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Abstract

We present a framework for estimating exoplanet occurrence rates by synthesizing constraints from radial velocity
and transit surveys simultaneously. We employ approximate Bayesian computation and various mass–radius (M–

R) relations to explore the population models describing these surveys, both separately and in a joint fit. Using this
approach, we fit a planet distribution function of the form µ b ad N d Pd M P Mlog log2 , with a break in the power
law in mass atMb, to planets orbiting FGK stars with periods =P 25, 200[ ] days and masses = ÅM M2, 50[ ] . We
find that the M–R relation from Otegi et al. (2020), which lets rocky and volatile-rich populations overlap in mass,
allows us to find a model that is consistent with both types of surveys. Our joint fit gives = -

+
ÅM M21.6b 3.2

2.5 (errors
reflect 68.3% credible interval). This is nearly a factor of three higher than the break from transit-only
considerations and an M–R relation without such an overlap. The corresponding planet–star mass ratio break

~ ´ -q 7 10b
5 may be consistent with microlensing studies ( ~ ´ - ´- -q 6 10 2 10b

5 4). The joint fit also
requires that a fraction of = -

+F 0.63rocky 0.04
0.04 planets in the overlap region belong to the rocky population. Our

results strongly suggest that future M–R relations should account for a mixture of distinct types of planets in order
to describe the observed planet population.

Unified Astronomy Thesaurus concepts: Exoplanet astronomy (486); Exoplanet catalogs (488); Exoplanet
detection methods (489); Exoplanets (498); Radial velocity (1332); Transit photometry (1709); Bayesian
statistics (1900)

1. Introduction

The discoveries of thousands of planets outside the solar
system have facilitated numerous statistical studies of exopla-
net demographics. The field has progressed to the point where
demographics have been characterized using multiple detection
methods: namely, radial velocities (RV; e.g., Fischer &
Valenti 2005; Cumming et al. 2008; Mayor et al. 2011),
transits (e.g., Howard et al. 2012; Burke et al. 2015; Fulton
et al. 2017), microlensing (e.g., Gould et al. 2010; Suzuki et al.
2016; Jung et al. 2019), and direct imaging (e.g., Nielsen &
Close 2010; Bowler 2016; Naud et al. 2017; Nielsen et al.
2019; Vigan et al. 2020). These studies provide invaluable
inputs to theoretical studies and the design of future exoplanet
missions, and each detection technique provides different, yet
complementary, constraints on the underlying planet popula-
tion. For instance, RV surveys probe planet orbital period and
mass and are sensitive to low-mass planets at short periods and
high-mass planets with orbits up to thousands of days.
Meanwhile, the transit method is the only known method
capable of exploring the population as a function of planet
radius. Transit surveys such as the Kepler mission (Borucki
et al. 2010) have revolutionized our understanding of the
occurrence rates of small planets in orbital periods up to
hundreds of days.

Given that no single detection method can probe all facets of
the exoplanet population, synthesizing results from different
surveys into a cohesive picture can place more powerful
constraints on the distribution of exoplanets and their proper-
ties. However, combining and comparing results from different
surveys are challenging due to unique selection effects and
observational biases intrinsic to each detection method.

To address these challenges, Clanton & Gaudi (2014)
developed a forward-modeling framework to simultaneously

fit results from RV and microlensing for the first time. Their
methodology involved generating random planet populations
from an assumed planet population model, converting the
planet properties into those observable by each detection
method, and simulating the exoplanet yields from each survey
by taking into account their detection limits. By comparing the
simulated yields to the observed results for each survey
simultaneously, they were able to recover a single planet
population model consistent with all surveys. Their methodol-
ogy was extended to include direct imaging in Clanton &
Gaudi (2016). The end result was the most comprehensive
picture of the occurrence rate of giant planets in large-
separation orbits around M dwarfs to date.
So far, only the RV, microlensing, and direct imaging

methods have been combined by previous works (Clanton &
Gaudi 2014, 2016; Meyer et al. 2018). In this paper, we adopt a
forward-modeling procedure similar to that in Clanton & Gaudi
(2014, 2016), but use an approximate Bayesian computation
(ABC) method to infer our planet population model para-
meters, and we synthesize results from the RV and transit
methods for the first time. We also take advantage of
comprehensive completeness contours rather than the more
simple detection limits used by Clanton & Gaudi (2016).
Synthesizing yields from transit surveys with other methods
has added challenges due to fundamental differences in
observable planet properties, where the transit method finds a
planet’s radius and other methods place constraints on a
planet’s mass. Our analysis will thus be sensitive to our choice
of mass–radius (M–R) relation to convert between these
observables. However, as we will reveal through our
investigations, this sensitivity allows us to find an M–R relation
that yields a single population model consistent with both RV
and transit surveys, while other relations do not. Our findings
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will have important implications for future explorations of
exoplanet M–R relations.

Our analysis also requires input surveys that have well-
characterized completeness, which allows us to correct for
imperfect detection efficiency, and ideally reliability, which
allows us to correct for the false-positive rate of a catalog. The
Kepler survey is a clear choice for the transit side, as it was
specifically designed to support statistical inference of
exoplanet occurrence rates. Both the completeness and
reliability of Kepler have been thoroughly characterized
(Thompson et al. 2018; Bryson et al. 2020a). However, RV
surveys often do not publish nondetections, making statistical
analysis difficult. Here, we take advantage of the HARPS +
CORALIE survey presented in Mayor et al. (2011), which is
one of the few RV studies to provide an estimate of
completeness.

This paper is organized as follows. In Section 2, we outline
the ABC methodology, which provides our inference of model
parameters. In Section 3, we describe ABC’s application to
finding planet population models, both by fitting RV and transit
populations independently, as well as simultaneously in a joint
analysis. In Section 4, we describe the input RV and transit
surveys, and in Section 5, we provide the results from applying
our methodology to these surveys. In Section 6, we discuss the
implications of our results for our current understanding of the
exoplanet population. Finally, in Section 7 we discuss the
limitations of our current methodology and explore avenues for
future improvements.

2. Methodology

2.1. Approximate Bayesian Computation

Bayesian inference is a popular approach of statistical
inference on unknown parameters, where the goal is to estimate
the probability of a model given the observed data. In other
words, we want to find the posterior probability distribution
qP D( ∣ ) of a model with parameters q, given the data . From

Bayes’s theorem, this is

q q qµ P P P , 1( ∣ ) ( ∣ ) ( ) ( )

where qP ( ∣ ) is the likelihood function, indicating the
likelihood of the data given the model, and qP ( ) is the prior
probability, representing initial beliefs about the model
parameters before the data are taken into account.

For simple models, the likelihood function can typically be
derived analytically. However, for more complex models, the
likelihood may be unknown or too computationally expensive
to evaluate. In these cases, approximate Bayesian computation
steps in as a rigorous statistical framework for likelihood-free
Bayesian inference. ABC bypasses the need for a likelihood
function by taking advantage of our ability to forward model
the observed data under investigation and combining that with
our prior information. By simulating a large number of data
sets and quantifying the degree to which they match the
observed data, the distribution of model parameters providing
the best matches can be determined. This distribution gives the
ABC posterior, which approximates the posterior probability
distribution of regular Bayesian inference.

Given the numerous complexities associated with exoplanet
surveys (e.g., target selection, planet search pipelines, measure-
ment uncertainties, selection effects, instrumental effects, false
positives, star-dependent detection probabilities), the

calculation of exoplanet occurrence rates is one such example
where it is impractical to write down an exact likelihood
function (Hsu et al. 2018, 2019). Hsu et al. (2018) was the first
to apply ABC in the context of exoplanet occurrence rates, and
it has since been adopted in several other works in the context
of both grid-based and parametric planet population models
(Hsu et al. 2019; He et al. 2019, 2020; Kunimoto &
Matthews 2020; Kunimoto & Bryson 2020; Bryson et al.
2020b).
Kunimoto & Bryson (2020) showed that a likelihood

approach agrees with an ABC approach when using the well-
characterized Kepler DR25 catalog, which addressed many of
the complexities pointed out in Hsu et al. (2018, 2019). Our
present work, however, is complicated by the fact that we are
attempting to recover planet population models using multiple
independent surveys across different detection methods
simultaneously. While Clanton & Gaudi (2016) also used a
forward-modeling approach to address these challenges, they
assumed the correctness of a specific likelihood function. With
ABC, we do not depend on such an assumption. In particular,
the RV survey we use is not sufficiently characterized to
address complexities like selection effects and false positives,
compromising our ability to determine a correct likelihood.
The form of ABC used here is the Population Monte Carlo

ABC (PMC-ABC) algorithm proposed by Beaumont et al.
(2009), wherein multiple generations of simulated data are
created and an adaptive importance sampling scheme is used to
evolve the ABC posterior. We use the cosmoabc Python
package to implement PMC-ABC (Ishida et al. 2015). A full
description of the algorithm can be found in Section 2 in Ishida
et al. (2015), and we summarize it here.

2.2. ABC Algorithm

Using the notation of Ishida et al. (2015), the PMC-ABC
algorithm starts by drawing a set of M model parameters from
the prior called “particles,” qi{ }, with Îi M1,[ ]. Here, M is
chosen to be much larger than the number of samples needed to
characterize the prior. For each particle, a simulated data set 

iˆ
is generated, and a vector of distance functions r is used to find
the distance between each simulated data set and the observed
data, r r=  ,i i( ˆ ). The N particles giving the smallest ri∣ ∣,
indicating the best agreement with the observed data, are saved.
These particles constitute the zeroth “particle system” ( =t 0),
and the 75% quantile of all r Î =St 0 gives the distance
threshold vector for the next iteration ( =t 1).
For subsequent iterations, a parameter vector qtry is drawn

from the previous particle system using importance sampling.
A data set is simulated using qtry, its distance rtry to the
observed data set is calculated, and qtry is added to the particle
system St if r  ttry . This process is repeated until N particles
are accepted into the particle system. Particles are then assigned
weights according to Equation (3) of Ishida et al. (2015) to
facilitate the importance sampling of the next generation, and
the 75% quantile of all r Î St gives the distance threshold
vector for the next iteration ( +t 1).
With each iteration,t gets smaller, and it becomes harder for

t to be satisfied by a given set of model parameters. This
means that an increasingly large number of qtry must be drawn
in order to accept N particles into the particle system.
cosmoabc considers the algorithm converged when the
number of draws needed is N .

2

The Astronomical Journal, 161:69 (11pp), 2021 February Kunimoto & Bryson



3. ABC Applied to Exoplanet Occurrence Rates

Here, we describe the forward model we use in the ABC
algorithm to simulate planet catalogs given a planet population
model. Adopting elements of the Exoplanet Population
Observation Simulator (epos, Mulders et al. 2018), we draw
planet properties according to the population model, and we
remove planets based on their detection completeness in order
to simulate the detected exoplanet population. We define
distance functions to quantify the degree to which they match
the observed population of planets, and we use ABC to
converge on the model that provides the closest match. Our
forward model will depend on whether we are attempting to
simulate the exoplanet yields of an RV survey, a transit survey,
or both at once.

3.1. Population Model

Planet populations are commonly described by one- or two-
dimensional power laws, with RV surveys describing depend-
ence on period and mass (e.g., Cumming et al. 2008; Pascucci
et al. 2018), and transit surveys describing dependence on
period and radius (e.g., Mulders et al. 2018; Bryson et al.
2020a). To support our joint fit of RV and transit data, we
adopt a single period–mass model. We choose mass over radius
as it is more applicable to future extensions of our methodology
to microlensing (for which the planet-to-star mass ratio, q, is an
observable) and direct imaging (which places limits on a
planet’s mass based on its measured luminosity).

The specific choice of population model will be informed by
our domain of analysis. Here, we focus on planets with masses
between 2 and 50 M⊕, limited by incompleteness in the RV
survey at the lower end and degeneracies between mass and
radius at the upper end. In the giant planet regime, a given
radius may correspond to any mass across several orders of
magnitude. Based on a by-eye analysis of the scatter of masses
and radii near this regime (e.g., Figure 3 in Chen &
Kipping 2017), we determined that this degeneracy starts to
appear around ~ ÅR R8 , or ~ ÅM M50p . There may also be
features in the mass distribution starting around ~ ÅM M30 ,
near which forming protoplanets begin accreting gas in a
runaway manner under core accretion theory, and before which
a pure gas giant mass function near ~ ÅM100 is appropriate.
Our choice of ÅM50 does not tread too far into this transition
region, while it allows us to increase both the overall reliability
and number of planets in our sample. We also consider an
orbital period range between 25 and 200 days. The lower limit
was chosen as a point at which planets are expected to
experience minimal photoevaporation (e.g., Owen & Wu 2017;
Kunimoto & Matthews 2020), while the upper limit was
chosen as a balance between high completeness and increasing
the number of planets in the RV sample.

Given that our orbital period range starts at 25 days and a
period break for small planets is expected at ∼10 days
(Mulders et al. 2018), we need only fit for one period power-
law index. There may also be a turnover in the orbital
distribution between ~1 10 au– (e.g., Meyer et al. 2018;
Fernandes et al. 2019), though given that our chosen stellar
sample is FGK stars, the maximum expected orbital radii are
<1 au for <P 200 days and a single power-law assumption is
still valid. Meanwhile, the RV data in Mayor et al. (2011)
suggests a break in mass within our domain of analysis, as
discussed in Section 4. Suzuki et al. (2016) and Pascucci et al.

(2018) have also pointed out a peak at ∼8–9 M⊕ in the GK-
planet population after converting the radii of Kepler planets
into masses using mass–radius relations. Thus, our planet
population model is a power law in period and broken power
law in mass, of the form

q h= =

µ
<b a

b a

f P M
d N

d Pd M
g P M

g P M
P M M M M

P M M

,
log log

, ,

,
if ,

otherwise,
2b b

b

2

1

2

⎧⎨⎩

( ∣ ) ( )

( ) ( )
( )

( )

where q h b a a= M, , , ,b 1 2( ) are the model fit parameters, Mb

is the break in mass, β is the power-law index for period, and
a1 and a2 are the power-law indices for mass before and after
the break, respectively. We assume that these power laws are
independent. When Equation (2) is normalized so that the
integral over the period and mass range of interest is

ò ò= g P M d Pd M1 , log log , 3
M

M

P

P

min

max

min

max

( ) ( )

then η is the number of planets per star
over ´M M P P, ,min max min max[ ] [ ].

3.2. RV Population Simulator

The simulator starts by randomly drawing h= n np periods
(P) and masses (M) from the population model, where nå is the
number of stars in the RV stellar sample. As adopted from
Mulders et al. (2018), this involves drawing one random
number to determine the period of a planet from the cumulative
distribution function of the period power law, and a second to
determine the mass from the cumulative distribution function
of the mass power law. The simulator then converts the masses
to minimum masses (M isin ) in order to match the units of the
RV observables. We find isin for each planet by drawing an
inclination angle i according to ~icos Uniform 0, 1( ), assum-
ing orbital inclinations are uniformly distributed across the sky.
With the population described by period and minimum mass,

the characterization of the RV survey’s completeness can be
used to estimate the probability of detection for each planet,
P P M i, sindet ( ). The completeness of the RV sample is already
given as a function of period and minimum mass (see
Section 4), so no semiamplitude calculations or eccentricity
draws are part of our simulator. Each planet is marked as
detected if Bernoulli( =P 1det) . The Bernoulli distribution is a
special case of the binomial distribution, where only a single
trial is conducted. The resulting detected population represents
our simulated catalog of RV exoplanets.
In order to find the set of population model parameters that

provide the closest match between simulated and observed
planet catalogs, ABC requires a distance function to quantify
their agreement. A set of model parameters is accepted by the
ABC algorithm if the distance is smaller than some threshold.
First, we determine which observed planets lie within our

mass range of interest by multiplying it by the median
»isin 0.867med to get a corresponding minimum mass range

of interest. We only include planets in our calculation of the
distance if they have minimum masses in this range and orbital
periods in our period range of interest.
We then find three separate distances by comparing the

orbital period distributions (r1), the minimum mass distribu-
tions (r2), and the sample sizes of the catalogs (r3). We
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calculate r1 and r2 using the two-sample Anderson–Darling
(AD) statistic, and r3 is found using

r = - -max abs 1
l

l
, abs 1

l

l
, 4

s

s
3

⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎞
⎠⎟ ( )

where l and ls are the number of planets in the observed and
simulated catalogs, respectively (Ishida et al. 2015). The two-
sample AD statistic has previously been used to quantify the
distance between simulated and observed planet catalogs to
infer exoplanet occurrence rates with ABC (He et al.
2019, 2020; Bryson et al. 2020b). The AD statistic has also
been used in likelihood-based planet occurrence rates (Pascucci
et al. 2018).

The final, overall distance is then a weighted sum of the three
components,

år r=
=

w , 5
i

i i
1

3

( )

where the weights wi scale each term so that the most variable
distance does not dominate the fit. We follow He et al. (2020)
and set the weight of the ith distance equal to the inverse of the
rms of that component, s=w 1i i. To estimate si, we simulate
100 catalogs assuming a population model defined by a
nominal set of model parameters, and we find the rms of the
distances between each pair of catalogs.

3.3. Transit Population Simulator

The transit population simulator has the same initial step as
the RV population simulator: h= n np periods and masses are
drawn from the population model, where nå is the number of
stars in the transit stellar sample. However, we require an
exoplanet M–R relation to convert the drawn masses into the
radii (R) observable with the transit method. In this paper, we
will compare our results using two different M–R relations.

We first use the - ÅM2 132 M–R relation from Chen &
Kipping (2017), which has previously been used to fit Kepler
exoplanets to a period–mass model (Pascucci et al. 2018).
Given that this relation is probabilistic, we draw a radius for
each planet from a normal distribution given its mass and the
radius dispersion.

We use Otegi et al. (2020) for our second M–R relation.
Otegi et al. (2020) suggested that the rocky and volatile-rich
populations, separated by the composition line of pure water
(or alternatively, a density cutoff of ∼3 g cm−3), have
significant overlap in mass and radius between 5 and ÅM25
and 2 and ÅR3 . Thus, for planets in this transition region, mass
alone is not sufficient to assign a planet an appropriate M–R
relation.

To implement the Otegi et al. (2020) results, we introduce an
additional model parameter Frocky, the average fraction of
planets with masses between 5 and ÅM25 that are rocky. The
simulator randomly assigns this fraction of planets to the rocky
population and the rest to the volatile-rich population. Mean-
while, all planets below ÅM5 are considered rocky, and all
planets above ÅM25 are considered volatile-rich. The corresp-
onding M–R relation is then used to convert the mass of each
population’s planets to a radius. Note that an average fraction
across a specific mass range is not necessarily the best
representation of the data. It may be more realistic to allow the
fraction to depend on mass, for example as a decreasing linear

or logistic function. In addition, the start and end masses
defining the overlap are also only known approximately.
However, we use this simple constant fraction to reduce the
risk of overfitting the data.
Because the rocky and volatile-rich M–R relations from

Otegi et al. (2020) are deterministic (of the form
=Å ÅR R C M M E( ) ( ) , where C is a constant and E is an

exponent), we use their reported uncertainties on C and E to
reflect dispersion around the relation. The dispersions around
their rocky and volatile-rich M–R relations are of order similar
to the widths of the < ÅM M2 and - ÅM2 132 probabilistic
M–R relations from Chen & Kipping (2017). After assigning a
planet to the rocky or volatile-rich populations, we draw C and
E from a normal distribution centered on the best-fit values
with the associated uncertainty, and we use them to calculate its
radius.
With the population described by period and radius, the

characterization of the transit survey’s completeness can be
used to estimate the probability of detection for each planet,
P P R,det ( ). As for the RV population, the detected catalog of
planets is simulated by marking each planet as detected if
Bernoulli( =P 1det) .
To compare the simulated catalog with the observed catalog,

we evaluate a distance using a process similar to that for the
RV population. First, we determine which observed planets lie
within our mass range of interest by converting it into a radius
range through the M–R relation. Both Chen & Kipping (2017)
and Otegi et al. (2020) find that ~ - ÅR R1 8 corresponds to

= - ÅM M2 50 . We only include planets in our calculation of
the distance if they have radii in this range and orbital periods
in our period range of interest. We then find r1 and r2 using the
two-sample AD statistic over the period and radius distribu-
tions, respectively, and r3 over the sample sizes according to
Equation (4). We find the overall distance ρ by performing a
weighted sum of the three components.

3.4. Combined Population Simulator

The joint fit runs the RV and transit simulators separately,
using the same population model to draw both simulated
populations. The RV and transit simulators output their final
distances (rrv and rtr, respectively), and each distance must
meet a minimum threshold in order for the ABC algorithm to
accept a set of model parameters and thus converge on a shared
population model. In doing so, the algorithm is able to utilize
constraints from both types of surveys simultaneously. This is
an important advantage over the separate fits, given that some
model parameters will be better constrained by the RV survey
over the transit survey, and vice versa.

4. Input Data

4.1. RV Sample

We use the combined HARPS + CORALIE survey yields
reported in Mayor et al. (2011) for our RV sample. The stellar
sample consists of 822 M0 to F dwarfs, selected based on low
levels of activity and low rotation rates from the larger sample
of ∼1800 stars targeted for the planet search started by
CORALIE and extended by HARPS. While we do not have a
stellar catalog for the 822-large subset used by Mayor et al.
(2011), we assume that the full sample described in Mortier
et al. (2013) is representative of our sample, giving a median
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mass of =M M0.90s  and median metallicity of [Fe/H]
=-0.08 dex.

In total, 155 planets were detected, with 29 planets in our
domain of analysis. The planet list (giving their orbital periods
P and minimum masses M isin ) and star-averaged complete-
ness contours (giving P P M i, sindet ( )) are available as part of
the epos package (Mulders et al. 2018).

Histograms of the masses of the 29 planets are given in
Figure 1, showing the distributions both before and after
correction for an average detection bias. At low masses, the
bias-corrected histogram is dominated by uncertainty, due to a
small number of planets weighted by low completeness.
Focusing on higher completeness past ÅM10 , a peak near
~ ÅM20 is visible in both uncorrected and corrected histograms.
This increases confidence in our ability to constrain Mb using
the RV sample.

4.2. Transit Sample

We use the Kepler DR25 planet sample (Thompson et al.
2018) associated with a clean sample of 80,929 FGK stars,
produced from the Berger et al. (2020) stellar properties catalog
following the procedure of Bryson et al. (2020a). The sample
has a median mass of =M M0.97s  and median metallicity of
[Fe/H] = -0.01 dex. A total of 548 planets lie in the domain
of analysis when using the M–R relation from Chen & Kipping
(2017) to convert the mass range into radius, compared to 544
using Otegi et al. (2020). We use the star-averaged complete-
ness contours from Bryson et al. (2020a) to find P P R,det ( ),
which takes into account the geometric probability to transit
and both the detection and vetting efficiencies of the DR25
pipeline.

The contamination of the Kepler catalog with astrophysical
false positives and noise/systematic false alarms has been well
characterized and has been shown to have a significant impact
on occurrence rates at low completeness (Bryson et al. 2020a).
Using the results of Bryson et al. (2020a), we find a reliability
for each planet in our sample, which is an approximation of the
probability that a given planet is a false positive or false alarm.
We then alter our ABC distance function to accepted weighted
values, and we weight each observed planet according to its
reliability.

4.3. Differences between RV and Transit Stellar Samples

A concern with combining yields from independent surveys
is that their stellar samples will be different, which challenges
the assumption of a simultaneously consistent shared popula-
tion. For example, planet occurrence rates depend on stellar
properties such as mass (e.g., Mulders et al. 2015; Kunimoto &
Matthews 2020) and metallicity (e.g., Petigura et al. 2018;
Narang et al. 2018). We attempted to minimize this issue by
focusing on survey yields for FGK dwarf stars only. Figure 2
compares the distributions of masses and metallicities between
the RV and transit samples. The distributions share many of the
same characteristics, with [15.9, 50, 84.1]th percentiles at
[0.76, 0.90, 1.07] M⊕ for the RV sample and [0.80, 0.97, 1.14]
M⊕ for the transit sample. Meanwhile, the RV sample spans a
slightly wider range of metallicities with [−0.32, −0.08,
−0.12] dex compared to the more peaked transit sample with
[−0.15, −0.01, 0.05] dex. Overall, we do not expect these
differences to significantly affect our assumption of a shared
mass–period power law, and we proceed with the rest of the
analysis with this caveat in mind.

Figure 1. Histograms of planets from the HARPS + CORALIE RV surveys,
comparing the observed planets (black) and after correcting for detection bias
(red). Minimum masses have been converted to an approximate mass by
dividing the observed M isin by »isin 0.867med .

Figure 2. Comparison of the distribution of masses (top) and metallicities
(bottom) for stars in the full HARPS + CORALIE sample (Mortier et al. 2013)
and the Kepler FGK sample (Berger et al. 2020). Each histogram has been
normalized, and plots do not show a small number of planets in the tails of the
distributions for ease of comparison.
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5. Results

We first fit each survey separately to determine if the RV and
transit populations can be described by the same population
model. In all cases, we ran the ABC algorithm with
cosmoabc five times and concatenated the posteriors to avoid
the reporting of an outlier as a result. We chose wide, uniform
priors for each parameter, which are given in Table 1. Table 1
also gives a summary of our results without accounting for
reliability in the transit population, while Table 2 gives results
after accounting for reliability. The central values and
uncertainties are from the median and 15.9th and 84.1th
percentiles of the ABC posteriors. Our results are not
significantly affected by the incorporation of reliability,
reflecting the fact that our period and radius range has
relatively high reliability. Nevertheless, for the remainder of
this paper, we will reference our reliability-incorporated results
as they are expected to be a more accurate representation of the
true population (Bryson et al. 2020a). Note, however, that the
Mayor et al. (2011) RV sample does not have a characterized
false-positive rate, so we are unable to do the same exercise,
and all results do not account for reliability in the RV sample.

5.1. RV Fit Results

Our RV-only posteriors are shown in Figure 3. Likely due to
having so few planets in the domain of analysis, the posteriors
are typically wide and non-Gaussian, though we see that the
data set is able to recover a mass break peaked at -

+
ÅM25.7 7.6

8.7 .
This is slightly higher than though consistent with the location
expected from the histogram of observed planets in Figure 1.
We also find a drop in the mass distribution after the break with
slope a = - -

+5.02 3.0
2.7, which is steeper than the mass distribu-

tion slope for giant planets, for example, −0.31±0.2
(Cumming et al. 2008) and −0.46±0.06 (Fernandes et al.
2019).
Much of our analysis depends on understanding the mass

distribution from the RV data set. Thus, before proceeding, we
confirmed that a model with a mass break is indeed warranted
over one with no mass break by refitting our RV data under an
alternative no-mass-break model of the form

q h= =

µ b a

f P M
d N

d Pd M
g P M

g P M P M

,
log log

, ,

, 6

2
( ∣ ) ( )

( ) ( )

where q h b a= , ,( ) are the new model fit parameters. We
found h = -

+0.9 0.3
0.3, b = -

+0.1 0.3
0.3, and a = - -

+0.9 0.3
0.3. To perform

a comparison between the two models, we simulated 100,000

RV populations by randomly drawing from our final ABC
posteriors, first with the mass break, and then without, and
found their distances to the observed RV data set. We consider
a simulation “accepted” if it returns a total distance smaller than
some threshold. The preferred model will be the one that is

Table 1
ABC Fit Results

Parameter RV Only Transit Only Transit Only RV + Transit Prior
(CK17 M–R) (O20 M–R) (O20 M–R)

η -
+0.5 0.2

0.3
-
+0.60 0.03

0.03
-
+0.56 0.03

0.03
-
+0.49 0.05

0.05  0, 3( )
ÅM Mb -

+25.7 7.6
8.7

-
+8.2 0.9

1.2
-
+25.7 0.6

0.8
-
+21.5 3.0

2.4  2, 50( )
β -

+0.1 0.3
0.3

-
+0.1 0.1

0.1
-
+0.1 0.1

0.1
-
+0.1 0.1

0.1 - 5, 5( )
a1 -

+0.0 0.8
1.7

-
+1.3 0.4

0.5
-
+1.3 0.2

0.2
-
+1.0 0.4

0.4 - 10, 10( )
a2 - -

+5.0 3.0
2.7 - -

+2.9 0.7
0.5 - -

+8.5 1.0
1.3 - -

+6.4 2.2
2.2 - 10, 10( )

Frocky L L (0.8) -
+0.62 0.04

0.05  0.6, 1( )

Note. Central values and uncertainties are the median and 15.9th and 84.1th percentiles of the ABC posteriors. CK17 denotes Chen & Kipping (2017), and O20
denotes Otegi et al. (2020).

Table 2
ABC Fit Results (with Reliability)

Parameter Transit Only Transit Only RV + Transit Prior
(CK17 M–R) (O20 M–R) (O20 M–R)

η -
+0.55 0.03

0.03
-
+0.52 0.03

0.03
-
+0.47 0.05

0.05  0, 3( )
ÅM Mb -

+8.2 1.0
1.2

-
+25.6 0.7

0.7
-
+21.6 3.2

2.5  2, 50( )
β -

+0.1 0.1
0.1

-
+0.1 0.1

0.1
-
+0.1 0.1

0.1 - 5, 5( )
a1 -

+1.5 0.5
0.7

-
+1.3 0.2

0.2
-
+1.1 0.3

0.4 - 10, 10( )
a2 - -

+3.2 0.9
0.6 - -

+8.8 0.8
1.3 - -

+6.6 2.1
2.2 - 10, 10( )

Frocky L (0.8) -
+0.63 0.04

0.04  0.6, 1( )

Note. Central values and uncertainties are the median and 15.9th and 84.1th
percentiles of the ABC posteriors. CK17 denotes Chen & Kipping (2017), and
O20 denotes Otegi et al. (2020).

Figure 3. ABC posterior distributions for the RV-only fit. Each dotted line
indicates the 15.9th, 50th, and 84.1th percentiles. Note that all histograms span
a subset of our prior range (see Table 1).

6

The Astronomical Journal, 161:69 (11pp), 2021 February Kunimoto & Bryson



more likely to recover the observed data, that is, have more
accepted simulations at small thresholds. This procedure
follows that of Lohmann & Ditlevsen (2019) for model
selection, which uses the ratio of acceptances as an ABC
approximation of the Bayes factor, where we sample from the
posterior rather than the prior.

In Figure 4, we plot the number of accepted simulations with
the mass break divided by the number of accepted simulations
without the mass break, and we observe how it changes as a
function of chosen distance threshold. We also show the results
of repeating this process, but only looking at one of the three
distance components (period, mass, or sample size), rather than
the total weighted sum of distances. Regardless of the chosen
distance threshold, the models perform equally well across
period and sample size. However, the mass break model is
indeed able to more frequently recover a close match to the
observed mass break distribution. Note that the plot becomes
more noisy at the smallest distances, as it becomes exceedingly
difficult for either model to meet these thresholds.

For the remainder of our analysis, we only consider the
model with the mass break.

5.2. Transit Fit Results

Our transit-only results, having used the Chen & Kipping
(2017) M–R relation, are shown in Figure 5. The Kepler data
set is able to place much tighter constraints on all fit
parameters, and encouragingly, most parameters are within
1σ of the RV results. However, we find a significantly lower
mass break at = -

+
ÅM M8.2b 1.0

1.2 (2.3σ lower than the RV result),
consistent with Pascucci et al. (2018). This disagreement could
indicate that the Kepler exoplanet population is fundamentally
different than the RV population.

We then investigated a series of fits using the Otegi et al.
(2020) M–R relation, with the goal of finding whether or not an
Frocky value exists that can resolve the discrepancy inMb. Given
that a rocky planet at a certain radius will have a higher mass
than a volatile-rich planet at the same radius, a higher Frocky will
have the effect of pushing the mass break to higher values. We
reran our transit-only fits, trying

ÎF 0.0, 0.1, 0.2 ,..., 0.9, 1.0rocky { }. Results for =F 0.8rocky as
an example are given in Figure 6.
Across all Frocky values, the η, β, and a1 parameters are

within 1σ of the Chen & Kipping (2017) results. Meanwhile,
Mb becomes significantly larger and a2 steepens with
increasing Frocky. Figure 7 demonstrates how the mass break
changes with Frocky. The lowest Frocky values returned a mass
break similar to the Chen & Kipping (2017) result, with

ÎF 0.0, 0.1, 0.2, 0.3rocky { } giving Mb within 1σ. However,
ÎF 0.6, 0.7, 0.8, 0.9, 1.0rocky { } all returned mass breaks

within 1σ of the RV result.
We performed a model comparison analysis similar to that in

Section 5.1, but this time to confirm that using the Otegi et al.
(2020) M–R relation indeed allows us to better recover the
observed RV mass distribution over the Chen & Kipping
(2017) M–R relation. We simulated 100,000 RV populations
from the Otegi et al. (2020) and Chen & Kipping (2017) final
posteriors. We found their total distances to the observed RV
data and accepted those whose distances from the RV data
were less than a given threshold.
Figure 8 shows the ratio of accepted simulations, dividing

the results from Otegi et al. (2020) and =F 0.8rocky with the
results from Chen & Kipping (2017). We also show
performance across the three distance components separately.
The Otegi et al. (2020) model is strongly preferred for
recovering the mass distribution of the RV data. Note that as
before, the behavior of these plots becomes noisier and at the

Figure 4. Number of accepted simulations with the mass break model divided
by the number without the mass break model (ratio of accepted simulations), as
a function of acceptance distance threshold. Shown are results when calculating
the overall distance (black), as well as the orbital period (blue), sample size
(green), and mass (orange) distance components separately. Both models
recover the period distribution and sample size of the observed RV data set
equally well, with roughly the same number of accepted simulations (ratio ∼1).
However, the mass break component and therefore the overall distance show
that the model with the mass break becomes increasingly favored at small
distances. Note that as the distance threshold gets smaller, the behavior
becomes noisier as it becomes exceedingly difficult for either model to satisfy
such small thresholds. Only a few of the 100,000 draws satisfy the threshold for
either model.

Figure 5. ABC posterior distributions for the reliability-incorporated transit-
only fit using the M–R relation from Chen & Kipping (2017). Each dotted line
indicates the 15.9th, 50th, and 84.1th percentiles. Note that all histograms span
a subset of our prior range (see Table 2).
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smallest distance thresholds, as it becomes exceedingly difficult
for either model to satisfy such small thresholds.

5.3. Joint Fit Results

Having confirmed that the Kepler population can plausibly
be described with a mass break consistent with RV data, we
now turn to our combined fit. This fit has an important
advantage over the previous analyses as it can utilize
constraints from both types of surveys at once. In particular,
the RV side informs Mb given that the result is independent of
an M–R relation, while the transit side better constrains η, β,
and a1.

Given that our transit-only investigations indicated that any
of ÎF 0.6, 0.7, 0.8, 0.9, 1.0rocky { } may be consistent with RV,
we placed an initial uniform prior of ~ 0.6, 1( ) on Frocky for
the combined fit, though in subsequent iterations of the
algorithm, all values are constrained between 0 and 1.

Figure 6. ABC posterior distributions for the reliability-incorporated transit-
only fit using the M–R relation from Otegi et al. (2020) and setting =F 0.8rocky

as an example. Each dotted line indicates the 15.9th, 50th, and 84.1th
percentiles. Note that all histograms span a subset of our prior range (see
Table 2).

Figure 7. Resulting Mb values from using the Otegi et al. (2020) M–R relation
and setting Frocky fixed to various values. The blue area covers the mass break
after using the Chen & Kipping (2017) M–R relation, while the red area covers
the mass break inferred from RV.

Figure 8. Number of accepted simulations with the Otegi et al. (2020) M–R
relation and =F 0.8rocky as an example, divided by the number with the Chen
& Kipping (2017) M–R relation (ratio of accepted simulations) as a function of
acceptance distance threshold. Shown are results when calculating the overall
distance (black), as well as the orbital period (blue), sample size (green), and
mass (orange) distance components separately. Both models recover the period
distribution and sample size of the observed RV data set equally well, with
roughly the same number of accepted simulations (ratio ∼1). However, the
mass break component and therefore the overall distance show that the Otegi
et al. (2020) model becomes increasingly favored at small distances. Similar to
Figure 4, for distances less than ∼1, it becomes more difficult for either model
to be accepted. Only a few of the 100,000 draws satisfy the threshold for either
model, so we do not believe the results in this regime are significant.

Figure 9. ABC posterior distributions for the combined RV + transit fit. The
transit component includes correction for reliability. Each dotted line indicates
the 15.9th, 50th, and 84.1th percentiles. Note that all histograms span a subset
of our prior range (see Table 2).
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Our final combined results are shown in Figure 9, giving
= -

+F 0.63rocky 0.04
0.04, a slope of a = -

+1.31 0.3
0.4 before a mass break

at = -
+

ÅM M21.6b 3.2
2.4 , and a slope of a = - -

+6.62 2.1
2.2 afterward.

The large uncertainties and flat posterior distribution of a2 are
consistent with previous fits of Kepler data to period–radius
models, which have shown that the power-law index for radius
after the break is similarly unconstrained (Mulders et al. 2018).

5.4. An Alternate Fit Removing a Low-completeness Planet

The RV data set includes a single planet near ~ ÅM2 , likely
affecting the fit of the mass distribution due to its low
completeness. As seen in the bias-corrected histogram of
Figure 1, this detection has an error bar contributing a number
of planets spanning almost three orders of magnitude.

As a bounding case, we refit our results using [3, 50] M⊕ as
our mass range to exclude it. The RV-only mass break
decreased to = -

+
ÅM M21.2b 5.9

6.2 . This is closer to what we
expect based on visually inspecting the histogram. However, η
dropped to -

+0.3 0.1
0.1 planets per star, no longer within 1σ of our

transit-only results.
Meanwhile, the joint RV + transit fit results remained

essentially unchanged (see Table 3), giving = -
+

ÅM M21.9b 3.2
2.3

with [3, 50] M⊕ compared to -
+

ÅM21.6 3.2
2.4 with [2, 50] M⊕. The

other parameters, including Frocky, were also unchanged. This
demonstrates the robustness of the joint fit, in that it is less
sensitive to the inclusion or exclusion of the low-completeness
planet.

5.5. An Alternate Fit Using a Robust RV Sample

We restrict our analysis even further to only include planets
within [10, 50] M⊕. While this choice removes four (14%) of
the RV planets from the baseline sample, this mass range
corresponds to a robust RV sample with modest completeness.
As shown in Table 3, our joint RV + transit fit recovered the
same mass break at = -

+M 21.9b 2.7
2.4. All other parameters (with

the exception of η, which is expected to be lower given the
narrower mass range) are within 1σ of our baseline ÅM2, 50[ ]
and alternate ÅM3, 50[ ] results.

We note that this more reliable set of planets gives a power-
law index before the mass break of a = -

+0.61 1.3
1.9. This is within

1σ of zero, which would correspond to a flat distribution in
masses before Mb rather than a turnover. However, the 1σ
uncertainty is large, and a1 is more than 1σ from zero when
including the smaller planets. More data on the RV side or

better characterization of the M–R relation for transiting planets
in the overlap region could help clarify this behavior.

6. Discussion

6.1. A Mass Break Comparison with Microlensing

For the following comparison with microlensing studies, we
report our results in terms of the planet-to-star mass ratio, q,
which is a microlensing observable. Furthermore, our study is
focused on FGK dwarfs with typical masses of ~ M1 , while
microlensing studies focus on M dwarfs with typical masses of
~ M0.6  (e.g., Suzuki et al. 2016). Pascucci et al. (2018) found
that the same break in the power law in q can describe planets
around G, K, and M stars regardless of spectral type, whereas
the mass break is dependent on the host star. This indicates that
q is a more readily comparable quantity between surveys
targeting widely different stellar samples, and it is also a more
fundamental quantity in planet formation than planet mass.
Suzuki et al. (2016) and Pascucci et al. (2018) each noted a

discrepancy between the breaks in power laws with q as
derived from Kepler and microlensing. In particular, Pascucci
et al. (2018) used the Chen & Kipping (2017) M–R relation to
convert Kepler planet radii into masses and found a planet-to-
star mass ratio break of =  ´ -q 2.5 0.6 10b

5( ) for planets
orbiting G-type stars with <P 100 days and ~ - ÅR R1 6 .
This is at odds with results from microlensing that place the
mass ratio break anywhere from ´ -q 5.5 10b

5 (Jung et al.
2019) to ´ -q 1.65 10b

4 (Suzuki et al. 2016). Both power
laws show increasing occurrence up to qb and decreasing
occurrence toward larger q, meaning that this mass ratio break
marks a peak in planet occurrence rate. Given that microlensing
probes planet orbits far beyond the Kepler parameter space,
these results would indicate that the most common planets
beyond the snow line are ~ -2 8 times more massive than
those within the snow line.
Using the same M–R relation as Pascucci et al. (2018)

applied to our simulated radii, we find = ´-
+ -q 2.5 10b 0.3

0.4 5( )
for Kepler FGK planets with < <P25 200 days and

~ - ÅR R1 8 . This break is in strong agreement with Pascucci
et al. (2018). However, our mass ratio break increases to

= ´-
+ -q 6.7 10b 1.0

0.8 5( ) when we adopt the Otegi et al. (2020)
M–R relation and perform a combined RV + transit fit, which
lies between the estimates from Jung et al. (2019) and Suzuki
et al. (2016). Notably, Suzuki et al. (2016) also provided
Markov Chain Monte Carlo results alongside their best-fit

= ´ -q 1.65 10b
4, finding = ´-

+ -q 6.7 10b 0.18
0.90 4( ) , which is

the same central value we find here. Overall, our joint RV/
transit fit indicates that the most common planet beyond the
snow line may be only ~1 3– times more massive than within,
though given the wide span in reported mass ratio breaks, more
microlensing detections at low q are likely required before we
can determine the severity of any remaining discrepancy.
We emphasize that this finding means that the Otegi et al.

(2020) M–R relation allows us to bridge the mass break gap
between the transit population and both RV and microlensing
populations. We consider this evidence that it is a more
accurate representation of the observed planet population.

6.2. An Estimate of the Fraction of Rocky Planets between 5
and 25 M⊕

By using the Otegi et al. (2020) M–R relation, we are also
able to place an estimate on the average fraction of rocky

Table 3
Joint Fit Results (with Reliability) over Different Mass Ranges

Parameter ÅM2, 50[ ] ÅM3, 50[ ] ÅM10, 50[ ] Prior

η -
+0.47 0.05

0.05
-
+0.44 0.05

0.04
-
+0.32 0.04

0.03  0, 3( )
ÅM Mb -

+21.6 3.2
2.5

-
+21.9 3.2

2.3
-
+21.9 2.7

2.4  X, 50( )a

β -
+0.1 0.1

0.1
-
+0.1 0.1

0.1
-
+0.1 0.1

0.1 - 5, 5( )
a1 -

+1.1 0.3
0.4

-
+1.0 0.4

0.5
-
+0.6 1.3

1.9 - 10, 10( )
a2 - -

+6.6 2.1
2.2 - -

+6.7 2.1
2.4 - -

+7.4 1.7
2.0 - 10, 10( )

Frocky -
+0.63 0.04

0.04
-
+0.62 0.05

0.05
-
+0.64 0.05

0.05  0.6, 1( )

Notes. Central values and uncertainties are the median and 15.9th and 84.1th
percentiles of the ABC posteriors.
a Lower bound on the mass break prior was set to the start of the fitted mass
range (2, 3, or 10 M⊕).
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planets between 5 and ÅM25 , finding = -
+F 0.63rocky 0.04

0.04.
Encouragingly, 18 of the planets in the catalog used by Otegi
et al. (2020) that lie in this mass range are considered rocky,
and seven are considered volatile-rich. This corresponds to an
observed rocky fraction of ~F 0.7rocky . Given that this catalog
suffers from observational biases because it is easier to detect
more massive planets at a given radius, this should be
considered an upper limit on the true fraction. Our inferred
Frocky lies below this upper limit.

Wolfgang & Laughlin (2012) performed a similar invest-
igation regarding the apparent discrepancy in the numbers of
planets per star inferred from the HARPS and Kepler surveys
for ÅM M17 ( ÅR R4 ) and <P 50 days. They were able
to find a consistent planet frequency only by adopting a mixture
of rocky and gaseous M–R relations for planets between 1 and
17 M⊕. More recently, Neil & Rogers (2020) used the Kepler
population to constrain a joint mass–radius–period distribution
of exoplanets and found that mixture models that differentiated
between planets with gaseous envelopes, planets with evapo-
rated cores, and intrinsically rocky planets were preferred over
the baseline model with a single population of planets with
compositions ranging from rocky to gaseous. Overall, our
results provide strong evidence for the existence of distinct
planet populations across transition regions in mass or radius.
We suggest that future M–R relations account for this in order
to more accurately represent the observed population.

7. Caveats and Limitations

Here, we summarize important caveats and the main
assumptions and design choices made in our study. Each of
these can motivate future improvements to our occurrence rate
model and methodology.

Reliability: We were unable to take into account the
reliability of the RV population against astrophysical or
noise/systematic false positives because its false-positive rate
was not characterized. We do not believe this has a significant
impact on our analysis because we expect the HARPS +
CORALIE survey has high reliability, and we explored the
more robust > ÅM10 regime, where we assume the false-
positive rate is lower, and still found results consistent with our
baseline analysis. Nevertheless, we would like to be able to
directly take into account reliability for any given survey in the
future, and we encourage planet searches to characterize their
false-positive rates.

Detection Efficiency: For both surveys, we adopted an
average completeness when calculating the probability of
detecting a planet with a given set of properties. As discussed
in Hsu et al. (2019) and Kunimoto & Matthews (2020), a star-
dependent detection probability is likely more accurate given
how rapidly it changes with signal-to-noise ratio at low
completeness. Furthermore, using target-dependent window
functions has been shown to reduce occurrence rates for planets
at long orbital periods (1 yr) because they better estimate
detection probability when there are few transits (Hsu et al.
2019). Given that we are only looking at planets with <P 200
days, and we did not reach the limits of Kepler detection
sensitivity with our chosen period and mass range, we do not
expect our adoption of average detection efficiencies to have a
significant effect on our results.

Source of RV Data: Our RV results are reliant on a single
study from Mayor et al. (2011) with only 29 planets in our
domain of analysis. This paper has not yet been accepted,

though it has been cited in several previous occurrence-rate
studies (e.g., Wright et al. 2012; Santerne et al. 2016;
Fernandes et al. 2019). We chose this survey because it is
one of the only RV planet discovery surveys with well-
characterized completeness beyond simple detection limits. It
also has sensitivity down to small planets around FGK stars.
We would like to extend our analysis with a larger data set,
such as the ongoing work by the California Planet Search
(CPS),3 and incorporate multiple RV surveys in the same joint
fit to fully take advantage of available constraints.
Planet Population Model: We assumed a planet distribution

function in the form of a joint power law in orbital period and
planet mass, with a single break in mass (Equation (2)). We
also assumed that these power laws are independent. However,
there is much evidence that exoplanet populations are
significantly more complex (Fulton et al. 2017; Mulders et al.
2019; Pascucci et al. 2019). We could also explore models
where the different subpopulations of planets (e.g., rocky and
volatile-rich) follow different mass–period distributions.
Rocky Planet Fraction Model: Our model for the fraction of

rocky planets, Frocky, was only a simple constant over the
= - ÅM M5 25 overlap range quoted in Otegi et al. (2020).

We note that Frocky could have a more complicated behavior
that depends on mass within the transition. With the current
TESS mission adding more masses for planets with < ÅR R4
as one of its primary science goals (Ricker et al. 2015), we
anticipate being able to better characterize its features in the
near future.

8. Conclusions and Future Work

In this paper, we present the first joint fit analysis that
combines independent ground RV survey and Kepler transit
survey data, both with well-characterized completeness. We
assumed a planet distribution function described by a simple
power law in period and broken power law in mass, and we fit
this model to the results of each survey using a forward-
modeling approach with ABC.
In summary, our main findings are as follows:

1. A single planet population model for planets across
= ÅM M2, 50[ ] and =P 25, 200[ ] days can be consis-

tent with both RV and transit surveys when we adopt the
M–R relation of Otegi et al. (2020), which allows for
overlapping subpopulations of rocky and volatile-rich
planets to exist for masses of = - ÅM M5 25 . Using an
M–R relation without such an overlap, we find that the
mass break for the transiting population is significantly
lower than what is found for RV.

2. Taking advantage of constraints from both types of
surveys simultaneously, we find that our joint fit points to
a mass break at = -

+
ÅM M21.6b 3.2

2.5 . The joint fit also finds
that the transit and RV populations are most consistent
when a fraction of = -

+F 0.63rocky 0.04
0.04 planets belong to the

rocky population across - ÅM5 25 , assuming a simple,
constant fraction of rocky planets in this overlap region.

3. The joint-fit mass break after conversion to a planet-to-
star mass ratio (assuming a typical star mass of M1 ) is
consistent with estimates from microlensing, while again
the nonoverlapping M–R relation finds a mass ratio break
significantly lower. Thus, the Otegi et al. (2020) relation

3 https://exoplanets.caltech.edu/cps/
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allows us to resolve apparent discrepancies with both RV
and microlensing populations.

These findings contribute to a growing body of evidence for the
existence of distinct types of planets overlapping in mass and
radius in the observed planet population, which should be
accounted for by future M–R relations. Our statistical analysis
was only possible thanks to the availability of both RV and
transit surveys that have provided estimates of their complete-
ness. We encourage future teams to design their surveys to be
amenable to statistical population studies.

The ability to perform simultaneous fits between various RV
and transit surveys will become increasingly more important as
we enter the next era of exoplanet discovery. For instance,
survey yields from the TESS mission could be fit alongside
Kepler to more deeply explore the planet distribution function
at short orbits, should the completeness of TESS be sufficiently
characterized. The next generation of RV spectrographs such as
EXPRES and ESPRESSO are also expected to be able to detect
small, Earth-size planets around M dwarf stars for the first time.
Given that Kepler observed only a few thousand M dwarfs,
being able to take advantage of the additional constraints
provided by RV could significantly improve our understanding
of exoplanet occurrence rates, especially the occurrence rate of
potentially habitable planets around these stars.

Furthermore, while only an RV + transit example was
presented here, our framework can be extended to include other
detection methods in the future. In particular, the Roman Space
Telescope microlensing survey will be complementary to the
Kepler survey in finding hundreds of small planets in orbits of
up to thousands of days (Penny et al. 2019), while Gaia is
expected to find thousands down to the masses of Neptune
using astrometry (Ranalli et al. 2018). A joint fit analysis
incorporating all of these types of surveys could facilitate the
most comprehensive statistical census of exoplanets to date.

We are grateful for the referee’s comments and constructive
input, which substantially improved the manuscript. We thank
Leslie Rogers for helpful comments and insight. We also thank
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