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Abstract

Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based
Bayesian algorithms (e.g., Markov Chain Monte Carlo, MCMC) is challenged on two fronts: the high
computational cost of likelihood evaluations with microlensing simulation codes, and a pathological parameter
space where the negative-log-likelihood surface can contain a multitude of local minima that are narrow and deep.
Analysis of 2L1S events usually involves grid searches over some parameters to locate approximate solutions as a
prerequisite to posterior sampling, an expensive process that often requires human-in-the-loop domain expertise.
As the next-generation, space-based microlensing survey with the Roman Space Telescope is expected to yield
thousands of binary microlensing events, a new fast and automated method is desirable. Here, we present a
likelihood-free inference approach named amortized neural posterior estimation, where a neural density estimator
(NDE) learns a surrogate posterior q xp̂ ( ∣ ) as an observation-parameterized conditional probability distribution,
from pre-computed simulations over the full prior space. Trained on 291,012 simulated Roman-like 2L1S
simulations, the NDE produces accurate and precise posteriors within seconds for any observation within the prior
support without requiring a domain expert in the loop, thus allowing for real-time and automated inference. We
show that the NDE also captures expected posterior degeneracies. The NDE posterior could then be refined into the
exact posterior with a downstream MCMC sampler with minimal burn-in steps.

Unified Astronomy Thesaurus concepts: Binary lens microlensing (2136); Gravitational microlensing exoplanet
detection (2147)

1. Introduction

When the apparent trajectory of a foreground lens star passes
close to a more distant source star, the gravitational field of the
lens will perturb the light rays from the source, which results in
a time-variable magnification. Such are single-lens, single-
source (1L1S) microlensing events. Binary microlensing events
occur when the lens is a system of two masses: either a binary
star system or a star–planet configuration. Observation of such
events provides a unique opportunity for exoplanet discovery
as the planet-to-star mass ratio may be inferred from the light
curve without having to detect light from the star–planet lens
itself (see Gaudi 2010 for a review). A next-generation
microlensing survey with the Roman Space Telescope (Spergel
et al. 2015; hereafter Roman) is estimated to discover
thousands of binary microlensing events over the 5 yr mission
span, many with planetary-mass companions (Penny et al.
2019), which is roughly an order of magnitude more than
events previously discovered (see Gaudi 2012 for a review).

While single-lens microlensing events are described by a
simple analytic expression (“Paczyński light curve”), binary
microlensing events require numerical forward models that are
computationally expensive. In addition, binary microlensing
light curves exhibit extraordinary phenomenological diversity,
owing to the different geometrical configurations for which
magnification could take place. This translates to a parameter
space for which the likelihood surface suffers from a multitude
of local minima that are disconnected, narrow, and deep; this
issue significantly hampers any attempt of direct sampling-
based inference such as MCMC where the chains are initialized

from a broad prior. As a result, binary microlensing events thus
far have generally been analyzed on a case-by-case basis.
For some planetary-mass-ratio events, heuristics could be

used to “read off” an approximate solution from the planetary
anomaly in the light curve (Gould & Loeb 1992; Gaudi &
Gould 1997). Khakpash et al. (2019) applied the heuristics
described in Gaudi & Gould (1997) on simulated Roman light
curves and found that the projected binary separation can be
recovered very well for low-mass-ratio events, and the binary
mass-ratios within an order of magnitude for events with wide
and close caustic topologies.
More generally, an expensive grid search is usually

conducted over a subset of parameters to which the magnifica-
tion pattern is hyper-sensitive: i.e., binary separation, mass
ratio, and the source trajectory angle of approach (e.g., Herrera-
Martín et al. 2020). At each grid-point, the remaining
parameters are searched for with simple Nelder–Mead optim-
ization (Nelder & Mead 1965) or MCMC. The fixed-grid
solutions are then used to seed full MCMC samplings to refine
solutions and sample the posteriors. This status quo approach,
which is both computationally expensive and requires domain
expertise in the loop, thus presents a great challenge to analyze
the thousands of binary microlensing events expected to be
discovered by Roman.
Recent progress in deep learning provides a promising path

for a solution. In particular, both Convolutional (CNN; LeCun
et al. 2015) and Recurrent Neural Networks (RNN; Hochreiter
& Schmidhuber 1997; Cho et al. 2014) have emerged as
powerful alternatives to feature engineering of astronomical
time-series (e.g., Naul et al. 2018). Given sufficient training
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data, CNN/RNNs could learn to compress the “high-dimen-
sional” raw observations into “low-dimensional” feature vectors
—automatically learning to produce features that are useful for
downstream tasks such as classification or regression. Vermaak
(2003) applied a more basic form of the neural network—the
multilayer perceptron (MLP)—to predict 2L1S parameters on
simulated noise-free light curves, and achieved a success rate of
68% when the MLP results were further refined with Nelder–
Mead optimization (Nelder & Mead 1965). However, there
remains a large gap between the proof-of-concept work of
Vermaak (2003) and application to real data due to the omission
of noise and restrictions in parameter space. Additionally,
machine learning has also been previously applied to discover
and classify microlensing events (Wyrzykowski et al. 2015;
Godines et al. 2019; Mróz 2020).

In addition to advances in this “representation learning,”
neural networks have also enjoyed significant progress in
modeling probability distributions, otherwise known as neural
density estimation (NDE), where the fundamental task is to
learn distributions from samples of that distribution. Both
autoregressive models (Germain et al. 2015; Oord et al. 2016)
and flow-based models (Dinh et al. 2017; Papamakarios et al.
2017) are NDEs that are highly capable of modeling
complicated and multimodal distributions, which can not only
evaluate probability densities, but also sample from that
distribution. NDEs thus allow for flexible uncertainty quanti-
fication and degenerate solutions, which were not possible in
Vermaak (2003).

The advancement in feature learning and NDE has allowed
for accelerated progress in the field of likelihood-free inference
(LFI), also known as simulation-based inference, which has
been motivated by inference problems without a tractable
likelihood. LFI is an umbrella term that encompasses a wide
range of inference algorithms that do not require explicit
evaluation of the likelihood. Under our particular LFI approach
called amortized neural posterior estimation, an NDE learns a
surrogate posterior as an observation-parameterized conditional
probability distribution, from precomputed simulations over the
full prior space of interest. A “featurizer” neural network is
employed to compress raw observation into a feature vector
that parameterizes the NDE. Inference is amortized in that all of
the computation cost of simulation is paid upfront—likelihood
evaluation with the slow forward simulator is no longer
required, thus allowing for fast inference. For other neural LFI
instances, neural networks could learn the likelihood (Papa-
makarios et al. 2019) or the likelihood-ratio (Thomas et al.
2020) as surrogates to accelerate sampling-based inference
algorithms like MCMC (see Cranmer et al. 2020 for an
overview).

In this paper, we present an LFI approach for binary
microlensing where an NDE learns a surrogate posterior q xp̂ ( ∣ )
as an observation-parameterized conditional distribution from
(xi, θi) samples of simulated microlensing light curves (xi) with
the associated microlensing parameters (θi). After training, the
NDE can automatically generate posterior samples for future
observations effectively in real-time. Because of the speed and
performance without supervision by domain experts, the approach
we introduce here has great potential for batch inference tasks
such as those posed by Roman. Our preliminary results were
reported as an extended abstract in Zhang et al. (2020). The work
herein supersedes and expands upon that work.

We first lay out our inference framework in Section 2.
Training set construction under the context of Roman is
discussed in Section 3. In Section 4, we demonstrate the ability
of the NDE to capture degenerate solutions and also present a
systematic evaluation of the NDE performance over a large
number of test events. In Section 5, we suggest future
directions including a potential addition of a downstream
MCMC algorithm to refine the NDE posterior into the exact
posterior, with minimal additional computation time.

2. Method

NDEs are neural networks that are capable of learning
distributions from samples. We train an NDE to learn a
surrogate posterior q xp̂ ( ∣ ) as an observation-parameterized
conditional distribution from (xi, θi) samples of simulated
microlensing light curves, where θi are the physical parameters
and Î xi N is the light curve with N data points. The training
objective is to minimize the Kullback–Leibler (KL) divergence
(DKL), or relative entropy, which is a measure of how one
probability distribution (Q) is different from a reference
probability distribution (P):
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In this case, we would like to train a neural network that
minimizes the KL divergence from the NDE surrogate
posterior q xp̂ ( ∣ ) to the true posterior p(θ|x):
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where f represent parameters of the neural network, and 
denotes the mathematical expectation over the specified
distribution.
In light of Equation (2), the NDE is therefore trained through

maximum likelihood estimation (MLE) on a training set with
physical parameters drawn from the prior p(θ) and light curves
drawn from the likelihood function, which is the Poisson
measurement noise model on top of the noise-free microlensing
light curve g(θ) (in the number of photons) which, for
simplicity, is assumed to be in the Gaussian limit:

q q qm s= = =xp g g, . 3( ∣ ) ( ( ) ( ) ) ( )
The noise-free light curve, in turn, is determined by the

baseline source flux (Fsource), the magnification time-series
produced by the microlensing physical forward model A(θ),
and the constant blend flux, which is the flux from the lens star
and any other star that is unresolved from the source star:

q q= +g A F F . 4source blend( ) ( ) · ( )
We use a 20-block Masked Autoregressive Flow (MAF;

Papamakarios et al. 2017) to model q xp̂ ( ∣ ), and a ResNet-GRU
network to extract features (h) from the light curve (x). In the
following discussion, we do not distinguish between q xp̂ ( ∣ )
and q hp̂ ( ∣ ) where the former is meant to refer to the “featurizer
+NDE” model and the latter is meant to refer to the NDE
model alone that is explicitly conditioned on h. Figure 1
presents a diagram of our neural posterior estimation frame-
work. The ResNet-GRU network is comprised of an 16-layer
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1D ResNet (Residual Convolutional Network; He et al. 2016)
and a two-layer GRU (Gated Recurrent Network; Cho et al.
2014). We describe the neural networks in detail below.

2.1. Masked Autoregressive Flow

The MAF belongs to a class of NDE called normalizing
flows, which models the conditional distribution q xp̂ ( ∣ ) as an
invertible transformation f from a base distribution p zz ( ) to the
target distribution q xp̂ ( ∣ ). The base density p zu ( ) is required to
be fast to evaluate and is typically chosen to be either a
standard Gaussian or a mixture of Gaussians for the MAF. The
basic idea is that if the MAF, conditioned on the observation x,
could learn to map the posterior to a standard Gaussian, then
the inverse transformation could enable sampling of the
posterior by simply sampling from that standard Gaussian.

As binary microlensing events often exhibit degenerate,
multimodal solutions, we use a mixture of eight standard
multivariate Gaussians, each with eight dimensions, as the base
distribution. The posterior probability density q xp̂ ( ∣ ) is
evaluated by applying the inverse transformation f−1 from θ
to z:

q q
q

p=
¶
¶

-
-

xp f
f

det , 5z
1

1
⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ∣ ) ( ( )) ( )

where qp -fz
1( ( )) represents the probability density for the base

distribution (πz) evaluated at q-f 1 ( ), while the second term—

the determinant of the Jacobian—corresponds to the “compres-
sion” of probability space.

The MAF is built upon blocks of affine transformations
where the scaling and shifting factors for each dimension are
computed with a Masked Autoencoder for Distribution
Estimation (MADE; Germain et al. 2015). For a simple
one-block case, the inverse transformation from θ to z is

expressed as:

q m a= - -z exp , 6i i i i( ) · ( ) ( )

In the above equation,

qm = m - xf ; 7i i1: 1
i
( ) ( )

qa = a - xf ; 8i i1: 1i
( ) ( )

are the scaling and shifting factors modeled by MADE subject
to the autoregressive condition that the transformation of any
dimension can only depend on those prior to it according to a
predetermined ordering. This allows the Jacobian of f −1 to
be triangular, whose absolute determinant can be easily
calculated as:

åq
a

¶
¶

= -
-f

det exp , 9
i i

1
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

where qa = a - xf ;i i1: 1i
( ).

To sample from the posterior, the forward transformation
θ= f (z), where z∼ πz, is applied:

q a m= +z exp . 10i i i i· ( )

In the above equation, μi and αi are computed in the same
manner as the inverse transformation.
The MAF is built by stacking many such affine transforma-

tion blocks, M1, M2, K, MK, where MK models the
invertible transformation fK between the posterior (zK) and
intermediate random variable zK−1, MK−1 models that between
intermediate random variables zK−1 and zK−2 and so on, and
finally the base random variable z0 is modeled with the
mixture-of-Gaussian distribution. M1 also computes the
mixture weights. The composite transformation can be written

Figure 1. Schematic illustration of the inference framework based on conditional NDE. The bottom left shows a microlensing light curve in arbitrary units, which is
abstracted into the length-7200 vector (x) above. The featurizer composed of a combination of ResNet and GRU, shown in the trapezoid, compresses the light curve
into a low-dimensional feature vector h. The masked autoregressive flow (MAF), composed of K blocks of masked autoencoder for density estimation (MADE), is
shown in the dashed box. Each MADE block takes in the feature vector h and predicts scaling (α) and shifting (μ) factors, which parameterizes an invertible affine
transformation between adjacent random variables (e.g., z0 and z1) shown in the dotted box. The leftmost random variable is the mixture-of-Gaussian base distribution
whereas the rightmost random variable (zK) is the posterior (θ).
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as f= f1◦f2◦K◦fK and the posterior probability density is now:
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where it is understood that zK defined to be θ. The log-
probability of the posterior is then, by Equation (9),
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where aj
i is the jth component of the scale factor in Mi, as in

Equation (6). This serves as the optimization objective (see
Section 3.3).

Autoregressive models are sensitive to the order of the
variables. The original MAF paper uses the default order for
the autoregressive layer closest to θ and reverses the order for
each successive layer. In this work, we adopt fixed random
orderings for each MAF block, which we find to allow for
better expressibility. The random seed of the ordering serves as
a hyperparameter to be optimized on.

2.2. Featurizer Network

A custom 1D ResNet with a downstream two-layer GRU is
used as the light curve featurizer, which takes preprocessed
light curves (x) as input and outputs a low-dimensional feature
vector (h). The ResNet used in this study shares the identical
architecture as Zhang & Bloom (2020; except for hyperpara-
meters) and consists of eight identical residual blocks, each of
which is composed of two convolutions followed by layer
normalization (Ba et al. 2016). A residual connection is added
between each adjacent residual block, which acts as a “gradient
highway” to assist network optimization. A MaxPool layer is
applied in between every two ResNet layers, where the
sequence length is reduced by half and the feature dimension
is doubled until a specified maximum. This results in an output
feature map of length L= 56 and dimension D= 256 that is
then fed into the GRU network which sequentially processes
information across the temporal dimension and outputs a single
vector of D= 256, which then serves as the conditional input to
the MAF.

3. Data

Training data is generated within the context of the Roman
Space Telescope Cycle-7 design (see Penny et al. 2019). We first
simulate 106 2L1S magnification sequences with the microlensing
code MulensModel (Poleski & Yee 2019); each sequence
contains 144 days at a cadence of 0.01 days corresponding to the
planned Roman cadence of 15 minutes (Penny et al. 2019). These
sequences are chosen to have twice the length of the 72-day
Roman observation window to facilitate sampling from a
t0∼Uniform (0, 72) prior (see Section 3.1). We then fit each
simulated magnification time-series with a Paczyński 1L1S model
(assuming S/Nbase= 200 and fs= 1; see Section 3.2) and discard
those that are consistent with 1L1S (χ2/dof< 1). This results in a
final data set of 291,012 light curves, among which 95% (276,461)
are used as a training set and the remaining 5% (14,551) as a
test set.

3.1. Prior

Assuming rectilinear relative motion of the observer, lens,
and source, binary microlensing (2L1S) events are character-
ized by eight parameters: binary lens separation (s), mass ratio
(q), angle of the source trajectory with respect to the projected
binary lens axis (α), impact parameter (u0), time of closest
approach (t0), Einstein ring crossing timescale (tE), finite source
size (ρ), and source flux fraction ( fs). α is the angle between the
vector pointing from the primary to the secondary and the
source trajectory vector, measured counterclockwise in
degrees. u0 and t0 are defined with respect to the binary lens
center of mass (COM). Where applicable, the parameters are
normalized to the Einstein ring length-scale or the Einstein ring
crossing timescale of the total mass of the lens system. t0 and tE
are in units of days. We simulate 2L1S events based on the
following analytic priors:

a
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We note that because of the c <dof 11L1S
2 cutoff, the

effective prior is the parameter distribution for the 276,461
training set simulations, different from the prior above. As
shown in Figure 2, large qlog and small u0, which otherwise
have flat priors, are strongly preferred.
During training, a random 72-day segment is chosen on the

fly from each 144-day magnification sequence, equivalent to
prescribing a uniform prior on t0. The truncated normal
distribution for tE is an approximation of a statistical analysis
based on OGLE-IV data (Mróz et al. 2017). The lower limit of
q= 10−6 corresponds to the mass ratio between Mercury and a
low-mass (M∼ 0.1Me) M-dwarf star, highlighting the superb
sensitivity of Roman. The source flux fraction is defined as the

Figure 2. Fraction of the 106 simulations passing the c <dof 11L1S
2 / cutoff as a

function of each parameter, shown in the gray histograms. The original analytic
priors used to generate the 106 simulations are shown in red dashed lines up to
a normalization factor. For parameters with a flat original prior, the gray
histogram is also the effective training set prior up to a normalization factor.
The t0 and fs distributions follow the original priors as they are sampled on the
fly during training.
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ratio between the source flux and the total baseline flux

=
+

f
F

F F
. 14s

source

source blend
( )

3.2. Light-curve Realization

The magnification sequences are converted into light curves
during training on the fly by multiplying with the baseline
premagnification source flux before adding the constant blend
flux and applying measurement noise. For simplicity, we only
consider photon-counting noise from the lens and fixed blend
flux, assumed to be in the Gaussian limit of the Poisson noise
(Equation (3)), where the standard deviation of each photo-
metric measurement is the square root of the flux measurement
in photon counts. Studies of the bulge star population show that
the apparent magnitude largely lies within the range of 20–25
mag (Penny et al. 2019: Figure 5). The Roman/WFIRST Cycle
7 design has the zero-point magnitude (1 count s−1) at 27.615
mag for the W149 filter. With an exposure time at 46.8 s, the
aforementioned magnitude range corresponds to signal-to-noise
ratios (S/Nbase) between 230 and 23 for the baseline flux,
which we randomly and uniformly sample during training. On-
the-fly sampling of S/Nbase and fs also serves as data
augmentation, which refers to the process of expanding the
effective size of the training set.

3.3. Preprocessing and Training

Network optimization is performed with ADAM (Kingma &
Ba 2015) at an initial learning rate of 0.001 and batch size 512,
which decays to 0 according to a cosine annealing schedule
(Loshchilov & Hutter 2017) for 250 epochs, at which point the
training terminates. To ensure that there is no overfitting, we
first reserved 20% of the training set as a validation set. After
confirming the absence of overfitting, we then proceed with the
full training set. We apply data augmentation on α by changing
the direction of the source trajectory: the temporal order of each
sequence is reverted and α becomes a- + 180 mod 360( ) .
Each training epoch takes ∼6 minutes on four NVidia GTX
2080 Ti GPUs with a total training time of around 25 hours. As
an evaluation metric, the final average negative log-likelihood
(NLL) is −16.316 on the training set and −16.177 on the test
set, where a lower value represents a better model fit to
the data.

4. Results

The trained model is able to generate accurate and precise
posterior samples at a rate of 105 per second on one GPU,
effectively in real-time. This is much faster compared to the
∼1 per second simulation speed of the forward model
MulensModel on one CPU core. In this section, we first
highlight the ability of the NDE to capture multimodal
solutions by providing NDE posteriors of representative events
where we set the baseline S/Nbase= 200. Then, the quality of
NDE posteriors is systematically analyzed by examining the
accuracy and calibration properties on a test set of 14,511
simulated light curves.

4.1. Central-caustic Passing Event

Figure 3(a) shows the NDE posterior for an example central-
caustic passing event where a classic “close-wide” degeneracy is
clearly exhibited by the s-1/s behavior (Griest & Safizadeh 1998;

Dominik 1999). Table 1 presents the ground truth 2L1S
parameters of this event as well as the “close” and “wide”
solutions, calculated as the modes of their respective distributions.
The fact that fs is slightly underestimated is related to a systematic
effect as discussed in Section 4.4. Although the source is expected
to pass the caustic center at the same distances for the two cases,
Figure 3(a) shows a bimodal solution for u0 as well because u0 has
been defined with respect to the COM, rather than the caustic
center. While the caustic center is centered on the COM for close-
separation events, for wide-separation events there is an offset
from the COM of

d =
+

-
+

s q

q

q

s q1 1
, 15

·
· ( )

( )

where the first term accounts for the offset of the primary from the
COM, and the second term for the offset of the caustic center from
the location of the primary star (Han 2008). Negative offset is
directed toward the companion and vice versa. Plugging in the
wide solution, we expect an offset of Δu0= 0.0101, which is
close to the actual Δu0= 0.0099 of the NDE posterior solutions.
Magnification curves of the two solutions, as well as the ground
truth are plotted in Figure 3(b), which are hardly distinguishable
from one another. Figure 3(c) shows the caustic structures of the
two degenerate solutions.

4.2. Resonant-caustic Passing Event

We also highlight an example of a resonant-caustic passing
event, whose parameters and solutions are shown in Table 2. As
illustrated in Figure 4, the NDE finds an additional solution at

Table 1
Solutions for the Example Central-caustic Passing Event

Truth Close Wide

slog10( ) −0.200 - -
+0.1923 0.0036

0.0034
-
+0.2301 0.0040

0.0049

qlog10( ) −2.000 - -
+2.0252 0.0147

0.0144 - -
+1.9761 0.0155

0.0177

α 300.000 -
+299.8524 0.2658

0.2457
-
+299.5919 0.3139

0.2469

u0 0.050 -
+0.0505 0.0002

0.0002
-
+0.0403 0.0010

0.0007

t0 26.000 -
+26.0027 0.0063

0.0051
-
+26.1054 0.0075

0.0131

tlog E10( ) 1.301 -
+1.2993 0.0008

0.0007
-
+1.3020 0.0009

0.0010

rlog10( ) −2.301 - -
+-2.2075 0.1133

0.0044 - -
+2.3421 0.0210

0.0737

fs 0.120 -
+0.1211 0.0003

0.0003
-
+0.1214 0.0003

0.0004

Note. tE and t0 are in units of days, α is in units of degrees, and u0, s, and are ρ
in units of θE. Uncertainties are 1σ marginal uncertainties.

Table 2
Solutions for the Example Resonant-caustic Passing Event

Truth Close Resonant

slog10( ) 0.000 - -
+0.0484 0.0006

0.0017
-
+0.0018 0.0003

0.0010

qlog10( ) −3.301 - -
+3.3008 0.0201

0.0098 - -
+3.2858 0.0121

0.0194

α 110.000 -
+109.7839 0.1526

0.2044
-
+109.9666 0.2093

0.1657

u0 0.100 -
+0.1004 0.0003

0.0003
-
+0.1003 0.0003

0.0003

t0 26.000 -
+25.9980 0.0064

0.0048
-
+26.0014 0.0062

0.0047

tlog E10( ) 1.301 -
+1.3012 0.0008

0.0007
-
+1.3012 0.0007

0.0008

rlog10( ) −2.301 - -
+2.5335 0.2505

0.0492 - -
+-2.5325 0.4117

0.0041

fs 0.200 -
+0.1996 0.0005

0.0006
-
+0.1995 0.0005

0.0006

Note. Same units as Table 1. Uncertainties are 1σ marginal uncertainties.

5

The Astronomical Journal, 161:262 (11pp), 2021 June Zhang et al.



s< 1, whose triangular caustics are causing a similar weak
demagnification as the resonant caustics (also see Figure 7 in
Gaudi 2010). This type of degeneracy has been previously
observed in the microlensing event OGLE-2018-BLG-0677Lb
(Herrera-Martín et al. 2020). Additionally, strong covariances are
seen among u0, tE, and fs, as are also seen in the previous example
(Section 4.1). As first observed byWoźniak & Paczyński (1997), in
the fs= 1 and u0= 1 regime where the baseline flux is dominated

by the blend flux, there is strong degeneracy between the three
parameters for 1L1S events. While the binary perturbations break
some of that degeneracy, strong covariances remain.

4.3. Binary-planetary Degeneracy

We also provide a fascinating five-fold-degenerate example that
is similar to the degeneracy reported in Choi et al. (2012) where a

Figure 3. (a) NDE posterior for a central-caustic passing event. tE and t0 are in units of days, α is in units of degrees, and u0, s, and ρ are in units of θE. Filled contours
show 1/2/3σ regions. The ground truth close solution is marked with orange cross-hairs. The close and wide solutions are marked with a red cross and a blue
diamond, respectively. (b) Close-up view of the light-curve realizations normalized to the minimum fluxes for both solutions, in the same color-coding as the left
panel. The 0.01 day cadence and measurement noise is negligibly small on the scale of the figure, and therefore not shown. (c) Caustic structures as well as trajectories
for the two solutions in the same color-coding, centered on the center of caustic.
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light curve that is blunt and flat near the peak can be explained by
either a binary case or a planetary case. Here, we simulate a close-
topology, planetary-mass ratio (q= 10−1.7) event where the
source trajectory passes through the negative perturbation region
toward the back end of the arrowhead-shaped central caustic as in
the case of the “planetary A/B” caustic in Figure 5. Choi et al.
(2012) noted that a similar perturbation can occur for the binary
case when the source trajectory passes through the negative
perturbation region between two adjacent cusps of the astroid-
shaped central caustic, as in case of the “binary A/B/C” caustics
in Figure 5; also see Figure 1 in their paper.

As shown in Figure 5, all five degenerate solutions cause
magnification patterns that are hardly distinguishable. The
solutions are provided in Table 3. The two planetary solutions
exhibit a close-wide degeneracy. For the three binary solutions,
the “binary B/C” solutions suggest two possible trajectories
(∼ 90/270 deg) for the same lens system configuration whereas
the “binary A” solution exhibits a smaller mass ratio and a wider
binary separation than “binary B/C.” We note that this additional
degeneracy in the mass ratio for the binary case was not reported
in Choi et al. (2012). It is not clear if this is a discrete or
continuous degeneracy, if it is an “accidental degeneracy” that
arises because of the relatively weak perturbation, or if it is due to
some underlying symmetry in the binary lens equation (e.g.,
Dominik 1999).

On the other hand, wide solutions for the binary case are largely
absent from the NDE posterior, apart from an inkling of density
near ~slog 0.6910( ) , which points to the expected close-wide
degeneracy for the binary solution. We note that the reason
those degenerate solutions are excluded is that, because of the
offset between the COM and the central caustic (Equation (15)),
wide-binary solutions would require t0< 0, which has a prior
probability of zero.

4.4. Evaluating Performance

We present a systematic evaluation of all 14,551 test set events
in the form of predicted versus true scatter plots (Figure 6). Each
test event light curve is realized in the same fashion as training
time. As the NDE returns potentially multimodal posteriors of
arbitrary shape, we compute the mode(s) for the marginal 1D
distributions of the posterior and consider the mode closest to the
ground truth as the “predicted” value. The mode(s) is/are
computed by first fitting each with a 1D histogram of 100 bins
and then searching for local maxima defined as any bin count
higher than that of the 20 adjacent bins. This limits the number of
modes to 5. Considering the purpose of the NDE posterior is to
allow ultra-fast convergence of a downstream sampling-based
algorithm like MCMC to determine the exact posterior, as long as
the correct solution has substantial density in the NDE posterior, it
should not raise alarm if an alternative mode is mistakenly favored.
Any degeneracies can be easily resolved downstream. Therefore, it
is sensible to allow the correct mode to be used as the predicted
value, even if another degenerate mode is incorrectly preferred.

As shown in the upper left corner of each subplot in
Figure 6, all parameters are constrained at a rate of close to
100% except for the finite source effect for which only 14.2%
is constrained, as the source trajectory is required to either cross
or pass close to a caustic for ρ to be determined.5 We consider a

parameter to be constrained if the probability density of the 1D
marginal distribution is more than twice the prior probability
density at the global mode.
The second row in each upper left corner shows the

frequency for which the correct mode is preferred by NDE, that
is, the ground truth is the closest to the major mode compared
to the minor modes(s), if any. If the ground truth is closer to a
minor mode, the major mode is plotted in blue while the major
mode is shown in orange. We see clear degeneracy patterns in

slog10( ) and α. For slog10( ), the “wide-close” degeneracy is
exhibited by the cluster around the upper left to lower right
diagonal. For α, there is also a cluster of events along the same
diagonal, indicating a degeneracy between α and− α. Such a
degeneracy may happen for nearly symmetrical central caustics
along the direction perpendicular to the lens axis.
The 1σ and 2σ ranges of prediction, shown by red shadows, are

clustered closely around the diagonal for most parameters. We
emphasize that the loose 1L1S-fitting cutoff (c <dof 11L1S

2 / )
means many of the test set light curves are only weakly perturbed
by the binary nature of the lens, and should explain a number of
cases in which the mass ratio is poorly constrained. Interestingly,
we find that there is a tendency to overestimate the mass ratio in
these cases. In addition, we notice that u0 and fs are under-
estimated for a large number of cases while tE is correspondingly
overestimated, though hardly visible in Figure 6. This bias could
be explained by the combined effect of a known degeneracy for
1L1S events and a distribution mismatch.
First, there exists a well-known degeneracy between u0, fs,

and tE for single-lens events, which in our case applies to
events that are only weakly perturbed by the binary nature of
the lens. As demonstrated by Woźniak & Paczyński (1997),
this degeneracy is most severe for low magnification events
(u0? 1), which is precisely where the biases occur as seen in
Figure 6. Indeed, restricted to test events with u0< 0.15, the
bias in fs and tE is largely removed. Figure 7 shows the NDE
posterior for an example u= 1.5 1L1S event that demonstrates
the strong degeneracy among u0, fs, and tE.
In the presence of strong degeneracies as such, the effective

likelihood implicitly provided by the featurizer is only
marginally informative. In other words, the featurizer cannot
distinguish among solutions within the continuous degeneracy,
and only prescribes a region in parameter space where the
observation is about equally likely. Therefore, the posterior is
essentially dominated by the prior, which strongly favors small
u0 and fs, as seen in Figure 7. Had the parameters for the
weakly perturbed events in the test set been drawn from
the same effective prior as the full training set, there would be
little bias (under/overestimation) at all in Figure 6. However,
quite the contrary, the distribution of the weakly perturbed is
weighted toward the exact opposite direction of effective prior,
e.g., toward large u0 and small qlog10( )—those more likely to
be excluded from the c <dof 11L1S

2 / cutoff. Because of this
distribution mismatch, large u0 and small qlog10( ) occur much
more often than expected by prior belief, thus resulting in the
under/overestimation bias. And because of the strong covar-
iances among u0, fs, and tE, the underestimation of u0 translates
into an underestimation of fs and an overestimation for tE
(Figure 7), which explains the biases seen in Figure 6.

4.5. Calibration Properties

A perfectly calibrated posterior knows how often it is right or
wrong. In other words, the quantile of the ground truth

5 Formally, effects on the light curve due to the finite size of the source are
only significant if the gradient of the magnification across the source has a
significant second derivative. In practice, this condition is only satisfied if the
source passes within a few angular source radii of a caustic.
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parameter under the NDE posterior should be expected to be
distributed uniformly. Figure 8 shows the quantile distribution
for the 1D marginal NDE posterior distributions for the same
14,551 test set inferences. The quantile distribution for qlog10( ),

alog10( ), and t0 is concave-up, indicating that the NDE
uncertainty is overestimated and the true value lies closer to
the center of the posterior more often than expected. This
suggests that the NDE finds it hard to contract the posterior in
those dimensions, possibly due to numerical optimization
difficulties or insufficient neural network expressibility. On the
other hand, distributions for the three parameters in the second

row— tlog E10( ), u0, and fs—demonstrate the systematic under/
overestimation as seen in Figure 6, where tlog E10( ) is system-
atically overestimated and u0 and fs are underestimated. The
quantile distributions for slog( ) and rlog10( ) are consistent with
uniform distributions and are thus well-calibrated.

5. Discussion and Conclusions

We have demonstrated that amortized neural posterior
estimation, an LFI method that uses a conditional NDE to
learn a surrogate posterior, q xp̂ ( ∣ ), greatly accelerates binary

Figure 4. Resonant-caustic-passing event; same figure caption as Figure 3. Here, a degenerate solution is seen at s < 1, whose two triangular caustics cause a similar
suppression pattern as the resonant caustic.
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microlensing inference—an approximate posterior could be
produced in seconds without the need for an expert in the loop.
Our new approach is capable of capturing a variety of
degeneracies. For future work, it is straightforward to extend to
higher-level effects such as parallax and binary motion by
introducing additional parameters. Application to more complex
systems such as 3L1S may be fruitful, where the physical forward
model is orders of magnitude slower. In addition, the photometric
noise model adapted in our study is somewhat simplistic, and

future work can explore how to adapt models trained with ideal
noise properties to fully realistic data with the help of image-based
simulation pipelines such as ones used in Penny et al. (2019). We
discuss two additional aspects of our work below.

5.1. A Hybrid NDE-MCMC Framework

The NDE posterior is easily validated and/or refined by a
downstream MCMC sampler. While the NDE posterior is

Figure 5. Example event exhibiting a blunt and flat light curve near the peak, which has a five-fold degenerate NDE posterior; same figure caption as Figure 3 for
(a) and (b). (c) Caustic structures and source trajectories for the five solutions. The same color-coding is shared across the three panels.

Table 3
Degenerate Solutions for the Binary-planetary Degenerate Event Shown in Figure 5

Truth Planetary A Planetary B Binary A Binary B Binary C

slog10( ) −0.350 - -
+0.3520 0.0049

0.0037
-
+0.3242 0.0035

0.0035 - -
+0.6373 0.0047

0.0037 - -
+0.6450 0.0030

0.0026 - -
+0.6267 0.0043

0.0046

qlog10( ) −1.700 - -
+1.6849 0.0140

0.0275 - -
+1.6464 0.0110

0.0190 - -
+0.3729 0.0273

0.0250 - -
+0.0813 0.0250

0.0297 - -
+0.0609 0.0244

0.0162

α 80.000 -
+80.0207 0.3531

0.2170
-
+79.0411 0.3430

0.2682
-
+209.7867 0.8053

0.8607
-
+304.7107 0.6557

0.6110
-
+123.4429 1.3218

0.2513

u0 0.100 -
+0.1027 0.0006

0.0009
-
+0.1390 0.0016

0.0022
-
+0.1082 0.0011

0.0010
-
+0.1160 0.0011

0.0012
-
+0.1197 0.0013

0.0009

t0 26.000 -
+25.9926 0.0070

0.0084
-
+26.3604 0.0169

0.0245
-
+25.8701 0.0080

0.0089
-
+26.2091 0.0128

0.0065
-
+26.2230 0.0101

0.0102

tlog E10( ) 1.699 -
+1.6874 0.0016

0.0035
-
+1.6927 0.0022

0.0024
-
+1.6824 0.0025

0.0038
-
+1.6550 0.0030

0.0037
-
+1.6443 0.0022

0.0045

fs 0.200 -
+0.2048 0.0010

0.0018
-
+0.2065 0.0011

0.0015
-
+0.2114 0.0014

0.0027
-
+0.2280 0.0015

0.0030
-
+0.2357 0.0021

0.0023

Note. Same units as Table 1. Uncertainties are 1σ marginal uncertainties.
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precise enough to allow for fast convergence of downstream
MCMC typically within hundreds of steps, we do notice that
the precision of the exact MCMC posterior could be more than

order-unity higher in many cases. The precision of the NDE
posterior is determined by two kinds of uncertainty: data
uncertainty and the model uncertainty of the inference
algorithm, the latter of which is negligible for MCMC. As
neural networks in practice are not infinitely expressive, in the

Figure 6. Predicted vs. ground truth 2L1S parameters for 14,551 test set 2L1S events. tE and t0 are in units of days, α is in units of degrees, and u0, s, and ρ are in units
of θE. Single-mode NDE posteriors are shown as black dots. For multimodel NDE posteriors, we color-code the solution as follows: those for which the global mode is
closest to the ground truth are plotted in black; for cases where a minor mode is closest to the true value, this correct, minor mode is plotted in orange whereas the
incorrect global mode is plotted in blue. Red shadows indicate 32–68th percentile (1σ) and 5–95th percentile (2σ) regions. Red dashed lines show the diagonal. In the
upper left of each subplot, “constrain” refers to the percentage of events whose NDE posterior poses sufficient constraint—the peak posterior probability must be at
least twice the prior probability. “Correct” refers to the percentage of constrained events whose true parameter lies closest to the global mode.

Figure 7. Corner plot for the marginal NDE posterior of a 1L1S event showing
strong degeneracy among the three 1L1S parameters: u0 in units of θE, tE in
units of days, and fs. Filled contours show 1/2/3/4σ regions. Small u0 and fs
are strongly favored because of the effective priors (Section 3.1) and a
marginally informative likelihood.

Figure 8. Calibration plot showing the test set distributions of the ground truth
quantile for the 1D marginal NDE posteriors. Dashed lines indicated the
uniform distribution as expected for a perfectly calibrated posterior.
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limit of the highest-quality data, the NDE model uncertainty is
expected to dominate over data uncertainty. This is the case for
Roman data. Applied to much noisier and more sparsely
sampled ground-based data, we expect that data uncertainties
will dominate over model uncertainties, thus allowing the NDE
posterior to converge toward the exact posterior.

5.2. Choice of Coordinate System

For all events in this work, we have adopted the COM
coordinate system, which is the default in MulensModel but
not the most efficient reference frame in the sense that more
than 70% of the 1 million simulations turn out to be consistent
with a 1L1S model. For example, most 2L1S configurations
with large u0 do not pass close to either the central caustics or
the planetary caustics. For parts of the parameter space,
alternative reference coordinates may be more descriptive or
useful. For example, the caustic-center frame is preferred for
binary and/or wide-separation events for which there is an
offset of the caustic center from the COM. Doing so recovers
the missing wide/binary solution in Section 4.3 without the
need to expand the prior to include negative t0. Additionally,
planetary-caustic passing events are also rarein the current
COM coordinate set-up, because they require a narrow range of
α. For future work, a hybrid and self-consistent coordinate
system could be used.
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