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Abstract

Recent astronomical observations revealed that (225088) Gonggong, a 1000 km sized trans-Neptunian dwarf
planet, hosts an eccentric satellite, Xiangliu, with an eccentricity of approximately 0.3. As the majority of known
satellite systems around trans-Neptunian dwarf planets have circular orbits, the observed eccentricity of the
Gonggong–Xiangliu system may reflect the singular properties of the system. In this study, we assumed that the
Gonggong–Xiangliu system formed via a giant impact and we investigated the subsequent secular tidal evolution
of this system under the simplifying assumptions of homogeneous bodies and of zero orbital inclination. We
conducted simulations of coupled thermal–orbital evolution using the Andrade viscoelastic model and included
higher-order eccentricity functions. The distribution of the final eccentricity from a large number of simulations
with different initial conditions revealed that the radius of Xiangliu is not larger than 100 km. We also derived the
analytical solution of the semilatus rectum evolution, a function of the radius of Xiangliu. From the point of view
of the final semilatus rectum, the radius of Xiangliu was estimated to be close to 100 km. Together with the results
of the Hubble Space Telescope observations, our findings suggest Gonggong and Xiangliu have similar albedos.

Unified Astronomy Thesaurus concepts: Trans-Neptunian objects (1705); Small Solar System bodies (1469);
Tidal friction (1698); Natural satellite dynamics (2212); Dwarf planets (419)

1. Introduction

There are six (or seven) known trans-Neptunian objects
(TNOs) with diameters larger than 1000 km, and (almost) all of
them host one or more satellites orbiting the primary (e.g.,
Brown et al. 2006; Parker et al. 2016; Kiss et al. 2017).4 The
discovery of satellites around large TNOs provided us with a
key to understanding the early history of the outer solar system.

The orbital period of a satellite system allows the determination
of its total mass. We can obtain the density of the primary body
when the size is known from radiometry and/or occultation
measurements and estimate the bulk composition (e.g., the ice-to-
rock ratio; Brown 2012). Other orbital elements, such as the
eccentricity and inclination, are also important for understanding
how satellites form and evolve. The majority of moons around
1000 km sized TNOs have circular orbits. For example, the orbit of
the Pluto–Charon system is nearly circular (e∼ 5× 10−5, where e
is the eccentricity; Brozović et al. 2015). Based on the spatially
resolved observations from the Atacama Large Millimeter/
submillimeter Array by Brown & Butler (2018), the eccentricity
of the Eris–Dysnomia system is also small (e< 4× 10−3). Their
circular orbits are thought to be the result of tidal evolution,
because satellite systems are initially eccentric if they formed via
giant impacts (e.g., Canup 2005; Arakawa et al. 2019).

However, the two known exceptions to this trend are the
Quaoar–Weywot and Gonggong–Xiangliu systems. Using the
adaptive optics facility of the Keck II telescope, Fraser et al.
(2013) revealed that the orbit of the Quaoar–Weywot system is
moderately eccentric (e= 0.13–0.16). Kiss et al. (2019) also
reported an eccentricity of e; 0.3 for the orbit of the

Gonggong–Xiangliu system. If the tidal dissipation primarily
occurs inside the satellite rather than inside the host dwarf
planets, the eccentricity decreases (e.g., Ward & Canup 2006;
Cheng et al. 2014; Arakawa et al. 2019). Therefore, the
eccentricity evolution depends strongly on the rheological
properties of the satellites and their hosts. The variation in the
observed eccentricity among satellite systems of large TNOs may
reflect differences in the rheological properties, which should be
related to their formation process and thermal histories.
The primary, (225088) Gonggong, was discovered by

Schwamb et al. (2009). The satellite of (225088) Gonggong,
Xiangliu, was found on archival images of the WFC3 camera
of the Hubble Space Telescope obtained in 2009 and 2010 by
Kiss et al. (2017). This initial discovery was based only on
observations at two epochs, and the orbit of the satellite could
not be derived. Kiss et al. (2019) conducted recovery
observations of Xiangliu taken with the WFC3 camera in
2017 and determined the orbital elements of the Gonggong–
Xiangliu system.
Table 1 shows the orbital elements and fundamental

parameters of the Gonggong–Xiangliu system. The radius of
Gonggong, RG, was also estimated by Kiss et al. (2019) using
thermophysical modeling. The spin period of Gonggong was
obtained from the light-curve analysis by Pál et al. (2016):
PG,obs= 22.4 hr or 44.8 hr. The radius and spin period of
Xiangliu have not yet been determined. Assuming the same
albedo as the primary, Kiss et al. (2017) obtained the radius of
Xiangliu as RX= 120 km. Kiss et al. (2019) also discussed the
radius of Xiangliu, and used simple estimates of the eccentricity
damping timescale to propose that 18 km< RX< 50 km might
be suitable to explain the observed nonzero eccentricity of the
system. The estimated RX corresponds to a geometric albedo of
1.0–0.2, which is higher than the estimated albedo for the
primary (0.15± 0.02; Kiss et al. 2019).
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4 The diameter of (90377) Sedna is 995 ± 80 km (Pál et al. 2012) and it has
no known satellites. The others, namely (134340) Pluto, (136199) Eris,
(136108) Haumea, (136472) Makemake, (225088) Gonggong, and (50000)
Quaoar, have one or more satellites.
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Multiple studies address the formation and tidal evolution of the
Pluto–Charon system (e.g., Canup 2005; Cheng et al. 2014; Barr
& Collins 2015; Desch 2015; Kenyon & Bromley 2019; Rozner
et al. 2020; Renaud et al. 2021; Bagheri et al. 2021; Shimoni et al.
2022). The formation and tidal evolution of other systems have
also been discussed in several studies (e.g., Greenberg &
Barnes 2008; Ortiz et al. 2012). Arakawa et al. (2019) found
that the general trend of the final eccentricity of satellites around
1000 km sized TNOs depends strongly on their thermal history,
based on higher-order calculations of tidal evolution.

Renaud et al. (2021) studied the tidal evolution of the Pluto–
Charon system and found that considering higher-order
eccentricity terms was necessary to calculate the tidal evolution
of an eccentric system (considering terms beyond e20 would be
necessary for systems with eccentricities greater than 0.8).
Renaud et al. (2021) also found that higher-order spin–orbit
resonances exist not only for highly eccentric systems but also
for systems with small eccentricity of e; 0.1. In most prior
studies (e.g., Cheng et al. 2014; Arakawa et al. 2019), the
strength of tidal dissipation was estimated by using the
traditional model of constant phase lag (Kaula 1964). However,
the strength of tidal dissipation and the stability of the higher-
order spin–orbit resonances depend strongly on the rheological
properties (e.g., Walterová & Běhounková 2020). Thus, we
need to use a more realistic rheology model and simultaneously
calculate the orbital and thermal evolution.

In this study, we assumed that the Gonggong–Xiangliu
system formed via a giant impact as an intact fragment and we
calculated the subsequent secular tidal evolution of the system
under the simplifying assumption of homogeneous bodies (e.g.,
Ojakangas & Stevenson 1986; Shoji et al. 2013). Our study is
the first attempt to simulate the secular tidal evolution of the
Gonggong–Xiangliu system in detail. We investigated the
coupled thermal–orbital evolution using a realistic rheology
model and included higher-order eccentricity terms.

The structure of this paper is as follows. In Section 2, we
discuss the initial condition of the Gonggong–Xiangliu system
formed via the giant impact. In Section 3, we briefly introduce
the orbital and thermal evolution models. In Section 4, we
present the statistics of the final state of the satellite systems.
We show the distributions of the final spin/orbital properties of
the system in Sections 5 and 6 and summarize them in
Section 7.

2. Initial Condition of the System

In this study, we assume that the Gonggong–Xiangliu
system was formed by a giant impact and discuss the orbital
properties of the two bodies immediately after the impact. We
re-evaluate the results of the giant impact simulations by
Arakawa et al. (2019) in Section 2.1 and discuss the initial
condition from the point of view of the conservation of the
angular momentum in Section 2.2.

2.1. Initial Orbit and Spin of Satellites Formed via Giant
Impacts

We define γX,G≡MX/MG as the secondary-to-primary mass
ratio of the system formed after giant impacts: satellite systems
with 10−3 γX,G 10−1 can be directly formed via giant
impacts as intact fragments (Canup 2005; Arakawa et al. 2019).
We also define γi,t≡Mimp/Mtar as the impactor-to-target mass
ratio, where Mtar and Mimp are the masses of the target and
impactor, respectively. Arakawa et al. (2019) performed giant
impact simulations with three settings for the targets and
impactors: γi,t= 0.5 with an ice composition (Set A), γi,t= 0.2
with an ice composition (Set B), and γi,t= 0.5 with a basalt
composition (Set C). The total mass of the target and the
impactor is Mtar+Mimp= 6× 1021 kg in the simulations.
Figure 1(a) shows the distribution of the semilatus rectum

from the results of the giant impact simulations (Arakawa et al.
2019). The semilatus rectum, porb, and the periapsis distance,
qorb, are defined as follows (Murray & Dermott 1999):

( ) ( ) ( )º - = +p a e q e1 1 , 1orb
2

orb

( ) ( )º -q a e1 , 2orb

where a is the semimajor axis and e is the eccentricity.
Arakawa et al. (2019) performed more than 400 runs of giant
impact simulations of 1000 km sized TNOs, and revealed that
the initial periapsis distance of satellites formed via giant
impacts, qini, is in the range

( ) 
q

R
3 4, 3ini

G

where RG is the radius of the primary. As the initial eccentricity
of satellites formed via giant impacts, eini, is widely distributed
in the range 0–1 (Arakawa et al. 2019), the initial semilatus

Table 1
Orbital Elements and Fundamental Properties of Gonggong–Xiangliu Assumed in this Study

Symbol Property Value Unit References

aobs Observed semimajor axis 2.4 × 104 km Kiss et al. (2019)
eobs Observed eccentricity 0.3 L Kiss et al. (2019)
PG,obs Observed spin period of Gonggong 22.4 or 44.8 h Pál et al. (2016)
PX,obs Observed spin period of Xiangliu L h L
Mtot Total mass of the system 1.75 × 1021 kg Kiss et al. (2019)
RG Radius of Gonggong 600 km Kiss et al. (2019)
RX Radius of Xiangliu L km L

Note. Parameters for standard runs are indicated by bold face. Kiss et al. (2019) reported two orbital solutions. One is called the prograde solution with an orbital
period of Porb = 25.22073 ± 0.000357 days, semimajor axis of aobs = 24,021 ± 202 km, and eccentricity of eobs = 0.2908 ± 0.0070. The other is called the
retrograde solution with an orbital period of Porb = 25.22385 ± 0.000362 days, semimajor axis of aobs = 24,274 ± 193 km, and eccentricity of
eobs = 0.2828 ± 0.0063 (see Table 2 of Kiss et al. 2019). Assuming a coplanar primary equator and satellite orbit and a spherical shape of the primary, the
effective diameter of Gonggong is Deff ≡ 2RG = 1224 ± 55 km and 1238 ± 50 km for the prograde solution for the spin periods of PG,obs = 44.8 hr and 22.4 hr,
respectively, and Deff = 1227 ± 56 km and 1241 ± 50 km for the retrograde solutions with PG,obs = 44.8 and 22.4 hr (see Table 3 of Kiss et al. 2019). Then we set
aobs = 24,000 km, eobs = 0.3, and RG = 600 km for simplicity.
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rectum, pini, should be in the range

( ) 
p

R
3 8. 4ini

G

We confirmed that pini/RG is in the range 3–8 for all outcomes
resulting in satellite formation, as predicted in Equation (4).

Figure 1(b) shows the distribution of the initial spin period of
secondaries after giant impacts, p q=P 2X,ini X,ini, where qX,ini
is the initial spin angular velocity of secondaries. Although it is
difficult to analytically estimate PX,ini, the numerical results
show that the initial spin period of the secondaries is in the
range 3 hr PX,ini 18 hr. The lower limit of PX,ini is given by
PX,ini> 2π/Ωcr, where

( )p r
W º

4

3
, 5cr

is the critical spin angular velocity for rotational instability
(e.g., Kokubo & Genda 2010); where  is the gravitational
constant, and ρ is the bulk density.

2.2. Initial Spins and Orbit of the Gonggong–Xiangliu System

In this section, we discuss the initial spins and orbit of the
Gonggong–Xiangliu system from the perspective of the con-
servation of angular momentum. The total angular momentum of
the system, Ltot, is

( ) q q= + + L I I
M M

M
M p , 6tot G G X X

G X

tot
tot orb

and Ltot should be constant over time during the tidal evolution
of the system. Here, Mtot≡MG+MX is the total mass of the
satellite system, and Ii and qi are the moment of inertia and the
spin angular velocity, respectively. Hereafter, the subscript i
denotes the primary (i=G) or the secondary (i=X). For the
case of undifferentiated bodies, the density distribution of the
planetary interior is homogeneous, and the moment of inertia is
approximately given by

( )=I M R
2

5
. 7i i i

2

As the spin angular momentum of the secondary, Xiangliu,
is negligibly small, we obtain the following equation:

( )





q

q

+

= +





I
M M

M
M p

I
M M

M
M p , 8

G G,ini
G X

tot
tot ini

G G,obs
G X

tot
tot obs

where qG,ini and qG,obs are the initial and observed (current) spin
angular velocities of the primary, Gonggong; and pini and pobs
are the initial and observed semilatus recta. Figure 2 shows the
initial semilatus rectum, pini, as a function of the initial spin
period of Gonggong, PG,ini, the observed spin period of
Gonggong, PG,obs, and the secondary-to-primary mass ratio,
γX,G.
We note that the current spin period of Gonggong has not yet

been uniquely determined; the observation by Pál et al. (2016)
suggested PG,obs= 22.4 hr or 44.8 hr, although the most likely
light-curve solution is the double-peaked solution with a slight
asymmetry. This corresponds to a spin period of PG,obs=
44.8 hr. In contrast, Kiss et al. (2019) suggested that the most
plausible solution for the system would be a single-peaked light
curve in the visible range (i.e., PG,obs= 22.4 hr) caused by
surface features rather than by a distorted shape, and the
primary’s equator and the secondary’s orbit are coplanar.
We also calculated the initial location of the corotation

radius, acorot, which is given by

⎜ ⎟
⎛
⎝

⎞
⎠

( )
p

=


a
M

P
2

. 9corot
tot

G,ini

2 3

For an initial eccentricity of eini= 0, the tidal evolution of the
satellite results in inward migration when the initial semimajor
axis is aini< acorot. Then, the initial semilatus rectum is
expected to be pini acorot to explain the current semimajor
axis of the system, aobs, which is an order of magnitude larger
than acorot.
Figure 2 indicates that the tidal evolution of the satellite

results in outward migration when the secondary-to-primary
mass ratio is approximately γX,G= 10−2 or larger. In contrast,
the tidal evolution of the satellite would result in inward
migration when γX,G= 10−2 and pini/RG 4 (i.e., eini; 0).
Therefore, for the case of γX,G= 10−2, the initial orbit of the

Figure 1. (a) Distribution of the initial semilatus rectum, pini, and the secondary-to-primary mass ratio of the system, γX,G, formed after giant impact simulations
(Arakawa et al. 2019). The yellow region indicates the range of pini/RG (see relation (4)). (b) Initial spin periods of secondaries, PX,ini, formed after the giant impact
simulations. The yellow region indicates the range of PX,ini from the giant impact simulations.
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Gonggong–Xiangliu system formed via a giant impact must
have a finite eccentricity; otherwise, the satellite would migrate
inward and become tidally disrupted. The minimum value of
eini (and pini) is expected to depend on γX,G and PG,ini; we
confirm this prediction in Sections 5 and 6.

2.3. Initial Conditions for Simulation of Tidal Evolution

We summarize the initial parameters for the calculations of
tidal evolution in Table 2. In Section 5, we parameterize the
radius of Xiangliu, RX, the initial eccentricity, eini, and the
initial temperature, Tini. For simplicity, we set ρG= ρX, where
ρG and ρX are the bulk densities of Gonggong and Xiangliu.
We assume that the initial temperature of Xiangliu is equal to
that of Gonggong (i.e., TG,ini= TX,ini= Tini) in Section 5. We
also investigated the dependence of the outcomes of tidal
evolution on the current spin period of Gonggong, PG,obs, the
initial spin period of Xiangliu, PX,ini, the different settings of
the initial temperature of Xiangliu (we set TX,ini= 120 K
regardless of TG,ini), and the value of the reference viscosity
(see Table 3), ηref, in Section 6.

In this study, we assume that the primary’s equator and the
secondary’s orbit are coplanar, and the orbit of the satellite
system is prograde (i.e., the spin–orbit angle is close to zero).
This assumption is also consistent with the numerical
simulations of Arakawa et al. (2019); however, their simula-
tions do not consider the pre-impact spin of the target and
impactor. Observations by Kiss et al. (2019) are consistent with
both prograde and retrograde orbit. If the Gonggong–Xiangliu
system is in retrograde orbit, the semimajor axis will decrease

with increasing time. Thus the determination of the spin–orbit
angle by future observations could provide critical constraints
on the origin of the satellite system.
We also note that the observed coplanar orbit is for the

present-day system, and this does not indicate that the system
was born in a coplanar orbit. Although the giant impact
simulations preferred a coplanar orbit, we should discuss the
effect of nonzero initial inclination/obliquity on the tidal
evolution in future studies. Several studies (e.g., Correia 2020;
Renaud et al. 2021) pointed out that obliquity evolution can
affect how bodies fall into and out of higher-order spin–orbit
resonances.

3. Tidal Evolution Model

In this section, we briefly introduce the orbital evolution
models (Section 3.1) and thermal evolution models
(Section 3.2). We perform calculations of 4.5 Gyr tidal
evolution with various initial conditions. We stopped numerical
integration when the eccentricity reached e= 0.9 or the
periapsis distance reached qorb= RG+ RX.

3.1. Orbital Evolution

Tides are raised on both the primary and secondary. The tidal
lag caused by friction leads to angular momentum exchange,
which also leads to spin and orbital evolution. In this study, we
use the tidal evolution equations following Boué & Efroimsky
(2019). The orbit-averaged variations of the spin rates of the
primary and secondary, qG and qX, semimajor axis a, and

Figure 2. Initial semilatus rectum, pini, as a function of the initial spin period of Gonggong, PG,ini, the observed spin period of Gonggong, PG,obs, and the secondary-to-
primary mass ratio, γX,G. The dashed lines indicate the initial location of the corotation radius, acorot. The yellow regions indicate the range of pini/RG inferred from the
giant impact simulations (Figure 1(a)).

Table 2
Initial Condition for Calculations of Tidal Evolution

Symbol Parameter Value Unit Comment

qini Initial periapsis distance 2.1 × 103 km 3  qini/RG  4 (Arakawa et al. 2019)
eini Initial eccentricity 0.1, 0.2, K, 0.8 L 0 < eini < 1 (Arakawa et al. 2019)
PG,ini Initial spin period of Gonggong L hr p q=P 2G,ini G,ini is given by Equation (8)
PX,ini Initial spin period of Xiangliu 12 or Porb,ini hr 3 hr < PX,ini < 18 hr (see Figure 1(b))
RG Radius of Gonggong 600 km Kiss et al. (2019)
RX Radius of Xiangliu 20, 40, K, 120 km RX  18 km (see Kiss et al. 2019)
TG,ini Initial temperature of Gonggong 120, 140, K, 240 K TG,ini is below the melting point of ice
TX,ini Initial temperature of Xiangliu TG,ini or 120 K See Section 6.3

Note. Parameters for standard runs are indicated by bold face.
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where = n M atot
3 denotes the mean motion. The initial

orbital period, Porb,ini, is / /p= P M a2orb,ini tot ini
3 . Here, we

assume that the orbital inclinations on both the primary’s and
secondary’s equators are negligibly small. We note that Kiss
et al. (2019) suggested that the orbit of the secondary would be
coplanar with the equator of the primary. The coefficients qG, ,
 qX, ,  qG, , and  qX, , are given by

[ ( )] [ ˜ (( ) )] ( )q= + - G e k q nIm 2 2 , 18q qG, 2,0,
2

2,G G
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2,X X
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2,G
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2

2,X

where G2,0,q and G2,1,q are the eccentricity functions (see
Appendix A), and k̃2,G and k̃2,X are the Love numbers of
Gonggong and Xiangliu, which depend on the tidal frequency
(see Appendix B). We consider the terms G2,p,q (p= 0 or 1)
when the following two conditions, |q|� 200 and
[ ] -G 10p q2, ,

2 20, are satisfied.
In our numerical integration, we calculate q nG and q nX

instead of qG and qX (e.g., Cheng et al. 2014). The relation
between dn dt and da/dt is
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3.2. Thermal Evolution

In this study, we use the simplifying assumption of
undifferentiated homogeneous bodies. We do not consider
the internal temperature structure but calculate the effective
temperature of the interior for simplicity5 (e.g., Ojakangas &
Stevenson 1986; Shoji et al. 2013). Then, the temperature
evolution of the body i is given by the following equation:

( )=
dT

dt

Q

M c
, 25i i

i i

tot,

where ci is the specific heat capacity of the primary and
secondary. The total heat generation rate within bodies, Qtot,i, is
given by

( )= + +Q Q Q Q , 26i i i itot, tide, con, dec,

where Qtide,i, Qcon,i, and Qdec,i are the tidal heating, the
conduction/convection cooling, and the decay heating terms,
respectively. We note that the main heat source is not tidal

Table 3
Material Properties Used in This Study

Symbol Property Value Unit References

c Specific heat capacity ( )T8.8 K J kg−1 K−1 Hammond et al. (2016)
kth Thermal conductivity ( )+ -T0.48 488 K 1 W m−1 K−1 Hammond et al. (2016)
αexp Thermal expansion coefficient 1 × 10−4 K−1 Kamata et al. (2019)
Ea Activation energy 60 kJ mol−1 Kamata et al. (2019)
Tref Reference temperature 273 K Kamata et al. (2019)
ηref Reference viscosity at Tref 1014 or 1010 Pa s See Section 6.4
μ Shear modulus 3.33 GPa Robuchon & Nimmo (2011)
α Andrade exponent 0.33 L Rambaux et al. (2010)

Note. Parameters for standard runs are indicated by bold face.

5 Strictly speaking, the simplifying assumption of homogeneous bodies is a
good approximation only for the convective case and for bodies without liquid
layers (e.g., Bolmont et al. 2020). However, in this study, we apply
Equation (25) for both convective and conductive cases. We should consider
the internal temperature structure in future studies, although it will involve a
high numerical cost.
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heating but decay heating. We discuss the balance between
conduction/convection cooling and decay heating for the
primary in Appendix C.

3.2.1. Tidal Heating

The tidal heating rate, Qtide,i, is given by the sum of two
terms:

( )= +Q Q Q , 27i i itide, spin, orb,

( ) 
q

q
= -Q I

d

dt
, 28i i i

i
spin,

⎛
⎝

⎞
⎠

( )= -Q
GM M

a

da

dt2
. 29i

i
orb,

p s

2

However, the contribution of the tidal heating is negligibly
small when we consider the tidal evolution of 100 km sized
satellites around 1000 km sized dwarf planets (e.g., Arakawa
et al. 2019).

3.2.2. Conduction/Convection Cooling

The term for cooling by conduction/convection, Qcon,i, is
given by

( ) ( )=Q Q Qmin , , 30i i icon, cond, conv,

( )p r k= -
-

Q R c
T T

R
4 , 31i i i i i

i

i
cond,

2 surf

( )=Q Nu Q , 32i i iconv, cond,

where κi is the thermal diffusivity, which is given by

( )k
r

=
k

c
, 33i

i

i i

th,

and kth,i is the thermal conductivity. Reese et al. (1999) proposed
that the Nusselt number, Nui, is given by the following scaling
equation (see also Solomatov & Moresi 2000):

( )= Q-Nu Ra2.51 , 34i i i
1.2 0.2

( ) ( )Q =
-E T T

R T
, 35i

i

i

a surf

gas
2

( )
( )

a r
k h

=
-

Ra
g T T

R , 36i
i i i

i i
i

exp surf 3

where Θi and Rai are the Frank–Kamenetskii parameter and the
Rayleigh number, respectively. The surface gravity, gi, is given
by = g M Ri i i

2, and Ea is the activation energy, Rgas is the gas
constant, αexp is the thermal expansion coefficient, and ηi is the
viscosity. The temperature dependence of the viscosity is given
as follows (e.g., Goldsby & Kohlstedt 2001):

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )h h= -

E

R T

T

T
exp 1 , 37i

i
ref

a

gas ref

ref

where ηref is the reference viscosity and Tref is the reference
temperature (Table 3). We set the surface temperature
Tsurf= 40 K as assumed in previous studies on the thermal
evolution of dwarf planets (e.g., Robuchon & Nimmo 2011;
Kamata et al. 2019). The material parameters used in this study
are summarized in Table 3.

We stress that the temperature evolution of bodies
significantly impacts their spin/orbital evolution. As the
viscosity is a function of the temperature, the complex Love
number also depends on the temperature (see Appendix B).
Then the complex Love number influences the spin/orbital
evolution, which is calculated from Equations (10)–(17).
Although it is beyond the scope of this study, ices in

undifferentiated icy bodies would not be pure water ice, and the
partial melting of ice mixtures may have a great impact on the
effective viscosity (e.g., Henning et al. 2009). For the case of
ice mixtures containing 1% ammonia with respect to water, the
effective viscosity is orders of magnitude lower than that of
pure water ice when the temperature is above the ammonia–
water eutectic temperature (176 K; e.g., Arakawa &
Maeno 1994; Neveu & Rhoden 2017). We could mimic this
effect by changing the reference viscosity, which is similar to
the impact of crystal grain size on the reference viscosity (see
Section 6.4).

3.2.3. Decay Heating

For 100–1000 km sized planetary bodies, the radioactive
decay of long-lived isotopes is the principal heat source (e.g.,
Robuchon & Nimmo 2011). We assume that the elemental
abundances of long-lived isotopes of the rocky parts of TNOs
are equal to those of carbonaceous chondrites (Lodders 2003;
Robuchon & Nimmo 2011). We consider four species as heat
sources, namely 238U, 235U, 232Th, and 40K. The half-life, tHL,j,
and the initial heat generation rate per unit mass of rock, H0,j,
of the element j are shown in Table 4.
Then the decay heating term is given by

( )å= -Q f M H2 , 38i i
j

t t
jdec, rock 0,jHL,

where frock is the mass fraction of rock in bodies. We set
frock= 0.4 in this study. Kiss et al. (2019) determined that the
bulk density of Gonggong is 1.75× 103 kg m−3; our assump-
tion of frock= 0.4 seems within an acceptable range if TNOs are
made of a mixture of ices, rocks, and organic materials. In
future studies, we will investigate the effect of the difference in
frock on the thermal and orbital evolution.

4. Classification of Tidal Evolution Pathways

In this section, we present the statistics of the final state of
the satellite systems. We classify the outcomes of tidal
evolution into four types, namely 1:1 spin–orbit resonance
(Type A), higher-order spin–orbit resonance (Type B),
nonresonance (Type C), and collision with the primary (Type
Z). No systems reached a dual-synchronous state, unlike the
Pluto–Charon system. We introduce typical tidal evolution
pathways of satellite systems in Appendix D.

Table 4
Radioactive Species and Decay Data (Robuchon & Nimmo 2011)

Element j Half-life tHL,j (Myr) H0,j (W kg−1 of Rock)
238U 4468 1.88 × 10−12

235U 703.81 3.07 × 10−12

232Th 14,030 1.02 × 10−12

40K 1277 2.15 × 10−11
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4.1. Summary of the Final State

Figure 3 shows the summary of the final state for standard
runs of our simulation. In our standard runs, we set PG,obs=
22.4 hr, PX,ini= 12 hr, TX,ini= TG,ini= Tini, and ηref=
1014 Pa s. We change the radius of Xiangliu, RX, the initial
eccentricity, eini, and the initial temperature, Tini. The different
markers represent the different final states of the satellite
system classified according to the spin state of Xiangliu,
semimajor axis, and eccentricity.

Figure 3(a) shows the outcomes of the tidal evolution for the
case of RX= 20 km. In this setting, Xiangliu migrates inward
and finally collides with Gonggong when the initial eccentricity
is eini� 0.2 (Type Z). The critical value of eini required for the
outward migration of Xiangliu is clearly dependent on its
radius; smaller satellites have a larger critical value of eini. This
trend is consistent with our analytic arguments in Section 2.2.

.Figure 3(b) shows the outcomes of the tidal evolution for
the case of RX= 40 km. In this setting, some runs with large
eini and high Tini result in extremely eccentric systems with
e> 0.9 within 4.5 Gyr (Types Bx/Cx). The parameter space
resulting in Types Bx/Cx is wider for larger values of RX. In
addition, the runs with eini 0.7 tend to become extremely
eccentric when RX� 40 km.

Figure 3(f) shows the outcomes of the tidal evolution for the
case of RX= 120 km. With this setting, runs with small eini and
high Tini result in Type A, i.e., Xiangliu is trapped in 1:1 spin–
orbit resonance at t= 4.5 Gyr. In general, runs with small eini
and high Tini tend to turn into Type A after tidal evolution
unless their initial eccentricity is too small to satisfy the
condition for the outward migration of Xiangliu (see
Figures 3(c) and (d)).

We did not find any clear trends for the boundary between
Types B and C. In other words, it is difficult to predict whether
the secondary is trapped in a higher-order spin–orbit resonance
or not trapped in resonances. The fractions of Type B and Type
C were 65/336= 19% and 52/336= 15%, respectively,
according to all our runs with the standard setting (see
Table 5). We note that we did not consider the realistic
probability distributions of RX, eini, and Tini for satellite systems
around TNOs.

Table 5 shows the statistics of the final state for standard
runs of our simulation. Figure 3 shows that the fraction of each
type is clearly dependent on the radius of the secondary, RX.
The fractions of Type A, Type Bx, and Type Cx increase with
increasing RX. In contrast, the fractions of Type B, Type C, and
Type Z decrease with increasing RX.

Our results also indicate that other satellites around 1000 km
sized TNOs may not be in 1:1 spin–orbit resonance. In the
Haumea–Hi’iaka system, the spin period of the secondary,
Hi’iaka, is approximately 120 times shorter than its orbital
period (Hastings et al. 2016). Although the fast spin of Hi’iaka
could be explained by a scenario in which the current satellite
system was formed via the catastrophic disruption of the first-
generation moon and subsequent reaccretion of fragments (e.g.,
Schlichting & Sari 2009; Ćuk et al. 2013), we could also
explain the fast spin of Hi’iaka without the disruption event.
We note, however, that the radius of Hi’iaka is 150 km
(Ragozzine & Brown 2009), and the fraction of the
nonresonant case (Type C) is small in our standard simulations
for the Gonggong–Xiangliu system with RX 100 km. More-
over, the spin period of the primary, Haumea, is PG,obs= 3.9 hr
(Rabinowitz et al. 2006), which is an order of magnitude

shorter than that of Gonggong. In addition, the nonspherical
and highly elongated shape of Haumea (e.g., Ortiz et al. 2017)
may also play an important role in their tidal evolution. We will
apply our tidal evolution model to the Haumea–Hi’iaka system
to unveil its spin–orbit evolution in future studies.

4.2. Condition for Spin–Orbit Coupling

Section 4.1 shows some cases in which the secondary is not
in spin–orbit resonance after a 4.5 Gyr orbital evolution (i.e.,
Type C). Here we discuss the condition for capture into spin–
orbit resonance.
Appendix B shows that the imaginary part of the Love

number, [ ˜ ( )]wkIm q2,X X, , is a minimum/maximum when
( )w m t -

qX, eff,X A,X
1, where ( ) w q= + -q n2 2qX, X is the

tidal frequency. When the secondary is in the spin–
orbit resonance of order q, the tidal frequency satisfies

( ) ( )m t w m t- < <- -
qeff,X A,X

1
X, eff,X A,X

1, and the spin angular

velocity of the secondary, qX, is given by

( )q
m t

=
+

+
q

n
x2

2 2
, 39X

eff,X A,X

where |x|< 1 is a dimensionless parameter. For |x|= 1, the
imaginary part of the Love number is given by

[ ˜ (( ) )] ( ) q+ -k q n xIm 2 2
3

2
. 402,X X

Here, we assume that the following relations are satisfied for
integers ¢ ¹q q (see Section 3.1 for the definitions of  qX, and
 qX, ):

( ) ¢ ¢   , , . 41q q q qX, X, X, X,

Under this assumption, qd dtX , (da/dt)X, and ( )qd n dtX

near the spin–orbit resonance are approximately given by
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Assuming that (da/dt)G> 0, the required conditions for a stable
equilibrium around ( ) ( ) q m t+ +q n x2 2X eff,X A,X with
|x|= 1 are
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On the other hand, for the case of ( ) <da dt 0G , the required
conditions for a stable equilibrium are

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) +a

R

q6

5

2

2
, 47

X

2 2

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

[ ( )]
( )

( ) -
+

G e
q n

M

M

a

R a

da

dt

4

9 2

1
. 48q2,0,

2 X

G X

5

G

Except for the case of q= 0, [ ( )] G e 0q2,0,
2 when e→ 0 (see

Appendix A). Thus, a finite eccentricity is needed for capture
into higher-order spin–orbit resonances with q≠ 0.

Figure 3. Summary of the final state of the standard runs of our simulation (i.e., PG,obs = 22.4 hr, PX,ini = 12 hr, TX,ini = TG,ini = Tini, and ηref = 1014 Pa s). We
changed the radius of Xiangliu, RX, the initial eccentricity, eini, and the initial temperature, Tini, as parameters. The different markers represent the different final states
of the tidal evolution classified according to the spin state of Xiangliu, semimajor axis, and eccentricity.
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5. Distributions of Final Spin/Orbital Properties of the
System

In this section, we present the distributions of the final spin/
orbital properties of the system.

5.1. Semimajor Axis and Eccentricity

Figure 4 shows the distributions of the final eccentricity and
semimajor axis, efin and afin. The observed values for the
Gonggong–Xiangliu system are efin= 0.3 and afin/RG=
24,000 km/600 km= 40; the green stars indicate the observed
values.

We found that the final eccentricity is efin 0.05 for Type A.
Xiangliu has a moderate eccentricity of eobs= 0.3 (Kiss et al.
2019), and therefore it would not be in 1:1 spin–orbit
resonance. The final eccentricity of satellite systems classified
as Type B and Type C is in the wide range 0< efin< 0.9. We
note, however, that the fraction of systems whose efin is
comparable to eobs depends strongly on the radius of Xiangliu.
The fraction of systems whose final eccentricity is in the range
0.2� efin� 0.5 is as follows: 10/56= 18% for the case of
RX= 20 km, 5/56= 8.9% for 40 km, 4/56= 7.1% for 60 km,
3/56= 5.4% for 80 km, 4/56= 7.1% for 100 km, and
0/56= 0% for 120 km. Thus, the radius of Xiangliu is likely
not larger than 100 km.

We also found a clear relation between afin and efin. The
dashed lines in Figure 4 are given by

( ) ( )= - =p a e1 const 49fin fin fin
2

for each Rs. We explain the reason why afin and efin are given
by Equation (49) in Section 5.2. Figure 4 shows that the radius
of Xiangliu might be close to 100 km from the point of view of
pfin. We note that we should consider the dependence of pfin on
many properties of the system, such as the viscoelastic
properties of icy bodies and their thermal histories (see
Sections 6.3 and 6.4).

Our results suggest that not only Gonggong–Xiangliu but
also the Quaoar–Weywot system would not be in 1:1 spin–orbit
resonance. Fraser et al. (2013) reported that the eccentricity of
the Quaoar–Weywot system is e= 0.13–0.16. This eccentricity
indicates that the system might be classified as Type B or Type
C, because systems classified as Type A have a small
eccentricity of e 0.05 in general.

5.2. Analytic Solution of the Semilatus Rectum

Figure 4 shows that the final semilatus rectum, pfin, hardly
depends on the final eccentricity, efin. In this section, we derive
an analytic solution for the evolution of the semilatus rectum.

The time derivative of porb is given by the following
equation:
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Here, we assume that the contribution of the tidal torques
caused by the secondary is negligible:
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Assuming that the spin period of the primary is sufficiently
shorter than the orbital period (i.e.,  q nG ), we can rewrite the
term å q qG, as follows:
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We found that [ ( )]å G eq q2,0,
2 is approximately given by
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in the range 0� e� 0.8 (see Figure A2). Therefore, the time
evolution of porb is approximately given by the following
equation:
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which does not include the eccentricity, e, in the equation.
Figure 5 shows the final semilatus rectum, pfin, as a function of

the radius of the secondary, RX. We only used the data classified
as Type A/B/C in the figure. We plotted the average value and
twice the standard error of pfin for each RX. Equation (55) shows

Table 5
Statistics of the Final State for Standard Runs of Our Simulation (see also Figure 3)

(a) RX = 20 km (b) 40 km (c) 60 km (d) 80 km (e) 100 km (f) 120 km Total

Type A 0 (0%) 3 (5%) 12 (21%) 18 (32%) 27 (48%) 31 (55%) 91 (27%)
Type B 26 (46%) 12 (21%) 9 (16%) 7 (13%) 9 (16%) 2 (4%) 65 (19%)
Type C 16 (29%) 18 (32%) 12 (21%) 5 (9%) 0 (0%) 1 (2%) 52 (15%)
Type Bx 0 (0%) 4 (7%) 6 (11%) 14 (25%) 17 (30%) 16 (29%) 57 (17%)
Type Cx 0 (0%) 5 (9%) 10 (18%) 5 (9%) 3 (5%) 6 (11%) 29 (9%)
Type Z 14 (25%) 14 (25%) 7 (13%) 7 (13%) 0 (0%) 0 (0%) 42 (13%)
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that the final semilatus rectum is proportional to /R ;X
6 13 our

numerical results are consistent with the theoretical prediction.

5.3. Spin Period of the Secondary

Figure 6 shows the distribution of the final eccentricity and
spin period of the secondary, efin and PX,fin, for standard runs of
our simulation. The spin period of Xiangliu at t= 4.5 Gyr is in
the range 10 hr PX,fin 103 hr, and the range of PX,fin

depends on RX. In the case of RX= 20 km, the final spin
period of Xiangliu is in the range 10 hr PX,fin 102 hr and is

always shorter than the orbital period, Porb,fin. In contrast, for
RX= 100 and 120 km, the final spin period of Xiangliu is in the
range 102 hr PX,fin 103 hr, and PX,fin is significantly longer
than the initial spin period, PX,ini= 12 hr. Thus, the determina-
tion of the spin period of Xiangliu by future observations and
light-curve analyses is the key to estimating its radius.
The final spin period of Xiangliu is close to the initial spin

period, PX,fin; PX,ini, for the case of Type C. The spin period
of satellites formed via a giant impact should provide abundant
information regarding the condition of the colliding TNOs,
including the mass ratio, the spin state before the impact, and

Figure 4. Distributions of the final eccentricity and semimajor axis, efin and afin, for standard runs of our simulation. The different markers represent the different final
states of the tidal evolution classified according to the spin state of Xiangliu and the final semimajor axis and eccentricity. For the cases of Type Bx/Cx/Z, we stopped
numerical integrations when the eccentricity reached e = 0.9 or when the periapsis distance reached qorb = RG + RX.
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the (un)differentiated state. Therefore, we want to determine
the spin period of satellites from astronomical observations for
Gonggong–Xiangliu and for other satellite systems around
large TNOs.

5.4. Final Eccentricity and the Initial Condition

Figure 7 shows the final eccentricity of the system, efin, for
standard runs of our simulation. We note that we do not plot the
results classified into Type Z.

Figure 7 shows that satellite systems with an initial
eccentricity of 0.2� eini� 0.5 tend to a final eccentricity of
0.2� efin� 0.5. When the initial eccentricity is eini� 0.1, the
final eccentricity at t= 4.5 Gyr is typically efin� 0.1 or the
system becomes Type Z. When the initial eccentricity is
eini� 0.6, on the other hand, the final eccentricity at t= 4.5 Gyr
is typically efin� 0.5 for the case of RX� 60 km, and efin� 0.9
or efin� 0.1 for the case of RX� 80 km.

Therefore, we conclude that the initial eccentricity of the
Gonggong–Xiangliu system after the moon-forming giant
impact may be in the range 0.2 eini 0.5. This nonzero eini
is also consistent with the fact that eini 0.2 is needed to avoid
the inward migration of Xiangliu (see Figure 3).

Debris disks can be formed by a giant impact (Canup 2005),
collisional disruption of a pre-existing satellite (Hyodo &
Charnoz 2017), or tidal disruption of a passing body (Hyodo
et al. 2017). If a single large satellite is formed via accretion of
debris disk materials around Gonggong, the initial eccentricity
becomes small: e 0.1 (e.g., Ida et al. 1997; Kokubo et al.
2000). In this case, we cannot reproduce the observed
eccentricity of the system. Thus, the Gonggong–Xiangliu
system was more likely to be born as an “intact moon” rather
than “disk-origin moon,” and their formation process is similar
to that of the Pluto–Charon system (e.g., Canup 2005; Sekine
et al. 2017; Arakawa et al. 2019).

6. Discussion

In Section 5, we show the distributions of the final spin/
orbital properties of the Gonggong–Xiangliu system for our

standard setting (i.e., PG,obs= 22.4 hr, PX,ini= 12 hr, TX,ini=
TG,ini= Tini, and ηref= 1014 Pa s). In this section, we discuss
the effect of a nonstandard setting on the results of the tidal
evolution. We investigate four cases in this section: (a) a slow
spin of Gonggong (PG,obs= 44.8 hr instead of 22.4 hr), (b) an
initially tidally synchronized Xiangliu (PX,ini= Porb,ini instead
of 12 hr), (c) a cold start for Xiangliu (TX,ini= 120 K instead of
TG,ini), and (d) undifferentiated bodies with low reference
viscosity (ηref= 1010 Pa s instead of 1014 Pa s). Figures 8–11
are the results of the nonstandard runs of our simulations. In
these simulations, we set RX= 60 km.

6.1. Slow-spinning Gonggong

In our standard models, we set the current spin period of
Gonggong as PG,obs= 22.4 hr. The spin period of Gonggong
was obtained from the light-curve analysis by Pál et al. (2016)
and has two possible values: PG,obs= 22.4 hr or 44.8 hr. In
Section 2.2, we discuss the impact of PG,obs on the location of
the initial corotation radius. We showed that a large eini is
necessary to avoid the inward migration of Xiangliu when
PG,obs= 44.8 hr; however, a nonzero value of eini is required
even for the case of PG,obs= 22.4 hr. As we cannot exclude the
possibility of PG,obs= 44.8 hr from the light-curve analyses, we
discuss the case in this section.
Panels (a) in Figures 8–11 show the results for the case of

PG,obs= 44.8 hr. Figure 8(a) shows that the satellite system
results in Type Z for an initial eccentricity of eini� 0.4. The
critical value of eini to avoid the inward migration of Xiangliu
is significantly larger than that for our standard runs (see
Figure 3(c)), which is consistent with our prediction from the
analytical estimate of the corotation radius in Section 2.2.
Figure 9(a) shows the distribution of efin and afin. The final

eccentricity of satellite systems classified as Type B and Type
C is in the wide range 0< efin< 0.9, as in the case shown in
Figure 4(c). The final semilatus rectum was slightly lower than
the observed value for the Gonggong–Xiangliu system.
Figure 10(a) shows the distribution of efin and PX,fin. The
general trend is similar to that of the standard shown in
Figure 6(c).
Figure 11(a) is the color map for efin. In the case of

PG,obs= 44.8 hr, satellite systems with an initial eccentricity of
eini; 0.6 tend to a final eccentricity of 0.2� efin� 0.5.
Systems with large eini tend to result in a large efin; this trend
is similar to that observed in the standard runs (see Figure 7(c));
although the suitable range of eini to reproduce the observed
value for the Gonggong–Xiangliu system is different.

6.2. Initially Tidally Synchronized Xiangliu

In our standard models, we set the initial spin period of
Xiangliu as PX,ini= 12 hr. This assumption is based on
numerical simulations of moon-forming giant impacts of
1000 km sized TNOs (see Figure 1(b)). In this case,
PX,ini= Porb,ini and a large number of runs are trapped in
higher-order spin–orbit resonances (see Figure 3). In this
section, we instead set PX,ini= Porb,ini. Although the assump-
tion of PX,ini= Porb,ini seems unrealistic, we discuss the effects
of the initially synchronized Xiangliu on the tidal evolution of
the system to better understand our results.
Panels (b) in Figures 8–11 show the results for the case of

PX,ini= Porb,ini. Figure 8(b) shows that the final state of the
system is not Type A (i.e., 1:1 spin–orbit resonance) in some

Figure 5. Final semilatus rectum, pfin, as a function of the radius of the
secondary, RX. The dashed line represents the least-squares fit,

( )=p R R3.9 km ;fin G X
6 13 the error bars are twice the standard deviation

for each RX.
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cases even if the initial spin period of the secondary is
PX,ini= Porb,ini.

Figure 9(b) shows the distribution of efin and afin. For the
case of PX,ini= Porb,ini, the final eccentricity is in the wide
range, even for Type A (0< efin< 0.7). We note, however, that
the assumption of PX,ini= Porb,ini is unrealistic if they are
formed via giant impacts (see Figure 1(b)). Figure 10(b) shows
the distribution of efin and PX,fin. In this case, the final spin
period of Xiangliu lies in the range 102 hr PX,fin 103 hr. In
addition, all satellite systems with efin� 0.6 are classified as
Type A.

Figure 11(b) is the color map for efin. In the case of
PX,ini= Porb,ini, satellite systems with an initial eccentricity of
0.2� eini� 0.4 tend to a final eccentricity of 0.2� efin� 0.5.
This result is similar to that of our standard runs (see Figure 7).

6.3. Cold Start for Xiangliu

In our standard models, we assumed that the initial
temperatures of Gonggong and Xiangliu are the same:
TG,ini= TX,ini= Tini. Although this assumption is somewhat
natural, we can imagine a case in which the initial temperature

Figure 6. Distribution of the final eccentricity and spin period of the secondary, efin and PX,fin, for the standard runs of our simulation. The different markers represent
the different final states of the tidal evolution classified according to the spin state of Xiangliu and the final semimajor axis and eccentricity. For the cases of Types
Bx/Cx/Z, we stopped numerical integrations when the eccentricity reached e = 0.9 or when the periapsis distance reached qorb = RG + RX.
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of Xiangliu is lower than that of Gonggong. The motivation for
this setting is as follows.

Giant impact simulations of 1000 km sized TNOs (e.g.,
Canup 2005; Sekine et al. 2017; Arakawa et al. 2019) revealed
that satellites are directly formed as intact fragments of the
impactor (“intact moons”). As the mass of the impactor is several
times smaller than that of the target body, the cooling rate of the
impactor would be faster than that of the target, and the
temperature of the impactor might be lower than that of the target
upon collision. Although we need to assess the effect of the
impact heating on the initial temperatures of the primary and
secondary, the setting in which the initial temperature of Xiangliu
is lower than that of Gonggong seems to be reasonable.

Panels (c) in Figures 8–11 show the results for the case of
TX,ini= 120 K. Figure 8(c) shows that no systems classified as
Type A are formed in this case.
Figure 9(c) shows the distribution of efin and afin, and

Figure 10(c) shows the distribution of efin and PX,fin. These
distributions are generally similar to those for our standard runs
(Figures 4(c) and 6(c)); however, no systems result in 1:1 spin–
orbit resonance.
Figure 11(c) is the color map for efin. In the case of

TX,ini= 120 K, satellite systems with an initial eccentricity of
0.2� eini� 0.4 tend to a final eccentricity of 0.2� efin� 0.5.
This result is also similar to those of our standard runs (see
Figure 7(c)).

Figure 7. Color maps for the final eccentricity of the system, efin, for standard runs of our simulation.
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6.4. Undifferentiated Bodies Made of Soft Ice

In our standard models, we set the reference viscosity of icy
bodies as ηref= 1014 Pa s. This value is widely used in studies
of differentiated icy bodies, including of the thermal evolution
of Pluto (e.g., Kamata et al. 2019), the orbital evolution of
Pluto–Charon (e.g., Renaud et al. 2021), and the tidal heating
of Europa and Titan (e.g., Tobie et al. 2005).

However, we note that the reference viscosity of icy bodies
depends strongly on the grain size of ice crystals (e.g., Goldsby
& Kohlstedt 2001; Kubo et al. 2006), and ηref for ice mixed
with a small volume fraction of dust grains may be orders of
magnitude lower than the canonical value for differentiated ice
bodies (e.g., Kubo et al. 2009). When the ice viscosity is
controlled by diffusion creep, the reference viscosity, ηref, at the
reference temperature, Tref= 273 K, is given by (Kalousová
et al. 2016)

⎜ ⎟
⎛

⎝

⎞

⎠
( )h =

d

A

E

R T
exp , 56ref

ice
2

a

gas ref

where dice is the grain size of the ice crystals, A= 3.3×
10−10 Pa−1 m2 s−1 is the pre-exponential constant, Rgas=
8.31 J K−1 mol−1 is the gas constant, and Ea is the activation
energy. Assuming Ea= 60 kJ mol−1 (Kamata et al. 2019), we
obtain the following relation between dice and ηref:

⎜ ⎟
⎛
⎝

⎞
⎠

( )h
m

= ´
d

9.3 10
1 m

Pa s. 57ref
8 ice

2

When undifferentiated icy bodies are mixtures of micron-sized
dust grains and matrix ices, the grain size of ice crystals would
be maintained in the micron size owing to the Zener pinning
effect (Kubo et al. 2009). Thus, the reference viscosity of
ηref∼ 1010 Pa s may be somewhat reasonable for undifferen-
tiated icy bodies.
Panels (d) in Figures 8–11 show the results for the case of

ηref= 1010 Pa s. Figure 8(d) shows that runs with a small eini
and high Tini tend to result in Type A.
Figure 9(d) shows the distribution of efin and afin, and

Figure 10(d) shows the distribution of efin and PX,fin. These

Figure 8. Summary of the final state for nonstandard runs of our simulation. We changed the initial eccentricity, eini, and the initial temperature (of Gonggong), Tini
(TG,ini), as parameters. The different markers represent the different final states of the tidal evolution classified according to the spin state of Xiangliu and the final
semimajor axis and eccentricity.
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distributions are similar to that of our standard runs. The final
semilatus rectum, pfin, for the case of ηref= 1010 Pa s is not
significantly different from that for the standard case of
ηref= 1014 Pa s. This is because the temperature of Gonggong,
TG, also depends on ηref; and the viscosity of Gonggong,
ηG= η(TG), is not strongly dependent on ηref between the two
settings, ηref= 1010 and 1014 Pa s. Figure D8 shows the thermal
and orbital evolutions of Gonggong and Xiangliu for the case
of ηref= 1010 Pa s, Tini= 140 K, and eini= 0.4.

Figure 11(d) is the color map for efin. In the case of
ηref= 1010 Pa s, satellite systems with an initial temperature of
Tini� 160 K tend to result in Type A or Type Bx/Cx (i.e., a final
eccentricity of efin� 0.1 or efin� 0.9). Therefore, the initial
temperature of Tini� 140 K might be suitable for explaining the
formation of moderately eccentric satellite systems when
ηref= 1010 Pa s.

7. Summary

Recent astronomical observations by Kiss et al. (2019)
revealed that (225088) Gonggong, a 1000 km sized trans-
Neptunian dwarf planet, hosts an eccentric satellite, Xiangliu,
whose eccentricity is approximately eobs= 0.3. As the majority
of known satellite systems around large TNOs have circular
orbits with eobs 0.1, the observed eccentricity of the
Gonggong–Xiangliu system may reflect the singular properties
of this system. However, no detailed analysis of the orbital
evolution of this system has been conducted so far.

In this study, we investigated the secular tidal evolution of
the Gonggong–Xiangliu system under the simplifying assump-
tion of homogeneous bodies, assuming that their initial orbital
properties are those obtained from a giant impact (see Table 2).
We conducted the simulations of coupled thermal–orbital
evolution using the Andrade viscoelastic model and by
including higher-order eccentricity functions up to |q|� 200
for [ ( )]G eq2,0,

2 and [ ( )]G eq2,1,
2. Our findings are summarized as

follows.

1. A re-evaluation of giant impact simulations by Arakawa
et al. (2019) revealed that the initial semilatus rectum,

( )= -p a e1ini ini ini
2 , lies in the range 3< pini/RG< 8

when a giant impact forms a satellite as an intact
fragment. In addition, the initial spin period of second-
aries after giant impacts, PX,ini, lies in the range 3 hr
PX,ini 18 hr (see Figure 1).

2. In Section 4, we reported four typical tidal evolution
pathways of satellite systems: 1:1 spin–orbit resonance
(Type A), higher-order spin–orbit resonance (Type B),
nonresonance (Type C), and collision with the primary
(Type Z).

3. Figure 3 shows the outcomes of the tidal evolution. We
found that Xiangliu migrates inward and finally collides
with Gonggong (i.e., Type Z) when the initial eccentricity
is too small. The critical value of eini required for the
outward migration of Xiangliu is clearly dependent on the
radius of Xiangliu, RX; smaller satellites have a larger
critical value of eini. In addition, runs with small eini and

Figure 9. Distribution of the final eccentricity and semimajor axis, efin and afin, for nonstandard runs of our simulation.
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high Tini tend to turn into Type A as a consequence of
tidal evolution. Table 5 shows the statistics of the final
state for the standard runs of our simulation. The fraction
of each type is clearly dependent on the radius of the
secondary.

4. We found that the final eccentricity is efin 0.05 for Type
A. Therefore Xiangliu would not be in 1:1 spin–orbit
resonance (i.e., Type A) because it has a moderate
eccentricity of eobs= 0.3 (Kiss et al. 2019). The final
eccentricity of satellite systems classified as Type B and
Type C is in the wide range 0< efin< 0.9. However, the
fraction of systems whose final eccentricity is in the range
0.2� efin� 0.5 depends strongly on the radius of
Xiangliu, and no systems with 0.2� efin� 0.5 were
formed for the case of 120 km. These results suggest that
the radius of Xiangliu would not be larger than 100 km.

5. We also found a significant relationship between afin and
efin. In Section 5.2, we derived a simple formula for
pfin; the final semilatus rectum is given by Equation (55).
Figures 4 and 5 show that the radius of Xiangliu might be
close to 100 km from the point of view of pfin.

6. From the aspect of the evolution of the eccentricity and
semilatus rectum, our findings suggest that the radius of
Xiangliu is approximately 100 km. This value is
consistent with the estimate of Kiss et al. (2017) and
indicates that Gonggong and Xiangliu have similar
albedos.

7. Figure 6 shows the distributions of the final eccentricity
and spin period of the secondary, efin and PX,fin, for

standard runs of our simulation. The spin period of
Xiangliu at t= 4.5 Gyr is in the range 10 hr
PX,fin 103 hr; the range of PX,fin may depend on RX.
In the case of RX= 20 km, the final spin period of
Xiangliu is in the range 10 hr PX,fin 102 hr and is
always shorter than the orbital period, Porb,fin. In contrast,
for RX= 100 km and 120 km, the final spin period of
Xiangliu is in the range 102 hr PX,fin 103 hr, which is
significantly longer than the initial spin period,
PX,ini= 12 hr. Thus, the determination of the spin period
of Xiangliu by future observations and by light-curve
analyses is necessary to evaluate the radius of Xiangliu.

8. We found that satellite systems with an initial eccentricity
of 0.2� eini� 0.5 tend to achieve a final eccentricity
of 0.2� efin� 0.5 (Figure 7). In contrast, for initial
eccentricity of eini� 0.1, the final eccentricity at
t= 4.5 Gyr is typically efin� 0.1, or the system become
Type Z. For initial eccentricity of eini� 0.6, on the other
hand, the final eccentricity at t= 4.5 Gyr is typically
efin� 0.5 for the case of RX� 60 km, and efin� 0.9 or
efin� 0.1 for the case of RX� 80 km. Therefore, the
initial eccentricity of the Gonggong–Xiangliu system
after the moon-forming giant impact may have been in
the range 0.2 eini 0.5.

Our results highlight the importance of simulations of
coupled thermal–orbital evolution using a realistic viscoelastic
model with higher-order eccentricity functions. We also note
that both the thermal history and the strength of tides depend

Figure 10. Distribution of the final eccentricity and spin period of the secondary, efin and PX,fin, for nonstandard runs of our simulation.
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strongly on the internal structure of the bodies. We assumed
that the primary and secondary are undifferentiated homo-
geneous bodies for simplicity; however, 1000 km sized TNOs,
including Gonggong, might actually be differentiated. In future
studies, we should calculate the coupled thermal–orbital
evolution of differentiated bodies. In this case, the effects of
subsurface oceans are also of great interest. The differentiated
state of large TNOs is closely associated with their accretion
history, which is the key to understanding planet formation in
the outer solar system. Thus, more detailed analyses of the
coupled thermal–orbital evolution of satellite systems around
large TNOs are necessary.
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Appendix A
Eccentricity Function

The eccentricity functions are the Cayley expansions for the
solutions of the Keplerian motion (Cayley 1861). The
eccentricity functions, G2,p,q(e), can be calculated as follows

(see Ferraz-Mello 2013, for details):
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where r is the distance between the primary and secondary, ν is
the true anomaly, and ℓ is the mean anomaly. The relation
between r and ν is
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Ferraz-Mello (2013) noted that the Fourier series solutions of
G2,p,q(e) (e.g., Efroimsky 2012a; Renaud et al. 2021) are
based on the Taylor expansion of the solution of Kepler’s
equation, whose convergence radius is e

*

= 0.6627434 (see
Wintner 1941; Hagihara 1970; Murray & Dermott 1999).
Therefore we should calculate G2,p,q(e) from direct integration of
Equation (A1) when we consider the tidal evolution of highly
eccentric systems with e? 0.5. Figure A1 shows the squares of

Figure 11. Color maps for the final eccentricity of the system, efin, for nonstandard runs of our simulation.
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the eccentricity functions, [ ( )]G eq2,0,
2 and [ ( )]G eq2,1,

2, as
functions of the eccentricity e and the order q.

Table 2 of Renaud et al. (2021) shows the series solutions of
[ ( )]G ep q2, ,

2, with eccentricity terms up to and including e10. In
the range |q|� 2, the series solutions of [ ( )]G eq2,0,

2 and
[ ( )]G eq2,1,

2 are given by Boué & Efroimsky (2019):
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Figure A2 shows the summations of [ ( )]G eq2,0,
2 and

[ ( )]G eq2,1,
2 from q=−200 to +200. This wide range of q

allows sufficient summation convergence. Both [ ( )]å G eq q2,0,
2

and [ ( )]å G eq q2,1,
2 are approximately given by
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for the range 0� e� 0.8.

Figure A1. Squares of the eccentricity functions, [ ( )]G eq2,0,
2 and [ ( )]G eq2,1,

2 for different eccentricities: (a) e = 0.2, (b) e = 0.4, (c) e = 0.6, and (d) e = 0.8.

Figure A2. Summations of [ ( )]G eq2,0,
2 and [ ( )]G eq2,1,

2 from q = −200 to
+200. The dashed line indicates ( )- -e1 2 6, and the summations of [ ( )]G eq2,0,

2

and [ ( )]G eq2,1,
2 are well approximated by ( )- -e1 2 6 in the range 0 � e � 0.8.
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Appendix B
Rheological Model

B.1. Complex Shear Modulus

Viscoelastic models are widely used to describe the tidal
response of small icy bodies. The Andrade model is an
empirical model based on experimental results for the viscous
flow of metals and ice (e.g., Andrade 1910; Glen 1955). The
model is widely used to compute tidal dissipation within icy
satellites. For example, Shoji et al. (2013) calculated the tidal
heating of Enceladus using the Andrade model. Neveu &
Rhoden (2019) also performed numerical simulations of
coupling thermal, geophysical, and orbital evolution using the
model.

The Andrade viscoelastic model contains an anelastic part,
and the effect of elasticity decreases in the high-frequency
region. The complex shear modulus, ˜ ( )m w , is expressed in
terms of a creep function as follows:

˜ ( ) ˜( )
( )m w

w
=

J

1
, B1

where ˜( )wJ is the creep function and ω is the angular velocity
of the forcing cycle. The creep function is given by (e.g.,
Efroimsky 2012a, 2012b)
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where μ is the shear modulus, η is the viscosity, and 0< α< 1
is the Andrade exponent. We assume α= 0.33 for ice (e.g.,
Rambaux et al. 2010). The relaxation time of the Andrade
model is given by τA= η/μ.

We note that m̃ depends on a dimensionless parameter, τAω,
and can be divided into two regions. For the case of τAω? 1,
the complex shear modulus is approximately given by
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and ∣ ˜ ( )∣ m w m 1, respectively. On the other hand, when
τAω= 1, the complex shear modulus is approximately given
by
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B.2. Love Number

For a homogeneous spherical body, the tidal potential Love
number, ˜ ( )wk2 , is given by
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where = g M R2 is the surface gravity,  is the gravitational
constant, and ρ and R are the density and radius of the body,
respectively. We introduce the (dimensionless) effective
rigidity, μeff, as follows (e.g., Goldreich & Sari 2009;

Cheng et al. 2014):
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and we found that μeff∼ 102 for 1000 km sized TNOs. The
imaginary part of the complex Love number is negative when ω
is positive. When the angular velocity of the forcing cycle is
negative, the complex Love number is given by

˜ ( ) ˜ ( ) ( )w w- =k k , B72 2

where ˜ ( )wk2 is the complex conjugate of ˜ ( )wk2 .
In the case of μeff? 1, the tidal potential Love number is

classified into three regions: (i) high-frequency region, (ii)
intermediate region, and (iii) low-frequency regions (see also
Efroimsky 2012b). We found that ∣ [ ˜ ( )]∣wkIm 2 reaches a
maximum at t w m - ;A eff

1 the maximum value
is ∣ [ ˜ ( )]∣ wkIm 3 42 .

B.2.1. High-frequency Region

When τAω? 1, the absolute value and the imaginary part of
the complex Love number, ∣ ˜ ( )∣wk2 and [ ˜ ( )]wkIm 2 , are
approximately given by
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The tidal quality factor, ( ) ∣ [ ˜ ( )] ˜ ( )∣w w wº k kIm 2 2 , is given
by
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B.2.2. Intermediate Region
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Appendix C
Cooling and Heating Rates of the Primary

In this study, we assumed that the interior of the primary is
homogeneous for simplicity, then we calculated the time
evolution of the internal temperature. We found that the
temperature evolution is approximately given by the balance
between conduction/convection cooling and decay heating.
Here we show the cooling and heating rates of the primary.

The cooling rate of the primary due to conduction/
convection is given by

⎛
⎝

⎞
⎠

( )=
dT

dt

dT

dt

dT

dt
min , , C1con,G cond,G conv,G

( )=
dT

dt

Q

M c
, C2cond,G cond,G

G G

( )=
dT

dt

Q

M c
, C3conv,G conv,G

G G

where dTcond,G/dt and dTconv,G/dt are the cooling rates due to
conduction and convection, respectively. Similarly, the heating
rate of the primary due to decay the decay of long-lived
radioactive elements is given by

( )=
dT

dt

Q

M c
. C4dec,G dec,G

G G

As the specific heat and the thermal conductivity depend on the
temperature, the cooling and heating rates also depend on
temperature of the primary. We note that the decay heating rate
is also a function of the time.

Figure C1 shows the cooling/heating rates of the primary as
a function of the temperature, the reference viscosity, and the
time. For the case of ηref= 1014 Pa s, the cooling rate is
controlled by convection when TG> 206 K. We found that the
cooling and heating terms balance at a certain temperature, and
the equilibrium temperature is consistent with the temperature
evolution of the primary shown in Appendix D. We also show
that the equilibrium temperature depends strongly on ηref. For
the case of ηref= 1010 Pa s, the equilibrium temperature is
lower than 210 K even at t= 0. This low equilibrium
temperature is also consistent with the temperature evolution
shown in Figure D8(d).

We also discuss the validity of the assumption of the fixed
surface temperature. As shown in Appendix D, the internal
temperature of the primary reaches the equilibrium temperature

at t 1 Gyr. When we assume that the decay heating is
balanced with the radiative cooling at the surface, the surface
temperature of the primary, Tsurf, is given by the following
equation:

( ) ( )p s - =R T T Q4 , C5G
2

SB surf
4

BG
4

dec,G

where σSB is the Stefan–Boltzmann constant and TBG is the
effective background temperature. Here we rewrite Tsurf as
TBG+ΔT, then the difference between Tsurf and TBG is
approximately given by
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and ΔT is negligibly smaller than TBG. Thus we can assume
Tsurf= TBG when the decay heating is balanced with the
radiative cooling at the surface.
We acknowledge that our calculations of thermal evolution

would not be accurate, especially for the early stage (i.e.,
t= 1 Gyr). In the early stage, the temperature structure inside
the primary may not reach the equilibrium, and the cooling rate
should be modified when we calculate the internal temperature
structure. As the thermal evolution in the early phase would be
important for the eccentricity evolution of satellite systems (see
Appendix D), we need to conduct the simulations of coupled
thermal–orbital evolution considering the internal temperature
structure in future studies.

Appendix D
Typical Results for Calculations of Tidal Evolution

In this appendix, we introduce typical tidal evolution
pathways of satellite systems. We classify the outcome of tidal
evolution into four types: 1:1 spin–orbit resonance (Type A;
Figures D1 and D2), higher-order spin–orbit resonance (Type
B; Figures D3 and D4), nonresonance (Type C; Figures D5 and
D6), and collision with the primary (Type Z; Figure D7). We
also show a typical evolution pathway with ηref= 1010 Pa s
(Figure D8).

Figure C1. Cooling rate of the primary due to conduction/convection, dTcon,G/dt, and heating rate due to decay of long-lived radioactive elements, dTdec,G/dt.
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D.1. Type A: 1:1 Spin–Orbit Resonance

Figure D1 shows a typical tidal evolution pathway of a
satellite system resulting in Type A. The initial condition of
this model is RX= 60 km, Tini= 200 K, and eini= 0.4 (see
Figure 3(c)). The final semimajor axis and eccentricity are
afin/RG= 26.0 and efin= 5.6× 10−3, respectively; and the spin
of the secondary is in 1:1 spin–orbit resonance at t= 4.5 Gyr.

The thermal evolution of both the primary and secondary
hardly depends on their spin/orbital evolution. This is because
their thermal evolution pathways are determined by the balance
between decay heating and conduction/convection cooling.

Figure D2 shows the first 10 Myr of the tidal evolution of
this case. Both the primary and secondary are initially captured
into spin–orbit resonances. At t= 2.872Myr, the eccentricity
becomes e= 4.15× 10−2, and the secondary is released from
5:2 spin–orbit resonance. Then, the primary is also released
from 2:1 spin–orbit resonance at t= 2.875Myr. The secondary
is recaptured into 2:1 spin–orbit resonance at t= 2.897Myr,
and finally trapped in 1:1 resonance at t= 3.54Myr.

D.2. Type B: Higher-order Spin–Orbit Resonance

Figure D3 shows a typical tidal evolution pathway of a
satellite system resulting in Type B. The initial condition of this
model is RX= 60 km, Tini= 140 K, and eini= 0.4 (see
Figure 3(c)). The final semimajor axis and eccentricity are

afin/RG= 29.7 and efin= 0.37, respectively, and the spin of the
secondary is in 5:2 spin–orbit resonance at t= 4.5 Gyr.
The temperature of the 1000 km sized primary hardly

depends on the initial temperature approximately 1 Gyr after
the start of calculations (see Figures D1(d), D3(d), and D5(d)).
This shows that the temperature of the primary reaches the
equilibrium determined by the balance of decay heating and
conduction/convection cooling at t 1 Gyr.
Figure D4 shows the first 300 Myr of the tidal evolution of

this case. Both the primary and secondary are initially captured
into spin–orbit resonances. The primary is released from 2:1
spin–orbit resonance at t= 113Myr, at which time the
eccentricity begins increasing. Conversely, 5:2 spin–orbit
resonance of the secondary is stable in this case.

D.3. Type C: Nonresonance

Figure D5 shows a typical tidal evolution pathway of a
satellite system resulting in Type C. The initial condition of this
model is RX= 60 km, Tini= 120 K, and eini= 0.4 (see
Figure 3(c)). The final semimajor axis and eccentricity are
afin/RG= 28.0 and efin= 0.32, respectively, and the spin of the
secondary is not in spin–orbit resonances at t= 4.5 Gyr.
Figure D6 shows the first 300 Myr of the tidal evolution of

this case. The secondary is captured into 3:1 spin–orbit
resonance at first, and then the primary is captured into 2:1
spin–orbit resonance. Both the primary and secondary are
released from the spin–orbit resonance at t= 193.8Myr, and

Figure D1. Evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, and (d) temperatures of the primary and secondary for Model A. The initial
condition of Model A is RX = 60 km, Tini = 200 K, and eini = 0.4.
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the breaking of the spin–orbit resonance of the primary is prior
to that of the secondary. The eccentricity starts to increase at
this time, similar to the case shown in Figure D4. In
Section 4.2, we show the conditions required to maintain
spin–orbit resonances.

D.4. Type Z: Collision with the Primary

Figure D7 shows a typical tidal evolution pathway of a
satellite system resulting in Type Z. The initial condition of this
model is RX= 60 km, Tini= 200 K, and eini= 0.1 (see
Figure 3(c)). The final semimajor axis and eccentricity are

Figure D2. Early phase of the evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, (d) temperatures of the primary and secondary, and (e) spin-to-
orbit period ratio for Model A.
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Figure D3. Evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, and (d) temperatures of the primary and secondary for Model B. The initial
condition of Model B is RX = 60 km, Tini = 140 K, and eini = 0.4.
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Figure D4. Early phase of the evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, (d) temperatures of the primary and secondary, and (e) spin-to-
orbit period ratio for Model B.
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Figure D5. Evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, and (d) temperatures of the primary and secondary for Model C. The initial
condition of Model C is RX = 60 km, Tini = 120 K, and eini = 0.4.
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Figure D6. Early phase of the evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, (d) temperatures of the primary and secondary, and (e) spin-to-
orbit period ratio for Model C.
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Figure D7. Evolution of (a) semimajor axis, (b) eccentricity, (c) spin/orbital periods, and (d) temperatures of the primary and secondary for Model Z. The initial
condition of Model Z is RX = 60 km, Tini = 200 K, and eini = 0.1.
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afin/RG= 1.1 and efin= 1.9× 10−5, and the spin of the
secondary is in 1:1 spin–orbit resonance at t= 56 kyr. In this
case, the secondary collides with the primary at the end of the
simulation. Or, in reality, the secondary is tidally disrupted and
second-generation satellites/rings might be formed after the
disruption event.

D.5. Undifferentiated Bodies Made of Soft Ice

Figure D8 shows a tidal evolution pathway of a satellite system
for the case of ηref= 1010 Pa s. The initial condition of this model
is RX= 60 km, Tini= 140K, and eini= 0.4 (see Figure 8(d)). The
final semilatus rectum is not very different from that of the
standard case of ηref= 1014 Pa s (see Figures D1(d), D3(d), and
D5(d)), because the temperature of Gonggong, TG, also depends
on ηref. In the case of ηref= 1010 Pa s, TG is lower than that for the
case of ηref= 1014 Pa s; and the viscosity of Gonggong, ηG=
η(TG), is not very different between the two settings, ηref=
1010 Pa s and ηref= 1014 Pa s.
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