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Abstract

Transiting hot Jupiters present a unique opportunity to measure absolute planetary masses due to the magnitude of
their radial velocity signals and known orbital inclination. Measuring planet mass is critical to understanding
atmospheric dynamics and escape under extreme stellar irradiation. Here we present the ultrahot Jupiter system
KELT-9 as a double-lined spectroscopic binary. This allows us to directly and empirically constrain the mass of the
star and its planetary companion without reference to any theoretical stellar evolutionary models or empirical
stellar scaling relations. Using data from the PEPSI, HARPS-N, and TRES spectrographs across multiple epochs,
we apply least-squares deconvolution to measure out-of-transit stellar radial velocities. With the PEPSI and
HARPS-N data sets, we measure in-transit planet radial velocities using transmission spectroscopy. By fitting the
circular orbital solution that captures these Keplerian motions, we recover a planetary dynamical mass of
2.17± 0.56MJ and stellar dynamical mass of 2.11± 0.78Me, both of which agree with the discovery paper.
Furthermore, we argue that this system, as well as systems like it, are highly overconstrained, providing multiple
independent avenues for empirically cross-validating model-independent solutions to the system parameters. We
also discuss the implications of this revised mass for studies of atmospheric escape.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet atmospheres (487);
Exoplanets (498)

Supporting material: data behind figure

1. Introduction

Absolute mass is a critical but elusive quantity throughout
the field of observational astronomy. Most empirical con-
straints on mass rely on the analysis of the dynamical
information of bodies interacting gravitationally, which is not
always attainable from 2D projections on the plane of the sky.
Stellar eclipsing double-lined spectroscopic binaries (SB2s) are
a classic case in which dynamical masses can be directly
measured. Spectroscopic observations of two eclipsing stars,
and thus stars of known inclination, yield orbital velocities by
harnessing the Doppler effect for light. Newton’s fundamental
law of gravitation can be combined with knowledge of the
system’s orbital motion to recover the dynamical masses of
both stars purely empirically. These measurements calibrate the
stellar evolution models that are typically used to determine the
masses of stars and, indirectly, the planets they host
(Popper 1980; Harmanec 1988; Andersen 1991; Torres et al.
2010; Stevens et al. 2018).

Mass is no less essential for the characterization of transiting
planet systems. For example, determining the interior composi-
tion of terrestrial planets or measuring atmospheric escape on
highly irradiated planets both require knowledge of the planet’s
mass. Transiting planets and their host stars are in an eclipsing

orbital configuration that, in principle, enables a direct
measurement of their masses. Transiting hot Jupiters (HJs), in
particular, are particularly suitable for this task. Due to their
relatively large mass and proximity to their host stars, HJs
impart a stronger reflex motion through their gravitational
influence on their host stars than other classes of planets. Thus,
they are the most accessible class of planets for transit and
radial velocity (RV) techniques. The RV signature of the host
star can, in principle, be constrained spectroscopically for the
most massive and tightly bound HJs, even without high-
precision RV instruments.
However, because of their extremely small planet/star flux

ratios, most HJ systems are essentially eclipsing single-lined
spectroscopic binaries. Such systems do not allow for a unique
solution to the masses and radii of the individual objects
(Seager & Mallén-Ornelas 2003); rather, there is a 1D
degeneracy between the mass and radius of the primary. Thus,
any inferences about the mass of a transiting planet require an
external constraint on stellar mass, typically from stellar
evolution models or empirical scaling relations between the
properties of main-sequence stars (Torres et al. 2010; Choi
et al. 2016; Dotter 2016; Duck et al. 2021). However, the
reliability of the estimates and uncertainties of these semi-
empirical measurements has recently been called into question
(Tayar et al. 2020). Systematic uncertainties in stellar proper-
ties that may deviate from the representative population used to
calibrate evolutionary tracks can propagate into an incorrect
estimation of planet mass and other planetary parameters.
Furthermore, Tayar et al. (2020) showed that current planetary
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parameter uncertainties are often disproportionately under-
estimated relative to the uncertainties on the host star properties
from which the planetary parameters are derived. Thus,
obtaining masses by purely empirical methods is important
because it provides a concrete check on the semiempirical
practices that are commonly employed.

If the RV of a transiting planet can also be measured, then the
system essentially becomes an eclipsing SB2; thus, an empirical
measurement of the system parameters, including the masses of
the planet and star, can be made. In this work, we apply the
classical techniques used to analyze SB2s to the KELT-9 system
(Gaudi et al. 2017) using observations from the the Potsdam
Echelle Polarimetric and Spectroscopic Instrument (PEPSI)
spectrograph (Strassmeier et al. 2015) on the Large Binocular
Telescope (LBT) and the HARPS-N spectrograph on the
Telescopio Nazionale Galileo (TNG). KELT-9 b is an ultrahot
Jupiter (UHJ) and the hottest known planet to date (Teq= 4050
K). The UHJs generally have orbital periods below 3 days,
yielding orbital velocities in the range of hundreds of kilometers
per second; this is approximately 3 orders of magnitude greater
than the orbital velocity of the host star.

Furthermore, the planet’s RV can be measured from its
atmospheric absorption signature observed during transit.
Snellen et al. (2010) is a pioneering work in this field, not only
for providing the first measurement of winds on an exoplanet but
also for using this technique to empirically constrain the absolute
masses of the planet and its host. To simultaneously chart the
planet’s orbital motion and measure its dayside-to-nightside
winds, CO was adopted as a tracer of HD 209458 b’s absorption
signature. As a result, the Doppler velocity shift of the planet’s
atmospheric absorption features over the course of a transit spans
a broader range of RVs than that of the relatively stationary
stellar spectral features. Transmission spectroscopy harnesses
this distinction in velocity space to disentangle the planet’s
spectrum from its host star, allowing for a self-consistent
measurement of the planet’s absolute mass.

Yan & Henning (2018) adopted this method to measure the
masses of KELT-9 b and its host (Mp= 3.23± 0.94MJ,
Må= 3.00± 0.21Me). However, they did not obtain an
original measurement of Kå, the stellar orbital velocity; instead,
they adopted the value given in Gaudi et al. (2017) measured
from TRES stellar spectra. In our work, we utilize the original
TRES data in Gaudi et al. (2017), as well as additional RVs
from higher-precision spectrographs, PEPSI (LBT) and
HARPS-N (TNG), to constrain the dynamical masses of the
KELT-9 system through a fully self-contained analysis. In
combination with the Hipparcos parallax and spectral energy
distribution (SED) fitting in Gaudi et al. (2017) that allow us to
constrain KELT-9 b’s radius, these observations will provide a
purely empirical measurement of the system parameters.

The KELT-9 system is notably overconstrained. A key focus
of this work is to emphasize that complementary observations
(discussed in Section 5.2) will contribute complete model-
independent solutions to the system parameters. All of these
constraints can be combined to determine the system parameters
to higher accuracy. Improved precision of planetary parameters
is critical for science cases pertinent to KELT-9 b, such as
atmospheric escape. A tight constraint on mass will enable a
more precise understanding of KELT-9 b’s atmospheric escape,
since the mass-loss rate measurement is dependent on planetary
parameters, i.e., mass or surface gravity.

Like Snellen et al. (2010), we use a fully self-consistent
technique analogous to the study of SB2s to obtain the absolute
masses of the KELT-9 system. In Section 2, we describe our
new data sets from the PEPSI spectrograph, as well as the
archival HARPS-N observations we use in our analysis. In
Section 3, we outline the techniques we use to recover stellar
and planetary orbital velocities and subsequently determine the
absolute masses of the planet and star. In Section 4, we report
our resulting mass constraints and compare our findings with
previous literature. In Section 5, we discuss the ways in which
the properties of the KELT-9 system are potentially empirically
overconstrained. We consider contributions from current and
future complementary observations. When combined, we argue
that these will lead to a complete solution of system parameters.
We also discuss the implications for atmospheric escape.
Finally, we present our conclusions in Section 6.

2. Observations

We observed two transits of KELT-9 b with the high-
resolution echelle spectrograph PEPSI (Strassmeier et al. 2015)
on the LBT (two 8.4 m mirrors, effective aperture of 11.8 m) in
Arizona (see Table 1 for the specific nights of observations).
PEPSI has a blue arm (nominally 3830–5440Å) and a red arm
(nominally 5440–9070Å) with six cross-dispersers for full
optical coverage. In this work, we use high-resolution data from
the blue arm taken with cross-disperser 3 (∼4750–5430 Å,
R= 50,000) exclusively because of negligible telluric contam-
ination (Cauley et al. 2019). The PEPSI pipeline produces
wavelength-calibrated 1D spectra of each order, which are then
continuum normalized, corrected for solar barycentric motion,
and stitched into a single 1D spectral vector.
Our PEPSI data set taken on 2018 July 3 (hereafter PEPSI

2018) was originally presented with an analysis of KELT-9 b’s
Balmer and metal lines in Cauley et al. (2019). In the blue arm,
the spectra were taken with exposure times between 220 and
387 s (depending on fluctuations in observing conditions) to
approximately maintain a constant signal-to-noise ratio (S/N)
of 210 in the continuum; in practice, the S/N ranged between
182 and 219 across observations. Additionally, we present a
new data set taken on 2019 June 22 (hereafter PEPSI 2019) for
which observations began during the transit. The exposure
times of the blue arm spectra were between 214 and 270 s with
continuum S/Ns ranging between 286 and 321.
We utilized two archival HARPS-N data sets from the Italian

Center for Astronomical Archives (IA2) Facility to increase the
number of stellar RV samples for our measurement of the host
star’s orbital motion. HARPS-N is a high-resolution (R ∼

Table 1
Data Sets Used to Measure Stellar RV

Instrument Night tstart (UTC) tend (UTC) Nobs

PEPSI 2018-07-03 04:07:34.4 11:16:41.3 82
PEPSI 2019-06-22 05:19:33.7 11:29:06.5 65
PEPSI 2021-06-28 05:55:41.3 11:48:23.5 62a

HARPS-N 2017-07-31 20:59:04.0 05:19:10.0 49
HARPS-N 2018-07-20 21:20:24.0 05:09:58.0 46
TRES 2014–2016 60a

Notes. Columns provide the name of the instrument, the date of the starting
observation, the start and end times of the observation, and the number of
observations.
a Out-of-transit only.
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115,000) optical spectrograph (wavelength range between
3874 and 6909Å ) on the TNG in La Palma, Spain. The first
night of HARPS-N observations is from 2017 July 31
(hereafter HARPS-N 2017), and the other is from 2018 July 20
(hereafter HARPS-N 2018); both were originally presented in
Hoeijmakers et al. (2019). The S/N of a given observation in
these data sets ranges between 35 and 140, depending on the
order, at exposure times of 600 s. We retrieved the 1D, order-
stitched spectra from the IA2 Archive Facility.

Three of the data sets (PEPSI 2018, HARPS-N 2017, and
HARPS-N 2018) include observations taken immediately
before, during, and immediately after transit. PEPSI 2019 only
includes observations during and immediately after transit. We
converted all observation timings from their respective timing
systems (PEPSI times are provided in both JDUTC and HJDUTC;
HARPS-N times are provided in MJDUTC) to BJDTDB using the
Time Utilities6 online software tool (Eastman 2012) to make
them comparable with our revised ephemerides of the KELT-9
system (see Table 2). This is a crucial step for precision RV
measurements (Eastman et al. 2010), especially of atmospheric
dynamics. The JDUTC-to-BJDTDB conversion (see Eastman
et al. 2010 for a detailed description of the difference between
JDUTC and BJDTDB) is not accounted for in previous literature,
e.g., Cauley et al. (2019), and yields a difference of up to 4.4
minutes in our PEPSI data sets. Note that the discovery paper
(Gaudi et al. 2017) ephemeris, which is commonly adopted in
KELT-9 b literature, is also in the BJDTDB timing system.

3. Methods

3.1. Stellar Orbital Properties

To measure the dynamical mass of KELT-9 b, we need to
know the orbital properties of the planet and its host star. We
first recover the out-of-transit stellar velocities by least-squares
deconvolution (LSD) of the stellar spectra across our data sets

to fit for the stellar orbital velocity and systemic RV as
measured by each instrument.

3.1.1. LSD of Stellar Line Profiles

In subsequent analysis, Kå (stellar RV semiamplitude) and
vsys, i (systemic velocity measured by instrument i) are crucial
values. The systemic RV of the KELT-9 system has been a point
of controversy in previous literature (Gaudi et al. 2017; Borsa
et al. 2019; Hoeijmakers et al. 2019); see Table 3 for a
compilation of the different literature values. The standard
procedure to recover stellar velocities is to centroid the cross-
correlation function (CCF) profiles of the observations, where the
CCF is the observed stellar spectra cross-correlated with a
template spectrum corresponding to the star’s effective temper-
ature, with a Gaussian fit. This method becomes increasingly
imprecise for fast rotators due to significant rotational broadening.
Since KELT-9 is a rapidly rotating A0 star ( =v isin

111.4 km s−1), we recover our own measurements of Kå and
vsys, i by performing LSD on our time-resolved stellar spectra to
recover the rotational broadening kernel (with in-transit
observations affected by the Rossiter–McLaughlin effect,
RME) of the star at each time of observation. The LSD
procedure allows for tunable regularization of the recovered
line profile, a feature that cross-correlation does not accom-
plish. The rotational kernel is centered on the star’s RV at the
time of observation, which we can fit for using an analytical
kernel defined according to the star’s v isin . These velocities
over time can be fit with the orbital RV equation to determine
Kå and vsys, i. This procedure was previously adopted in Borsa
et al. (2019).
For the first step, we refer to the LSD procedure provided in

Kochukhov et al. (2010) with the modification for regulariza-
tion given in Wang et al. (2017). In our application of this
technique, Y0 is a logarithmically sampled, n-element vector of
the observed rotationally broadened stellar spectrum, and F is
a template stellar spectrum of the corresponding Teff. Here F

Table 2
KELT-9 System Parameters

Parameter Units Symbol Value Source

Stellar Parameters
Stellar mass Me Må -

+2.52 0.20
0.25 Gaudi et al. (2017)

Stellar radius Re Rå -
+2.362 0.063

0.075 Gaudi et al. (2017)
Stellar density g cm−3 ρå 0.2702 ± 0.0029 Gaudi et al. (2017)
Effective temperature K Teff 10,170 ± 450 Gaudi et al. (2017)
Projected rotational velocity km s−1 v isin 111.4 ± 1.3 Gaudi et al. (2017)
Planetary Parameters
Planet mass MJ mp 2.88 ± 0.84 Gaudi et al. (2017)
Planet radius RJ Rp -

+1.891 0.053
0.061 Gaudi et al. (2017)

Semimajor axis au a -
+0.03462 0.00093

0.00110 Gaudi et al. (2017)
Eccentricity ε 0 Gaudi et al. (2017)
Spin–orbit alignment deg λ –84.8 ± 1.4 Gaudi et al. (2017)
Orbital inclination deg iorbit 86.79 ± 0.25 Gaudi et al. (2017)
Ephemeris
Midtransit time BJDTDB T0 2,458,566.436560 ± 0.000048 This work
Time of secondary eclipse BJDTDB TS 2,458,584.950546 ± 0.000048 This work
Orbital period days P 1.48111890 ± 0.00000016 This work
Ingress/egress transit duration days τ -

+0.012808 0.000026
0.000027 This work

Total transit duration days T14 0.15949 ± 0.00011 This work

Note. General stellar and planetary parameters from the discovery paper, as well as updated measurements of the orbital configuration and ephemerides from
this work.

6 https://astroutils.astronomy.osu.edu/time/utc2bjd.html
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has the same logarithmic wavelength sampling as the observed
spectrum but is not rotationally broadened. We generateF by
inputting the VALD3 line list for a Teff= 10,170 K star into
the IDL software Spectroscopy Made Easy (SME) at 21
different limb-darkening angles (Valenti & Piskunov 1996, 2012).
We treat the stellar disk as a pixelated grid of 0.01Rå× 0.01Rå
cells to (1) interpolate in the limb-darkening angle to generate the
corresponding spectrum for each cell, (2) add up the spectra of
each cell, and (3) continuum normalize to generate the disk-
integrated stellar spectrum F.

The deconvolution process recovers the rotational broad-
ening kernel that transforms F into Y0. It can be described
through matrix multiplication of (1) the cross-correlation
between a line mask, M, and the observed spectrum and (2)
the inverse of the autocorrelation of the line mask modified by
regularization. This is mathematically represented by the
following equation (analogous to Equation (1) in Wang et al.
2017, assuming homoscedasticity):

( ) ( · ) · · ( )= + L -Z M M R M Yv , 1i
T 1 T 0

where Z(vi) is the m-element vector of the deconvolved line
profile (our output of interest), and M is an n×m line mask
constructed by expanding the template spectrum into its
corresponding Toeplitz matrix; we adopt the definition
provided in Donati et al. (1997). For regularization, Λ is a
regularization parameter, and R is the m×m matrix of first-
order Tikhonov regularization; we adopt Equation (16) in
Donatelli & Reichel (2014) for the form of R. The velocities vi
corresponding to the elements in the line profile Z(vi) are
determined by the wavelength shift of each row in the M
matrix relative to the template spectrum and should be linearly
spaced, since we constructed a template spectrum that is
logarithmically spaced in wavelength.

We apply this deconvolution algorithm to all of our out-of-
transit observations, since the in-transit kernels contain a
deficiency in the rotationally broadened line profile due to the
RME. As the planet transits, it blocks a region of the stellar disk,
and the contribution from this portion of the stellar disk is not
added to the integrated stellar disk spectrum. This manifests as a
deficiency in the rotational broadening kernel at the RV of that
portion of the stellar disk based on stellar rotation. We pooled
together our PEPSI data with publicly available HARPS-N data
and TRES data from the discovery paper (Gaudi et al. 2017) to
increase our sample size and out-of-transit coverage (see Table 1).

3.1.2. Analytic Rotational Kernel Fit to Stellar Line Profiles

Upon generating the observational line profiles, we fit each
one with an analytic rotational kernel model to determine their
centers and recover an orbital RV curve of the star. We use the
analytical expression for a rotational broadening kernel given
in Gray (2005; Equation (18.14)), which is adapted for our
application as follows:

( ) ( )

( ) ( )

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

= -
-

+ -
-





G v t c
v v t

v i

c
v v t

v i

, 1
sin

1
sin

, 2

i
i

i

1

2 1 2

2

2

where G(vi) is the analytical rotational kernel defined over a
range of velocities vi, vå(t) is the centroid of the rotational
kernel and represents the RV of the star at the time t of a given
observation, v isin is the width of the kernel and represents the
sky-projected rotational velocity of the star (we used the value
from Gaudi et al. 2017 of 111.4 km s−1 to ensure that the same
value was used across observations; the residuals in the left
panel of Figure 1 suggest that this value sufficiently matches
the data), and c1 and c2 are constants defined in terms of v isin
and the linear limb-darkening coefficient of the star, ò, as

( )
( )

( )
p

=
-
-



c
v i

2 1

sin 1 3
31

and

( )
( )=

-



c

v i2 sin 1 3
. 42

For each observation, we apply least-squares fitting from
scipy7 (Virtanen et al. 2020) to determine the best-fit values
of vå, ò, a multiplicative scaling factor (rescales the analytical
kernel to match the scaling of the empirical deconvolved line
profiles), and an additive offset (the empirical deconvolved line
profiles may not have a baseline centered at zero due to a lack
of flux conservation between the template and observed
spectra). Of these parameters, we are most interested in vå,
which provides measurements of the star’s RV over time. We
estimated the RV errors by bootstrapping the residuals of the
flat region of the deconvolved kernel (|velocity ∣ >v isin in the
left panel of Figure 1), adding the samples to the best-fit model
kernel, and refitting the line profile. We repeated this
bootstrapping procedure to obtain 1000 resampled values of
vå for each observation and took the 16th and 84th percentile
samples as the ±1σ errors on the best-fit vå.

Table 3
KELT-9 Revised System Parameters

Parameter Units Value Source

vsys,PEPSI km s−1
–17.86 ± 0.044 This work

vsys,HARPS-N km s−1
–17.15 ± 0.11 This work
–17.74 ± 0.11 Hoeijmakers et al. (2019)
–19.819 ± 0.024 Borsa et al. (2019)

vsys,TRES km s−1
–18.97 ± 0.12 This work

–20.567 ± 0.1 Gaudi et al. (2017)
Kå km s−1 0.23 ± 0.060 This work

0.276 ± 0.079 Gaudi et al. (2017)
0.293 ± 0.032 Borsa et al. (2019)

Kp km s−1
-
+239.07 5.79

5.83 This work

-
+268.7 6.4

6.2 Yan & Henning (2018)
234.24 ± 0.90 Hoeijmakers et al. (2019)

-
+241.5 2

3 Pino et al. 2020
Må Me 2.11 ± 0.78 This work

-
+2.52 0.20

0.25 Gaudi et al. (2017)
3.00 ± 0.21 Yan & Henning (2018)

1.978 ± 0.023 Hoeijmakers et al. (2019)
mp MJ 2.17 ± 0.56 This work

2.88 ± 0.84 Gaudi et al. (2017)
3.23 ± 0.94 Yan & Henning (2018)
2.44 ± 0.70 Hoeijmakers et al. (2019)

ρå g cm−3 0.29 ± 0.17 This work
0.2702 ± 0.0029 Gaudi et al. (2017)

7 https://www.scipy.org/index.html
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We also tested fixing the limb-darkening parameter to
ò= 0.3356 based on the stellar parameters that best describe
KELT-9 in the limb-darkening tables provided by Claret
(2017). Upon refitting the rotational broadening profiles, we
find that the differences in the recovered stellar RVs when ò is
fixed are not significant enough to affect the resulting stellar
orbital parameters (discussed in Section 3.1.3) within the
errors.

3.1.3. Stellar Orbital Solution

To obtain the stellar orbital parameters, we fit a circular
orbital RV solution to our time-resolved measurements of
stellar velocity, which have the following form:

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠

=
-

+ v t K
t t

p
vsin , 5i

0
sys,

where vå(t) is the stellar RV as a function of time, Kå is the
stellar RV semiamplitude (stellar orbital velocity for a circular
orbit), t0 is the midtransit time, P is the orbital period, and vsys, i
is the systemic velocity of a given instrument. We apply the
Markov Chain Monte Carlo (MCMC) method to sample the
parameter space using the emcee8 code (Foreman-Mackey
et al. 2013). We fit three common parameters that apply across
all data sets: midtransit time ephemeris (t0), period (p), and
stellar RV semiamplitude (Kp). We also fit three individual
systemic velocities that singly apply to their corresponding data
sets: vsys, PEPSI, vsys, HARPS-N, and vsys, TRES. Assuming a fixed
vsys, i across all data sets for a given instrument is valid, since
all three instruments are wavelength-calibrated against a ThAr
reference, which guarantees instrumental RV stability.

We apply linearly uniform priors on all model parameters
except t0 and p, for which we use Gaussian priors centered on
the midtransit time ephemeris and period, respectively, as
provided in Table 2 (T0 and P) with their corresponding errors
as the standard deviations of the Gaussians. See Table 4 for

priors. The priors T0 and P are updated ephemerides for the
KELT-9 b system refitted with EXOFASTv2 (Eastman et al.
2019) to include recent TESS observations (Ricker et al. 2014)
in addition to the follow-up light curves and TRES RVs from
the discovery paper. The updated ephemerides are critical for
this analysis, since the observations span multiple years; the
error propagation using the original ephemerides can be as
large as 4.8 minutes for the PEPSI 2019 data set. Introducing
the TESS 2019 data light curves to the global fit improves the
precision of the ephemerides and eliminates the issue of “stale”
ephemerides by spanning a broad temporal baseline.
We evaluate the goodness of fit for a given model using the

log likelihood º - cln
2

2

. Here χ2 is the statistical χ2, defined

as ( )c = å -2 data model

data errors

2
, of the model. To ensure that the log

prior is on a comparable scale as the log likelihood, we scale
the priors by the number of elements in the observed stellar RV
curve before summing the log prior and log likelihood in the
log posterior. We run the emcee sampler with 10 walkers until
the chain length is at least 100 times the estimated
autocorrelation time and the estimated autocorrelation time
has changed by less than 1%, checking every 500 steps. Under
these criteria, the posterior distributions of all parameters
appear sufficiently Gaussian or converged. See the right panel
of Figure 1 for the observed and best-fit model stellar RV
curve. Table 3 reports the fitted systemic velocities and stellar
RV semiamplitude from this analysis.

3.2. Planet Orbital Properties

To obtain the orbital properties of the planet, we generate
transmission spectra that feature the planet’s atmospheric
absorption track during transit, as well as secondary effects
due to the geometry of the planet’s transit across a nonuniform
stellar disk. We simultaneously model both of these signatures
and apply a Bayesian framework for fitting the data with
MCMC; the most relevant output of this procedure is the
orbital velocity of the planet, Kp, which we will use later in this
work to constrain the dynamical mass of the planet.

Figure 1. (a) Example of an LSD of a stellar line profile with an analytic rotational kernel fit to a centroid stellar RV. (b) Stellar RV curve of the KELT-9 system
derived from fitting a circular orbital solution to the out-of-transit stellar RVs. The data points are shifted by the best-fit systemic velocities of their corresponding data
sets. The inset in the top right panel zooms in on the range of velocities along the y-axis spanned by the best-fit orbital solution.

(The data used to create this figure are available.)

8 https://emcee.readthedocs.io/en/stable/
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3.2.1. Transmission Spectrum Construction

We constrain the RV semiamplitude of the planet, Kp, and
global dayside-to-nightside winds, vwind, from a line-by-line
analysis of the atmospheric absorption signature seen in our
transmission spectra of KELT-9 b from PEPSI. To extract the
planet’s atmospheric absorption signature, we chose to focus
on six Fe II lines in the wavelength range between 4915 and
5400Å to avoid telluric contamination and broad features such
as the Hβ line around 4861.4Å. The outputs from the PEPSI
pipeline are continuum-normalized stellar spectra, which we
interpolate onto the same logarithmically spaced wavelength
grid constructed such that absorption features are as well
sampled as they are by the original wavelength grid. This
enables uniform spacing in velocity across all observations. We
constructed an empirical combined stellar spectrum by taking
the average of the out-of-transit spectra, which were identified
using updated ephemerides of the KELT-9 b system (see
Table 2). To remove the stellar component, we divide all
spectra by the combined stellar spectrum. The residual
transmission spectra contain the planet’s signature, as
well as secondary geometric effects caused by the RME
(McLaughlin 1924; Rossiter 1924; Queloz et al. 2000; Ohta
et al. 2005; Gaudi & Winn 2007) and center-to-limb variation
(CLV; Stenflo 2015; Yan et al. 2015; Yan & Henning 2018),
which are both consequences of nonuniformity across the
stellar disk (see the Doppler shadow in Figure 2, a by-product
of RME). These features are distinguishable because they span
different regions of velocity space and contribute opposing
signs to the flux map.

Upon inspection of our transmission spectra in the
wavelength range between 4915 and 5400 Å for planet
atmospheric signatures, we noticed that Fe II lines presented
the strongest atomic absorption signatures (apart from Balmer
lines, which are significantly broader as well). Previous studies
of KELT-9 b’s atmosphere with transmission spectroscopy
revealed a diverse array of Balmer lines ranging from Hα to Hζ
(Yan & Henning 2018; Cauley et al. 2019; Wyttenbach et al.
2020). Due to the extreme heating of KELT-9 b’s atmosphere,
traces of heavy metals, both neutral and ionized, have also been

found either by directly investigating the atomic absorption
lines (Cauley et al. 2019) or by harnessing the cross-correlation
technique to boost the absorption signal (Hoeijmakers et al.
2019). Like Cauley et al. (2019), we find that the strongest
metal features in our selected wavelength range are produced
by Fe II; although signatures of Fe I, Ti II, and Mg I can be
observed without cross-correlation in our PEPSI data sets, we
have chosen to focus on the Fe II lines to ensure that our
measurement of Kp is reliably derived from narrow absorption
features that have the highest S/N.
For each of our six selected Fe II lines, we focus on a tightly

restricted span of wavelengths that completely encapsulates the
planet absorption and Doppler shadow signatures for the
observations that are fully in transit (between second and third
contact). Thus, we have a flux map of the fully in-transit
observations for each Fe II line. Wavelength is on the x-axis,
and orbital phase is on the y-axis. The values in the map
correspond to the continuum-normalized transmission spectrum
fluxes during transit.
We then generate a template spectrum of the Fe II species in

the planet’s atmosphere using petitRADTRANS9 (Mollière
et al. 2019), a radiative transfer code for modeling transmission
and emission spectra of planetary atmospheres. We note that at
the time of writing, the Fe II opacities used by petitRAD-
TRANS are in air, unlike most other species, which are given in
vacuum; hence, we did not need to perform any wavelength
correction to match the template spectrum wavelengths with
our observations. The planetary parameters we adopt for Rp, Rå,
mp, glog p, and Teq are provided in Table 2. Additional
parameters that are necessary for generating a transmission

Table 4
Stellar Orbital Solution MCMC Priors

Parameter Units Prior

t0 BJDTDB Gaussian prior
Center: 2,458,566.436560
Width: 0.000048

p days Gaussian prior
Center: 1.48111890
Width: 0.00000016

Kå km s−1 Linearly uniform prior
Lower bound: –1
Upper bound: 0

vsys, PEPSI km s−1 Linearly uniform prior
Lower bound: –100
Upper bound: 0

vsys, HARPS-N km s−1 Linearly uniform prior
Lower bound: –100
Upper bound: 0

vsys, TRES km s−1 Linearly uniform prior

Lower bound: –50
Upper bound: 50

Figure 2. A 2D map of transmission spectra over the course of KELT-9 b’s
transit for the PEPSI 2018 data set; the blue track is formed by the planet’s
atmospheric absorption, while the red track is the Doppler shadow from the
RME. The top panel displays fully in-transit observations. The middle panel
shows the best-fit model from MCMC sampling, with the Doppler shadow and
CLV determined from numerical modeling of the planet’s transit using SME
stellar models, while the planet absorption track is a uniform Gaussian signal
shifted in velocity according to the best-fit orbital motion of the planet,
systemic velocity, and best-fit dayside-to-nightside winds. The bottom panel
shows the residuals (data–model).

9 https://petitradtrans.readthedocs.io/en/latest/
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spectrum in petitRADTRANS are available in Table 5.
Abundances were chosen to be close to solar (Palme et al.
2014), while the pressure structure was constructed to
encompass the region of the atmosphere that most strongly
affects line formation in transmission spectra. It is not essential
to accurately model the specific shape of lines in the resulting
template spectrum of the planet’s atmosphere, as the line
centers are the most relevant quantity for our analysis of the
planet’s orbital velocity through the Doppler effect.

With the wavelengths of the Fe II line centers from the
template spectrum, we can convert our flux maps from
wavelength space to velocity space with the simplified Doppler
effect for nonrelativistic speeds,

( )l l
l

»
-

v c , 60

0

where λ0 is the line center corresponding to the Fe II line that
generates the absorption feature in a given flux map. We shift
our flux maps to the rest frame of the star–planet system by
subtracting the systemic velocity calculated in Section 3.1.3
from the velocity grid of each flux map. The resulting flux
maps of each Fe II line are presented in Figure 3.

3.2.2. Secondary Effect Modeling

We follow the numerical approach to modeling RME and
CLV presented in Casasayas-Barris et al. (2020; originally
presented in Yan et al. 2015, 2017, modified for planet radius
interpolation in Casasayas-Barris et al. 2020). We obtain line
lists corresponding to the properties of the KELT-9 host star
from VALD3 (Pakhomov et al. 2017). Known stellar properties
from Gaudi et al. (2017) are input into the IDL software SME to
model the host star spectrum using the VALD3 (Pakhomov
et al. 2017) line lists at 21 different limb-darkening angles
(Valenti & Piskunov 1996, 2012). We model the planet’s
transit across a pixelated grid of 0.01Rå× 0.01Rå cells that
make up the stellar disk. The sky-projected position of the
planet is computed according to Equations (7) and (8), which
are analogous to Equations (7), (8), and (10) in Collier
Cameron et al. (2010; with the sign error in their Equation (10)
corrected; this error was originally noted in Eastman et al.
2019):

( )l l= +x x ycos sin , 7p p

( )l l= - +y x ysin cos , 8p p

where

( ) ( )p
=

-
x a

t t

P
sin

2
, 9p

0

( ) ( )p
=

-
y a

t t

P
icos

2
cos . 10p

0
orbit

In Equations (7)–(10), λ is the sky-projected obliquity, a is the
semimajor axis of the planet’s orbit, t0 is the midtransit time, P
is the orbital period of the planet, iorbit is the orbital inclination
of the planet, and t is the time of a given observation; the
system parameters related to these equations can be found in
Table 2. We generate a grid of orbital phases that Nyquist
samples the phases of the observations, and for each phase in
the grid, we identify which cells are unobscured by the planet’s
transit. We interpolate in the limb-darkening angle to generate a
spectrum for each unobscured cell and shift the spectrum in
velocity according to the cell’s RV as determined by its
location on the stellar disk and the v isin of the star. Then we
add up the velocity-shifted spectra of each unobscured cell,
continuum normalize, and divide by the out-of-transit model
spectrum (the sum of the spectra of all cells interpolated in the
limb-darkening angle and shifted in RV, then continuum
normalized) to generate the disk-integrated transmission
spectrum (excluding the planet’s absorption signature) for
each phase. In this manner, we produce a 2D map of spectra
over different orbital phases that encapsulate both the RME and
the CLV that perturb the transmission spectra during the
planet’s transit. We generate a grid of such models for a range
of planet radii spanning 0.7Rp< R< 2.5Rp, as done in
Casasayas-Barris et al. (2020).

3.2.3. Line-by-line Analysis of Fe II Lines

We apply a procedure analogous to the MCMC fitting of the
observed transmission spectra presented in Casasayas-Barris
et al. (2020) using emcee. To avoid additional asymmetries
and velocity offsets from equatorial jets and rotation, we
exclude observations during ingress and egress and instead
focus on fully in-transit observations such that any velocity
shifts from atmospheric dynamics can be treated as a constant
blueshifted offset from dayside-to-nightside winds. We fit for
the following free parameters: the effective planet radius factor
in RME/CLV modeling ( f ), the RV semiamplitude of the
planet (Kp), the RV of the terminator-averaged atmosphere in
the planet’s rest frame (vwind), the contrast of the planet’s
Gaussian atmospheric absorption profile (h), the standard
deviation of the planet’s Gaussian atmospheric absorption
profile (σ), and the midtransit time (t0). See Figure 4 for a
sample corner plot.
We generate model flux maps according to the input

parameters as follows. The parameter f corresponds to a model
map of the RME and CLV effect from the grid of models
generated in Section 3.2.2 by interpolating between models in
planet radius according to the value of f, then interpolating the
resulting map in wavelength (then converted to velocity
according to the reference Fe II line of the data map being
fitted and applying Equation (6)) and orbital phase to match the
observations, i.e., the single line data maps generated in
Section 3.2.1.

Table 5
Additional petitRADTRANS Parameter Inputs

Parameter Units Value

Equilibrium temperature K 4050
Internal temperature K 100
Pressure range bars 10−10

–102

Reference pressure bars 10−9

Infrared atmospheric opacity 0.01
Ratio between optical and IR opacity 0.4
Abundances
Fe II 0.00125
H2 0.748
He 0.250
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Recall that t0 is a free parameter in this fitting procedure (this
is not done in Casasayas-Barris et al. 2020 or Yan et al. 2017);
we have added this extra free parameter so that we can include
the uncertainty of midtransit time, which is strongly correlated
with the parameter vwind, in our analysis. We inject a Gaussian
signal into our model maps that varies in velocity with time but
remains constant in amplitude and width to represent the
planet’s absorption signature. The parameters Kp, vwind, and t0
determine the center of the planet’s atmospheric absorption
signal as a function of orbital phase (which is, once again,
dependent on the free parameter t0) in our models as follows:

( ) ( ) ( )f pf= +v K vsin 2 . 11p p wind

The strength and width of the planet’s atmospheric absorption
signal is dependent on the free parameters h and σ, resulting in
the following form for the planet’s absorption signature as a
function of the RVs v and orbital phases f that correspond with
the observed flux maps:

( ) ( )
( )

f = +
f

s
-

T h1 e . 12v
v vp

2

This is analogous to Equation (1) in Yan & Henning (2018).

We adopt a Bayesian framework for sampling the parameter
space with MCMC. We apply linearly uniform priors on all
model parameters except t0, for which we use a Gaussian prior
centered on the midtransit time value provided in Table 2 (T0,
propagated to the epoch of the corresponding data set being
fitted) with a standard deviation that matches the propagated
midtransit time error. See Table 6 for priors. As before, we use
- c

2

2

as the log likelihood of a given model and scale the priors
by the number of elements in the observed flux map (which
should be the same as the number of elements in the model flux
map) before summing the log prior and log likelihood in the log
posterior. We run the emcee sampler with 10 walkers until the
estimated autocorrelation time is 1.5% of the chain length and
the estimated autocorrelation time has changed by less than
1%, checking every 500 steps. Under these criteria, the
posterior distributions of all parameters appear sufficiently
Gaussian or converged.
The main goal of the model fitting for the purposes of this

work is to recover a value for Kp; vwind, or dayside-to-nightside
winds, will be the topic of a future work. The last 25% of the
samples are extracted from the 10 walkers for a given Fe II line
and aggregated into one chain for each Fe II line. We weight

Figure 3. Expanded version of Figure 2 displaying the six Fe II absorption lines chosen for fitting Kp (PEPSI 2018 data set).

Figure 4. Example of a corner plot from MCMC fitting of the Fe II λ4923.9
flux map.

Table 6
Planet Orbital Solution MCMC Priors (Same for Both Line-by-line and Cross-

correlation Analysis)

Parameter Units Prior

f Uniform prior
Lower bound: 0.7
Upper bound: 2.5

Kp km s−1 Uniform prior
Lower bound: 100
Upper bound: 350

vwind km s−1 Uniform prior
Lower bound: –50
Upper bound: 50

h Uniform prior
Lower bound: –1
Upper bound: 0

σ velocity pixels Uniform prior
Lower bound: 0
Upper bound: 1000

t0 BJDTDB Gaussian prior
Center: 2,458,566.436560 propagated to
epoch of data set

Width: 0.000048 propagated (according to
error on orbital period) to epoch of data set
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each sample from all six chains according to the S/N of the Fe II
line flux map it corresponds to. The signal of a given flux map is
the 50th percentile sample of h in the flux map’s chain. Noise is
the standard deviation of the residuals, i.e., the best-fit model
subtracted from the flux map, where the best-fit model is a model
generated by the 50th percentile parameters from the chain of the
flux map. We combine the weighted chains to determine a
representative value for the quantity of interest. We recover a
representative value of Kp by taking the S/N-weighted 50th
percentile sample across all chains. The lower and upper 1σ
values are the S/N-weighted 16th and 84th percentile samples,
respectively. See Figure 7 for the best-fit Kp for each line
analyzed in both PEPSI data sets, as well as the representative
value (dashed black line) from combining the MCMC analysis
of all lines. Literature values are provided for comparison.

3.2.4. Planet Orbital Properties: Cross-correlation Analysis of Fe II

Lines

Since the S/N for the HARPS-N data is significantly lower
than that for the PEPSI data, individual lines are noisier in the
HARPS-N observations. Cross-correlation is a technique that can
boost the S/N by adding up contributions from matching signals
between an observed and template spectrum across multiple
features. For comparison with the publicly available archival
HARPS-N observations of KELT-9 b, we cross-correlate our
transmission spectra with a template Fe II template spectrum (we
will call it f (λ) and the observed flux map F(λ, f)). We cross-
correlate our PEPSI and HARPS-N transmission spectra between
4950 and 5400Å (avoiding the broad Hβ feature) with the Fe II
template generated in petitRADTRANS from Section 3.2.1
over a sufficient range of velocities to span the atmospheric
absorption signature. The CCF we adopt is defined as follows:

( ) ( ) ( ) ( )åf l l f=
l l

l

=

v f v FCCF , , , , 13i i

i min

max

where f (λ, v) is the template spectrum shifted by velocity v.
Likewise, we cross-correlate our grid of RME/CLV models
from Section 3.2.2 with the same Fe II template. Consequently,
we obtain CCF maps analogous to Figure 2 that can be fit with
the same MCMC procedure as given in Section 3.2.3.

Our cross-correlated flux maps display distinct features that
are not attributable to the planet’s atmospheric absorption track
or the RME/CLV perturbations. In particular, our cross-
correlation procedure reproduces the artifacts described in
Hoeijmakers et al. (2019) as “stellar pulsations” in the HARPS-
N data sets (see Figure 5). We model these artifacts as
individual Gaussian features that have time-variable ampli-
tudes, standard deviations, and centroids that gradually change
across observations. We fit these features using nonlinear least-
squares optimization and subtract the model from the observed
cross-correlation flux map. Since these artifacts overlap in
velocity-phase space with the atmospheric absorption track, we
first subtract a preliminary fit of the planet’s absorption and the
Doppler shadow before removing the artifacts. See Figure 6 for
observed and model CCF maps and the corresponding residuals
for all four transmission spectroscopy data sets.

We also adopt a correlated noise model in our MCMC fitting
procedure of the cross-correlated maps using the Gaussian
process regression library george10 (see middle row of

Figure 6). Without this added component to the model, the
parameter errors are notably underestimated. We assume a 2D
Matérn-3/2 covariance kernel, resulting in one amplitude
parameter and two length parameters in addition to our original
model parameters to fit with MCMC. This additional step does
not yield parameter posterior distributions that are statistically
significantly different for the line-by-line analysis. For our
cross-correlated data, however, including the Gaussian process
to model the covariance structure of the data accurately
captures the uncertainty from correlated noise.

3.3. Measuring Planet and Stellar Masses

As in Snellen et al. (2010), we treat the system as an SB2 to
determine the planet and stellar masses. In previous sections,
we demonstrated that (1) the absorption lines of the planet’s
atmosphere during transit capture the planet’s orbital velocity,
while (2) the out-of-transit observations can be deconvolved
with a template stellar spectrum to retrieve the stellar orbital
velocity. From conservation of momentum, we know that

( )=  m K M K , 14p p

where mp and Må are the masses and Kp and Kå are the RV
semiamplitudes (or orbital velocity, in the case of a circular
orbit) of the planet and star, respectively. Kepler’s third law of
orbital motion states

( )
( ) ( )p

=
+

+


P
G M m

a a
4

. 152
2

p
p

3

Assuming KELT-9 b is on a circular orbit based on an estimate
of its circularization timescale (Borsa et al. 2019), we can relate
the semimajor axes with observables we have previously
measured, namely, the RV semiamplitudes of the planet (Kp)
and star (Kå), orbital inclination (i), and orbital period (P):

( )
p

=
K

i

a

Psin

2
, 16

p p

( )p
= K

i

a

Psin

2
, 17

where ap and aå are the orbital semimajor axes of the planet and
star, respectively. We can rewrite Må in terms of mp using
Equation (14) and apply Equations (16) and (17) to recast the
semimajor axes in terms of RV semiamplitudes and orbital
period. This allows us to write our quantity of interest, mp, in
terms of purely empirical (and predominantly spectroscopic)
observables. Upon doing so, we derive the following expres-
sion for planet mass:

( )⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞
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Applying this result to conservation of momentum
(Equation (14)) yields the following expression for stellar mass:

( )⎜ ⎟⎛
⎝

⎞
⎠
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2

Uncertainties on mp and Må are derived according to the linear
propagation of errors (see the Appendix for the analytic
expressions).10 https://george.readthedocs.io/en/latest/
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4. Results

4.1. Summary of Findings

We present the revised planetary and stellar parameters
resulting from our analysis in Table 3. Most notable is our
measurement of the planetary mass, the first self-consistent,
purely empirical measurement of KELT-9 b’s dynamical mass,
2.17± 0.56MJ, by treating the system as an SB2. Another by-
product of this analysis is the mass of the star, which we
measure to be 2.11± 0.78Me.

4.2. Comparison with Previous Literature

We now compare our measurement of the dynamical mass of
KELT-9 b against previous literature (see Table 3). Throughout
the following discussion, we define 1σ by adding in quadrature
the errors from two studies of comparison for a parameter. Our
measurement of mp= 2.17± 0.56MJ agrees with Gaudi et al.
(2017), Yan & Henning (2018), and Hoeijmakers et al. (2019).

The discrepancy in mass measurements across the literature
can be largely attributed to the use of Kå given in Gaudi et al.
(2017) and independent measurements of Kp (see Figure 7).
Yan & Henning (2018) used = -

+K 268.7p 6.4
6.2 km s−1 from their

analysis of atmospheric dynamics using Hα as a tracer, as well
as Kå= 0.276± 0.079 km s−1 from the discovery paper;
however, our measurement of Kå is nearly a factor of 1.2
(∼0.42σ difference) less than that in the discovery paper.
Hoeijmakers et al. (2019) uses a similar value of Kp as ours that
agrees within the errors, which they obtained from fitting Fe II
lines as well. Their procedure slightly differs from ours in
regard to order of operations; instead of fitting their cross-
correlated planet absorption track across all fully in-transit
observations simultaneously for a given data set, they fit each
observation with an independent Gaussian absorption feature
and fit a single circular orbital solution to the individual planet
RVs they obtained across both of their data sets. However, they
used the planet mass from Gaudi et al. (2017) along with their
value of Kp to revise the stellar mass but then updated the
planet mass according to the value of Kå from Gaudi et al.
(2017) and their revised stellar mass. Thus, their analysis is
not self-consistent. Our analysis, on the other hand, is

self-consistent, because we obtain empirical values of Kp and
Kå exclusively by applying the same routines and wavelength-
consistent template line lists on all of the data we present in
this work.
Studies of KELT-9 b’s neutral iron emission such as Pino

et al. (2020) and Kasper et al. (2021) obtain complementary
constraints on Kp

. In principle, one might expect these dayside
measurements to disagree with our terminator measurements
due to atmospheric circulation. However, the measurements of
Kp

from both Pino et al. (2020; displayed in Figure 7) and
Kasper et al. (2021; not included in Figure 7 since this work did
not consolidate their multiple constraints from different nights
of observations into one measurement) agree within 1σ. This
strengthens our claim that the planet’s orbital parameters can be
procured from the planet’s transmission absorption signature
without secondary effects from atmospheric processes like
circulation or condensation.
We also find that our measurement of stellar mass agrees

with Gaudi et al. (2017) and Hoeijmakers et al. (2019) but
disagrees with Yan & Henning (2018) by 1.1σ.
Since stellar density is a direct observable from transit light

curves (Seager & Mallén-Ornelas 2003), we can use our
revised stellar mass measurement and empirical measurements
of stellar radius from the literature to compute a stellar density
and compare with the stellar density derived from the light
curve as provided in Gaudi et al. (2017). The stellar radius
provided in Gaudi et al. (2017) is directly constrained to be
Rå= 2.17± 0.33 Re from the Hipparcos parallax, effective
temperature, bolometric flux of the star from integrating its
SED, and interstellar extinction. Using our measurement of the
host star’s dynamical mass and p= V R4

3
3 (assuming a

spherical star) with the Gaudi et al. (2017) measurement for
Rå, we obtain a stellar density of ρå= 0.29± 0.17 g cm−3,
which is consistent with the direct measurement from the light
curve in Gaudi et al. (2017) of ρå= 0.2702± 0.0029 g cm−3.
This suggests that our dynamical mass analysis agrees with
independent metrics from previous studies. Note that the error
on our empirical measurement of stellar density has nearly
equivalent contributions from the error on the empirical radius

Figure 5. Cross-correlated flux maps before artifact correction in the top panel and after artifact correction in the bottom panel for the (a) PEPSI 2018 and (b) HARPS-
N 2017 data sets.

10

The Astronomical Journal, 163:40 (15pp), 2022 February Pai Asnodkar et al.



(∼55% of the stellar density error) and our empirical mass error
(∼45% of the stellar density error).

We note that the spherical star assumption is not necessarily
valid for fast rotators. Ahlers et al. (2020) went an additional
step to account for effects from gravity darkening in their
measurement of the stellar radius using TESS transit light
curves of KELT-9 b. Gravity darkening is a phenomenon by
which the effective temperature varies across a stellar surface
due to a rapidly rotating star’s oblateness perturbing the star’s
hydrostatic equilibrium near its equator (Ahlers et al. 2020).
While Ahlers et al. (2020) did provide an equatorial radius and
oblateness parameter that can, in principle, be combined with
our mass measurement to recover a stellar density, we do not
perform this step for comparison because the stellar equatorial
radius they derived assumes a prior on the stellar mass based on
Gaudi et al. (2017) of * = -

+
M M2.52 0.20

0.25 , which differs from
our measurement of M* = 2.11± 0.78Me.

5. Discussion

5.1. Caveats to the Orbital Motion Model

The possibility of an eccentric orbit would undermine our
measurement of Kp and, by extension, KELT-9 b’s mass. Our
model presumes that KELT-9 b and its host star obey circular
orbital motion based on the planet’s estimated circularization
timescale (Borsa et al. 2019). Furthermore, we obtain an
empirical constraint of w = ´  ´- -e cos 4.77 10 7.2 107 5

from the ephemerides of the primary transit and secondary
eclipse; the precision of this constraint is possible due to the
inclusion of TESS observations in our global fit for the system
ephemerides. With such a low value for we cos , it is unlikely
that the planet’s orbit is significantly eccentric enough to affect
our empirical measurement of the planet’s mass within the
errors.

We also assume that the dominant effect of atmospheric
dynamics on the planet’s absorption signature between second
and third contact is a constant RV offset due to dayside-to-
nightside winds. Ehrenreich et al. (2020) showed that the wind
component of WASP-76 b’s atmospheric absorption signature
changes from zero to ∼11 km s−1 over the course of the
planet’s transit. This would imply that our model of the planet’s
atmospheric absorption signature may not sufficiently capture
the effect of KELT-9 b’s atmospheric dynamics. However, we
note that unlike Ehrenreich et al. (2020), our analysis does not

include observations taken during ingress or egress in the
procedure for fitting the orbital motion of the planet. Ingress
and egress are expected to contribute the strongest asymmetries
in the absorption signal due to eastward equatorial jets and
rotation, yielding an additional redshift on the leading limb
during ingress and a blueshift on the trailing limb during egress
(assuming the planet’s rotational axis and orbital axis are
aligned); Ehrenreich et al. (2020) demonstrated this effect
empirically. Since we exclude observations that capture a
partial limb of the planet, these asymmetries should not
manifest as strongly in our analysis.
Even if we were to include the entire transit in our analysis,

the absorption signal during ingress and egress is not very
strong in our observations. When we align all in-transit
observations between first and fourth contact in the planet’s rest
frame and additionally remove the measured offset component
for each data set, the absorption feature is visibly centered
around 0 km s−1 over the course of the entire transit. This
suggests that the wind speed does not appear to vary
significantly over the course of the transit. Furthermore, the

Figure 6. Same as Figure 3 except displaying CCF maps for each data set.

Figure 7. The Kp measurements from Fe II line-by-line and cross-correlation
analysis with MCMC sampling errors.
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asymmetry observed by Ehrenreich et al. (2020) shows a
constant RV offset during the second half of the transit, which
is where KELT-9 b’s absorption signal is strongest and will
contribute the most to our measured dayside-to-nightside wind
measurement.

5.2. Complementary Constraints on System Parameters

Among its numerous significant attributes, one noteworthy
characteristic of the KELT-9 system is that its physical
properties are empirically overconstrained. In particular,
additional empirical constraints are possible due to the
gravity-darkening signature during the primary transit that
originates from rotational flattening of the host star. The
geometry of such systems introduces mathematical complex-
ities that make quantitative analyses analytically intractable.
Rather, numerical methods are required to obtain the system
parameters; these are beyond the scope of this work. Therefore,
we proceed to qualitatively describe the ways in which a
complete, model-independent solution to the system parameters
can be achieved.

The first method treats the system as an SB2, as done in this
work. We have determined the masses of the system from
spectroscopic observables in this work by treating the KELT-9
system as an eclipsing SB2; thus, all of the orbital elements
(Kå, Kp, aå, ap, etc.) of the system are known. Furthermore, one
can apply the assumption that the orbit is circular to get the
stellar and planetary semimajor axes aå and ap, respectively.
Determining the radii of the host star and planet is complicated
somewhat by the fact that the star is oblate and gravity-
darkened. However, the photometric gravity-darkening signa-
ture during the primary transit (as presented in Ahlers et al.
2020) uniquely constrains the inclination of the stellar
rotational axis, as well as the stellar oblateness parameter.
These two parameters then completely specify the geometry of
the planet’s transit across the oblate stellar disk, taking into
account the planet’s orbital inclination (angular offset along the
line of sight between the plane of the planet’s orbit and the
plane of the sky), stellar inclination (angular offset along the
line of sight between the stellar rotation axis and the plane of
the sky), and spin–orbit obliquity (angular offset in the plane of
the sky between the stellar rotation axis and the planet’s orbital
axis). The chord transited by the planet is related to the
equatorial stellar radius by these angular quantities and the
oblateness of the star. From this, the equatorial stellar radius
can be related to the orbital semimajor axis by the FWHM
transit duration and orbital period. The planet’s radius is
consequently obtained from the ratio of the planet radius to the
stellar equatorial radius provided in Ahlers et al. (2020). Thus,
a complete mass–radius solution to the KELT-9 system can be
obtained.

A second approach is to use just the host star RVs in
combination with an empirical stellar radius from an SED and
parallax. The latter part of this approach is provided in Gaudi &
Winn (2007) using KELT-9ʼs Hipparcos parallax, yielding
Rå= 2.17± 0.33 Re. This empirical radius is more appro-
priately thought of as an effective radius, since it assumes a
spherical star with a uniformly illuminated sky-projected disk.
This empirical radius can be translated into a measurement of
the true stellar equatorial radius by determining the equatorial
radius (given the oblateness parameter from Ahlers 2016) that
yields an equivalent integrated disk flux to the spherical case.
Numerically integrating the oblate star disk flux as done in

Ahlers (2016) requires accounting for (1) the star’s longitudinal
variation in flux from limb darkening (Equation (4) of
Ahlers 2016), (2) latitudinal variation in flux from gravity
darkening (Equation (2) of Ahlers 2016), and (3) inclination of
the stellar rotational axis, which affects both the sky-projected
disk shape of the oblate star and the range of latitudes visible
along the line of sight (relevant for the latitude dependence of
the gravity-darkening profile). As before, the planet’s radius is
deduced from the ratio of planet radius to stellar equatorial
radius given in Ahlers et al. (2020). The stellar mass can be
determined from the stellar radial parameters in combination
with stellar density, a transit observable as given in Seager &
Mallén-Ornelas (2003). The relation for stellar density will
require modifications for the geometry of an oblate and inclined
spheroid star transited by a planet on an inclined and oblique
circular orbit. These nuances directly affect the relations
between transit observables, i.e., depth and duration, and the
system parameters of interest, i.e., a/Rå,eq and ρå. Lastly, the
planet mass can be related to the stellar mass by the stellar RV
semiamplitude as given in Equation (9) of Hoeijmakers et al.
(2019) for the complete solution to the system. A revised
measurement of the empirical stellar radius with a Gaia parallax
would significantly improve the precision of this constraint.
The third approach combines the single-lined spectroscopy

measurement of Kå with the photometric gravity-darkening
signature during primary transit, which provides constraints
on stellar surface gravity. Since the host star is an oblate
spheroid, the surface gravity varies spatially, as given by
Equation (10) of Barnes (2009). The transit signature maps
the stellar surface brightness as the planet crosses the stellar
disk. For a given Rå and external constraint on v isin , one can
uniquely determine the limb-darkening coefficients, oblate-
ness, stellar inclination, orbital inclination, and spin–orbit
obliquity, as done in Ahlers et al. (2020). For a given stellar
equatorial radius, the system can be uniquely solved. Stellar
mass is related to stellar radius using the stellar density, a
transit observable (taking into account the nuances in the case
of an oblate star, as described above). Then, as before, the
planet radius can be obtained from the planet-to-star radius
ratio from the gravity-darkening transit signature, and the
planet mass comes from Equation (9) of Hoeijmakers et al.
(2019). The only missing component to solve the system is
the stellar radius. Ahlers et al. (2020) used a gravity-
darkening correction on the SED from Gaudi et al. (2017),
similar to our description in the second approach. To
distinguish this third approach from the second, we note that
the stellar equatorial radius is related to the gravity-darkening
exponent β and stellar inclination by plugging Equation (10)
of Barnes (2009) into Equation (9) of the same work. These
quantities are not degenerate because their effects are not
scaled versions of each other. Thus, it is possible to determine
a unique solution for the equatorial radius based on the shape
of the transit light curve and thus all of the other geometric
parameters (stellar oblateness, inclination, spin–orbit obli-
quity, limb-darkening coefficients, and the gravity-darkening
exponent).
The fourth and final approach we present combines the

single-lined spectroscopy measurement of Kå with stellar
surface gravity as measured by the broadening of the stellar
absorption lines seen in high-resolution spectra. This measure-
ment of ( )glog does not account for the fact that surface
gravity varies spatially across the surface of an oblate star.
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Instead, it serves more as an effective surface gravity assuming
a spherical star. Under this assumption, Section 2.3.1 of
Stevens et al. (2018) presents a derivation of the system
parameters from the spectroscopic stellar RV semiamplitude
and spectroscopic stellar surface gravity. This constraint is the
weakest because it does not account for the oblate geometry of
the star. Additionally, spectroscopically determining the sur-
face gravity of hot, rapid rotators is challenging, since their
absorption features are dominated by rotational broadening.

We hope these four approaches guide future follow-up work
to cross-validate and tighten constraints on the KELT-9 system
and other transiting two-body systems in which the primary is a
rapid rotator.

5.3. Independent Metrics of Mass in the Literature

With sufficient photometric precision, the BEaming, Ellip-
soidal, and Reflection algorithm (Faigler & Mazeh 2011)
enables the detection of short-period massive planets, both
transiting and nontransiting. This technique encompasses three
distinct photometric signatures, of which two (Doppler
beaming and ellipsoidal variations) depend on the mass of
the planet. We provide order-of-magnitude estimates of these
signals based on our revised mass constraints.

Doppler beaming is the periodic variation in flux due to the
orbital motion of a star hosting a companion (Loeb &
Gaudi 2003). The fractional amplitude in flux modulations is
given in Loeb & Gaudi (2003) as

( )aD
=

-


F

F c
K

3
, 20

0

beam

where αbeam is the power-law exponent of the emitted flux from
the source star as a function of frequency. We can estimate the
αbeam of a blackbody source with an effective temperature Teff
according to Equation (3) in Loeb & Gaudi (2003) as
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. Adopting the fre-

quency corresponding to the V-band wavelength of 551 nm
as a representative frequency, we obtain a Doppler beaming
signal on the order of =D 2.17 ppmF

F0
. This estimated signal

falls far below the photometric precision of present-day
instruments like TESS to be discernible.

Ellipsoidal variations are flux perturbations that arise as a
consequence of tidal effects induced by a companion. Equation
(2) of Faigler & Mazeh (2011) estimates the ellipsoidal
variations of amplitudes
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where αellip is defined in Equation (4) of Faigler & Mazeh
(2011) as
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The parameter u is the linear limb-darkening coefficient of the
star, which we take to be u= 0.3356 based on Claret (2017).
We adopt edge cases of g= 0.3 and 1 for the gravity-darkening
coefficient (not to be mistaken for the gravity-darkening
exponent from Ahlers et al. 2020), as suggested in Faigler &
Mazeh (2011). The ratio R

a
is a direct observable from transit

light curves; we use =


3.153a

R
from Gaudi et al. (2017). The

resulting estimate of the ellipsoidal variations signal based on
our mass ratio ranges between 35.0 and 53.8 ppm.
Wong et al. (2020) presented photometric harmonics in the

phase curve of the KELT-9 system by phase-folding TESS
light curves and binning at 30 minute intervals. They measured
periodic variations attributable to ellipsoidal variations with an
amplitude of 39.6± 4.5 ppm. This measurement is within the
range of the ellipsoidal variation signal amplitudes we estimate
based on our revised masses of the system. In fact, it is
marginally easier to explain Wong et al.ʼs (2020) measurement
with our planet–star mass ratio than with the original value in
Gaudi et al. (2017), which yields ellipsoidal variation signal
amplitudes between 38.9 and 60.0 ppm for the same range of
values for β. Note that numerous uncertainties play into our
estimate of ellipsoidal variations, such as the uncertainty of the
limb- and gravity-darkening coefficients of this particular star.
In particular, the metallicity and evolutionary effects on the
limb-darkening coefficient are stronger after the onset of
convection ( >Tlog 3.9eff ; Claret 2017). Furthermore, the star
is significantly distorted by rotation, and the planet’s orbit is
nearly orthogonal to this distortion. This geometry limits the
gravitational distortion of the star by the companion planet and
weakens the signal from ellipsoidal variations.

5.4. Consequences for Atmospheric Escape

As the hottest planet known to date, KELT-9 b is a unique
target for studying the hydrodynamic escape of planetary
atmospheres driven by extreme stellar irradiation (Fossati et al.
2018; García Muñoz & Schneider 2019; Krenn et al. 2021).
Observations of atmospheric loss on KELT-9 b use light-
element tracers such as Balmer lines (Yan & Henning 2018;
Cauley et al. 2019; Wyttenbach et al. 2020) and Mg I (Cauley
et al. 2019) to probe mass-loss rates according to empirically
validated species densities and a slew of assumptions
surrounding elemental abundances and equilibrium conditions.
Notably, these studies generally assume thermodynamic and
ionization equilibrium, as well as solar abundances of species;
the former may be discounted by NLTE studies of KELT-9 b’s
upper atmosphere (García Muñoz & Schneider 2019; Wytten-
bach et al. 2020; Fossati et al. 2021), while the latter may be
invalidated by recent work on atmospheric retrieval of HJs
(Giacobbe et al. 2021).
We summarize the state of the field to date regarding the

mass-loss rate of KELT-9 b. Gaudi et al. (2017) provided an
initial estimate of KELT-9 b’s mass-loss rate between 1010 and
1013 g s−1 based on the equation for the energy-limited mass-
loss rate provided in Equation (22) of Murray-Clay et al.
(2009), which scales inversely with the mass of the planet. Yan
& Henning (2018) empirically constrained KELT-9 b’s mass-
loss rate by identifying an excess in Hα absorption depth
relative to the photometric transit depth in the continuum. By
estimating (1) the number density of hydrogen from model fits
to the Hα line profile (these models depend on planetary
parameters, most notably planet mass) and (2) the contribution
from the altitude regime of the planet where Hα can
energetically escape beyond the planet’s Roche lobe, Yan &
Henning (2018) estimated a mass-loss rate of ~M 1012 g s−1.
Cauley et al. (2019) corroborated this measurement within an
order of magnitude, estimating ~ ´M 1 1012 g s−1 when
using Mg I as a tracer and ~ ´M 3 1012 g s−1 from Balmer
line analysis. Wyttenbach et al. (2020) reported ~ M 1012.8 0.3

g s−1 from Balmer line analysis as well.
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Reconciling observations of KELT-9 b’s atmospheric escape
with theory currently faces unresolved challenges. HJ atmo-
spheric escape is typically modeled as hydrodynamic escape
due to heating from Lyman continuum absorption in the X-ray
and extreme-ultraviolet (XUV). Fossati et al. (2018) notes that
ionizing XUV fluxes in the wavelength regime relevant to
heating (and thus escape) are weaker in hotter intermediate
mass stars, such as the stellar host of the KELT-9 system, than
their cooler (~8000-8500 K) counterparts, such as the host of
another UHJ WASP-33 b. XUV flux is driven by coronal
heating, which is related to stellar magnetic activity. A
convective envelope is necessary for the interactions that
generate magnetic activity. The surface convective zone
vanishes in hotter stars and consequently they emit less XUV
flux. Fossati et al. (2018) estimate KELT-9 b’s mass-loss rate is
~1010 – 1011 g s−1 by accounting for the heating efficiency of
XUV flux from the KELT-9 host star. Their estimated Hα
transit depth of 0.7% does not agree with the observed 1.8% in
Yan et al. (2017). They propose that one way of bridging this
gap is by adopting a planetary mass on the lower end of the 1σ
range provided in Gaudi et al. (2017; = M 2.88 0.84 Mp J).
As previously noted, M scales inversely with planet mass in the
most simplified energy-limited case, which balances gravita-
tional potential and thermal heating from the host star’s X-ray
and extreme-UV (EUV) radiation. This would bring the
planetary mass required to explain observations of KELT-9
b’s atmospheric loss in closer agreement with our revised
empirical mass. We estimate that our revised mass increases the
estimated energy-limited mass-loss rate (see Fossati et al. 2018
for a discussion of this estimate for KELT-9 b and its nuances)
by ∼33%. Note that recent work by Krenn et al. (2021)
comparing the energy-limited approximation against hydro-
dynamic simulations of atmospheric escape shows that the
energy-limited approximation is not suited for estimating UHJ
mass-loss rates (or planets in extreme temperature or mass
regimes in general; UHJs satisfy both of these conditions).

García Muñoz & Schneider (2019) expands upon the
implications of Fossati et al. 2018 by proposing that Balmer
continuum absorption in the near-ultraviolet is the dominant
source of heating in KELT-9 b’s atmosphere. However, their
models best match observations of KELT-9 b’s Hα absorption
when adopting a planet mass between 0.80–1.20 MJ. This is
incompatible with our revised mass.

6. Conclusion

We have presented the analysis of spectroscopic data of
KELT-9 b in the context of an eclipsing SB2. This has enabled
us to directly and empirically obtain the dynamical mass of
KELT-9 b and its host star. Using multiepoch spectroscopic
observations of the system, we find that the dynamical mass of
the planet is mp= 2.17± 0.56MJ, and the star is Må=
2.11± 0.78Me. Our planet mass measurement generally
agrees with previous literature (Gaudi et al. 2017; Hoeijmakers
et al. 2019). We also obtain a purely empirical measurement of
stellar density, a direct observable from transit light curves, that
agrees with the value in the discovery paper; this suggests that
our analysis is trustworthy. Our methodology can be applied to
many HJ systems, thereby enabling the direct and empirical
measurement of their planets and host stars.

We note that the KELT-9 system is empirically over-
constrained due to the unique geometric information provided
by the in-transit gravity-darkening signature of rapid-rotator

systems. We present a framework for obtaining a complete
solution to the system parameters in three purely observa-
tional ways.
An order-of-magnitude estimate shows that this revised

planetary mass is large enough to induce ellipsoidal variations
observable with TESS phase curves of the KELT-9 system.
Furthermore, this result is especially crucial for studies of
atmospheric escape, which depend on mass for empirical
measurement and theoretical modeling; as of now, the high
levels of atmospheric escape seen on KELT-9 b have not been
reconciled with its high mass. Our purely empirical confirma-
tion of the planet’s mass motivates further exploration of this
conundrum surrounding the substantial mass loss on KELT-
9 b.
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Appendix
Error Propagation of Stellar and Planetary Mass from RV

Observables

We apply linear propagation of errors to recover the
following expression for the propagated uncertainty of the
planet mass:
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We present the analytic form of each partial derivative term in
Equation (6) below:
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