
Shallow Transits—Deep Learning. II. Identify Individual Exoplanetary Transits in Red
Noise using Deep Learning

Elad Dvash1, Yam Peleg1, Shay Zucker1 , and Raja Giryes2
1 Porter School of the Environment ans Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel;

shayz@tauex.tau.ac.il
2 School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel

Received 2019 November 26; revised 2022 March 14; accepted 2022 March 15; published 2022 April 27

Abstract

In a previous paper, we introduced a deep learning neural network that should be able to detect the existence of
very shallow periodic planetary transits in the presence of red noise. The network in that feasibility study would not
provide any further details about the detected transits. The current paper completes this missing part. We present a
neural network that tags samples that were obtained during transits. This is essentially similar to the task of
identifying the semantic context of each pixel in an image—an important task in computer vision, called “semantic
segmentation,” which is often performed by deep neural networks. The neural network we present makes use of
novel deep learning concepts such as U-Nets, Generative Adversarial Networks, and adversarial loss. The resulting
segmentation should allow further studies of the light curves that are tagged as containing transits. This approach
toward the detection and study of very shallow transits is bound to play a significant role in future space-based
transit surveys such as PLATO, which are specifically aimed to detect those extremely difficult cases of long-
period shallow transits. Our segmentation network also adds to the growing toolbox of deep learning approaches
that are being increasingly used in the study of exoplanets; but, so far mainly for vetting transits, rather than their
initial detection.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Transit photometry (1709); Neural
networks (1933)

1. Introduction

In a previous paper (Zucker & Giryes 2018; hereafter
Paper I), we demonstrated a new approach to detect the
presence of exoplanetary transits in simulated data mimicking
data that can be obtained by high-cadence space telescopes.
The demonstration was performed on simulated data of a
fictitious telescope, but the approach should be applicable to
real-life missions like CoRoT (Deleuil et al. 2010), Kepler
(Borucki et al. 2010), TESS (Ricker et al. 2015), and in the
future PLATO (Rauer et al. 2016). The new approach we have
introduced aimed at overcoming the problem of “red noise,”
usually attributed mainly to stellar activity, which constituted a
major hurdle to traditional transit detection techniques, such as
the BLS (Kovács et al. 2002). Our suggested approach was
based on the rapidly evolving new discipline of deep learning.
In Paper I we demonstrated how this technique managed to
outperform the BLS (preceded by a high-pass filter), in
identifying light curves that contained exoplanetary transits,
contaminated by red noise in addition to photon (Poisson)
white noise.

It is important to note that Paper I focused on the task of
detecting the presence of transits in the light curves, and not
validating or vetting them as exoplanetary signals. The aim was
to detect those transit events that might evade detection by
traditional detection approaches like the BLS. In that respect it
differed from other efforts in the field (e.g., Ansdell et al. 2018;
Shallue & Vanderburg 2018; Dattilo et al. 2019; Osborn et al.
2019; Yu et al. 2019).

As successful as it may be, the detection mechanism we had
introduced in Paper I lacked one crucial ingredient: it could not
provide any information as to the details of the detected
transits. The information it provided was binary: whether the
light curve contained transits or not. Our aim in the current
work is to present a deep learning neural network that will also
identify the individual transits in the light curve, thus enabling
further research, such as vetting the transit candidates,
characterizing the transit properties, detecting transit timing
variations (TTVs), looking for additional transiting planets, etc.
Deep learning is a class of algorithms and heuristics meant to

train highly nonlinear parametric functions. The nonlinear
functions, mostly known as neural networks, are essentially
concatenations of layers of basic units, each comprising a linear
operation followed by a simple nonlinearity. The nonlinearity
is commonly realized by element-wise activation functions
such as the sigmoid, hyperbolic tangent, or the rectified linear
unit (Nair & Hinton 2010). Their combination eventually
results in intricate highly nonlinear functionality.
During the training, the parameters of each layer are trained

so as to minimize an error function calculated in relation to the
previous layer. The training is often done using stochastic
gradient descent (Rumelhart et al. 1986). This approach often
captures strong nonlinear relationships, leading to unprece-
dentedly successful results across many fields (e.g., LeCun
et al. 2015; Schmidhuber 2015; Goodfellow et al. 2016).
The task of identifying samples that are included in

individual transits is essentially equivalent to the task of
“semantic segmentation” in computer vision. The goal of the
segmentation task is usually to simplify and change the
representation of an image into something that is more
meaningful and easier to analyze. Image segmentation is
essentially the partitioning of a digital image into multiple

The Astronomical Journal, 163:237 (11pp), 2022 May https://doi.org/10.3847/1538-3881/ac5ea2
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
mailto:shayz@tauex.tau.ac.il
http://astrothesaurus.org/uat/489
http://astrothesaurus.org/uat/1709
http://astrothesaurus.org/uat/1933
http://astrothesaurus.org/uat/1933
https://doi.org/10.3847/1538-3881/ac5ea2
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac5ea2&domain=pdf&date_stamp=2022-04-27
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ac5ea2&domain=pdf&date_stamp=2022-04-27
http://creativecommons.org/licenses/by/4.0/

segments, usually corresponding to objects and boundaries
(lines, curves, etc.) in the image. Thus, image segmentation can
be described as the process of assigning a label to every pixel in
an image such that pixels with the same label share certain
characteristics, or simply belong to the same context. The
equivalence to the task of identifying the transits in a light
curve is obvious: we assign a label to each sample in the light
curve such that all the samples within transits get the same
label. Since much progress has been achieved in performing
image segmentation using deep learning, it is only natural to
apply it here as well.

Most of the aforementioned studies, which aimed at
detecting, vetting, and identifying transits, made use of
convolutional neural networks. In the current work, we use
more tools from the toolkit of neural networks to perform
segmentation. In particular, we use U-Nets (Ronneberger et al.
2015) to perform the segmentation and identify the times when
a transit occurs within a given light curve signal, and an
adversarial loss to force the network to output only realistic
segmentation.

In the next section we introduce the neural network concepts
that we employed in our work. In Section 3 we present the way
we implemented those concepts in our neural network.
Section 4 describes the simulated data set used for our
demonstration, and the procedure we used to train the network
is detailed in Section 5. Section 6 demonstrates the perfor-
mance of the neural network, and in Section 7 we conclude and
discuss the possible future implementations of the approach.

2. Neural Networks

The approach we suggest for solving the problem of
identifying individual transits makes use of several variants
of deep learning neural networks: convolutional neural net-
works (CNNs), ResNets, U-Nets, and generative adversarial
networks (GANs). In the next paragraphs we briefly introduce
and explain these concepts, as well as other concepts we
employ.

2.1. Convolutional Neural Networks

In CNNs, convolutions constitute the linear part of the layers
(LeCun et al. 1998). CNNs are widely used to analyze images
or periodic signals due to their shift-invariance property. CNNs
are usually built by stacking convolution operators in layers,
each followed by a nonlinearity (“activation function”).
Usually, the stack of convolutions is followed by a fully
connected layer, represented by a simple linear function (matrix
multiplication), and followed by an activation function. These
networks are known to be very powerful when applied to signal
classification tasks (see Paper I). The layers are usually
“contracting,” in the sense that they perform successive
downsampling of the signal, resulting in an increasingly
compact representation of the information.

2.2. Residual Networks (ResNets)

An essential step in training neural networks is back
propagating the gradient of the loss function through the
layers. A notorious problem in training very deep networks is
the problem of “vanishing gradients”: during the back-
propagation of the gradients, repeated multiplications cause
the gradients to become too small for effective learning. As a
result, as networks grow deeper, the performance plateaus and

might even start to degrade. A standard technique to avoid this
problem uses residual connections (also known as skip
connections): retaining the original output of an earlier layer
and adding it to the results of following layers as a “bypass”
(He et al. 2016). This helps to mitigate the vanishing gradient
problem by causing the gradient from the earlier layer to flow
through the bypass and skip multiplication steps.

2.3. Fully Convolutional Networks and U-Nets

Building upon the concept of a CNN, a more elaborate deep
learning architecture has emerged—the fully convolutional
network (FCN), which is very popular for image segmentation
(Long et al. 2015). A popular FCN structure is the U-Net
(named after the U-shape of the network), which has been
initially developed for biomedical images but has become
widely used in many domains (Ronneberger et al. 2015).
Essentially, it is a CNN that is composed of two parts, the
“encoder” and the “decoder.” The encoder is a contracting
CNN, which produces a compact representation of the input
signal. The decoder, which is appended to the encoder,
comprises mirrored layers (with respect to the encoder), in
the sense that each convolution in the encoder is mirrored by a
corresponding deconvolution (transposed convolution) layer.
As a consequence, this expansive path is more or less
symmetric to the contracting path, yielding a U-shaped
architecture. It has been found that these networks perform
better with the following improvement: depth-wise concatena-
tion of the output of each encoding layer to the corresponding
decoding layer in the mirrored architecture (Ronneberger et al.
2015). By design, the original U-Net takes two-dimensional,
single-channel (grayscale) images as inputs. The current study
deals with light curves, which are one-dimensional (1D) time
series. We have therefore restructured the U-Net design to take
1D time series as inputs by using 1D convolution layers.

2.4. Dice Loss

The objective of the training of a neural network is the
minimization of a prescribed loss function. The loss function
represents the task one wishes the network to perform, and its
goal is to provide a metric that measures the performance of the
network for the given task. While in the problem of
classification (e.g., Paper I) the loss function commonly used
is the logarithmic loss (also known as the cross-entropy loss),
in this work we chose to apply a variant of the Dice Loss,
which is useful for segmentation problems.
Historically, the Dice coefficient was inspired by a set-

theoretic concept introduced independently by Dice (1945) and
Sørensen (1948) in ecological contexts in order to quantify
similarity of sets. In the set-theoretic context, the Dice
coefficient of the two sets X and Y is defined by:

d X Y
X Y

X Y
,

2
1() ∣ ⋂ ∣

∣ ∣ ∣ ∣
()=

+

where | · | denotes the number of elements in each set. The
concept of set membership is generalized to binary sequences,
and the Dice coefficient for two binary sequences {yi} and {pi}

2

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

can now be written as:

d y p
p y

p y
,

2
. 2i i i

i i i i
2 2

() ()=
å

å + å

Milletary et al. (2016) were the first to apply the Dice
coefficient to image segmentation. In this context, it is
essentially a measure of the overlap between the segmentation
image that the network produces and the ground-truth
segmentation sequence. In our context, for a given light curve,
let us denote the ground truth by a binary sequence {yi}, where
each sample in transit is assigned the value 1 whereas all the
rest are assigned 0. Let {pi} denote the output of our
segmentation network (the “prediction,” in machine learning
jargon), which is the probability (a value between 0 and 1) that
sample i is within a transit. We wish this probability to be 1 for
samples during transit and 0 otherwise. Then the Dice
coefficient for this light curve is given by:

l d y p d y p, 1 , 1 , 3() () ()= + - -

where d(y, p) measures the performance during transit
segments and d(1− y, 1− p) during out-of-transit segments.

2.5. Adversarial Loss

Our aim in the current project is to label samples occurring in
transits. Naively, under the assumption that transits are strictly
periodic (neglecting TTV and multiple transiting planets), it
should have been very easy to judge whether the results of the
segmentation are realistic. However, we wished to leave our
mechanism agnostic of the strict periodicity of the signals to
allow, in future developments, the detection of multiplanetary
signals, or signals with significant TTV. Thus, it is quite
difficult to define a metric to measure how realistic is the
resulting segmentation. Therefore, in training our neural
network we make use of a novel concept in deep learning
which is the concept of a GAN.

Maximizing the Dice loss (Equation (3)) forces the neural
network to output a segmentation that is similar to the ground-
truth one. However, in this loss function there is no preference
for the transit signal to be necessarily periodic. Thus, the
network might produce predictions that minimize the Dice loss
but do not look “authentic,” i.e., similar to real transits. An
experienced exoplanet astronomer that would examine such an
output would immediately be able to exclude an unauthentic
segmentation. It is therefore required to add some kind of a
penalizing mechanism to the network during training, so as to
exclude those false predictions.

This problem is not unique to our setup only, but is common
in the training of neural networks. There is a trade-off between
minimizing the distortion (the Dice loss in our case) and the
naturalness of the reconstructed signal (see, for example, the
analysis for the case of superresolution by Blau &
Michaeli 2018). Thus, one may add a loss term in the training
of the neural network that pushes the output distribution to
resemble the true data distribution. GAN is a very popular
strategy for achieving this goal.

A GAN comprises two neural networks, where one network
(the “generator”) generates “candidate” signals and the other
(the “discriminator”) evaluates them and discriminates between
actual signals and ones produced by the generator. The training
objective of the generator is to challenge the discriminator and
increase its error rate (i.e., “fool” it by producing novel
synthesized instances that appear to be genuine and cannot be

distinguished from real data). The discriminator discriminates
between genuine instances and artificial candidates produced
by the generator (e.g., Goodfellow et al. 2014).
Usually, GANs are used to generate purely new signals from

some initial distribution. However, in our implementation, we
use the generator to tag the samples that occur during transits,
essentially producing a new sequence. The discriminator
examines the resulting sequence and evaluates how realistic it
is as a sequence of transit events.
GANs are known to suffer from training instability. In

particular, a known problem in their training is “mode
collapse,” where the generated examples represent only a
small fraction of the real distribution (e.g., the generator might
generate always the same real-looking image). As a solution, a
variant of GAN called Wasserstein GAN (WGAN) has been
proposed in which the loss of the discriminator is set to be the
Wasserstein distance (a measure of the distance between two
probability distributions, also known as the Earth Mover’s
Distance) leading to a more stable training (Arjovsky et al.
2017).
However, WGAN suffers from another problem, which is

exploding of the gradient norm. As a solution to this problem,
yet another variant of GAN has been proposed—the WGAN
gradient penalty (WGAN-GP), which penalizes the norm of the
gradient of the discriminator network (Gulrajani et al. 2017).
This method is known to perform even better, as it enables
stable training of a wide variety of GAN architectures with
almost no hyperparameter tuning.
In our case, we may train a discriminator that distinguishes

between the output of the segmentation network (which acts as
the generator) and the real ground-truth segmentation
sequences. This use of the GAN framework to improve
training of a given network (e.g., our segmentation network) is
known as adding an adversarial loss, since the discriminator in
this case is used as an “additional loss” in the training of the
segmentation network. Specifically, in addition to maximizing
the Dice coefficient, our segmentation network also aims at
“fooling” the discriminator, which makes its output more
similar to the ground-truth data.

3. Current Implementation

For the task of transit segmentation, we use the U-Net
encoder-decoder architecture followed by the WGAN discri-
minator. In this setup, one may consider the U-Net as the
generator of the WGAN network. Our model facilitates joint
detection and segmentation with one architecture. Figure 1
presents the overall structure of this architecture. Notice that it

Figure 1. A schematic illustration of the overall network structure. Note the
gray arrow between the generator and classifier signifying no gradients flow
through those connections.

3

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

contains a U-Net, a discriminator and a classification network.
The gray arrow signifies that no gradients are flowing through
the residual connections from the generator to the classifier;
thus, only updating the classifier weights.

The U-Net, the discriminator, and the classification archi-
tectures are portrayed in Figures 2, 3, and 4, respectively. Note
that the input dimension of the network is 20,736, which is a
convient multiple of 28, and longer than the original light
curve, which was augmented by zero padding.

The training process is split into two parts. First, we train the
generator and discriminator only on time series that contain
transits, as a regular WGAN-GP, using the Dice loss combined
with the adversarial loss, weighted 0.75 and 0.25, respectively,
when training the generator. In the second part of each training
iteration, we freeze the weights of the generator and
discriminator and train the classifier using binary cross entropy
on light curves, where only some of them contain transit
signals. The fine technical details of the various architectures
we used can be found in our code, which is publicly available
on GitHub3 and archived in Zenodo (Dvash et al. 2022).

4. Simulated Data

We have used simulated data to train the network, and later
to test and study its performance. The time sampling we have
assumed for the simulations was the same time sampling
introduced in the ETE-6 database by Jenkins et al. (2018). The
ETE-6 database had been released to the community to prepare
for TESS operations, and we therefore considered the sampling
characteristics as representative of those of TESS. Besides
basing our time sampling on ETE-6, we did not use the ETE-6
data themselves. The main realistic feature which we found
important in this sampling pattern was the inclusion of two
sampling gaps attributed to downlink periods where the science
operations of TESS were assumed to be interrupted.
We assume that conventional methods (like the BLS) are

sufficient in order to detect transits in the presence of white
noise. We therefore focused our efforts and the simulated data
set on brighter stars, between magnitude 5 and 10, where the
effects of red noise due to stellar activity are more significant
(compared to white noise).
The magnitude directly affects the uncorrelated photon

noise, in a way that should depend on the characteristics of the
observational apparatus. In order to estimate the white noise

Figure 2. A schematic illustration of the generator U-Net we use in our segmentation network. Note the residual “skip connections” between corresponding layers in
the encoder and decoder.

Figure 3. A schematic illustration of the discriminator we use to produce the adversarial loss for training the segmentation network.

3 https://github.com/StrudelTAU/ShallowTransitsDL

4

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

https://github.com/StrudelTAU/ShallowTransitsDL

component in a two-minute cadence TESS light curve, we
approximated the curve in Figure 4 of Ricker et al. (2015) by
the following relation (assuming the brightness is quantified in
the IC band):

A e108000 8670 mag. 4I
w

0.94 5C ()() m= + -

Following Paper I, we have used a Gaussian process (GP) to
simulate the noise, with a kernel comprising a squared-
exponential component and a quasiperiodic one (e.g., Aigrain
et al. 2016). Combined with the white noise component, we got
the following expression for the kernel of the noise GP:

k t t A
t t

A

t t

T

t t
A t t

, exp exp

1

2
sin .

5

i j
i j

i j i j
i j

s
2

s

2

q
2

2

q q

2

w
2

()

())
()

()

⎜ ⎟ ⎜ ⎟

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎤

⎦
⎥

l

p
l

d

= -
-

+

´ -
-

-
-

+ -

We assumed that the details of the red noise were related to
stellar properties and not to the observational apparatus, and
therefore we used the same distributions for the non-white-
noise components as we had previously used in Paper I.
Table 1 summarizes the various hyperparameters of the GP that
we have used. Note that unlike the case in Paper I we have not
added artificially any outlier samples to the noise.

Unlike in Paper I, the ability to perform the segmentation
might be affected by the detailed shape of the transits.
Therefore, we could no longer settle for a simple trapezoid
transit model. Instead we chose to use the publicly available

code BATMAN which is capable of simulating transits quickly
and accurately in a wide range of parameters and with various
options to simulate the limb darkening (Kreidberg 2015). We
chose to use a linear limb-darkening model (e.g.,
Howarth 2011), with a single parameter c1.
We drew a sample of stellar masses using a Salpeter initial

mass function between 0.3Me and 2.0Me, which also
provided us with the stellar radii, assuming a simplified
mass–radius relation (R/Re); (M/Me). We then drew the
parameters of the planetary orbit: the period P, the planetary
radius Rp (in units of stellar radius), and the impact parameter
b, which determined the orbital inclination. Table 2 details the

Figure 4. A schematic illustration of the classifier network, which uses the residual connections from the generator U-Net.

Table 1
GP Kernel Hyperparameter Ranges

Hyperparameter Minimum Value Maximum Value

As 5 μmag 125 μmag
Aq 50 μmag 125 μmag
λs 1 minutes 10 hr
Tq 10 hr 500 hr
λq 1000 minutes 500 hr

Table 2
Distributions of Simulated Transit Parameters

Parameter Distribution Minimum Value Maximum Value

P Log-uniform 2 days 9 days
Rp/R* Log-uniform 1/100 1/30
b Uniform 0 1
c1 Uniform 0.5 0.7

5

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

various distributions we used in order to draw all those
parameters. The phase was drawn from a uniform distribution.

In total, 100,000 light curves, each containing 20,610
samples, were simulated. For each of the generated light
curves, we have injected a transit signal as described above.
Thus, we eventually had a total of 200,000 light curves
(consisting of pairs of which one contained a transit signal and
the other did not). We have split the 100,000 pairs of light
curves to 5000 pairs for training, 5000 pairs for validation
(used mainly for hyperparameter tuning), and 90,000 pairs for
testing. Note that simulating 100,000 light curves was a
relatively easy process, and the computational burden was
mainly related to the size of the training and validation sets,
which is the reason for the larger size of the testing set. The
distribution of the signal-to-noise ratio (S/N; as defined in
Zucker & Giryes 2018) of the 90,000 time series can be shown
in Figure 5, as the complementary cumulative distribution.

5. Training

We have trained the U-Net generator and the discriminator
simultaneously using the 5000 light curves that contained
transits and their binary ground-truth segmentation sequences
together, while the classifier used both sets of light curves with
and without added transits for 10,000 light curves in total. The
global loss function contained coefficients that controlled the
relative importance of segmentation (the Dice loss of the
generator U-Net) and the evaluation of the discriminator

(adversarial loss). The Dice coefficient was maximized during
training, while the adversarial loss of the GAN discriminator
was minimized using the Adam optimizer (Kingma & Ba 2014)
with hyperparameters shown in Table 3 for 10,000 randomly
chosen batches of size 32 out of the 5000 light curves
mentioned above.
For the classification training, we used 10,000 light curves

with and without added transits. The network was trained for
10,000 batches of 32 data inputs each. This is approximately
equivalent to 32 epochs (i.e., going over the whole data set 32
times). Note that each batch is randomly selected from the
whole data set, using random permutation of the indices, thus
guaranteeing going over all the data. After each batch of
training with the generator-discriminator pair, a random batch
of 32 light curves (out of the 10,000 mentioned above) was
used to train the classifier network using the Adam optimizer,
with the hyperparameters shown in Table 4.

Figure 5. Binned scatterplot of the obtained Dice coefficient as a function of the S/N for the 90,000 light curves containing transits. The greyscale coding of the
scatterplot is visualized by the vertical bar on the right. The marginal distributions of the Dice coefficient and the S/N are also shown as normalized complementary
cumulative histograms.

Table 3
GAN Hyperparameters

Parameter value

learning-rate 0.0001
beta_1dropout 0.54
beta_2 0.9
batches 10,000
batch-size 32

6

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

6. Results

The ability of a classifier network to identify light curves that
contained transits was already demonstrated in Paper I. The
main purpose of this work is to present a deep learning
approach to identify the transit events in light curves, which
had already been labeled to contain transits. Therefore, the
results we present here are mainly examples that demonstrate
the ability of the neural network to perform this task.

However, we first show in Figure 6 that the classifier does
perform satisfactorily in this context, in which it is trained
together with the segmentation network. We show this using a
receiver operating characteristic (ROC) curve (e.g., Faw-
cett 2006), which presents the true positive rate as a function
of the false-positive rate. The blue curve shows the ROC for the
classifier network, when trained alone, separately from the
segmentation network. The red curve presents the results after
training the two networks together. Clearly the classifier
performance is only improving by this combined training,
albeit slightly.

Figure 5 shows a binned scatterplot of the dependence of the
Dice coefficient on the S/N of the light curves with transits.
The marginal distributions of the Dice coefficient and the S/N
are shown as normalized histograms representing the com-
plementary cumulative distributions. Clearly, for many light
curves the Dice coefficient is close to 1. As can be expected,
the performance generally tends to degrade for small S/N, and
the performance below a S/N value of 10 becomes quite poor.

Most of the examples we chose to present here had a S/N
between 10 and 20 and Dice coefficients higher than 0.9. The
last two examples are shown in order to sample S/N values
beyond this restricted range. The characteristics of the
examples are summarized in Table 5, including the assumed
stellar magnitude of the star, the transit main parameters, the S/
N and the obtained value of the Dice coefficient.

Example A is a simple and easy to study light curve. As can
be seen in the top panel of Figure 7, there is no significant
component of red noise—there is almost no apparent long-term
nor quasiperiodic variability, and the main source of noise is
white noise. This is also evident in the parameters of the GP
kernel (Table 5). Note that this star is in the faint end of our
simulated sample, which is indeed expected to be dominated by
white noise. The transit is deep enough to that the transits can
easily be spotted by eye in the light curve. The middle panel
shows the injected transit signal at the same scale, while in the
lower panel we highlighted by red the samples which the neural
network identified as being in transit.

Example B, shown in Figure 8, is of a brighter sixth-
magnitude star, and therefore the effect of red noise is supposed
to be more significant. The transits are still visible when
examining the light curve, but long-term red noise is also easily

seen. Overall, the level of the noise is still low, which allows
the very shallow transits to be discernible by eye.
Figure 9 shows Example C, where the red noise is more

complicated. The host star is even brighter than the previous
example and one can see the many red-noise features in the
light curve that are of similar amplitude as the transits. They are
mainly caused by the relatively strong quasiperiodic term in the
noise with a period of 68 hr, which is close to the transit period
of 3.61 days (Table 5). It is not easy to locate the transits by
simple visual examination of the light curve.
The quasiperiodic component of the noise is even more

prominent in Example D shown in Figure 10. The quasiper-
iodic noise creates many troughs in the light curve that can be
easily mistaken by the human eye to be transits. The neural
network still identifies correctly the timing of the periodic
transits.
In Figure 11 we show Example E, which demonstrates the

ability of the network to deal with the sampling gaps. In this
example, both downlink gaps occur during transits of the
exoplanet. The coincidence with the gaps does not hamper the
ability of the network to perform a correct segmentation and
identify the transit even in those times.
Obviously, real life is never perfect, and errors are bound to

occur especially for low S/N. Figure 12 shows Example F,
which is one of those rare events, where the network identified
a transit when none existed. This light curve is dominated
mainly by white noise, but with a large amplitude (the star is
faint) making for a somewhat lower S/N. The network in this
case wrongly identifies a very short transit at some point in
day seven. This wrong identification of a transit event was not
enough to lower considerably the Dice coefficient.
The last two examples demonstrate cases of S/N values

beyond the range between 10 and 20, and serve to substantiate
the validity of the Dice coefficient as a diagnostic for the
segmentation performance. Example G, shown in Figure 13,

Table 4
Classifier Network Hyperparameters

Parameter value

Learning-rate 0.001
Dropout 0.4
Beta_1 0.9
Beta_2 0.99
Batches 10,000
Batch-size 32

Figure 6. The performance of the classifier network presented as a ROC curve.
Blue: after training the classifier separately from the segmentation network;
red: after training the classifier together with the segmentation network. The
dotted-dashed line is the so-called “no-discrimination” line, corresponding to a
random guess.

7

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

shows a case of low S/N, below 10, which nevertheless
exhibits a relatively high Dice coefficient, almost 0.9. This
Dice value seems to be perfectly justified based on the
satisfactory segmentation. On the other hand, Example H, in
Figure 14, shows a case with a high S/N, above 20, but very
low Dice coefficient, in line with the very poor segmentation
performance as seen in the figure. This poor performance is

probably related to the very short transit duration, combined
with a relatively strong presence of red and quasiperiodic noise.

7. Discussion

The approach we have described in this paper is meant to
complement the detection neural network we have introduced
in Paper I, where we have applied a neural network classifier to

Table 5
Details of the Presented Examples

Transit Parameters GP Parameters

Period Duration Depth Aw As Aq λs Tq λq
(mag) (days) (hr) (mmag) (μmag) (μmag) (μmag) (minute) (hr) (hr) S/N Dice

A 9.5 6.69 3.1 1.10 856 26 81 13 103 85 19.4 0.908
B 6.0 4.74 4.4 0.22 361 95 110 3 293 65 16.4 0.901
C 5.4 3.61 3.6 0.24 347 55 104 285 68 71 19.2 0.904
D 5.1 6.26 7.3 0.25 342 7 115 335 11 25 17.5 0.931
E 7.4 4.67 6.0 0.30 441 32 59 7 17 212 18.5 0.917
F 9.0 7.28 4.8 0.61 707 80 99 13 490 58 14.8 0.907
G 6.6 4.49 2.9 0.23 382 42 105 13 361 157 9.5 0.873
H 5.2 6.54 0.38 0.59 344 117 116 36 27 30 28.8 0.029

Figure 7. Example A. The upper panel shows the input light curve. The middle panel shows the injected transit, while in the lower panel the light curve is shown
again, but the samples that the network tagged as in-transit samples are marked in red. The y-axis scale is identical in all panels to facilitate visual comparison. Four
transits can clearly be discerned.

Figure 8. Example B. Panels follow the structure of Figure 7. Note the more prominent long-term variability in this specific case.

8

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

label simulated light curves that contained exoplanetary
transits. Before any future analysis of the transits can be
attempted, it is necessary to know when the transits actually
take place. Only then can they be analyzed for their detailed

shape, their precise timing, and, most importantly, only then
can one vet them and try to infer their nature—whether they are
genuinely exoplanetary transits or not. Following the terminol-
ogy of computer vision, we have dubbed the task of labeling

Figure 9. Example C. Panels follow the structure of Figure 7. Note the complex patterns of red-noise variability.

Figure 10. Example D. Panels follow the structure of Figure 7. Note the presence of many quasiperiodic transit-like features in the red noise.

Figure 11. Example E. Panels follow the structure of Figure 7. Note the partial coalescence of the third and six transits with the downlink gap.

9

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

the in-transit samples “segmentation.” Both tasks, detection
and segmentation, become extremely difficult when it comes to
very shallow transits in the presence of red noise. We suggest

that deep learning can significantly assist in performing those
tasks, as we have tried to demonstrate with the simulations we
presented.

Figure 12. Example F. Panels follow the structure of Figure 7. Note the wrong identification of a short transit around day seven.

Figure 13. Example G. Panels follow the structure of Figure 7. All transits were identified in spite of the low S/N, resulting in a high Dice coefficient value.

Figure 14. Example H. Panels follow the structure of Figure 7. The segmentation is completely wrong, except for the transit around day 26, as reflected by the very
low Dice coefficient.

10

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

The fact that the transits were periodic was very instrumental
in using the GAN and the adversarial loss. Among other
features of the transit signals, the network apparently learned to
favor periodic signals. Once multiple transiting planets exist in
the system, the challenge indeed becomes more complicated,
but multiple aspects of periodicity still exist in the signal. If
additional planets do not transit but only induce TTVs, we
estimate that the effect on the segmentation network perfor-
mance will not be that dramatic, but it still has to be verified. In
our future work we intend to tackle those challenges
(deviations from pure periodicity) as well.

For simplicity, we have employed in the training of the
segmentation network a simple Dice loss that considers equally
the in-transit and out-of-transit segments of the light curve.
Assigning different weights to those areas may improve the
performance and avoid the rare events of erroneous labels, like
the one we show in our last example (Figure 12). Furthermore,
we note that the network usually reproduces quite well the
phases of the transits, but the exact timing of the ingress and
egress tend to suffer some more inaccuracies, probably caused
by interfering features of the red noise. This might also be
corrected by a more sophisticated loss function that would take
into account the shape of the signal and the timing of the
ingress/egress stages.

Unlike the network we have introduced in Paper I, the output
of the network is not a binary decision regarding the presence
of a transit signal, but a sequence of decisions tagging the
original samples as in- or out-of-transit. The network itself
outputs a sequence of real numbers, and a threshold is applied
to those numbers to produce the binary segmentation sequence.
In principle, a similar mechanism can be applied to perform
detrending, in a way that would not destroy the transit signal.
This will be another central aim of our future efforts—detrend
the signals and remove the red noise, without affecting the
transit signal. This would be an extremely challenging task.

We have trained the neural network such that it would tag
transits that are really on the border of detection. The PLATO
mission will be targeting exactly such events. Deep learning
techniques like the one we have presented here are bound to
play a significant role in those efforts. Transits such as those
presented in Figures 7 and 8 might be vetted reasonably well
using current techniques. However, transits such as those
shown in our next examples, the more difficult ones, might
require additional observations, photometric, spectroscopic, or
others that still have to be thought of.

In addition, similar to Paper I, we added a binary classifier
that uses information from the residual connections of the
generator (Figure 4) to determine whether the light curve seems
to contain a transiting planet signal, so that our final network
performs the full task of identifying light curves with periodic
transits and performing the segmentation.

Deep learning is an exploding field of data science. The
exoplanetary community already acknowledges that and tries to
use those techniques in its endeavor. However, most of the
efforts focus around vetting transits using various variants of
CNNs. The work we have presented here may serve as a
reminder that there are other flavors of neural networks and
training methods like U-Nets and GANs, which may also be
very useful to exoplanet research.

This work was supported by a grant from the Tel Aviv
University Center for AI and Data Science (TAD) and by the

Ministry of Science, Technology and Space, Israel. R.G.
acknowledges support by ERC-stg SPADE (grant No. 757497).

ORCID iDs

Shay Zucker https://orcid.org/0000-0003-3173-3138
Raja Giryes https://orcid.org/0000-0002-2830-0297

References

Aigrain, S., Parviainen, G., & Pope, B. J. S. 2016, MNRAS, 459, 2408
Ansdell, M., Ioannou, Y., Osborn, H. P., et al. 2018, ApJL, 869, L7
Arjovsky, M., Chintala, S., & Bottou, L. 2017, in ICML’17: Proc. of the 34th

Int. Conf. on Machine Learning, ed. D. Precup & Y. W. Teh (Brookline,
MA: Microtome), 214, https://proceedings.mlr.press/v70/
arjovsky17a.html

Blau, Y., & Michaeli, T. 2018, in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), ed. D. Forsyth et al. (Los
Alamitos, CA: IEEE Computer Society), 6228

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Sci, 327, 977
Dattilo, A., Vanderburg, A., Shallue, C. J., et al. 2019, AJ, 157, 169
Deleuil, M., Moutou, C. & the CoRoT Exoplanet Science Team 2010, in

Physics and Astrophysics of Planetary Systems (EAS Publication Series
Vol. 41) ed. T. Montmerle, D. Ehrenreich, & A.-M. Lagrange (Les Ulis:
EDP Sciences), 85

Dice, L. R. 1945, Ecology, 26, 297
Dvash, E., Peleg, Y., Zucker, S., & Giryes, R. 2022, StrudelTAU/

ShallowTransitsDL, v1.0.0, Zenodo, doi:10.5281/zenodo.6304556
Fawcett, T. 2006, PaReL, 27, 861
Goodfellow, I. J., Bengio, Y., & Courville, A. 2016, Deep Learning

(Cambridge, MA: MIT Press)
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, in Proc. of the 27th

Int. Conf. on Neural Information Processing Systems (NIPS 14), 2, ed.
Z. Gharhamani et al. (Cambridge, MA: MIT Press), 2672, https://dl.acm.
org/doi/10.5555/2969033.2969125

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C.
2017, in Advances in Neural Information Processing Systems 30 (NIPS
2017), ed. I. Guyon et al. (Red Hook, NY: Curran Associates, Inc), 5767,
https://proceedings.neurips.cc/paper/2017/file/
892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf

He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), ed. L. Agapito et al.
(Los Alamitos, CA: IEEE Computer Society), 770

Howarth, I. D. 2011, MNRAS, 418, 1165
Jenkins, J. M., Tenenbaum, P., Caldwell, D. A., et al. 2018, RNAAS, 2, 47
Kingma, D. P., & Ba, J. 2014, arXiv:1412.6980
Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369
Kreidberg, L. 2015, PASP, 127, 957
LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, IEEEP, 86, 2278
Long, J., Shelhamer, E., & Darrell, T. 2015, in 2015 IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), ed. K. Grauman et al. (Los
Alamitos, CA: IEEE Computer Society), 640

Milletary, F., Navab, N., & Ahmadi, S.-A. 2016, in Proc. of the 4th Int. Conf.
on 3D Vision (3DV), IEEE 2016, ed. N. Snavely et al. (Los Alamitos, CA:
IEEE Computer Society), 565

Nair, V., & Hinton, G. E. 2010, in Proc. of the 27th Int. Conf. on Machine
Learning (ICML-10), ed. J. Fürnkranz & T. Joachims (Madison, WI:
Omnipress), 807

Osborn, H. P., Ansdell, M., Ioannou, Y., et al. 2019, A&A, 633, A53
Rauer, H., Aerts, C., Cabrera, J., et al. 2016, AN, 337, 961
Ricker, G. R., Winn, J. N., Vanderspeck, R., et al. 2015, JATIS, 1, 014003
Ronneberger, O., Philipp, F., & Thomas, B. 2015, in Medical Image

Computing and Computer-Assisted Intervention (MICCAI 2015), ed.
N. Navab et al. (Berlin: Springer), 234

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Natur, 323, 533
Schmidhuber, J. 2015, NN, 61, 85
Shallue, C. J., & Vanderburg, A. 2018, AJ, 155, 94
Sørensen, T. 1948, Biol. Skr. Dan. Vid. Sel., 5, 1
Yu, L., Vanderburg, A., Huang, C., et al. 2019, AJ, 158, 25
Zucker, S., & Giryes, R. 2018, AJ, 155, 147

11

The Astronomical Journal, 163:237 (11pp), 2022 May Dvash et al.

https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0003-3173-3138
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://orcid.org/0000-0002-2830-0297
https://doi.org/10.1093/mnras/stw706
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.2408A/abstract
https://doi.org/10.3847/2041-8213/aaf23b
https://ui.adsabs.harvard.edu/abs/2018ApJ...869L...7A/abstract
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://doi.org/10.1109/CVPR.2018.0065
https://doi.org/10.1126/science.1185402
https://ui.adsabs.harvard.edu/abs/2010Sci...327..977B/abstract
https://doi.org/10.3847/1538-3881/ab0e12
https://ui.adsabs.harvard.edu/abs/2019AJ....157..169D/abstract
https://doi.org/10.1051/eas/1041004
https://doi.org/10.2307/1932409
https://doi.org/10.5281/zenodo.6304556
https://doi.org/10.1016/j.patrec.2005.10.010
https://ui.adsabs.harvard.edu/abs/2006PaReL..27..861F/abstract
https://dl.acm.org/doi/10.5555/2969033.2969125
https://dl.acm.org/doi/10.5555/2969033.2969125
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1111/j.1365-2966.2011.19568.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.1165H/abstract
https://doi.org/10.3847/2515-5172/aab95d
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2...47J/abstract
http://arxiv.org/abs/1412.6980
https://doi.org/10.1051/0004-6361:20020802
https://ui.adsabs.harvard.edu/abs/2002A&A...391..369K/abstract
https://doi.org/10.1086/683602
https://ui.adsabs.harvard.edu/abs/2015PASP..127.1161K/abstract
https://doi.org/10.1038/nature14539
https://ui.adsabs.harvard.edu/abs/2015Natur.521..436L/abstract
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1051/0004-6361/201935345
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..53O/abstract
https://doi.org/10.1002/asna.201612408
https://ui.adsabs.harvard.edu/abs/2016AN....337..961R/abstract
https://doi.org/10.1117/1.JATIS.1.1.014003
https://ui.adsabs.harvard.edu/abs/2015JATIS...1a4003R/abstract
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1038/323533a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..533R/abstract
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.3847/1538-3881/aa9e09
https://ui.adsabs.harvard.edu/abs/2018AJ....155...94S/abstract
https://doi.org/10.3847/1538-3881/ab21d6
https://ui.adsabs.harvard.edu/abs/2019AJ....158...25Y/abstract
https://doi.org/10.3847/1538-3881/aaae05
https://ui.adsabs.harvard.edu/abs/2018AJ....155..147Z/abstract

	1. Introduction
	2. Neural Networks
	2.1. Convolutional Neural Networks
	2.2. Residual Networks (ResNets)
	2.3. Fully Convolutional Networks and U-Nets
	2.4. Dice Loss
	2.5. Adversarial Loss

	3. Current Implementation
	4. Simulated Data
	5. Training
	6. Results
	7. Discussion
	References

