (53), and (59). It is
convenient to work in terms of non-dimensional radius, flow
velocity, sound speed, and total energy transport rate variables
by introducing the quantities
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where Rg is the gravitational radius, defined by

*ºR
GM

c
. 106g 2
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The computational domain extends from the top of the
accretion column, at radius =r rtop˜ ˜ , down to the stellar
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surface, at dimensionless radius =r 4.836˜ , assuming a
canonical stellar mass M*=1.4Me and radius R*=10 km.
In terms of these non-dimensional quantities, Equations (45),
(50), (51), (53), and (59) take the form
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where the column cross-sectional area A is given by (see
Equations (8) and (39))

*

*
= W =

W
A r r

R

R
r . 112

g2
3

3( ˜) ˜ ( )

These relations are supplemented by Equations (57) and (48),
which are used to compute the perpendicular scattering optical
thickness, τ⊥, and the energy exchange rates, Ui̇ and Uė,
respectively.

Our task is to solve the five coupled hydrodynamic
conservation equations (Equations (107)–(111)) to determine
the radial profiles of the dynamic variables Ea a a, , ,r i e˜ ˜ ˜ ˜ , and ṽ,
subject to the boundary conditions discussed in Section 4. Once
these profiles are available, the electron temperature T re ( ˜) can
be computed from the electron sound speed ae˜ using the
relation (see Equation (37))

g
=T r

m c

k
a r . 113e

e
e
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2( ˜) ˜ ( ˜) ( )

The solutions for v r˜( ˜) and T re ( ˜) are used as input to the
COMSOL finite element environment in order to compute the
photon distribution function, f r,( ˜ ), inside the column, which
is the focus of PaperII.

Solving the set of five hydrodynamic ODEs and the
associated photon transport equation requires the specification
of six free parameters, with values that are determined by

qualitatively comparing the computed theoretical spectrum
with the observed phase-averaged photon spectrum for a given
source, while at the same time satisfying all of the relevant
boundary conditions. In addition to the six free parameters, the
model also utilizes an additional 13 auxiliary parameters, that
are either computed using internal relations, or constrained by
observations. We organize the various theoretical parameters
into three groups, as discussed below, which we refer to as
“free,” “constrained,” and “derived.”
The six fundamental “free” model parameters, as listed in

Table 1, are the angle-averaged electron scattering cross-
section, s, the scattering cross-section in the direction parallel
to the magnetic field, σP, the magnetic field strength at the
magnetic pole, B*, the inner and outer polar cap arc-radii, ℓ1
and ℓ2, respectively, and the incident radiation Mach number,
Mr0, which is used to set the radiation sound speed at the top of
the column, artop˜ , via the relation

M =
v

a
. 114r

r
0

top

,top

∣ ˜ ∣
˜

( )

The six “constrained” parameters used in our simulations,
listed in Table 2, comprise the stellar mass M*, the stellar
radius R*, the source distance D, the X-ray luminosity LX, the
accretion rate Ṁ , and the scattering cross-section for photons
propagating perpendicular to the magnetic field, σ⊥. Rather
than being free parameters, these quantities are specified using
canonical values from observation and theory. We use the
canonical values M*=1.4Me and R*=10 km for our model
calculations, and we set the scattering cross-section for photons
propagating perpendicular to the magnetic field equal to the
Thomson cross-section, σ⊥=σT (e.g., Arons et al. 1987). The
accretion rate Ṁ is derived from the observed X-ray flux,
FX=LX/(4πD

2) by using Equations (1) and (2) to write

*
*

p
=M

D F R

GM

4
. 115

2
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The distance D can be estimated using known associations with
globular clusters (Frail & Weisberg 1990), or, in some cases,
via direct measurement using very long baseline interferometry
(Frail & Weisberg 1990).
The remaining seven “derived” parameters listed in Table 3

are computed from the six fundamental free parameters
Ms s ℓ ℓ, , , , ,r1 2 0 and B* by utilizing the boundary conditions

discussed in Section 4. The coupled system of five ODEs is
first-order, and therefore we need only specify Dirichlet
boundary values for each of the five unknowns. We use the
radius at the top of the accretion column, rtop˜ , computed using
Equations (87) and (105), to derive incident values for the five
unknown variables vtop˜ , ai,top˜ , ae,top˜ , ar,top˜ , and Etop

˜ in the
coupled conservation equations. The velocity at the top of the
column is derived from the free-fall velocity, vtop, given
previously in Equation (88), which can be rewritten in the non-
dimensional form

= -v
r

2
. 116top

top
˜

˜
( )

The incident radiation sound speed, ar,top˜ , is computed from the
value of the incident radiation Mach number, Mr0, using
Equation (114).
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We compute the value of the incident ion Mach number at
the top of the accretion column,Mi0, by solving the momentum
equation (Equation (52)), using the method described in the
Appendix. The ion sound speed at the top of the column
follows from the relation
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. 117i
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˜
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Likewise, the incident electron sound speed, ae,top˜ , is computed
by converting Equation (93) to non-dimensional variables
using Equation (105), which yields
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Similarly, the value for Etop
˜ is determined by converting

Equation (98) to non-dimensional variables using
Equation (105), yielding
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The thermal mound radius, rth˜ is computed using
Equation (104), in which the parallel absorption optical depth
is set equal to unity.

5.1. Computing the Photon Spectrum

The computational domain for the calculation extends from
the stellar surface, at dimensionless radius =r 4.836˜ , up to the
top of the accretion column, at radius =r rtop˜ ˜ , where we have
assumed a canonical stellar mass of M*=1.4Me and a radius
of R*=10 km. The attainment of a completely self-consistent
description of the hydrodynamic structure of the accretion
column, along with the radiation spectrum, is achieved using an
iterative procedure. The coupling between the hydrodynamical
simulation performed in Mathematica and the spectrum
calculation performed in COMSOL is made via three vectors
of information, which are passed between the two computa-
tional environments. In order to compute the dynamical
structure in Mathematica, we require knowledge of the
inverse-Compton temperature function, g r( ˜) (see
Equation (75)). Conversely, in order to carry out the spectrum
calculation in COMSOL, we require knowledge of the velocity
and electron temperature profiles, v r˜( ˜) and T re ( ˜), respectively.
The iteration procedure begins with a calculation of the “0th”

hydrodynamical structure in Mathematica, which is generated
by arbitrarily setting =g r 1( ˜) , meaning that we are initially
assuming the inverse-Compton temperature T rIC ( ˜) is exactly
equal to the electron temperature T re ( ˜) for all r̃ along the
column. Once the six free model parameters listed in Table 1
are assigned provisional values, the system of five coupled
ODEs is integrated in Mathematica to determine the first
approximation of the dynamical structure of the column. The
resulting accretion velocity profile, v r˜( ˜), and electron temper-
ature profile, T re ( ˜), are then exported from Mathematica and
passed into the COMSOL multiphysics module in preparation
for the computation of the phase-averaged radiation distribu-
tion inside the column.
The COMSOL multiphysics module is a computer environ-

ment that employs the finite element method (FEM) and is
well-suited for solving the radiation transport equation, which
is a second order, elliptical, nonlinear partial differential
equation. COMSOL inputs the electron temperature and
accretion velocity profiles from Mathematica and then solves
the photon transport equation on a meshed grid using the
boundary conditions discussed in Section 4. The resulting
photon distribution function f r,( ˜ ) (photons cm−3 erg−3) and
phase-averaged photon count rate spectrum F ( ) (photons s−1

cm−2 keV−1) are obtained and discussed in PaperII, where ò is
the photon energy. All transport phenomena are calculated
using f r,( ˜ ), including the radiation flux Fr, the radiation
energy density Ur, and the photon number density nph. By
exploiting the combined strengths of Mathematica and
COMSOL, we are able to solve, for the first time to our
knowledge, the complete self-consistent problem of spectral
formation and radiation hydrodynamics in an X-ray pulsar
accretion column. We briefly discuss some aspects of the dual-
platform iteration and the related convergence criteria below,
but we defer complete details on the COMSOL calculation to
PaperII.

5.2. Cyclotron Absorption

Although we do not present detailed spectral results in this
paper, it is important to highlight our method for treating
cyclotron absorption here, since this process plays a significant
role in determining the shape of the simulated spectrum, which
is compared to the observational data in order to finalize the

Table 1
Free Parameters

Number Parameter Description

1 s Angle-averaged scattering cross-section
2 σP Parallel scattering cross-section
3 ℓ1 Polar cap inner arc-radius
4 ℓ2 Polar cap outer arc-radius
5 Mr0 Incident radiation Mach number
6 B* Stellar surface magnetic field strength

Table 2
Constrained Parameters

Number Parameter Description

7 R* Stellar radius
8 M* Pulsar mass
9 D Distance to source
10 LX X-ray luminosity
11 Ṁ Accretion rate
12 σ⊥ Perpendicular scattering cross-section

Table 3
Derived Parameters

Number Parameter Description

13 rtop˜ Top of accretion column

14 vtop˜ Incident free-fall velocity

15 ar,top˜ Incident radiation sound speed

16 ai,top˜ Incident ion sound speed

17 ae,top˜ Incident electron sound speed

18 Etop
˜ Incident total energy flux

19 rth˜ Thermal mound radius
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model parameters. In lieu of a detailed model for the formation
of cyclotron absorption features in the envelopes of pulsar
accretion columns, which has not yet been developed, we will
treat the formation of the observed absorption features by
supposing that the features are imprinted at a particular altitude,
denoted by rcyc. Hence the centroid energy of the absorption
feature is interpreted as the cyclotron energy corresponding to
the dipole magnetic field strength at radius rcyc in the column.
We argue that this approach is reasonable, provided the
cyclotron imprint radius rcyc is close to the radius at which the
X-ray luminosity per unit length along the column, Lr , is
maximized, where Ldrr is the energy emitted per unit time
through the walls of the dipole-shaped volume of the accretion
column between positions r and r + dr.

We can derive an expression for Lr by noting that in our
escape-probability formalism, the energy escaping through the
walls of the accretion column between radii r and r + dr per
unit time is given by

L =dr U A r dr, 120r esc˙ ( ) ( )

where Uesc˙ is given by Equation (55) and the cross-sectional
area of the column is A(r)=Ω(r)r2 (see Equation (39)).
Solving for Lr yields

L =
WU r r r

t r
. 121r

r
2

esc

( ) ( )
( )

( )

We denote the radius of maximum X-ray emission using rX. In
our approach, we attempt to minimize the distance between rX
and the cyclotron imprint radius, rcyc. Out of the three sources
treated here, Her X-1 is the only one in which the cyclotron
absorption radius rcyc is exactly equal to rX. In the other two
sources, Cen X-3 and LMC X-4, the two radii deviate by
about 10%.

5.3. Model Convergence

Our method for determining the convergence of the solutions
for the flow velocity v r˜( ˜), the sound speeds a ri˜ ( ˜), a re˜ ( ˜), and
a rr˜ ( ˜), and the energy transport rate E r˜ ( ˜), is based on the
comparison of successive iterates of the electron temperature,
Te, and the inverse-Compton temperature, TIC. We define the
convergence ratios, Re and RIC, respectively, for the electron
and inverse-Compton temperatures using

R Rº º+
+

+
+T

T
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T
, , 122e

n e
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1

IC
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where the superscripts represent the iteration number for the
corresponding solution vectors. The solutions are deemed to
have converged when the vector of convergence ratios for both
the electron and the inverse-Compton temperature profiles are
within 1% of unity across the entire computational grid.

As explained in Section 5.1, we obtain the solution for the
“0th” iteration for the dynamical structure by setting =g r 1( ˜)
across the grid in the Mathematica calculation, and we then
pass the resulting velocity profile v r˜( ˜) and electron temperature
profile T re ( ˜) into the COMSOL platform in order to obtain the
corresponding “0th” iteration of the photon distribution
function, f r,( ˜ ). Once the solution for f r,( ˜ ) has been
obtained using COMSOL, the associated profile of the inverse-
Compton temperature, T rIC ( ˜), is computed using Equation (73),
which is then combined with the electron temperature profile

T re ( ˜) to obtain the new iteration of the temperature ratio
function, g r( ˜), using Equation (75). Subsequently, the new
iterate for g r( ˜) is used as input into the Mathematica
implementation to compute new results for the dynamical
structure variables, and so on.
This iterative cycle is continued, and the convergence ratios

between successive iterates are computed using Equation (122),
until convergence is achieved, which operationally means that
the convergence ratios for the electron and inverse-Compton
temperature profiles differ from unity by less than 1% at all
radii in the column. In the end, once convergence is achieved,
we have obtained a self-consistent set of results for the
radiation distribution f r,( ˜ ) and the five dynamical variables
v r˜( ˜), a rr˜ ( ˜), a ri˜ ( ˜), a re˜ ( ˜), and E r˜ ( ˜). In the following section, we
discuss the application of the method to compute the structure
of the accretion column for three specific accretion-powered
X-ray pulsars.

6. Astrophysical Applications

We are now in a position to compute the spectrum of an
X-ray pulsar based on our new physical model, incorporating
realistic boundary conditions, along with the effects of
radiation, ion, and electron pressures, strong gravity, brems-
strahlung emission and absorption, cyclotron emission and
absorption, electron–ion thermal energy transfer, and a dipole
magnetic field. In particular, the inclusion of Compton
scattering allows us to perform a self-consistent study of the
inverse-Compton temperature variation along the column. The
bulk fluid surface stagnation boundary condition ensures that
we capture the first-order Fermi energization of the radiation
due to the strong compression of the gas as it comes to rest at
the stellar surface. These features are included here for the first
time, to our knowledge, in an X-ray pulsar simulation.
We will apply the model to three specific high-luminosity

accretion-powered X-ray pulsars that span the range of
luminosities LX∼1037–38 erg s−1, namely Her X-1, Cen X-3,
and LMC X-4. The output includes detailed studies of the
vertical profiles of all of the dynamical variables, as well as the
escaping column-integrated X-ray spectrum produced by bulk
and thermal Comptonization of bremsstrahlung, cyclotron, and
blackbody seed photon sources. The theoretical X-ray spectra
are compared qualitatively with the observed phase-averaged
spectra for Her X-1, Cen X-3, and LMC X-4. Here we focus
solely on the dynamical results, and we defer a discussion of
the photon sources and spectral results to PaperII.
The sequence of steps required to obtain a self-consistent

solution for the dynamical structure and the radiation
distribution was described in Section 5. The values obtained

Table 4
Free Parameters for Her X-1, Cen X-3, and LMC X-4

Parameter Her X-1 Cen X-3 LMC X-4

Angle-averaged cross-
section s sT¯

2.60×10−3 3.00×10−3 2.50×10−3

Parallel scattering cross-
section σP/σT

1.02×10−3 7.51×10−4 4.18×10−4

Inner polar cap radius ℓ1 (m) 0 657 547
Outer polar cap radius ℓ2 (m) 125 750 650
Incident radiation Mach Mr0 4.07 6.15 2.76
Surface magnetic field B*
(1012 G)

6.25 3.60 8.00
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for the six fundamental model free parameters
M*s s B ℓ ℓ, , , , , r1 2 0( ) are listed in Table 4 for each of the

three sources treated here. The corresponding results obtained
for the six constrained parameters are listed in Table 5, and the
values of the seven derived parameters are listed in Table 6. In
Table 7 we summarize a number of additional diagnostic
(output) parameters that provide further insight into the nature
of the model results obtained for each of the three sources.

6.1. Her X-1

Figure 4 depicts the results obtained for the accretion column
structure upon applying our model to Her X-1. The dynamical
variables plotted include the bulk fluid velocity and the
radiation sound speed, the gas and radiation pressures, the
pressure gradients, the Mach numbers, the temperatures, the
energy transport per unit mass, the bulk fluid density, and the
parallel scattering and parallel absorption optical depths. We
adopt for the source luminosity LX=2×1037 erg s−1

(Reynolds et al. 1997; Dal Fiume et al. 1998). The values of
the six model free parameters in the Her X-1 simulation are
s s = ´ -2.600 10T

3¯ , σP/σT=1.024×10−3, ℓ1=0 m,
ℓ2=125 m, M = 4.07r0 , and B*=6.25×1012 G. Note that
the top of the accretion column in the graphs of Figure 4 is
located on the right side, and the stellar surface is located on the
left side.

The accretion column for Her X-1 is completely filled with
inflowing plasma, which makes this the only completely filled
column among the three sources investigated here. This may be
reasonable, since Her X-1 is a “fast rotator,” as discussed in
Section 7.4. The upper limit for the outer radius is ℓ2223 m,
given by Equation (12), which is almost double the 125 m outer
polar cap radius used in our model. In the case of Her X-1, the
accretion column spans a length of 11.20 km, and the bulk free-
fall velocity at the top of the column (Equation (84)) is equal to
0.442 c.

The radiation sound speed at the top of the column is derived
using Equation (114), and the radiation sonic surface (where
M = 1r ) is located at a radius of rsonic=11.95 km, which is
where the bulk fluid slows to less than the radiation sound
speed. The onset of stagnation is most noticeable when the bulk
fluid enters the extended sinking regime (Basko &
Sunyaev 1976), which begins approximately 700 m above the
surface, and is characterized by a gradually decelerating flow,
accompanied by a corresponding increase in temperature,
pressure, and density. Approximate stagnation occurs at the
stellar surface, with a residual bulk velocity of 0.0084 c.

It is apparent from the Mach number profiles plotted in
Figure 4 that the flow remains supersonic with respect to the
gas at the lower boundary of our computational domain, which
is located just above the stellar surface. Hence we would expect
a final discontinuous shock transition to occur as the flow

merges into the stellar crust. However, the amount of residual
kinetic energy converted into radiation at the discontinuous
shock is negligible compared to the energy loss associated with
the radiation emitted farther up in the column. Similar behavior
is also observed in the cases of LMC X-4 and Cen X-3. Hence
our neglect of the discontinuous shock is reasonable for the
luminous sources treated here. However, the effect of the
discontinuous shock is likely to be more important in lower-
luminosity sources such as X Persei (e.g., Langer &
Rappaport 1982).
The model for Her X-1 required 16 iterations before Te and

TIC stabilize to less than a 1% change from the previous
iteration. Electron and ion temperatures are in near thermal
equilibrium throughout the column, and at the top of the
column, we have Te=Ti=1.41×107 K. The inverse-
Compton temperature at the top of the column,
TIC=6.82×107 K, is almost five times larger than the
electron temperature, which is the largest temperature gap
between the photons and gas at any radius in the column. The
electron temperature at the stellar surface is found to be
6.91×107 K. Further discussion of the temperature distribu-
tions and the related thermal and dynamical timescales is
presented in Section 7.
Energy transport per unit mass transport is plotted in Figure 4

in terms of the dimensionless quantity E Mc2˙ ( ˙ ). According to
our sign convention, a negative value corresponds to energy flow
downward, toward the stellar surface (see Equation (84)), and
therefore the profile of the gravitational potential energy
component, Eg˙ , is depicted as a positive value, given by

*= =
E

Mc

GM M

r Mc r

1 1
. 123

g

2 2

˙
˙

˙
˙ ˜
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At the stellar surface, the value of the dimensionless radius is

*= =r r 4.836˜ ˜ , assuming canonical values for the stellar mass
and radius, with * = M M1.4 and R*=10 km. The kinetic
energy transport component dominates over the radiation
component at the top of the column, while the two are nearly
equal at the radiation sonic surface. However, in the sinking
regime, the kinetic energy is negligible, and we see that the
energy transport is dominated by radiation advection and
diffusion.
According to Equation (100), at the surface of the star, we

expect the total energy transport rate to reduce to the
gravitational component only, so that *= =E Mc r12˙ ( ˙ ) ˜
0.2068. Hence the radiation energy flux should vanish at the
stellar surface (the “mirror” condition), and that is the boundary
condition we attempt to enforce. Her X-1 is the only source in
which the mirror condition at the stellar surface is slightly
relaxed. The Her X-1 results depicted in Figure 4 indicate that
the advective and diffusive components in Equation (94) do not
exactly cancel at the surface, and we obtain for the residual
total energy transport rate =E Mc 0.2282˙ ( ˙ ) . This represents
an error of ∼10% from the purely gravitational component. Her
X-1 is also the only source in which the radius at which the
cyclotron absorption feature is imprinted, rcyc=11.74 km, is
exactly equal to the radius of maximum emission, rX. See
Section 5.2 for further details.
The scattering and absorption optical depths, given by

Equations (82) and (104), respectively, are plotted in Figure 4
for photons propagating parallel to the magnetic field. The top
of the column is the last scattering surface before photons

Table 5
Constrained Parameters for Her X-1, Cen X-3, and LMC X-4

Parameter Her X-1 Cen X-3 LMC X-4 Units

R* 10 10 10 km
M* 1.4 Me 1.4 Me 1.4 Me g
D 5.0 8.0 55.0 kpc
LX 2.00×1037 2.82×1038 3.89×1038 erg s−1

Ṁ 1.08×1017 1.52×1018 2.09×1018 g s−1

σ⊥ σT σT σT cm2
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freely escape in the vertical direction, and therefore the
scattering optical depth is low in that region, and gradually
increases toward the bottom of the column. The scattering
optical depth diverges exponentially in the sinking regime,
reflecting the pileup of material at the stellar surface where the
plasma density becomes extremely large. On the other hand,
the parallel absorption optical depth never reaches unity in the
case of Her X-1. Therefore, the thermal mound is located just
above the stellar surface and blackbody photons are produced
at the electron surface temperature, which may help explain the
positive radiation diffusion flux at the stellar surface for this
source.

The results we obtain for the dimensions of the hot spot at
the magnetic pole in Her X-1 are significantly different than
those obtained by BW07. In particular, we find that the outer
polar cap radius is 125 m, whereas BW07 found that their
cylindrical polar cap radius was r0=44 m, which is about
three times smaller than our result. Furthermore, BW07
assumed a constant electron temperature of 6.25×107 K,
which is about 9.5% lower than our stellar surface temperature
of 6.91×107 K. Another significant difference is that our
stellar surface B-field strength of B*=6.25×1012 G is nearly
double the BW07 value of B*=3.80×1012 G. We believe
the differences between our results and those of BW07
probably reflect the fact that BW07 assumed constant values
for Te, r0, and B, which means that they should be interpreted
as average values in an actual accretion column. On the other
hand, our model implements a realistic dipole magnetic field
geometry, with varying electron and ion temperatures, and
therefore our surface results would be expected to exceed the
mean values taken from the BW07 model.

6.2. Cen X-3

The profiles of the dynamical variables obtained in our
application to Cen X-3 are depicted in Figure 5. The six free
parameter values used in the Cen X-3 simulation are
s s = ´ -3.000 10T

3¯ , σP/σT = 7.510×10−3, ℓ1 = 657 m,
ℓ2 = 750 m,M = 6.151r0 , and B* = 3.6×1012 G. The source
luminosity LX=2.8×1038 erg s−1 is the same value used
by BW07, which provides an opportunity to directly compare
our model results with theirs using the same accretion rate. We
find that the accretion column in Cen X-3 is a hollow cavity,
with a wall thickness of 93 m at the stellar surface. The upper
limit for the outer radius is ℓ2761 m, according to
Equation (12). The accretion column spans a length of
14.40 km, and the bulk velocity at the top of the column is
equal to the free-fall velocity of 0.412 c. The radiation sonic
surface is located at a radius of rsonic=12.21 km, and the bulk
fluid enters the sinking regime at an altitude of 1.1 km above
the surface. A thermal mound exists for Cen X-3 at an altitude

of 590 m above the stellar surface, where the parallel optical
depth exceeds unity, and the electron temperature is
5.73×107 K. Approximate bulk stagnation occurs at the
stellar surface, with a residual velocity of 0.0081 c and a
surface electron temperature equal to 6.97×107 K, in contrast
to the constant electron temperature Te=3.40×107 K used in
the corresponding BW07 model. Eight iterations were required
before Te and TIC converged in our model. The stellar surface
mirror condition is satisfied, so that the radiation energy flux
essentially vanishes, and the total energy flux reduces to the
gravitational component only. In the case of Cen X-3, the
radius at which the cyclotron absorption feature is imprinted on
the spectrum is rcyc=10.94 km, whereas the radius of
maximum emission is rX=12.02 km.

6.3. LMC X-4

Figure 6 depicts the results we obtain for the dynamical
profiles upon applying our model to LMC X-4, using for the
source luminosity LX=3.9×1038 erg s−1 (La Barbera
et al. 2001). The six model free parameter values are
s s = ´ -2.500 10T

3¯ , σP/σT = 4.176×10−3, ℓ1 = 547 m,
ℓ2 = 650 m, M = 2.761r0 , and B* = 8.00×1012 G. The
accretion column for LMC X-4 is hollow, exhibiting a
geometry similar to that found in Cen X-3. The upper limit
for the outer radius is ℓ2633 m, according to Equation (12).
The accretion column spans a length of 11.30 km, and the bulk
velocity at the top of the column has a local free-fall velocity
equal to 0.44 c. The radiation sonic point is located at radius
rsonic=13.21 km, and the bulk fluid enters the sinking regime
at an altitude of 1.4 km above the stellar surface. The thermal
mound is located 530 m above the surface, where the electron
temperature is equal to 7.59×107 K. Approximate stagnation
occurs at the surface with a residual velocity of 0.0098 c and a
surface temperature equal to 8.75×107 K, and the stellar
surface mirror condition is satisfied. Our value for the electron
surface temperature is somewhat higher than the BW07 model,
which used the constant value Te=5.90×107 K. The model
required eight iterations to converge Te and TIC, and the radius
of maximum emission occurs at rX=12.94 km, whereas the
cyclotron absorption feature is imprinted at radius
rcyc=14.26 km.

7. Discussion and Conclusion

Today, the general picture of pulsars as rapidly rotating
neutron stars is widely accepted, but according to Werner
Becker of the Max Planck Institute for Extraterrestrial Physics,
“The theory of how pulsars emit their radiation is still in its
infancy, even after nearly forty years of work” (Becker 2006).
The model developed here provides a realistic, self-consistent

Table 6
Derived Parameters for Her X-1, Cen X-3, and LMC X-4

Parameter Her X-1 Cen X-3 LMC X-4

Top of accretion column rtop (km) 21.19 24.40 21.30
Incident free-fall velocity vtop/c −0.442 −0.412 −0.441
Incident radiation sound speed a cr,top 0.109 0.067 0.160

Incident ion sound speed a ci,top 1.61×10−3 9.45×10−4 1.86×10−3

Incident electron sound speed a ce,top 2.16×10−3 1.27×10−3 2.50×10−3

Incident total energy transport Etop˙ (erg s−1) 2.39×1036 1.51×1037 1.01×1038

Thermal mound radius rth (km) 10.00 10.59 10.53
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description of the radiation-hydrodynamical processes occur-
ring within a dipole-shaped X-ray pulsar accretion column,
including the effects of radiation, ion, and electron pressures,
Newtonian gravity, bremsstrahlung emission and absorption,
and cyclotron emission and absorption. The model also
includes the dipole variation of the magnetic field, a calculation
of the electron and ion temperatures, and a comprehensive set
of rigorous physical boundary conditions. The model also
includes a detailed treatment of thermal and bulk Comptoniza-
tion, in terms of both the formation of the emergent X-ray
spectrum, and the effect on the thermodynamic structure of the
column. We find that by varying the six model free parameters

Ms s ℓ ℓ, , , , ,r1 2 0 and B*, we can qualitatively fit the observed
phase-averaged spectra for Her X-1, Cen X-3, and LMC X-4.
Our focus in this paper is on the dynamical structure of the
accretion column, and the detailed spectral results are presented
in PaperII. We review our main results in this section.

7.1. Model Parameters

Our model uses the canonically accepted values of
R*=106 cm for stellar radius, M*=1.4Me for stellar mass,
and s s= = ´^

-6.652 10 cmT
25 2 for the perpendicular

electron scattering cross-section. Six free parameters uniquely
determine the dynamical properties of the column, namely (1)
the angle-averaged scattering cross-section s̄, (2) the inner
polar cap arc-radius ℓ1, (3) the outer polar cap arc-radius ℓ2, (4)
the radius at the top of the accretion column rtop˜ , (5) the
incident radiation Mach numberMr0, and (6) the stellar surface
magnetic field strength, B*, which is established at the
magnetic pole. We carry out a self-consistent and iterative
calculation of a set of five coupled conservation equations in
order to self-consistently compute the hydrodynamic structure
of the accretion column and the emergent radiation spectrum.

The dynamical structure is determined by using Mathema-
tica to solve the dynamical equations, combined with
appropriate physical boundary conditions. In this paper, we
have presented results describing the detailed structure of the
accretion columns in the well-known and high-luminosity
X-ray pulsars Her X-1, Cen X-3, and LMC X-4. The solutions
shown in Figures 4–6 provide the radial profiles of the bulk
flow velocity ṽ , the radiation sound speed ar˜ , the ion sound
speed ai˜ , the electron sound speed ae˜ , and the total energy
transport rate per unit mass Ẽ.

We find that the dynamical effects of gas pressure are
negligible and that radiation pressure decelerates the gas to rest
at the stellar surface in all three sources considered here, which
all have relatively high accretion rates (  -M 10 g s16 1˙ ).
However, the inclusion of the gas energy equation is essential

in our calculation of the ion and electron temperature profiles,
which show significant deviations from the profile of the
inverse-Compton temperature, especially near the top of the
accretion column, where conditions are somewhat farther from
equilibrium than in the deeper portions of the column.
A noticeable effect of increasing the surface magnetic pole

field strength, B*, is an increase of the electron temperature at
the stellar surface. We shall see in PaperII that this tends to
harden the phase-averaged spectrum, and raises the energy of
the exponential cutoff due to thermal Comptonization. The
value of B* was determined by minimizing the distance
between the location of the maximum emission from the walls
of the column and the location at which the cyclotron
absorption feature is imprinted on the spectrum. This is,
admittedly, a rather crude criterion, but it is adequate for our
purposes here, pending the availability of a generalized model
that includes a rigorous treatment of the formation of the
cyclotron absorption feature in the outer sheath of the column
(Schönherr et al. 2008, 2014). Furthermore, our magnetic field
follows the correct dipole variation with radius, whereas BW07
assumed a constant magnetic field. Since BW07 essentially
utilized an average value of the magnetic field within the
column, it is reasonable that our surface field value would
exceed their (constant) value.
It should also be emphasized that the distance between the

radius of maximum emission, rX, and the radius at which the
cyclotron absorption feature is imprinted, rcyc, only agree
closely in the case of Her X-1. In the other two sources, the
disagreement between these two radii can be as large as ∼10%.
A complete treatment of this issue will require the development
of a more generalized code that simultaneously treats the
hydrodynamics and the effect of cyclotron absorption occurring
along the entire length of the column, which is beyond the
scope of the present paper.
We find that the vertical extent of the accretion column is

between 10 and 12 km for all three sources. This is obviously
comparable to the stellar radius, and therefore it is essential to
implement the dipole variation of the magnetic field, both in
order to compute the correct magnetic field variation, and also
to properly compute the cross-sectional area of the column.
Equation (87) establishes the boundary condition at the upper
surface of the column relating rtop and σP, which is given by

⎡
⎣⎢

⎤
⎦⎥

* *
*s
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Table 7
Diagnostic Parameters for Her X-1, Cen X-3, and LMC X-4

Parameter Her X-1 Cen X-3 LMC X-4

Maximum cap radius (m) 223 761 633
Radiation sonic radius rsonic (km) 11.95 12.21 13.21
Cyclotron absorption radius rcyc (km) 11.74 10.94 14.26
Radius of maximum emission rX (km) 11.74 12.02 12.94
Dipole turnover height zc (km) 2.46×104 688 914
Column length (km) 11.19 14.40 11.30
Absorption column density NH (cm−2) 19.72 22.20 21.97
Thermal mound Tth (K) 6.91×107 5.73×107 7.59×107

Surface Te (K) 6.91×107 6.97×107 8.75×107

Surface impact velocity ∣v*∣/c 8.44×10−3 8.05×10−3 9.80×10−3
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The top of the cylindrical column in the BW07 model is given
by combining their Equations (26) and (80) to yield

⎡
⎣
⎢⎢

⎛
⎝
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⎞
⎠
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a s
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r

R m GM r

c MR2
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2

2
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˙ ( )

where r0 is the radius of the cylinder and α∼0.3–0.4 is a
constant. We compare Equation (124) to Equation (125) and
note the similarities with the purely cylindrical model from
BW07 with respect to dependence on r0=ℓ2, Ṁ , and σP. Our
model differs because we allow for a hollow-column geometry
that alters the value of Ω* according to Equation (7).
Additionally, Equation (125) relies on the value of α, which
was required to be introduced in the BW07 velocity profile in
order to solve the photon transport equation using the
separation of variables method (Lyubarskii & Syunyaev 1982).

The column-top radii for the three BW07 models using
Equation (125) are =r 13.72max

BW km (Her X-1), 29.97 km (Cen

X-3), and 32.44 km (LMC X-4), respectively. The larger
differences in accretion column length for Cen X-3 and LMC
X-4 can be attributed to B-field geometry. Whereas the BW07
model is based strictly on a cylindrical geometry, our new
model is based on a realistic dipole geometry that matches not
only the free-fall velocity, but also the derivative of the free-fall
velocity, thereby satisfying the momentum conservation
equation. The dynamical profiles for all three of our sources
show that the radiation sonic surface and the length of the
sinking regime increase proportionally to the source luminosity
(Basko & Sunyaev 1976).

7.2. Free-streaming Boundary Condition

The free-streaming boundary condition at the top of the
column can be verified by comparing the forces of gravity and
radiation acting on the inflowing gas. The assumption at the top
of the column is that the last photon–electron scattering events
occur prior to photons freely escaping in the vertical direction.
Therefore, we expect the upward radiation force on the

Figure 4. Model results for the dynamical profiles in the Her X-1 accretion column, based on the six free parameter values listed in Table 4. All quantities are plotted
in cgs units except as indicated.
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incoming electrons to be much smaller than the gravitational
pull on the bulk fluid. The Newtonian gravitational force per
electron–ion couple at the top of the column is

*= -F
GM m

r
, 126g

tot

top
2

( )

where = +m m mi etot is the combined mass of the electron
and ion. The radiation force on incoming bulk fluid is equal to
the product of the electron parallel scattering cross-section and
the radiation pressure,

s= F P . 127r r ( )

We calculate the two forces from Equations (126) and (127)
using the parallel scattering cross-section from Table 4, the
column-top radii rtop from Table 6, and the radiation pressure
for each source, respectively, at the top of the columns shown
in Figures 4–6. The force relationships calculated are shown in
Table 8. As expected, the upward radiation force is dominated

by the downward gravitational force. This result strengthens the
free-streaming argument in which the top of the column is the
last scattering surface.
A second method to verify the free-streaming surface is to

compare the bulk fluid ram pressure and the radiation pressure.
The ram pressure at the top of the column is

r=P v . 128ram ff
2 ( )

The pressure relationships calculated are shown in Table 9. The
ram pressure dominates at the top of the column for all three
sources. Here, too, we conclude that the free-streaming
condition is a valid assumption for all three sources.

7.3. Pick-up Radius Variation

As discussed in Section 2.3, the field lines connected to the
inner and outer walls of the accretion column cross the
accretion disk at the radii R2,disk and R1,disk, respectively. Matter
is picked up from the disk and entrained onto the magneto-
sphere at the Alfvén radius, RA. As the star rotates, the

Figure 5. Same as Figure 4, except results are plotted for the Cen X-3 accretion column.
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magnetic latitude in the disk plane, α, oscillates between ±j,
where j is the inclination angle between the magnetic and
rotation axes of the star. As a result of the variation in α, the

Alfvén radius in the disk, RA, oscillates due to the oscillation of
the magnetic field strength in the disk plane, Bdisk (see
Equations (22) and (20)). In addition, the geometry of the
inclined pulsar magnetosphere causes the inner and outer disk-
crossing radii, R2,disk and R1,disk, respectively, to oscillate as
well. The combination of these oscillations causes matter to be
fed into different parts of the accretion column as the star
rotates. Hence, matter is fed to the inner wall of the accretion
column when =R R1,disk A, and to the outer wall of the column
when =R R2,disk A.
By using Equations (22), (20), and (24) to evaluate RA,

R1,disk, and R2,disk as functions of the disk-plane latitude α, we
can attempt to determine the inclination angle of the system, j,
such that  R R R2,disk A 1,disk during one spin of the star. We
carry out this procedure for Cen X-3 and LMC X-4 in Figure 7.
The process also requires selecting a value for the normal-
ization constant ξ appearing in Equation (22), such that the
minimum value of the Alfvén radius equals the maximum
value of R2,disk, corresponding to α=0. We find that ξ=1.21

Figure 6. Same as Figure 4, except results are plotted for the LMC X-4 accretion column.

Table 8
Gravitational and Radiation Forces at Column Top

Source Fr Fg Units Fr/Fg

Her X-1 9.4 69.2 ×10−12 dyn 0.14
Cen X-3 3.1 52.2 ×10−12 dyn 0.06
LMC X-4 2.0 68.6 ×10−12 dyn 0.03

Table 9
Ram Pressure and Radiation Pressure at Column Top

Source Pr Pram Units Pr/Pram

Her X-1 0.14 3.05 ×1017 Ba 0.05
Cen X-3 0.06 3.16 ×1017 Ba 0.02
LMC X-4 0.73 7.43 ×1017 Ba 0.10
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and ξ=1.12 for Cen X-3 and LMC X-4, respectively, as
depicted by the red-dashed curves in Figure 7. For comparison,
we also plot the results obtained when ξ=1.00 for both
sources, which are indicated by the orange-dashed curves.
Once the value of ξ is determined, the inclination angle j is
obtained by requiring that =R RA 1,disk when α=±j. We find
that j=22.6° and j=26.0° for Cen X-3 and LMC X-4,
respectively. Our estimate of j=22.6° for Cen X-3 is close to
the estimate of 18° provided by Kraus et al. (1996). Gas is
transferred from the disk to the pulsar magnetosphere in the
range of magnetic latitude labeled as the “capture region” in
Figure 7. We denote the mean values of the oscillating radii RA,
R1,disk, and R2,disk using á ñRA , á ñR1,disk , and á ñR2,disk , respectively,
and we present values for these quantities in Table 12. The Her
X-1 values in Table 12 were computed using ξ=1.00.

7.4. Accretion Dynamics and Column Geometry

The size of the hot spot on the stellar surface must be
understood in terms of the dynamics between accreted plasma
gas and the neutron star magnetosphere. There is vast literature
on the topic, which includes, but is not limited to, Lamb et al.
(1973), Arons & Lea (1976, 1980), Elsner & Lamb
(1976, 1977, 1984), Michel (1977a, 1977b, 1977c), Ghosh
et al. (1977), Petterson (1977a, 1977b, 1977c), Ghosh & Lamb
(1978, 1979a, 1979b), Lai (1999), Romanova et al. (2003),
Pfeiffer & Lai (2004), Ikhsanov et al. (2012), and Kulkarni &
Romanova (2013).

The general picture depends on the accretion scenario, which
is often proposed in models pertaining to spherical (radial)
accretion, or to inflow via a Keplerian disk. Mass transfer
occurs across, or through, the magnetosphere, and is eventually
aligned with the polar cap region via entrainment in the
magnetic field lines, or, in the “fast” rotators, such as Her X-1,
the plasma may be directly deposited far above the top of the
accretion column from the plasma in a dense atmosphere. This
picture is consistent with our results for Her X-1, which show
that the accretion column is completely filled, whereas the
columns for Cen X-3 and LMC X-4 are partially hollow. There

are a number of additional factors to consider in these two
differing topologies, which we discuss in further detail below.
Our model assumes the inflowing electrons and ions at the

top of the accretion column are equilibrated, so that Ti0≈Te0
(Arons & Lea 1976). This situation is treated by Equation (5)
from Arons & Lea (1976), which gives the infalling gas Mach
number at the top of the column, for r=RA, as

M
⎛
⎝⎜

⎞
⎠⎟*= ´ -



M

M
r T1.36 10 , 129einfall

9
1 2

1 2( ) ( )

where M* is the stellar mass, Me is one solar mass, r is the
radial distance (cm) from the X-ray source, and Te is the
electron temperature (K) at the top of the column. Table 10
compares the infalling Mach numbers (Equation (129)) with
the actual value of the incident ion Mach number using
Equation (155), where we set Ti0=Te0. The error is less than
10% for all three sources. We conclude that the large incident
flow velocities in our models are expected, and momentum
conservation and incident free-fall velocity are still rigorously
implemented in our model.
We shall review the fundamental orbital parameters for each

source. The corotation radius, Rco, is defined as the radius at
which the Keplerian orbital period is equal to the star’s spin
period, Prot, so that (Lamb et al. 1973; Elsner & Lamb 1977)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟* *º

W
= ´


R

GM
P

M

M
1.5 10 cm, 130co

rot
2

1 3
8

rot
2 3

1 3

( )

Figure 7. Cen X-3 and LMC X-4 disk-crossing radii for the magnetic field lines connected to the inner and outer walls of the accretion column, denoted by R1,disk and
R2,disk, respectively, plotted as functions of the magnetic latitude, α, in the plane of the accretion disk (Equation (24)). Also plotted is the variation of the Alfvén radius,
RA, obtained by combining Equations (22) and (20). See the discussion in the text.

Table 10
Infalling Gas Mach Number

Source rtop Ti0 Minfall Mi0 Error
km 107 K Equation (129) Equation (155) %

Her X-1 21.19 1.95 250 274 8.8
Cen X-3 24.40 5.71 430 435 1.1
LMC X-4 21.30 1.95 249 238 4.6
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where pW = P2rot rot. The Keplerian angular velocity at the
(mean) Alfvén radius is given by

⎛
⎝⎜

⎞
⎠⎟
*W á ñ =

á ñ
R

GM

R
. 131K A

A
3

1 2

( ) ( )

The influence of the stellar rotation on the accreting gas in the
magnetosphere depends on the relationship between the
angular velocities Ωrot and W á ñRK A( ). Slow rotators have

W W á ñRrot K A( ), and therefore  á ñR Rco A , which indicates
that the force of gravity at á ñRA is larger than the centripetal
force. The opposite condition is satisfied by fast rotators, in
which W W á ñRrot K A( ) and  á ñR Rco A . The rotation proper-
ties of each source are shown in Table 11. The spin period, Prot,
is 1.24 s for Her X-1 (Vasco et al. 2013), 4.82 s for Cen X-3
(Raichur & Paul 2008), and 13.5 s for LMC X-4 (Levine
et al. 2000). We see that Her X-1 is the only “fast” rotator, and
therefore we expect that rotation will affect its accretion flow
differently than in the slow rotators, such as Cen X-3 and LMC
X-4 (Elsner & Lamb 1976).

The simulated rotation of Cen X-3, with a magnetic
inclination of 22°.6, over half of a spin period, is depicted in
Figure 8. We define the phase β=0° as the direction to the
companion star, so that the magnetic field axis and the axis of
rotation are exactly aligned when viewed from the companion
star’s point of view. Therefore, when β=0°, the magnetic
pole is pointed toward the companion star as nearly as possible.
Figure 8 displays eight instantaneous “snapshots,” with the
rotation phase angle increasing by 22.5° each time. The plots
illustrate how the Alfvén radius, as well as the inner and outer
disk-crossing radii, oscillate as the star rotates.

Her X-1 has a completely filled column, and therefore the
magnetic field associated with the inner polar angle (θ1=0)
extends to the accretion capture radius, racc, given by (Boroson
et al. 2001)

* ´ º ´r
GM

v
1 10 km

2
4 10 km, 1326

acc
rel
2

6 ( )

where = +v v vrel wind
2

ns
2 1 2( ) , the orbital velocity vns∼169 km

s−1, and the wind velocity vwind∼300–600 km s−1. The
results in Table 12 suggest a high magnetic field inclination
angle for Her X-1, in which the plane of the accretion disk is
more likely aligned over the polar caps, rather than close to the
stellar equatorial plane.

In the hollow-column slow rotators (Cen X-3 and LMC
X-4), the supply of accreting plasma is confined to the
magnetic field equatorial region (i.e., the angular momentum
vectors of the B-field and accretion disk are nearly aligned),
and the plasma may be forced to squeeze between the magnetic
field lines in the equatorial plane via the Rayleigh–Taylor
instability. In this scenario, the gas is eventually entrained onto

the magnetic field as it flows toward the polar cap (Elsner &
Lamb 1976). On the other hand, in the fast rotators, such as Her
X-1, the accretion column is completely filled, which may be
the result of descent of the polar cusps (Arons & Lea 1976;
Michel 1977c; Elsner & Lamb 1984), in which plasma enters
the cusp region due to density buildup and the related pressure
gradient. Michel (1977c) showed that the external gas pressure
at the top of the polar cusp is expected to be at least five times
greater than that at the equator, and therefore the magneto-
sphere shape for Her X-1, if it does have a larger plasma
atmosphere above the polar caps, may be very different than
those for Cen X-3 and LMC X-4.
We also note the luminosity of Her X-1 is sufficiently high

(>1036 erg s−1) that the reconnection of entrained magnetic
fields may distort the large-scale structure of the magnetosphere
to produce narrow open clefts (Arons & Lea 1976), thereby
allowing plasma to flood the full column width above the polar
cap. Furthermore, Pfeiffer & Lai (2004) showed that accretion
disks can be highly warped with saturated tilt angles at high
latitudes where the inner radius of the disk may naturally rotate
directly above the polar region. Finally, Ikhsanov et al. (2012)
conducted a study of spherical accretion scenarios in which the
magnetic field of a companion star distorts the B-field flowing
with the accreting material, thereby controlling the process via
turbulent diffusion, which could potentially allow for accretion
flow above the polar cap in fast rotators such as Her X-1.

7.5. Energy Transport Timescales

A thorough analysis of the timescale and energy rate
dynamics would not be possible without the fundamental
inclusion of gas pressure in the conservation equations. Recall
from Section 2.5 that the electrons are essentially confined
along the magnetic field with a 1D Maxwell–Boltzmann energy
distribution and an energy density per degree of freedom given
by (1/2)nekTe. The column dynamics are best understood by
investigating the energy transfer rates and associated timescales
in this formalism. The itemized list below provides definitions
for eight of the key physical processes governing the
thermodynamics of the energy transfer between the ions,
electrons, and radiation. The timescales include the following:

1. Escape timescale:

= ^t ℓ w . 133esc esc ( )

See Equation (55) for more discussion on the escape
timescale. A photon will travel escape distance ℓesc, with
diffusion velocity w⊥, from the centerline of the accretion
channel to the exterior wall.

2. Thermal bremsstrahlng absorption timescale:

a=t c1 . 134abs R( ) ( )

See Equation (63) for the Rosseland mean absorption
coefficient αR. The absorption timescale defines the
average time before a photon is absorbed via brems-
strahlung thermal free–free absorption.

3. Bulk Comptonization timescale:

= vt 1 . 135bulk Comp ( · ) ( )

Timescale over which the bulk fluid with velocity v is
compressed and adds heat to the accreting gas. The
divergence operator captures the compression dynamics.

Table 11
Stellar Rotation Properties

Source Prot á ñRA Rco W á ñRK A( ) Ωrot Rotation
s km km rad s−1 rad s−1

Her X-1 1.24 5334 1940 1.11 5.07 fast
Cen X-3 4.82 1879 4780 5.29 1.30 slow
LMC X-4 13.50 2535 9510 3.38 0.46 slow
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4. Electron scattering timescale:

s=t n c1 . 136escat T( ) ( )

Photons scatter isotropically off electrons with Thomson
cross-section sT inside the accretion column.

5. Comptonization timescale:

=t
n kT

U

1 2
. 137e e

Comp
Comp

( )
˙ ( )

Energy is added or removed from electrons due to

Figure 8. Rotation of Cen X-3 during half of the spin period. The angle β=0° corresponds to the direction toward the companion star, so that the magnetic and
rotation axes appear to be aligned. Eight instantaneous moments are depicted in which the phase angle β increases incrementally by 22.5°, demonstrating how the
stellar magnetic field sweeps through the accretion disk over a total rotation of 180 degrees. Matter is captured by the magnetic field along the RA curve.
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interactions with photons within a Comptonization time
interval tComp. The rate of energy transfer,UComp˙ , is given
by Equation (74).

6. Bremsstrahlung emission timescale:

=t
n kT

U

1 2
. 138e e

brem
ff

( )
˙ ( )

Energy is removed from the electrons due to the
bremsstrahlung cooling rate Uff˙ given by Equation (61).

7. Cyclotron emission timescale:

=t
n kT

U

1 2
. 139e e

cyc
cyc

( )
˙ ( )

Energy is removed from the electrons due to the
cyclotron cooling rate Ucyc˙ given by Equation (67).

8. The electron–ion equilibration timescale (based on
Equations (32) and (103) from Arons et al. 1987):
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where Teff is given by Equation (78), and
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An analysis of Equation (140) shows that the electron–ion
equilibration timescale is at least an order of magnitude smaller
than all other timescales, which explains why the electron and
ion are nearly in thermal equilibrium throughout the column.
The ionized gas is too hot and too dense for a significant
deviation to occur as the electrons and ions thermally
equilibrate more quickly than any other process.

7.6. Flow Regions

The profiles for the timescales and energy transfer rates are
shown in Figure 9. The three sources exhibit similar behavior
in three basic regions, which we generalize here. The electron–
ion equilibration timescale (see Equation (140)) is fast enough
to ensure that they are in near thermal equilibrium at all times.
The corresponding energy transfer rate, Uei˙ , is orders of
magnitude smaller than the four U̇ terms shown in Figure 9 and
is therefore not included. The three regions are described as
follows:

1. Region 1 begins at the top of the column and extends
over a majority of the column length. The cyclotron
cooling timescale initially dominates the bremsstrahlung
absorption timescale and is slightly faster than photon
Comptonization. The inverse-Compton temperature is
initially much larger than the gas temperature, and energy

added to the gas by hotter photons is nearly offset by
cyclotron emission. These two processes compete against
each other as thermal bremsstrahlung absorption con-
tinually adds heat. Near the end of Region1 the surplus
heat reservoir in the photons is emptied while thermal
bremsstrahlung absorption accelerates, thereby resulting
in a role reversal between the photons and electrons at the
entrance to Region2.

2. The gas begins to heat the photons via inverse-Compton
scattering at the Region2 entrance. Bulk fluid pressure
and density rises rapidly as the accreting material builds-
up near the surface. Electron scattering becomes the
dominant timescale and bremsstrahlung absorption
becomes the dominant heat transfer process. The energy
transfer rates and the temperatures exhibit rising
exponential behavior inside the extended sinking regime.

3. Region 3 begins at the top of the thermal mound for Cen
X-3 and LMC X-4, where the parallel absorption optical
depth exceeds unity. Thermal bremsstrahlung absorption
and Comptonization dominate all other processes. Most
photons are either absorbed or scatter within the mound
and cannot escape. Mass density and pressure increase as
the fluid stagnates near the stellar surface.

We conclude that the Comptonization timescale and energy
transfer rate determine two markedly different regions in the
column. The upper region (Region 1) starts at the free-
streaming surface and reaches deep into the column to between
1.5 km and 2.5 km above the stellar surface. It is characterized
by slowly changing energy transfer from photons to the gas,
where cyclotron and Comptonization processes dominate, and
the relative positions among the various timescales are mostly
unchanged. Beyond the column half-way point the bulk fluid
density begins to play a very important role as the accreting
material decelerates, fluid kinetic energy dissipates, and density
rises to the point where scattering becomes the dominant
timescale. The additional collisions result in accelerated energy
addition to the gas due to bremsstrahlung thermal free–free
absorption.
The lowest ∼500 m of Region 1 is characterized by slowing

energy transfer from the photons to the electrons as they
approach thermal equilibrium. The radiation sonic surface is
located within a few hundred meters of the thermal mound
surface. The dynamics change dramatically at the entrance to
Region 2, where the gas temperature exceeds the inverse-
Compton temperature. Here, the energy transfer rates are orders
of magnitude larger than those in the upper region (Region 1)
and the dominant heat mechanisms are bremsstrahlung thermal
absorption and inverse-Compton scattering.

7.7. Scattering Cross-sections

The values of the surface magnetic field at the magnetic pole,
B*, obtained in each of our three source models are larger than
the corresponding values obtained in the BW07 models. The
magnetic field strengths in the BW07 models were set as
constants. The field strength in our model, however, quickly
drops due to the dipole implementation, where B∝r−3,
thereby resulting in a larger ratio ò/òcyc at the cyclotron energy
òcyc(r) for a photon at energy ò. The difference in approaches
becomes especially relevant when we compare the electron
scattering cross-sections with the theoretical values from
Equation (31). We examine this more closely in PaperII

Table 12
Magnetospheric Geometry and Disk Inclination Angle

Source á ñR1,disk á ñR2,disk á ñRA θ1 θ2 j
km km km degrees degrees degrees

Her X-1 N/A 32000 5331 0 0.72 N/A
Cen X-3 2149 1650 1879 3.76 4.30 22.6
LMC X-4 3023 2142 2535 3.13 3.72 26.0
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where the average photon energy, ̄ , is computed along the
column. Here, we compare our parallel and angle-averaged
scattering cross-sections (labeled as WWB) with those used in
the BW07 model, which are shown in Tables 13 and 14. We
notice our values are an order of magnitude larger. Canuto et al.
(1971) showed that the magnitude of the electron scattering
cross-section is reduced from the Thomson cross-section when
ò<òcyc, over all propagation angles θ with respect to the
magnetic field direction, according to

⎡
⎣⎢

⎤
⎦⎥

s q
s

µ
B r

. 142
T

2( )
( )

( )

We see from Equation (142) that the ratio σ(θ)/σT in our model
will be larger than those of BW07 because B(r) is lower with
increasing r, whereas the BW07 model maintained a constant
B-field throughout.

7.8. Future Work

The capabilities of our model, in its current state, permit a
detailed physical study over the full length of an X-ray pulsar
accretion column, including the radial dependences of many
key phenomena, such as the photon emission, the hydro-
dynamic and thermodynamic structure, the imprint of the
cyclotron absorption feature, and the stellar surface magnetic
field strength. In this paper, we have modeled the dynamical
behavior of three high-luminosity sources spanning a range of
luminosities from LX∼1037–1038 erg s−1. We find that the gas

pressure does not play a dynamically significant role in these
sources. However, this question needs to be reexamined in the
context of lower-luminosity sources, such as X Persei, in which
the pressure of the gas could play a more significant role, as
discussed by Langer & Rappaport (1982). It is also likely that
in these sources, the effect of the gas-mediated, discontinuous
shock at the base of the column will be more significant than in
the high-luminosity pulsars studied here (Becker et al. 2012).
We plan to pursue these questions in future work.

Figure 9. Thermal coupling rates per unit volume, and associated timescales, for the accretion columns in Her X-1, Cen X-3, and LMC X-4, plotted in cgs units as
functions of the radius from the center of the star. The accretion columns are divided into three regions according to the dominant timescales; see the discussion in
the text.

Table 13
Parallel Electron Scattering Cross-section

Source σP/σT σP/σT Ratio
WWB BW07 WWB

BW07

Her X-1 2.60×10−3 2.93×10−4 8.9
Cen X-3 3.00×10−3 4.51×10−4 6.7
LMC X-4 2.50×10−3 3.98×10−4 6.3

Table 14
Angle-averaged Electron Scattering Cross-sections

Source s sT¯ s sT¯ Ratio
WWB BW07 WWB

BW07

Her X-1 1.02×10−3 4.15×10−5 24.6
Cen X-3 7.51×10−4 8.30×10−5 9.0
LMC X-4 4.18×10−4 4.85×10−5 8.6

27

The Astrophysical Journal, 835:129 (29pp), 2017 February 1 West, Wolfram, & Becker



Our model provides a new tool for estimating the surface
magnetic field strength, and it may also facilitate studies of the
variation of the cyclotron absorption energy cyc as the
luminosity is varied (Mihara et al. 1995; Staubert et al. 2007;
Becker et al. 2012). In particular, our model can be used to
investigate observed changes in the Her X-1 pulse phase-
averaged cyclotron line energy (Staubert et al. 2007) by
changing the mass flow rate. More recent observations by
Staubert et al. (2014) show a reduction in the line energy over a
span of 16 years. We can perform a parameter study using our
model to yield possible explanations for this behavior. This
may also include experimental modification of the boundary
conditions due to stellar surface magnetic field compression or
other anomalies such as energy transport into or out of the star
(Payne & Melatos 2007; Mukherjee et al. 2013).

We also plan to eventually implement energy-dependent
electron scattering cross-sections, relativistic corrections for
gravity, a cyclotron absorption term to observe the imprint of
the cyclotron resonant scattering feature in the calculated
spectrum, the energy-dependent bremsstrahlung thermal free–
free absorption coefficient instead of the Rosseland mean
coefficient, and a second spatial dimension to observe 2D
dynamical behavior. We also intend to couple the five
dynamical conservation equations and the photon transport
PDE into a single-platform simulation within the COMSOL
finite element environment. This may also facilitate studies of
the effect of an imbedded gas-mediated shock, thereby
allowing us to observe how the electron and ion temperatures
react to the presence of a density discontinuity near the base of
the accretion column. This would permit a direct comparison
with the work of Langer & Rappaport (1982) and Canalle et al.
(2005), where the discontinuous shock near the stellar surface
has a profound effect on the thermodynamics in the column.
The authors would like to acknowledge several useful
comments from the anonymous referee that helped to
significantly improve the presentation of the material.

Appendix
Ion Sound Speed at Column Top

At the top of the column, the incident value for the ion sound
speed ai˜ (see Table 4) is derived from the column-top ion Mach
number Mi0 and incident flow velocity vtop˜ , given by (where
<v 0˜ indicates flow is toward the stellar surface)

M
= -a

v
. 143i

i
,top

top

0
˜

˜
( )

To compute Mi0, we begin with ion and electron energy
conservation in the comoving frame using Equation (49)

⎜ ⎟⎛
⎝

⎞
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where we have used the following substitution for the mass
density gradient dρ/dr.

r
r

= - -
d

dr v

dv

dr r

1 1 3
, 145( )

which can be derived using Equation (41).
The electrons and ions are assumed to have the same

temperature at the top of the column ( »T Te i), therefore the
energy exchange rate between the two is zero
( = - =U U 0i

top
ei
top˙ ˙ ). Radiative processes due to the ions are

negligible compared to electron radiative processes. We
convert energy density to pressure using g= -P U1( ) and
combine the two species (ions and electrons) from
Equation (144) to obtain the total gas pressure gradient at the
top of the accretion column. Converting to dimensionless
distance r̃ and flow velocity ṽ we obtain
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where the energy transfer terms within Uė are described with
Equation (48) in Section 3.0.3. This gives us the equation for
the gas pressure gradient needed later.
We now investigate how the free-streaming boundary

condition affects the derivation of the momentum equation.
The free-streaming condition discussed in Section 4 is given by

s
- = =



c

n

dU

dr
c U r r

3
, . 147

e

r
r top ( )

Converting radiation energy density Ur to radiation pressure
Pr in Equation (147), we can write the radiation pressure
gradient with respect to the dimensionless radius, r̃ , at the top
of the column as

s= - 
dP

dr
n R P3 . 148r

r
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top˜
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˜

˜

We use the momentum equation from Equation (52) and
convert to dimensionless units to obtain the steady-state
equation, given by
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where total pressure is the sum of gas and radiation pressures
( = +P P Pg rtot ). By substituting for the gas pressure gradient
(dP drg ˜) using Equation (146), the radiation pressure gradient
from Equation (148), and substituting for flow velocity ṽ and
gradient dv dr˜ ˜ using the free-fall values assumed at the top of
the column
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we further reduce Equation (149) to obtain
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We obtain the final form for Mi0 by using Equation (36) to
convert ion and electron pressures to their respective sound
speeds, Equation (105) to change to non-dimensional
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quantities, Equations (41) and (42) for ρ and ne substitutions,
Equation (118), which gives the relationship at the top of the
column between ae˜ and ai˜ , Equations (114) and (117) to
convert to Mach numbers, Equation (150) for the bulk velocity
at the top of the column, and Equation (8) to substitute for Ω.
Finally, substituting for the specific heat coefficients (γe=3,
γi = 5/3, and γr=4/3), we obtain

M M
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which can be rearranged to yield

M
M

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

s
=

W
-

W
-

=

 M

m c R rv

R

Mc

r

v
U

9

28

1 1 2

7
,

154

i
g r

g
e

r r

0
tot 0

2

3

2

3

2

1 2

top

˙

˜ ˜ ˙
˜
˜

˙

( )
˜ ˜

or using the value at the top of column for vtop˜ (Equation (150)),
σP (Equation (86)), and substituting for Ω (Equation (8)), we
obtain
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We see that the initial ion Mach number Mi0 depends only on
the choice of our free parameters rtop˜ , Ω*, and Mr0, and on
Ue,top˙ . However, since Ue,top˙ is, in general, a function of the
electron temperature Te,top, it is implicitly a (complicated)
function ofMi0 and Equation (155) must be solved using a root
finder.
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