
A Study about the Secular Evolution of the Hierarchical Three-body Problem Using the
Numerical Integrator TIDES

José A. Docobo1,2,3, Luca Piccotti1,2, Alberto Abad4 , and Pedro P. Campo1,2
1 Observatorio Astronómico Ramón María Aller, Universidade de Santiago de Compostela Avda. das Ciencias sn, Campus Vida Santiago de Compostela, E-15782,

Spain; joseangel.docobo@usc.es, l.piccotti@usc.es
2 Instituto de Matemáticas and Departamento de Matemática Aplicada Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, s/n, Campus Vida

Santiago de Compostela, E-15782, Spain
3 Real Academia de Ciencias de Zaragoza, Facultad de Ciencias Universidad de Zaragoza, c/Pedro Cerbuna 12 Zaragoza, E-50009, Spain

4 Departamento de Física Teórica, Universidad de Zaragoza, c/Pedro Cerbuna 12, Zaragoza, E-50009, Spain
Received 2020 August 8; revised 2020 October 30; accepted 2020 November 9; published 2020 December 23

Abstract

The hierarchical three-body problem is one of the classical issues of celestial mechanics, but recently it has
regained importance due to its applications to new scenarios, like compact objects and exoplanets. In this paper we
realize a computational study of this problem using the TIDES software package, which is applied not only to a set
of theoretical cases but also to actual stellar systems. The characteristics of the Taylor series integration method,
used by TIDES, permit the confirmation of the appearance of the Lidov–Kozai cycles in the case of high mutual
inclinations. In addition, a historical review of this problem is included.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Three-body problem (1695); Multiple
stars (1081)

1. Introduction

Gutzwiller (1998) was correct when he affirmed that the
oldest case of the three-body problem is that of the Moon, the
Sun, and the Earth. In view of this, with the objective of
elaborating a theory concerning the movement of our natural
satellite, eminent scientists such as Newton (1687), Euler (1753,
1772), Lagrange (1764, 1873), Laplace (1802), Hansen (1838,
1858, 1863), Delaunay (1858, 1860, 1866), Hill (1877, 1878,
1886, 1890, 1895, 1897, 1899, 1908), Hill & Delaunay (1891),
Brown (1896), Poincaré (1900a, 1900b), Brouwer & Rossoni
(1960), Brouwer (1962), Hori (1963), Deprit et al. (1970a,
1970b, 1971a, 1971b, 1971c, 1971d), etc., have all dedicated
themselves to research about this mathematical and astronomical
problem. Their goal has been to ensure that the calculated
positions approximate those observed as much as possible. Thus,
lunar theory has become one of the most important issues in the
field of celestial mechanics.

As an extension of this research, application to the stellar
case arose in the first decades of the 20th century and became
known as the stellar problem of three bodies, which concerns
the study of the movement of three stars Pi (i=1, 2, 3) with
respective masses i (i=1, 2, 3) that are in a hierarchical
configuration in the sense that star P3 is sufficiently separated
from the other two stars that we are able to consider perturbed
Keplerian movements, such as movement of P3 with respect to
the center of masses of P1 and P2 (outer orbit) as well as that
of P2 around P1 (inner orbit).

In that case and in agreement with the method of variation of
the constants, we then proceed to consider the elements of both
orbits as functions of time to be determined, but with the
assumption, verified in practice, that in each instant the said
orbits can be considered to be Keplerian, with their elements
varying from one instant to another. This last issue has the
advantage that the integrals and other expressions of the two-
body problem can be utilized.

The great difference between this stellar problem and lunar
theory is that now the three masses are all of the same order and

the eccentricities and the angle formed by the two orbits (the
mutual inclination) do not necessarily have small values. On
the contrary, according to each case, these parameters can be
very different.
Slavenas (1927), using the lunar theory of Hill, began to work

with some restrictions, e.g., by taking coplanar movements,
Keplerian movements, and the circular outer orbit. Lyttleton
(1934) used the equations of Pontécoulant (Brown 1896)
and obtained a formulation that permitted the study of the
gravitational influence of a third star on the reproduction of
eclipses in binaries with application to Algol.
In 1936 and 1937, Brown (1936a, 1936b, 1936c, 1937)

developed significant research on the topic, limiting it to
detectable terms by means of observation. In his communica-
tions, he began to adapt the lunar theory of Delaunay,
recognizing the defect that Delaunay considered only small
eccentricities and inclinations, which Brown improved in a
second paper. In the third part of his work, using the canonical
equations of Delaunay, he contributed expressions for the
calculation of apse–node terms. Finally, he applied this theory
to the ξ-Ursae Majoris system, which, in spite of being a
quadruple system, has two of its components so close to each
other that, at the first approximation, it may be considered to be
a hierarchical triple system. In fact, it is perhaps the best
example to use in order to detect orbital perturbations.
Ishida (1949) reviewed the work of Brown and obtained

expressions for the calculation of long-period perturbations as
well as apse–node terms, applying them to the ζ-Cancri system.
Z. Kopal also investigated this problem, and he dedicated one
section of his book Close Binary Systems (Kopal 1959) to the
perturbations that affected a binary due to interaction with a
third body. On the other hand, he also mentioned on page 124
the research made by Hodgkinson, who also followed the work
of Brown in the use of the canonical equations of Delaunay. In
addition, he developed a complete treatment of short-period
perturbations, of special importance in the case of eclipsing
systems.
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The stellar three-body problem was also studied by Musen
(1966). He eliminated short-period terms, applying the
averaging method of Krylov & Bogoliubov (1947) to the
differential equations of Milankovich (1939), which give the
perturbations of the Laplace vectors e and the areal velocity c.
Musen commented: “The differential equations for the
elements affected only by the long period perturbations can
be written as a quasi-linear system. We can solve it either by
developing the solutions into a power series in a small
parameter or by applying the method of successive approxima-
tions.” He concluded that for small eccentricities, there are
resonances for mutual inclinations of I=39° and I=141°.
The existence of these critical inclinations was confirmed by
Lidov (1961, 1962) and Kozai (1962).

From 1968, R.S. Harrington published various articles on the
subject. In the first of those as well as in his dissertation
(Harrington 1968a) and in contributions derived from the same
(Harrington 1968b, 1969, 1970), he developed the Hamiltonian
function in powers of the ratio between the semimajor axes of
the inner and outer orbits, which is considered to be a small
parameter. Next, he integrated the canonical equations of
movement by applying the analytic method of von Zeipel
(1916) and obtained, after eliminating the short-period terms
(those dependent on true anomalies), two other integrals of
movement and demonstrated that the semimajor axes do not
experience secular perturbations. In that way, he affirmed that
hierarchical triple systems are stable except in cases of high
mutual inclination, in which the eccentricity and the inclination
itself show very long–period variations (Lidov–Kozai cycles).
In his 1969 article, Harrington wrote, “The remaining time
averaged problem with only the second order Hamiltonian has
one additional integral and can be solved. The motion with the
third order Hamiltonian included is more complex, in that there
may be additional resonances, and the integral does not exist in
all cases.”

Soderhjelm (1975) obtained the long-period and apse–node
terms from Harrington’s work and applied them to the case of
eclipsing binaries with the objective of studying the variation of
light minima due to the effect of the distant component. The
same author (Soderhjelm 1982) increased the long-period terms
deduced in his first article to the variables L2 and l2 at the same
time that he carried out a thorough numerical study of the
secular variations of the eccentricity of the inner orbit in
relation to the mutual inclination at an interval of P2/P1. He
commented: “The most important property of the motion in a
triple system is the (e1−g1)—coupling. There is either a
circularity or a librational motion, but in any case, the
circularity varies periodically.” Another numerical study had
been previously published by Standish (1972). Soderhjelm
(1984) also studied tidal effects in the stellar three-body
problem. Other authors have worked on this same scenario—
for example, Kiseleva et al. (1998).

Docobo (1977a) used the method of perturbations of Deprit
(1969) in place of that of von Zeipel for the first time. The
Deprit method is based on the Lie transformation and its
application to the initial canonical system with the objective of
obtaining canonical systems that are easier to integrate. This
method presents clear advantages with respect to that of von
Zeipel such that the old and the new variables are not mixed
together. Docobo first considered the outer Keplerian orbit but
later extended his study keeping in mind the perturbations in
both orbits. In that way, all of the relations between the two

orbital planes, the plane of the apparent orbits and the
invariable plane, were explicitly obtained (Docobo 1977b,
1977c, 1977d, 1978; Docobo & Prieto 1988; Docobo et al.
1992).
Abad (1984) used the system of polar-nodal, or Hill’s,

variables, considering the ratio between the semimajor axis of
the inner orbit and the distance in the periastron of the outer orbit
to be a small parameter. He also used the Deprit method to
eliminate the angular variables and transformed the reduced
equations into a perturbed harmonic oscillator solved by the
asymptotic Krylov–Bogoliubov–Mitropolski method (Krylov &
Bogoliubov 1947; Bogoliubov & Mitropolski 1961). Within
the same research group, Ling (1989, 1991) and Ling et al.
(1995) put into practice the stroboscopic method, which is a
semianalytic procedure proposed by C. Lubowe and developed
by Roth (1979) for application to the case of an artificial satellite.
Among other interesting contributions to the hierarchical three-

Figure 1. Graphic representation of the positions of the three bodies.

Figure 2. Flowchart of the algorithm.
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body problem, we also mention the works of Mazeh & Shaham
(1979), Delva & Dvorak (1979), Valtonen & Karttunen (2006),
and Krymolowski & Mazeh (1999).

Using the octupole-level secular perturbation equations, Ford
et al. (2000) studied the evolution of orbital eccentricities and
inclinations over timescales that have long been compared to
the orbital periods. Their results can be applied to high-

inclination as well as coplanar systems. These authors also took
into account triple systems containing a close inner binary,
discussing the possible interaction between the classical
Newtonian perturbations and the general-relativity precession
of the inner orbit.
Several criteria have also been established for the study of

the stability of hierarchical triple stellar systems—see, for

Table 1
Orbital Elements and Masses for the Group A Cases

P (years) T (years) e a (″) I (°) Ω (°) ω (°) ò = ( )-
a

a e1
1

2 2

A1 outer orbit 302.4 0. 0.4 11.1 20. 60. 80. 0.15
A1 inner orbit 10. 100. 0.2 1. 40. 120. 100.
Masses:1 = 1  ; 2 = 1  ; 3 = 1 

A2 outer orbit 555.6 0. 0.4 16.7 20. 60. 80. 0.10
A2 inner orbit 10. 100. 0.2 1. 40. 120. 100.
Masses:1 = 1  ; 2 = 1  ; 3 = 1 

A3 outer orbit 234.2 0. 0.4 11.1 20. 60. 80. 0.15
A3 inner orbit 10. 100. 0.2 1. 40. 120. 100.
Masses:1 = 1  ; 2 = 1  ; 3 = 3 

A4 outer orbit 430.3 0. 0.4 16.7 20. 60. 80. 0.10
A4 inner orbit 10. 100. 0.2 1. 40. 120. 100.
Masses:1 = 1  ; 2 = 1  ; 3 = 3 

Table 2
Orbital Elements and Masses for the Group B Cases

P (years) T (years) e a (″) I (°) Ω (°) ω (°) ò = ( )-
a

a e1
1

2 2

B1 outer orbit 555.6 0. 0.4 16.7 20. 60. 80. 0.10
B1 inner orbit 10. 100. 0.2 1. 90. 120. 100.
Masses:1=1  ; 2=1  ; 3=1  ; Im=80°. 2

B2 outer orbit 555.6 0. 0.4 16.7 45. 60. 80. 0.10
B2 inner orbit 10. 100. 0.2 1. 55. 90. 100.
Masses:1=1  ; 2=1  ; 3=1  ; Im=24°. 9

B3 outer orbit 430.3 0. 0.4 16.7 20. 60. 80. 0.10
B3 inner orbit 10. 100. 0.2 1. 90. 120. 100.
Masses:1=1  ; 2=1  ; 3=3  ; Im=80°. 2

B4 outer orbit 430.3 0. 0.4 16.7 45. 60. 80. 0.10
B4 inner orbit 10. 100. 0.2 1. 55. 90. 100.
Masses:1=1  ; 2=1  ; 3=3  ; Im=24°. 9

Table 3
Orbital Elements and Masses for the Group C Cases

P (years) T (years) e a (″) I (°) Ω (°) ω (°) ò= ( )-
a

a e1
1

2 2

C1 outer orbit 555.6 0. 0.4 16.7 25. 60. 80. 0.10
C1 inner orbit 10. 100. 0.2 1. 85. 120. 100.
Masses:1=1  ; 2=1  ; 3=1  ; Im=73°. 17

C2 outer orbit 555.6 0. 0.4 16.7 25. 60. 80. 0.10
C2 inner orbit 10. 100. 0.2 1. 120. 120. 100.
Masses:1=1  ; 2=1  ; 3=1  ; Im=105°. 67

C3 outer orbit 430.3 0. 0.4 16.7 60. 80. 80. 0.10
C3 inner orbit 10. 100. 0.2 1. 85. 60. 100.
Masses:1 = 1  ; 2=1  ; 3 = 3  ; Im=31°. 32

C4 outer orbit 430.3 0. 0.4 16.7 110. 90. 80. 0.10
C4 inner orbit 10. 100. 0.2 1. 85. 70. 100.
Masses:1 = 1  ; 2=1  ; 3 = 3  ; Im=31°. 80
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example, Harrington (1972), Szebehely & Zare (1977),
Graziani & Black (1981), Black (1982), Donnison & Mikulskis
(1994, 1995), Eggleton & Kiseleva (1995), Kiseleva et al.
(1994a, 1994b), Mardling & Aarseth (1999), Orlov & Petrova
(2000), and Féjoz & Guardia (2016). Andrade & Docobo
(2004) also studied stability, keeping in mind the loss of stellar
mass in accordance with the different laws dependent on time
and separation (the periastron effect).

From the practical point of view concerning the study and
classification of triple stellar systems, it is necessary to
highlight the large number of contributions of Tokovinin
(1993, 1999, 2004, 2014a, 2014b, 2016a, 2016b), Tokovinin &
Smekhov (2002), Sterzik & Tokovinin (2002), and Tokovinin
et al. (2006), including the preparation of the Multiple Star
Catalog (MSC; Tokovinin 1997), which was recently updated
(Tokovinin 2018).
In the 1990s, the discovery of the first exoplanets supposed a

recuperation of the hierarchical three-body problem. However,
it is important to point out that before that time, publications
already existed about planets in binary systems—for example,
Harrington (1977), Szebehely (1980), and Dvorak (1984),
which proposed studies about the stability of planetary orbits as
well as the habitability of said planets. In this sense, a robust
line of research exists with a great number of contributions by
different authors, such as Dvorak (1986), Rabl & Dvorak
(1988), Benest (1987, 1988), Marchal (1990), Dvorak et al.
(1989), Mikkola (1997), and Lara et al. (2011).

The secular dynamics in hierarchical three-body systems is
considered to be an important research field in many

astrophysical contexts (Naoz et al. 2013). In the words of
these authors, “In this approximation, the orbits may change
shape and orientation, on timescales longer than the orbital
timescales, but the semimajor axes are constant. For example,
for highly inclined triple systems, the Kozai–Lidov mechanism
can produce large amplitude oscillations of the eccentricities
and inclinations. At the octupole order, for an eccentric outer
orbit, the inner orbit can reach extremely high eccentricities and
undergo chaotic flips in orientation.”
In the abovementioned paper, Naoz et al. derived the secular

evolution equations to the octupole order in Hamiltonian
perturbed theory. They also corrected an error in some previous
treatments of the problem that implicitly assumed a conserva-
tion of the z-component of the angular momentum of the inner
orbit. At the same time, they mentioned different scenarios that
can be studied apart from the stellar three-body problem, such
as the case of asteroids and comets with inclined orbits under
the gravitational influence of the Sun and Jupiter, exoplanets,
and compact objects. A complete list of references to papers on
these last issues can be found in Naoz (2016).
The objective of this research is to apply the Taylor Series

Integrator for Differential Equations (TIDES) software to the
study of the dynamic evolution of the hierarchical problem of
three bodies, taking advantage of the fact that this package,
based on the Taylor series method, adjusts the order of these
series to achieve a better approximation to the solution with
very long integration times and short computational times.
First, we carried out a series of tests of a theoretical type,

considering different masses and two different values of the

Figure 3. Perturbation in the angle of the node of the inner orbits in cases A1 and A2.

Figure 4. Perturbation in the angle of the node of the outer orbits in cases A1 and A2.
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parameter
( )

=
-

 a

a e1
1

2 2
, a1 and a2 being the semimajor axes of

the inner and outer relative orbits and e2 being the eccentricity
of the outer orbit. That is to say, a2(1−e2) is the minimum
distance between the centers of mass, C, of the P1 and P2
bodies and the third body P3. We also considered cases in
which one of the orbits has direct movement and the other
retrograde, with mutual inclinations that are large and small,
etc.

Then we applied an algorithm established for two actual
cases that correspond to triple stellar systems of the type where
the first shows a very low mutual inclination, while, in the
second, this inclination is high. The idea was to see how TIDES
reproduces, for the long term, the Lidov–Kozai cycles in the

eccentricity and inclination of the inner orbit when the mutual
inclination is high and at the same time to study the behavior of
the argument of the periastron, etc.
In the next sections, first, we present a summary of the

characteristics of the TIDES package, which has been used,
successfully, in some problems of astrodynamics that require
great computational effort. For example, in Barrio et al.
(2011a, 2011b) the evolution of a Keplerian orbit was analyzed
when there was an uncertainty in the initial conditions. This can
be applied to the analysis of the evolution of NEO Earth close
approaches. In Dena et al. (2015) the existence of symmetrical
periodic orbits around the Moon was studied. These orbits are
of great interest from the point of view of lunar exploration.

Figure 5. Comparison of the angles of the nodes of the inner and outer orbits in cases A3 (first two figures above) and A4 (last two figures below).

Figure 6. Comparison of the inclination of the inner orbits in cases A1 and A3.
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Next, we present the differential equations to be integrated and
the flowchart and the algorithm prepared to that effect. Finally,
we offer the results obtained and corresponding commentaries
on theoretical cases as well as on the selected triple stellar
systems.

2. About TIDES

The TIDES numerical integrator (Abad et al. 2011, 2012; Abad
& Barrio 2014) allows us to solve first-order ordinary differential
equations (ODEs) numerically by using the Taylor series method.
This method, for which other packages exist, such as ATOMFT
(Corliss & Chang 1982; Chang & Corliss 1994), Cosy Infinity

(Berz & Makino 2001), and Taylor (Jorba & Zou 2005), has been
successfully used to solve many problems in dynamical systems
and astrodynamics as commented above. Some demanding
practical applications can be found in Barrio et al. (2011a,
2011b). Among the features of TIDES the following ones are
worthy of mention:

1. TIDES integrates numerically ODE problems with
double or multiple precision (using the MPFR and
GMP libraries) by using the Taylor series method in a
reasonable computer time.

2. The software has been designed to be extremely easy to
use: the ODE and its parameters, together with the

Figure 7. Comparison of the inclination of the outer orbits in cases A1 and A3.

Figure 8. Comparison of the eccentricity of the inner and outer orbits in cases A2 (first two figures above) and A4 (last two figures below).
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parameters of the integration, are written in a natural way
by means of the Mathematica package MathTIDES,
which writes the C (Fortran) code. This code is compiled
and linked with the C library libTIDES, thus integrating
the ODE.

3. The integration is performed with an optimized variable-
stepsize and variable-order formulation and extended
formulas for variational equations.

4. TIDES may detect events of ODEs, i.e., points where a
function of the solution of the ODE satisfies an event
function, e.g., it becomes zero or reaches an extremum.

5. TIDES can handle directly equations that show special
sensitivity with respect to initial conditions or parameters,
up to any order.

6. Automatic differentiation (AD) techniques obtain the
derivatives and partial derivatives.

7. MathTIDES writes automatically the code for computing
partial derivatives of the solution of the ODE with respect
to any variable or parameter (using AD and avoiding the
use of any variational equation or sensitivity with respect
to the parameters).

Now we describe some of the mathematical aspects that
constitute the foundations of this software. Let us suppose an
initial-value problem represented by the equations

( ) ( ( ) ) ( )

( )

= = Î Î Î  x
F x p x x p

d t

d t
t t t y t, , , , , ,

1

n m
0 0

where t0 is the initial instant, x0 is the vector of the initial
conditions, and p is a set of m parameters. The solution in a
neighborhood of the initial instant can be expressed by means

Figure 9. Comparison of the eccentricity, inclination, and argument of the periastron of the inner orbits in cases B1 and B3.
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of its Taylor series expansion, which if approximated to the Nth
order can be written as follows:

( ) ( )
!

( ) ( )å= - =
=

x x x
x

t t t
k

d

d t
t,

1
, 2

k

N

k
k

k

k

k
0

0 0

where xk denotes constants that depend on t0 and x0. Replacing
the series expansion (2) of x(t) in the differential Equation (1),
we obtain on the one hand

( ) ( ) ( )å= -
=

-x
x

d t

d t
k t t , 3

k

N

k
k

0
0

1

and on the other

⎛
⎝⎜

⎞
⎠⎟( ( ) ) ( ) ( )

( )

å å= - = -
= =

F x p F x p Ft t t t t t t, ; , ; .

4
k

N

k
k

k

N

k
k

0
0

0
0

The coefficient Fk=Fk(x0,K,xk−1) depends on the first k−1
coefficients of (2).

Combining (3) and (4) we obtain the relationship

( ) ( )=
+

¼ = ¼ -+ -x F x x
k

k N
1

1
, , , 0, 1. 5k k k1 0 1

This relationship permits us to obtain the terms in each order of
the series expansion (3) of the solution of the problem.

The procedure used in TIDES for the obtainment of (3)
requires the application of AD techniques based on the

algebraic manipulation of power series that can be found in
Abad et al. (2011).
The use of the series (3) to calculate the numerical value of

the solution in any point t requires us to take into account two
important subjects: first the determination of the order N for
which the error of a series of this order is below a certain value
and second the convergence radius of the series, i.e., the value
h for which the series is absolutely convergent for |t−t0|<h.
This value yields the values of t for which it is possible
to evaluate the value of x(t) by using its power series
expansion. If point t belongs outside of the convergence radius
of the series, a new initial value must be obtained by means
of t0=t0+h,x0=x(t0+h), and the AD process must be
applied again to obtain (3) until t is located within its radius of
convergence. The numerical details of this procedure are also
detailed in Abad et al. (2011).

3. The Proposed Algorithm

The Newtonian equations of the three-body problem
formulated in Jacobian coordinates were integrated using the
TIDES package.
Starting from the orbital elements of the two orbits (inner

and outer), the position and velocity vectors, ri(0) and ri(0) with
i=1, 2, were calculated using an application in Python, in a
chosen initial instant. These initial values were introduced in
TIDES to perform integrations of the following equations

Figure 10. Comparison of the eccentricity, inclination, and argument of the periastron of the inner orbit in case B2.

8

The Astronomical Journal, 161:43 (20pp), 2021 January Docobo et al.



(Abad 2012) describing the two mentioned orbits:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

̈ ( )

̈ ( )

( )

=- + + -

=- + -

-
+

-

   

   


 

 

r
r r r

r
r r

r r

r r r

r r

r r

,

, 6

1 1 2
1

1
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where1,2, and3 are the masses of the three bodies P1,
P2, and P3. According to the definition of the center of mass of

the bodies P1 and P2, C, one has
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where r1 is the position vector of P2 with respect to P1 and r2 is
the position vector of P3 with respect to the center of mass of P1
and P2 (see Figure 1).
At each integration, TIDES generates a file in plain-text

format that, for each instant of time ti, provides the position and
velocity vectors ri( j) and ( )ri j with i=1, 2, and j=1, K, S,

Figure 12. Comparison of the eccentricity and argument of the periastron of the outer orbit in case B2.

Figure 11. Comparison of the eccentricity, inclination, and argument of the periastron of the outer orbit in case B1.
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where S denotes the integration steps. This file is processed by
the Python application, which, through a series of calculations,
generates the osculating orbital elements.

The flowchart of the application in Python and TIDES is
shown in Figure 2.

Before applying our algorithm to real stellar systems, we
included the application of TIDES to three groups of theoretical
cases. In group A, we varied the mutual distance considering
two values for the parameter ò, 0.1 and 0.15, and also
considered that the three masses were equal and that the third
body P3 had a mass that was three times that of each of the
other two bodies.

In the second group, B, we focused on the mutual inclination
Im of both orbits, which was calculated using the expression
(Docobo 1977a; Docobo et al. 2016)

( ) ( )= + W - WI I I I Icos cos cos sin sin cos . 8m 1 2 1 2 2 1

We considered cases in which Im was very elevated and
others where Im was very low.
Lastly, in relation to the direction of the motion of the two

orbits, we selected two situations with orbits co-revolving and
orbits having contrary directions with the goal of studying the
behavior of the angle ω (group C).

4. Theoretical Cases

In this section we present the 12 theoretical cases previously
mentioned, which will be used as a test to the developed
algorithm. Tables 1, 2, and 3 contain the orbital elements and
masses considered for each case, given in the format used for
visual binaries.
The evolution in a time interval that corresponds to 1000

times the period of the outer orbit, P2, for each of the orbital
elements of both orbits in the 12 cases studied (168 graphs) is
included in the online version of this article:

Figure 13. Comparison of the eccentricity, inclination, and argument of the periastron of the inner orbits in cases C1 (first three figures) and C2 (last three figures).
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(A) By mutual distances and masses
(B) By mutual inclination
(C) By direction of movement

We begin with cases A1 and A2 of section A. In both cases,
the angle of the node of the inner orbit makes a complete
revolution in direct motion, but in the case of A1, the
revolution is completed in 90,000 years, while in case A2, it
occurs three times as rapidly (see Figure 3). Something similar
happens with the angle of the node of the outer orbit, but in this
case, this element is in libration (see Figure 4).

Changing cases A1 and A2 for A3 and A4, we see the
differences clearly increase given that the perturbing body has
more mass (see Figure 5).
Studying the evolution of the two inclinations (the inner and

outer orbits) for cases A1 and A3 (with the same ò value), one
can see, as one would expect, that the variations in those orbital
elements occur more rapidly in A3 given that the P3 body has,
in this case, triple the mass of that in the A1 situation.
Therefore, inclination I1 varies in case A1 between 50° and less
than 10° in approximately 25,000 years. In case A3, it occurs in
some 10,000 years and not exactly in the same limits (see

Figure 14. Comparison of the eccentricity, inclination, and argument of the periastron of the outer orbit in case C4.

Table 4
Orbital Elements

HD/System P T e a I Ω ω

Other Designation (year) (year) (″) (°) (°) (°)
Reference

200580 / outer 19.205 2006.259 0.1743 0.2195 65.1 102.8 17.6
WSI 6AB ±0.080 ±3.60 ±0.0083 ±0.0013 ±1.0 ±0.5 ±2.6

Tokovinin & Latham (2017)

200580 / inner 1.03483 2014.6223 0.0934 0.0284 68.6 97.3 124.9
DSG 6Aa,Ab ±0.00008 ±0.0089 ±0.0040 ±13.7 ±12.5 ±3.1

Tokovinin & Latham (2017)

213052 / outer 540 1981.50 0.419 3.496 142.0 131.3 269.3
STF 2909AB ±15 ±0.58 ±0.011 ±0.046 ±0.4 ±0.8 ±1.7

Tokovinin (2016b)

213052 / inner 25.95 206.52 0.872 0.110 11.8 293.7 100.9
EBE 1Aa,Ab ±0.048 ±0.13 ±0.006 Fixed ±6.7 ±74 ±73

Tokovinin (2016b)
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Figure 6). For inclination I2, the evolution of the elements
occurs in a manner similar to that seen in Figure 7.

In relation to the e1 and e2 eccentricities, we have also
carried out a comparison between cases A2 and A4. Figure 8
confirms the expected logic, which is that the perturbations are
greater than those in case A4.

Moving to block B, in which we take different values of the
mutual inclination of the orbits, we find the behavior of the
elements e1, e2, I1, I2, Ω1, Ω2, ω1, and ω2 to be of maximum
interest.

In cases B1 and B3, the mutual inclination is high (80°.2),
whereas in B2 and B4 it is low (24°.9). It is precisely this
parameter that is going to be decisive in the type of evolution of
each element. In effect, considering the B1 case, with the
mutual inclination between 39° and 141°, the mechanism of
Lidov–Kozai is produced in such a way that, in the inner orbit,

the eccentricity e1 is affected by strong perturbations that make
it oscillate until it reaches values close to one.
For the part of the inclination of the inner orbit, I1, ample

oscillations are also presented that cause the initial direct orbit
to move in retrograde motion and vice versa, while the
argument of the periastron, ω1, is in libration (see Figure 9).
In case B2, the same does not occur, where the behavior of

e1 and I1 is merely periodic with the e1 eccentricity oscillating
between 0.175 and 0.227 and the I1 inclination between 24°
and 68° and now it is the ω1 argument of the periastron that is
in circularization, passing from 0° to 360° in approximately
600,000 years (see Figure 10).
With respect to the outer orbit, in case B1, the eccentricity e2

has a periodic variation of low amplitude, while in the
inclination I2, the periodic behavior is observed to have
variable amplitude. In any case, the value oscillates between

Figure 15. Evolution of the orbital elements of the inner orbit for the HD200580 system.
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16° and 37° in 300,000 years. Regarding the argument of the
periastron, a secular evolution is present with a periodic
component superimposed, but ω2 makes a complete revolution
of 0°–360° in approximately 225,000 years (see Figure 11).

In case B2, e2 demonstrates an extremely small variation,
increasing by only two thousandths in more than 500,000
years. The argument of the periastron, ω2, increases secularly
from 0° to 360° in almost 600,000 years (see Figure 12).

Finally, in scenario C, we consider orbits with the same (C1
and C3) and opposite (C2 and C4) directions of movement.
Cases C1 and C2 show a high mutual inclination, while in C3
and C4, the mutual inclination is low. We want to know if the
fact that these are systems with contrary directions of
movement may influence the Lidov–Kozai cycles. Our
comparisons indicate that the answer is no. In cases C1 and
C2, we should expect those cycles due to the high mutual

inclination, but we should not expect so in the other two cases.
Selecting the C1 and C2 cases, we see that in the first, with
respect to the eccentricity of the inner orbit (e1) there are strong
oscillations that reach values superior to 0.9 as in cases B1 and
B3. However, the fact that the orbital movements occur in
opposite directions does not change this behavior as can be
seen in C2.
The same occurs with the inclination I1 such that in both

cases there are successive changes in the quadrant and the
argument of the periastron, ω1, which maintains the libration in
both C1 and C2 (see Figure 13).
In the cases of low mutual inclination, the fact that the two

orbits have contrary directions of movement does not affect the
behavior shown in the case of B. For example, in case C4, with
low mutual inclination and orbits in opposite directions, the
eccentricity (e2) and the inclination (I2) maintain the periodic

Figure 16. Evolution of the orbital elements of the outer orbit for the HD200580 system.
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character of low amplitude in which ω2 demonstrates
circularization (see Figure 14).

5. Application to Stellar Systems

The algorithm developed, and tested in the theoretical cases,
has been applied to two hierarchical triple stellar systems:
HD200580 and HD213052. The orbital elements of these
systems (outer and inner orbits) with their corresponding errors
are shown in Table 4. In it, the first column identifies each
subsystem by the HD number and, in the line below, by the
discover code and component designations. The following
columns indicate the orbital period P, the epoch of the
periastron passage T, the eccentricity e, the semimajor axis a,
the inclination I, the node Ω, and the argument of the
periastron ω.

5.1. HD200508

This is a spectroscopic–interferometric system (both the inner
AaAb pair and the outer AB) studied by Tokovinin & Latham
(2017). The outer WSI 6AB system was resolved by Mason
et al. (2001), and the inner DSG 6AaAb system by Horch et al.
(2012). In 2002, Latham et al. calculated the spectroscopic orbit
(SB1) of the closed binary (Latham et al. 2002).
The combined spectrum is considered as F9V in the

SIMBAD database (Wenger et al. 2000), although some
measurements suggest it may be F7V or F8V. The magnitudes
listed in the ORB6 catalog (Hartkopf et al. 2001) are 7.5–9.5
for AB and 7.6–9.1 for AaAb (the latter is based on the
observations of E. Horch). Nevertheless, Tokovinin & Latham
considered that the difference of magnitudes of the inner
system should be at least 4.1 because it was not resolved by the
CHIRON spectrometer.

Figure 17. Variation of the orbital elements of the inner orbit for the HD213052 system over an integration of 500,000 years.

14

The Astronomical Journal, 161:43 (20pp), 2021 January Docobo et al.



The measurements by Horch were obtained close to the
diffraction limit of the telescope, and for that reason, it is
possible that the difference of magnitude is underestimated. As
such, Tokovinin & Latham gave magnitudes of 7.46, 12.5, and
9.62 with 1.15, 0.56, and 0.67 as the respective masses for the
Aa, Ab, and B components. With these values and keeping in
mind the Gaia parallax (Gaia Collaboration et al. 2018), we
have resulting absolute magnitudes of 4.15, 9.20, and 6.32,
which correspond to the F8V, M1V, and K1V spectral types,
respectively. It is a metal-poor system, with [Fe/H]=−0.51
in the Geneva–Copenhagen Catalog (Holmberg et al. 2009)
and values ranging from −0.43 to −0.80 in the abundance
measurements listed in SIMBAD. The estimated age is between
7.2 and 8.9 Gyr in the catalog, which suggests that the system
is stable.

This system has a low mutual inclination (Im=6°.15), so
the Lidov–Kozai cycles are not expected. In this case the

integrations were made over only 1000 times the orbital period
of the outer orbit (19,000 years approximately). The evolution
of the orbital elements of both the inner and the outer orbits
(Tokovinin & Latham 2017) is represented in the graphs of
Figures 15 and 16. Perturbations in T and a are merely periodic,
e.g., a1 varies between 0 02834 and 0 02850, and a2 between
0 2193 and 0 2202.
As expected, with such a low mutual inclination, the

eccentricity and the inclination of the inner orbit, e1 and I1,
show periodic perturbations of minimal amplitude: e1 varies
between 0.080 and 0.110, while I1 varies between 61° and 70°.
The angle of the node is in libration from 96° to 107°, while ω1

circularizes, making a complete revolution in 1250 years.
The perturbations in the outer orbit are smaller, being purely

periodic in e2, I2, and Ω2 but secular in ω2, which goes from 0°
to 360° in 7500 years.

Figure 18. Variation of the orbital elements of the outer orbit for the HD213052 system over an integration of 500,000 years.
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5.2. HD213052 (Zeta Aquarii)

In calculating the orbit of the AB binary, Strand (1942)
considered the possible existence of a third body. Later orbits
calculated by Rabe (1954), Franz (1958), Harrington (1968c),
Costa & Docobo (1982), Heintz (1984), Olevic & Cvetkovic
(2004), and Scardia et al. (2010) with more visual as well as
photographic observations confirmed this fact. The AaAb
components of star A were resolved in 1978.96 using speckle
interferometry (Ebersberger & Weigelt 1979). Later, Tokovinin
(2016b) considered that measurement improbable due to the
then-established difference of magnitude between the Aa and Ab
components, Δm=6.3. Therefore, he proposed the following
values: Aa, 4.30; Ab, 10.60; and B, 4.51, with corresponding
masses of 1.4, 0.6, and 1.4. Tokovinin considered Aa and B to

be practically equal evolved stars (spectral type F2IV–V), while
Ab could be a main-sequence dwarf. This idea as well as the fact
that the mutual inclination is high suggests the possibility that
the Ab component was captured after the formation of the
system.
Zeta Aquarii had been observed by W. Herschel in 1779,

although a previous measurement was listed in a catalog by
Mayer in 1784 (Tokovinin 2016b). Gaia (Gaia Collaboration
et al. 2018) assigned the parallaxes of AaAb (0 03451) and B
(0 03425), while Hipparcos (van Leeuwen 2007) measured the
parallax of the AB system (0 03550). Recently, Izmailov
(2019) calculated new orbits for this well-known multiple
system.
This case is completely different from the previous one in

that now the orbits calculated by Tokovinin are more eccentric,

Figure 19. Variation of the orbital elements of the inner orbit for the HD213052 system over an integration of 5,000,000 years.
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especially the inner one. The mutual inclination is also high.
However, there are no precise radial velocities (RVs) to be able
to determine the nodes, so two values of the mutual inclination
are possible. For Ω1=113°.7 and Ω2=131°.3 or Ω1=293°.7
and Ω2=311°.3, we have Im=130°.6, but for Ω1=113°.7
and Ω2=311°.3 or Ω1=293°.7 and Ω2=131°.3, we deduce
Im=153°.1. In the first two cases, because Im<141°, in
accordance with the Lidov–Kozai limits, and in view of the
results of the theoretical cases previously studied, we can
expect ample variations in e1 and I1, while ω1 should be in
libration. The first of these two is what we have considered. If
Im=153°.1, the Lidov–Kozai mechanism is not expected. RV
observations are fundamental to determining the precise nodes.

The evolution of the elements in both the inner and the outer
orbits (Tokovinin 2016b) has been calculated in a temporal

interval of 500,000 years, close to 1000 times the period of the
outer orbit, and it is what can be seen in Figures 17 and 18.
We also have carried out a very long–term integration (5

million years) in order to confirm the tendencies, which indeed
occurred (see Figures 19 and 20).
In all of the studied cases, both the angular momentum and

the integral of the energy were conserved. We include the
corresponding graphs for the two stellar systems considered
(see Figure 21).

6. Conclusions

In recent years, the hierarchical three-body problem has
acquired new relevance given the possible applications to new
scenarios such as planetary systems, compact bodies, etc.

Figure 20. Variation of the orbital elements of the outer orbit for the HD213052 system over an integration of 5,000,000 years.
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Taking advantage of this fact, we have carried out a
theoretical–practical study of the problem, beginning with a
historical review of the different approximations that have
yielded the same results. Moreover, we have used the power
and versatility of the TIDES package in order to integrate
different cases, theoretical as well as practical, in which the
effects of different configurations on the results were studied.

We have demonstrated the appearance of the cycles of
inclination and eccentricity predicted by Lidov–Kozai without
the necessity to use very long integration times. In these cycles,
we have confirmed the influence of the mutual inclination
between the orbits, with perturbations appearing for inclina-
tions between 39° and 141°.

However, we have rejected the hypothesis that those
elements are affected significantly by the direction of orbital
movements, due to the fact that systems with co-revolving
orbits and those with orbits in opposite directions show the
same behavior.

Finally, we have conducted a study of two actual systems,
HD200508, with low mutual inclination, and HD213052,
with an inclination within the limits established by Lidov–
Kozai. In both cases, the behavior predicted by the theory was
confirmed. In the second case, significant perturbations in the
inclination and the eccentricity of the inner orbit appeared,
which did not occur in the first case.

The study of the hierarchical problem of three or more
bodies is very important in stellar astronomy. The physical and
dynamical properties of the components provide information
that is associated with the formation and evolution of these
systems, including possible captures as occurs in the case of the

second system reported in this article. In addition, medium- and
long-term tracking of those orbits is fundamental in order to not
only assess their stability but also understand the influence that
they have on the exoplanets of these systems.
In agreement with the previously mentioned Lidov–Kozai

mechanism, high inclinations between the two orbits of a triple
stellar system give place, in the medium and long term, to
dramatic changes in the inclination and eccentricity of the inner
orbit with consequent instability produced in the orbits of
planetary subcomponents. These high inclinations may also
effect the expulsion of planets from their original systems,
which may explain a percentage of unbound exoplanets,
particularly those in the lower range of mass. All of the
aforesaid may have special influence on the habitability of
those planets and their possible exosatellites.
In the present article, we have considered two triple-star

systems as examples. It is clear that the theory presented here
may be applied to all other systems in which the inner and outer
orbits have been well established, which is a powerful reason to
continue to obtain high-precision observations of these
systems. Regarding this matter, we point out the relevance of
contributions such as the MSC of Andrei Tokovinin.

J.A.D., L.P., and P.P.C.’s work was supported by the
Spanish Ministerio de Economía, Industria y Competitividad
under project AYA-2016-80938-P (AEI/FEDER, UE). A.A.’s
work was partially supported by the Spanish Ministerio de
Economía, Industria y Competitividad, project no. ESP2017-
87113-R (AEI/FEDER, UE), and by the Aragón Government
and the European Social Fund (group E24 17R).

Figure 21. Evolution of the energy and the angular momentum for HD200580 and HD213052.
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