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Abstract

We present a novel method of classifying Type Ia supernovae using convolutional neural networks, a neural
network framework typically used for image recognition. Our model is trained on photometric information only,
eliminating the need for accurate redshift data. Photometric data is preprocessed via 2D Gaussian process
regression into two-dimensional images created from flux values at each location in wavelength-time space. These
“flux heatmaps” of each supernova detection, along with “uncertainty heatmaps” of the Gaussian process
uncertainty, constitute the data set for our model. This preprocessing step not only smooths over irregular sampling
rates between filters but also allows SCONE to be independent of the filter set on which it was trained. Our model
has achieved impressive performance without redshift on the in-distribution SNIa classification problem:
99.73± 0.26% test accuracy with no over/underfitting on a subset of supernovae from PLAsTiCC’s unblinded test
data set. We have also achieved 98.18± 0.3% test accuracy performing six-way classification of supernovae by
type. The out-of-distribution performance does not fully match the in-distribution results, suggesting that the
detailed characteristics of the training sample in comparison to the test sample have a big impact on the
performance. We discuss the implication and directions for future work. All of the data processing and model code
developed for this paper can be found in the SCONE software package located at github.com/helenqu/scone.

Unified Astronomy Thesaurus concepts: Type Ia supernovae (1728); Classification (1907); Convolutional neural
networks (1938); Supernovae (1668); Gaussian Processes regression (1930)

1. Introduction

The discovery of the accelerating expansion of the universe
(Riess et al. 1998; Perlmutter et al. 1999) has led to an era of
sky surveys designed to probe the nature of dark energy. Type
Ia supernovae (SNe Ia) have been instrumental to this effort
due to their standard brightness and light-curve profiles.
Building a robust data set of SNe Ia across a wide range of
redshifts will allow for the construction of an accurate Hubble
diagram that will enrich our understanding of the expansion
history of the universe as well as place constraints on the dark
energy equation of state.

Modern-scale sky surveys, including SDSS, Pan-STARRS, and
the Dark Energy Survey, have identified thousands of supernovae
throughout their operational lifetimes (Frieman et al. 2008;
Chambers et al. 2016; Smith et al. 2020). However, it has been
logistically challenging to follow up on most of these detections
spectroscopically. The result is a low number of spectroscopically
confirmed SNe Ia and a large photometric data set of SNe Ia
candidates. The upcoming Rubin Observatory Legacy Survey of
Space and Time (LSST) is projected to discover 107 supernovae
(LSST Science Collaboration et al. 2009), with millions of
transient alerts each observing night. As spectroscopic resources
are not expected to scale with the size of these surveys, the ratio of
spectroscopically confirmed SNe to total detections will continue
to shrink. With only photometric data, distinguishing between
SNe Ia and other types can be difficult. A reliable photometric
SNe Ia classification algorithm will allow us to tap into the vast
potential of the photometric data set and pave the way for
confident classification and analysis of the ever-growing library of
transients from current and future sky surveys.

Significant progress has been made in the past decade in the
development of such an algorithm. Most approaches involve
light-curve template matching (Sako et al. 2011), feature

extraction paired with either sequential cuts (Bazin et al. 2011;
Campbell et al. 2013), or machine learning algorithms
(Lochner et al. 2016; Möller et al. 2016; Dai et al. 2018;
Boone 2019). Most recently, the spotlight has been on deep
learning techniques since it has been shown that classification
based on handcrafted features is not only more time intensive
for the researcher but is outperformed by neural networks
trained on raw data (Charnock & Moss 2017; Kimura et al.
2017; Moss 2018). Since then, many neural network
architectures have been explored for SN photometric classifica-
tion, such as PELICAN’s CNN architecture (Pasquet et al.
2019) and SuperNNova’s deep recurrent network (Möller & de
Boissière 2020).
Several photometric classification competitions have been

hosted, including the Supernova Photometric Classification
Challenge (Kessler et al. 2010) and the Photometric LSST
Astronomical Time Series Classification Challenge (PLAs-
TiCC; The PLAsTiCC team et al. 2018). These have not only
resulted in the development of new techniques, such as PSNID
(Sako et al. 2011) and Avocado (Boone 2019), but have also
provided representative data sets available to researchers during
and after the competition, such as the PLAsTiCC unblinded
data set used in this paper.
In this paper we present SCONE, a novel application of deep

learning to the photometric classification problem. SCONE is a
convolutional neural network (CNN), an architecture prized in
the deep learning community for its state-of-the-art image
recognition capabilities (LeCun et al. 1989, 1998; Krizhevsky
et al. 2012; Simonyan & Zisserman 2014; Zeiler &
Fergus 2014). Our model Requires raw photometric data only,
precluding the necessity for accurate redshift approximations.
The data set is preprocessed using a light-curve modeling
technique via Gaussian processes described in Boone (2019),
which alleviates the issue of irregular sampling between filters
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but also allows the CNN to learn from information in all filters
simultaneously. The model also has relatively low computa-
tional and data set size requirements without compromising on
performance—400 epochs of training on our ∼104 data set
requires around 15 minutes on a GPU.

We will introduce the data sets used to train and evaluate
SCONE its computational requirements, as well as the
algorithm itself in Section 2. Section 3 will focus on the
performance of SCONE on both binary and categorical
classification. Section 4 presents an analysis of misclassified
light curves and heatmaps for both modes of classification.

2. Methods

2.1. Data Sets

The PLAsTiCC training and test data sets were originally
created for the 2018 Photometric LSST Astronomical Time
Series Classification Challenge.

The PLAsTiCC training set includes ∼8000 simulated
observations of low-redshift, bright astronomical sources,
representing objects that are good candidates for spectroscopic
follow-up observation. This data set will be referred to in future
sections as the “spectroscopic data set.” We use this data set to
evaluate the out-of-distribution performance of SCONE in
Section 3.1.2.

The PLAsTiCC test set consists of 453 million simulated
observations of 3.5 million transient and variable sources,
representing 3 yr of expected LSST output (Kessler et al.
2019). The objects in this data set are generally fainter, higher
redshift, and do not have associated spectroscopy. Note that
most of the results presented in this paper are produced from
this data set alone and will be referred to as “the data set,” “the
main data set,” or “the PLAsTiCC data set” in future sections.

All observations in both data sets were made in
LSST’s ugrizY bands and realistic observing conditions were
simulated using the LSST Operations Simulator (Delgado &
Schumacher 2014). While PLAsTiCC includes data from many
other transient sources, we are using only the supernovae in the
data sets. We selected all of the type II, Iax, Ibc, Ia-91bg, Ia,
and SLSN-1 sources (corresponding to true_target values
of 42, 52, 62, 67, 90, and 95, respectively) from this data set
and chose only well-sampled light curves by restricting
ourselves to observations simulating LSST’s deep drilling
fields (ddf = 1). peak_mjd values, the modified Julian date
of peak flux for each object, were calculated for both the main
data set and the spectroscopic data set by taking the signal-to-
noise weighted average of all observation dates. peak_mjd is
referred to as tpeak in future sections. The total source count for
the spectroscopic set is 4556 and the total source count for the
main data set is 32,087. A detailed breakdown by type is
provided in Table 1.

The categorical data set was created using SNANA (Kessler
et al. 2009) with the same models and redshift distribution as
the main data set in order to perform categorical classification
with balanced classes. 2000 examples of each type were
randomly selected to constitute a class-balanced data set of
12,000 examples.

2.2. Quality Cuts

In order to ensure that the model is learning only from high-
quality information, we have instituted some additional quality-

based cuts on all data sets. These cuts are based on light-curve
quality, so all metrics are defined for a single source. The
metrics evaluated for these cuts are as follows:

1. Number of detection data points (ndetected): number of
observations where the source was detected. We chose a
detection threshold of S/N> 5, based on Figure 8 of
Kessler et al. (2015).

2. Cumulative signal-to-noise ratio (CS/N): cumulative
S/N for all points in the light curve

å
s

=
f

CSNR .
f

2

2

3. Duration: timespan of detection data points

= -t t t ,active last first

where f represents the flux measurements from all observations
of a given source, σf represents the corresponding uncertainties,
t represents the timestamps of all observations of a given
source, tfirst is the time of initial detection, and tlast is the time of
final detection. Our established quality thresholds require that:

1. ndetected� 5
2. CS/N> 10
3. tactive� 30 days

for light-curve points in the range tpeak− 50� t� tpeak+ 130.
1150 out of 4556 sources passed these cuts in the spectroscopic
data set and 12,611 out of 32,087 sources passed these cuts in
the main data set. The makeup of these data sets is detailed in
Table 2. The categorical data set was created from sources that
already passed the cuts, so the makeup is unchanged.

2.3. Class Balancing

Maintaining an equal number of examples of each class, or a
balanced class distribution, is important for machine learning
data sets. Balanced data sets allow for an intuitive interpretation

Table 1
Makeup of the PLAsTiCC Data Set by Type

SN Type Number of Sources

Spectroscopic Main

SNIa 2313 12,640
SNII 1193 15,986
SNIbc 484 2194
SNIa-91bg 208 362
SNIax 183 807
SLSN-1 175 98

Table 2
Makeup of the PLAsTiCC Data Set by Type After Applying Quality Cuts

SN Type Number of Sources

Spectroscopic Main

SNIa 654 6128
SNII 262 5252
SNIbc 97 779
SNIa-91bg 41 113
SNIax 59 281
SLSN-1 37 58

2
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of the accuracy metric as well as provide ample examples of
each class for the machine learning model to learn from.

As shown in Table 2, the natural distribution of the
spectroscopic data set is more abundant in Ia sources than
non-Ia sources. Thus, all non-Ia sources were retained in the
class balancing process for binary classification and an
equivalent number of Ia sources were randomly chosen. SNIax
and SNIa-91bg sources were labeled as non-Ia sources for
binary classification. The class-balanced spectroscopic data set
has 496 sources of each class for a total of 992 sources.

In contrast, the natural distribution of the main data set is
more abundant in non-Ia sources than Ia sources. Thus, all Ia
sources were retained in the class balancing process for binary
classification and an equivalent number of non-Ia sources were
randomly chosen. The random selection process does not
necessarily preserve the original distribution of non-Ia types.
The class-balanced data set has 6128 sources of each class for a
total of 12,256 sources.

The categorical data set of 2000 sources for each of the six
types was created explicitly for the purpose of retaining
balanced classes in categorical classification, as mentioned in
Section 2.1.

All data sets were split by class into 80% training, 10%
validation, and 10% testing. Splitting by class ensures balanced
classes in each of the training, validation, and test sets.

2.4. Heatmap Creation

Prior to training, we preprocess our light-curve data into
heatmap form. First, all observations are labeled with the
central wavelength of the observing filter according to Table 3,
which was calculated from the filter functions used by The
PLAsTiCC team et al. (2018). We then use the approach
described by Boone (2019) to apply two-dimensional Gaussian
process regression to the raw light-curve data to model the
event in the wavelength (λ) and time (t) dimensions. We use
the Matern 32 kernel with a fixed 6000Å characteristic length
scale in λ and fit for the length scale in t. Once the Gaussian
process model has been trained, we obtain its predictions on a
λ, t grid and call this our “heatmap.” Our choice for the λ, t
grid was tpeak−50� t� tpeak+ 130 with a one-day interval
and 3000< λ< 10,100 Å with a 221.875Å interval. The
significance of this choice is explored further in Section 3.

The result of this is a nλ× nt image-like matrix, where nλ
and nt are the lengths of the wavelengths array and times array,
respectively, given to the Gaussian process. We also take into
account the uncertainties on the Gaussian process predictions at
each time and wavelength, producing a second image-like
matrix. We stack these two matrices depthwise and divide by
the maximum flux value to constrain all entries to [0,1]. This
matrix is our input to the convolutional neural network.

Figure 1 shows the raw light-curve data in the tpeak− 50�
t� tpeak+ 130 range for each filter in blue, the Gaussian
process model in gray, and the resulting flux and uncertainty
heatmaps at the bottom. Figure 2 shows a representative
example of a heatmap for each supernova type.

2.5. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of
artificial neural network that makes use of the convolution
operation to learn local, small-scale structures in an image. This
is paired with an averaging or subsampling layer, often called a
pooling layer, that reduces the resolution of the image and
allows the subsequent convolutional layers to learn hierarchi-
cally more complex and less localized structures.
In a convolutional layer, each unit receives input from only a

small neighborhood of the input image. This use of a restricted
receptive field, or kernel size, resembles the neural architecture
of the animal visual cortex and allows for extraction of local,
elementary features such as edges, endpoints, or corners. All
units, each corresponding to a different small neighborhood of
the image, share the same set of learned weights. This allows
them to detect the presence of the same feature in each
neighborhood of the image. Each convolutional layer often has
several layers of these units, each of which is called a filter and
extracts a different feature. The output of a convolutional layer
is called a feature map.
Pooling layers reduce the local precision of a detected feature

by subsampling the each unit’s receptive field, often 2× 2 pixels,
based on some rule. Average pooling, for example, extracts the
average of the four pixels and max pooling extracts the maximum
value. Assuming no overlap in the receptive fields, the spatial
dimensions of the resulting feature maps will be reduced by half.
Dropout (Hinton et al. 2012) is a commonly used

regularization technique in fully-connected layers. A dropout
layer chooses a random user-defined percentage of the input
weights to set to zero, improving the robustness of the learning
process.
A convolutional neural network typically consists of

alternating convolutional layers and pooling layers, followed
by a series of fully-connected layers that learn a mapping
between the result of the convolutions and the desired output.

2.6. SCONE Architecture

The relatively simple architecture of SCONE, shown in
Figure 3, allows for a minimal number of trainable parameters,
speeding up the training process significantly without compro-
mising on performance. It has a total of 22,606 trainable
parameters for categorical classification and 22,441 trainable
parameters for binary classification when trained on heatmaps
of size 32× 180× 2 (h× w× d).
As mentioned in Section 2.4, each heatmap is divided by its

maximum flux value for normalization. After receiving the
normalized heatmap as input, the network pads the heatmap
with a column of zeros on both sides, bringing the heatmap size
to 32× 182× 2. Then, a convolutional layer is applied with h
filters and a kernel size of h× 3, which in this case is 32 filters
and a 32× 3 kernel, resulting in a feature map of size
1× 180× 32. We reshape this feature map to be 32× 180× 1,
apply batch normalization, and repeat the above process one
more time. We have now processed our heatmap through two

Table 3
Central Wavelength of Each Filter

Filter Central Wavelength (Å)

u 3670.69
g 4826.85
r 6223.24
i 7545.98
z 8590.90
Y 9710.28

3
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“convolutional blocks” with an output feature map of size
32× 180× 1.

We apply 2× 2 max pooling to our output, reducing its
dimensions to 16× 90× 1, and pass it through two more
convolutional blocks; but this time h= 16.

We pass our output through a final 2× 2 max pooling layer,
resulting in an 8× 45× 1 feature map. This is subsequently
flattened into a 360-element array and passed through a 50%

dropout layer. A 32-unit fully-connected layer followed by a
30% dropout layer feeds into the final layer. For binary
classification, this is a node with a sigmoid activation that
returns the model’s predicted Ia probability. For categorical
classification, the final layer contains six nodes with softmax
activations that return the respective probabilities of each of the
six SN types. Both of these versions of SCONE are shown in
Figure 3.

Figure 1. Raw ugrizY light-curve data with the Gaussian process model at corresponding wavelengths and resulting heatmap and error heatmap for a type Ia SN. The
shaded regions in the Gaussian process plots represent the Gaussian process error.

Figure 2. Example flux heatmaps for each supernova type.
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The model is trained with the binary cross-entropy loss function
for binary classification and the sparse categorical cross-entropy
loss function for categorical classification. Both classification
modes use the Adam optimizer (Kingma & Ba 2017) at a constant
1e-3 learning rate for 400 epochs.

2.7. Evaluation Metrics

Accuracy is defined as the number of correct predictions
divided by the number of total predictions. We also evaluated
the model on a number of other performance metrics: purity,
efficiency, and AUC.
Purity and efficiency are defined as:

=
+

=
+

purity
TP

TP FP
; efficiency

TP

TP FN

where TP is true positive, FP is false positive, and FN is false
negative.
AUC, or area under the receiver operating characteristic

(ROC) curve, is a common metric used to evaluate binary
classifiers. The ROC curve is created by plotting the false positive
rate against the true positive rate at various discrimination
thresholds, showing the sensitivity of the classifier to the chosen
threshold. A perfect classifier would score a 1.0 AUC value while
a random classifier would score a 0.5.

2.8. Computational Requirements

Due to the minimal number of trainable parameters and data-set
size, the time and hardware requirements for training and
evaluating with SCONE are relatively low. The first training
epoch on one NVIDIA V100 Volta GPU takes approximately 2
seconds, and subsequent training epochs take approximately 1
second each with TensorFlow’s data-set caching. Training epochs
on one Haswell node (with Intel Xeon Processor E5-2698 v3),
which has 32 cores, take approximately 26 seconds each.

3. Results

3.1. Binary Classification

Our model achieved 99.93± 0.06% training accuracy,
99.71± 0.2% validation accuracy, and 99.73± 0.26% test
accuracy on the Ia versus non-Ia binary classification problem
performed on the class-balanced data set of 12,256 sources.
Figure 4 shows the confusion matrices for binary classifica-

tion and Table 4 shows the model’s performance on all the
evaluation metrics described in Section 2.7. Both Figure 4 and
Table 4 were created with data from five independent training,
validation, and test runs of the classifier. Unless otherwise
noted, the default threshold for binary classification is 0.5,
where classifier confidence equal to or exceeding 0.5 counts as
an SNIa classification and vice versa. Altering this threshold
produces Figure 5, the ROC curve of one of these test runs.

3.1.1. Heatmap Dimensions

We explored the binary classification performance of different
heatmap dimensions in both the time (width) and wavelength
(height) axes. For our 7100Å wavelength range (3000Å<
λ< 10,100 Å), we chose intervals of 221.875Å, 443.8Å,
887.5Å, and 1775Å, resulting in heatmaps with 32, 16, 8, and
4 wavelength “bins”, respectively. For our 180 day range
(tpeak− 50� t� tpeak+ 130), we chose intervals of 1, 2, 6,
and 18 days, resulting in heatmaps with 180, 90, 30, and 10
time bins.
Figure 6 shows the training, validation, and test accuracies for

each choice of wavelength and time dimensions. Our classifier
seems relatively robust to these changes, showing minimal
performance impacts for wavelength bins �16 and impressive
performance for the smaller sizes as well. Test accuracy drops a

Figure 3. SCONE architecture for binary and categorical classification.
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maximum of 2.67% between the best- and worst-performing
variants, 32× 180 and 4× 10. This is noteworthy as the 32× 180
heatmaps contain 144 times the number of pixels of the 4× 10
heatmaps.

The performance seems to unilaterally improve as expected
as the number of wavelength bins increases, but increasing the
number of time bins seems to yield varying, though likely not
statistically significant, results.
We have reported all of our SCONE results using one of the

best performing variants, the 32× 180 heatmaps.

3.1.2. Out-of-distribution Results

Preliminary exploration into the out-of-distribution task of
training on the spectroscopic data set and testing on the main
data set yielded 80.6% test accuracy. The full results of training
on 85% of the spectroscopic data set, validating on the
remaining 15%, and testing on the full main data set are shown
in Table 5. Since the redshift distribution of the spectroscopic
data set is skewed toward lower redshifts, testing on class-
balanced low-redshift subsets of the main data set yielded 83%
test accuracy for z< 0.4 and 87% test accuracy for z< 0.3.
Boone (2019) introduced redshift augmentation to mitigate this
effect. The mismatch between the test and training sets,
however, comes in other forms. For example, if the training
data is generated using models rather than real data, differences
in the characteristics of the spectral surfaces can have an impact
on classification. The unknown relative rates of of each type of
event also affect the overall performance. Since out-of-
distribution robustness is an integral part of the challenge of
photometric SNe classification, improving the performance of
SCONE on these metrics will be the topic of a future paper.

Figure 4. Confusion matrix showing average and standard deviation over five
runs for binary classification on the test set.

Table 4
Evaluation Metrics for Ia versus Non-Ia Classification on Cut Data Set

Metric Training Validation Test

Accuracy 99.93 ± 0.06% 99.71 ± 0.2% 99.73 ± 0.26%
Purity 99.93 ± 0.06% 99.76 ± 0.25% 99.68 ± 0.35%
Efficiency 99.93 ± 0.05% 99.67 ± 0.23% 99.78 ± 0.22%
AUC 1.0 ± 4.1e−5 0.9991 ± 1.6e−3 0.9994 ± 1e−3

Figure 5. Semilog plot of the ROC curve for binary classification on the
test set.

Figure 6. Test set accuracies for each choice of wavelength and time bins.

Table 5
Evaluation Metrics for Out-of-distribution Ia versus Non-Ia Classification

Metric Training Validation Test

Accuracy 99.65 ± 0.36% 98.84 ± 1.1% 80.61 ± 1.75%
Purity 99.86 ± 0.31% 98.74 ± 1.31% 81.86 ± 2.22%
Efficiency 99.67 ± 0.46% 98.75 ± 1.27% 80.06 ± 1.31%
AUC 1.0 ± 8.9e−5 0.9939 ± 9.5e−3 0.8552 ± 1.4e−2
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3.2. Categorical Classification

In addition to binary classification, SCONE is able to perform
categorical classification and discriminate between different types
of SNe. We performed six-way categorical classification with the
same PLAsTiCC data set used for binary classification as well as
the class-balanced data set described in Section 2.1. Our model
differentiated between SN types Ia, II, Ibc, Iax, SN-91bg, and
SLSN-1. On the PLAsTiCC data set (not class balanced), it
achieved 99.26± 0.18% training accuracy, 99.13± 0.34% vali-
dation accuracy, and 99.18± 0.18% test accuracy. The confusion
matrices in Figure 8 show the average by-type breakdown for five
independent runs.

On the balanced data set, it achieved 97.8± 0.32% training
accuracy, 98.52± 0.28% validation accuracy, and 98.18± 0.3%
test accuracy. The confusion matrices in Figure 7 show the
average and standard deviations of the by-type breakdown for five
independent runs.

It is worth noting that we trained and tested with the
PLAsTiCC data set even though it is not class balanced for this
task to try to evaluate the model’s performance on a data set
emulating the relative frequencies of these events in nature.

4. Discussion

Analysis of misclassified heatmaps was performed for both
binary and class-balanced categorical classification. No clear
evidence of the effect of redshift on accuracy was found for either
mode of classification. The quantity of misclassified SNIa
examples per run is not sufficient for us to draw conclusions
about the accuracy evolution as a function of redshift.

4.1. Binary Classification

According to the data presented in Figure 4, the model seems
to mispredict about the same number of Ias as non-Ias. An
average of 3.33 Ia’s are mispredicted in the training set
compared with 3.5 non-Ias. For the validation set, two Ias are
mispredicted compared to 1.5 and 1.33 Ias and two non-Ias are
mislabeled for the test set.
The misclassified set summarized in Table 6 is the result of

one of the five runs represented by the data in Figure 4. In this
example, the model missed five examples total during testing—
1 SNIa, 2 SNII, and 1 SNIax. It was >90% confident about all
of these misclassifications, which is certainly not the case for
categorical classification. This could be due to the fact that
there are more examples of each type for binary classification
than categorical (∼6000 and 1200 per type for training).

4.2. Categorical Classification

The data in Figures 7 and 8 show some level of symmetry
between misclassifications. SNIax and SLSN-1 seem to be
easily distinguishable across the board, for example, with 0s in
all relevant cells in both figures except one. In Figure 7, SNIbc
and SLSN-1 are seemingly very similar, as they are misclassi-
fied as one another at similarly high rates.
There are notable differences between Figures 7 and 8,

however. In Figure 7, representing the classifier’s performance
on class-balanced categorical classification, the model mispredicts
SNIas as other types at a similar rate as non-Ias mispredicted as
Ias. An average of 3.2 Ias are mispredicted, whereas an average of
four non-Ias are misclassified as Ia. In the confusion matrix shown

Figure 7. Confusion matrix showing average and standard deviation over five
runs for categorical classification on the balanced test set.

Table 6
Misclassified Test set Heatmaps by True and Predicted Type for Binary Classification

True Type Predicted Type >90% Confidence 90%–70% Confidence 70%–50% Confidence Total Percentage

SNIa non-Ia 1 0 0 1 25%
SNII SNIa 2 0 0 2 50%
SNIax 1 0 0 1 25%

Figure 8. Confusion matrix showing average and standard deviation over five
runs for categorical classification on the PLAsTiCC (imbalanced) test set.
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in Figure 8, significantly more non-Ias were mispredicted as Ia.
An average of one Ia was mispredicted compared to an average of
4.2 non-Ias misclassified as Ia. The rate of SNIbcs mispredicted as
SLSN-1 is also significantly lower for the PLAsTiCC data set than
for the balanced data set. These observations further reinforce the
impact of imbalanced classes in classification tasks.

The misclassified set summarized in Table 7 is the result of
one of the five class-balanced categorical classification runs
represented by the data in Figure 7.

One point of interest is the lack of symmetry between
misclassifications, in contrast with the analysis of Figures 7 and
8. This is clear in the significantly larger number of SLSN-1
misclassified as SNIbc (7) compared with the number of SNIbc
misclassified as SLSN-1 (1). SNIax is also more often
misclassified as other types (three as SNIa, three as SNIbc,
and one as SNIa-91bg) than non-Iax misclassified as Iax (one
SNIa and one SNIbc). The more symmetric Figure 7 suggests
that the asymmetry of this table is due to randomness and
would be corrected with data from other runs.

The distribution of misclassified examples across the
confidence spectrum is nonuniform. In this table, confidence
refers to the probability assigned to the predicted type by the
classifier. Confidence near 100% for a misclassified example is
potentially more insightful than one near 50%. Nine out of the
21 misclassified heatmaps were misclassified at >90%
confidence, six at 90%−70% confidence, and six at 70%–

50%. Surprisingly, the classifier is confidently wrong almost
half the time. One particularly interesting example is a SNIbc
“misclassified” as SLSN-1, but the classification probabilities
for both SLSN-1 and SNIbc were 50%.

4.3. Limitations and Future Work

As stated in Section 2.1, it is important to note that the
metrics reported in this paper are in-distribution results since
the training, validation, and test sets are mutually exclusive
segments of the main data set. The out-of-distribution
performance of SCONE, as evaluated in Section 3.1.2, is
noticeably diminished from the >99% in-distribution test
accuracy. The high in-distribution test accuracy shows that
SCONE is robust to previously unseen data, but the lower out-
of-distribution test accuracy demonstrates SCONE’s sensitivity
to variations in the parameters of the data set, such as the
redshift distribution, relative rates of different types of SNe,
small variations in the SN Ia model, as well as telescope
characteristics. Generalizing SCONE to become robust to these
variations will be the subject of a future paper.

5. Conclusions

In this paper we have presented SCONE, a novel application
of deep learning to the photometric supernova classification
problem. We have shown that SCONE has achieved unprece-
dented performance on the in-distribution Ia versus non-Ia
classification problem and impressive performance on classify-
ing SNe by type without the need for accurate redshift
approximations or handcrafted features.
Using the wavelength-time flux and error heatmaps from the

Gaussian process for image recognition also allows the
convolutional neural network to learn about the development
of the supernova over time in all filter bands simultaneously.
This provides the network with far more information than a
photograph taken at one moment in time. Our choice of an
h× 3 convolutional kernel, where h is the number of
wavelength bins, supplements these benefits by allowing the
network to learn from data on the full spectrum of wavelengths
in a sliding window of three days.
As future large-scale sky surveys continue to add to our

ever-expanding transients library, we will need an accurate and
computationally inexpensive photometric classification algo-
rithm. Such a model can inform the best choice for allocation of
our limited spectroscopic resources as well as allow researchers
to further cosmological science using minimally contaminated
SNIa data sets. SCONE can be trained on tens of thousands of
light curves in minutes and confidently classify thousands of
light curves every second at >99% accuracy.
Although SCONE was formulated with supernovae in mind, it

can easily be applied to classification problems with other
transient sources. The documented source code has been released
on Github (github.com/helenqu/scone) to ensure reproducibility
and encourage the discovery of new applications.

The authors would like to thank Rick Kessler for the help with
SNANA simulations and Michael Xie for guidance on the model
architecture. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231. This work was supported by DOE
grant DE-FOA-0001781 and NASA grant NNH15ZDA001N-
WFIRST.
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Table 7
Misclassified Test set Heatmaps by True and Predicted Type for Categorical Class-balanced Classification

True Type Predicted Type >90% Confidence 90%–70% Confidence 70%–50% Confidence Total Percentage

SNIa SNIax 1 0 0 1 4.8%
SNII SNIa 1 0 0 1 4.8%

SNIbc 0 0 1 1 4.8%
SNIbc SNIa 0 0 1 1 4.8%

SNIax 1 0 0 1 4.8%
SLSN-1 0 0 1 1 4.8%

SNIax SNIa 1 2 0 3 14.3%
SNIbc 1 2 0 3 14.3%

SNIa-91bg 1 0 0 1 4.9%
SLSN-1 SNIbc 3 1 3 7 33.3%
SNIa-91bg SNIbc 0 1 0 1 4.8%
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