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Abstract

The rotation periods of planet-hosting stars can be used for modeling and mitigating the impact of magnetic
activity in radial velocity measurements and can help constrain the high-energy flux environment and space
weather of planetary systems. Millions of stars and thousands of planet hosts are observed with the Transiting
Exoplanet Survey Satellite (TESS). However, most will only be observed for 27 contiguous days in a year, making
it difficult to measure rotation periods with traditional methods. This is especially problematic for field M dwarfs,
which are ideal candidates for exoplanet searches, but which tend to have periods in excess of the 27 day observing
baseline. We present a new tool, Astraea, for predicting long rotation periods from short-duration light curves
combined with stellar parameters from Gaia DR2. Using Astraea, we can predict the rotation periods from
Kepler 4 yr light curves with 13% uncertainty overall (and a 9% uncertainty for periods >30 days). By training on
27 day Kepler light-curve segments, Astraea can predict rotation periods up to 150 days with 9% uncertainty
(5% for periods >30 days). After training this tool on these 27 day Kepler light-curve segments, we applied
Astraea to real TESS data. For the 195 stars that were observed by both Kepler and TESS, we were able to
predict the rotation periods with 55% uncertainty despite the wild differences in systematics.

Unified Astronomy Thesaurus concepts: Stellar rotation (1629); Main sequence stars (1000); Random
Forests (1935)

1. Introduction

The rotation period of a star is one of the most direct
observables one can measure. It is closely linked with its
physical parameters such as magnetic activity, surface gravity,
and even stellar age (e.g., Skumanich 1972; Barnes 2007; van
Saders & Pinsonneault 2013; McQuillan et al. 2014; Davenport
et al. 2019). Rotation periods can be used to age-date stars via
“gyrochronology” (e.g., Barnes 2003, 2007), study the internal
structures of stars, learn about stellar magnetic fields, and
improve the precision of exoplanet detection.

In the field of exoplanet detection, additional astrophysical
signals tied to stellar rotation can often complicate the process.
For example, the effects of stellar magnetism in rotating stars
can negatively affect exoplanet detection or characterization
using radial velocity (RV) measurements. Dark spots and
bright plages on the surface of a rotating star can alter the
profiles of spectral absorption lines and introduce signals into
RV time series. These effects are normally weak and can be
treated as background noise in pipelines for discovering
exoplanets. However, in the case of a planet orbiting an active
star, the RV signal from the planet can be embedded within that
from the host star, thus making planet signal extraction difficult
(e.g., Haywood et al. 2014; Hillenbrand et al. 2015; Rajpaul
et al. 2015). Modeling both the stellar activity from the host
star and the orbital parameters of the planet simultaneously is
essential in these scenarios. Furthermore, knowing the rotation
period of the star can assist in improving the model (e.g.,
Grunblatt et al. 2015).

M dwarfs are also the most suitable host stars for finding
rocky planets in the habitable zone as these stars are small (so
the transit signal is larger) and dim (so the habitable zone is
closer). This means the transit and radial velocity signals from
small planets orbiting an M dwarf are stronger compared to
those orbiting more massive, large host stars. However, the
rotation periods of M dwarfs are often longer than the typical
observing window of TESS (27.4 days), so nonstandard
methods must be used to measure their rotation periods.
The most common tools used to measure rotation periods are

Lomb–Scargle periodograms (e.g., Reinhold & Gizon 2015),
auto-correlation functions (ACFs) (e.g., McQuillan et al. 2014),
and Gaussian processes (e.g., Foreman-Mackey et al. 2017;
Angus et al. 2018). These methods typically require the
observed light curve to contain continuous data for more than
one rotation period of the star in order to get an accurate
estimate. Long rotation periods can be measured precisely for
stars observed by Kepler (Borucki et al. 2010) that show
periodic signals. However, long rotation periods for stars
observed by TESS, especially those with only 27 days of
observations per year (fall in this category; Ricker et al. 2015),
are extremely hard to measure directly. Even more challenging,
low-mass stars (e.g., M dwarf stars) usually have long rotation
periods (>25–30 days; McQuillan et al. 2014). Because of this,
traditional methods will not be able to provide accurate or
precise rotation period measurements for most M dwarfs using
TESS single-sector light curves.
As we know from empirical gyrochronology studies (e.g.,

Barnes 2003, 2007; van Saders et al. 2016), the rotation period
of a star is mainly determined by its age and color. Therefore, if
it were possible to measure the ages of stars precisely, we could
accurately predict their rotation periods. However, the relation
between stellar rotation, age, and color could break down at a
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high Rossby number (rotation period divided by the local
convective turnover time). van Saders et al. (2016) pointed out
that magnetic weakening may cause stalling in stellar spin
down for Rossby numbers greater than ∼2 and will cause
gyrochronology relations to break down approximately half-
way through the stars’ main-sequence lifetime. This effect
means we may not be able to predict rotation periods for stars
that have already gone through half of their main-sequence
lifetime. Fortunately, this effect is not significant for the
catalogs we used in this study from McQuillan et al. (2014),
Santos et al. (2019), and García et al. (2014).

However, the ages of stars, especially low-mass dwarfs, are
extremely difficult to measure (see, e.g., Soderblom 2010 for a
review of stellar ages). Fortunately, there are many easily
observable, indirect age proxies that can be used in lieu of
directly measured ages (the relations are very complex and thus
ages are very hard to predict for main-sequence stars). For
example, stellar velocity, radius, and surface gravity are all related,
albeit weakly, to stellar age. Therefore, we expect to be able to
extract information about rotation periods from these stellar
properties. However, because the relationship between these
properties and rotation period is “weak” and potentially nonlinear,
a machine-learning (ML) approach can be used to combine these
properties with observables such as color, surface temperature, or
mass information to accurately predict stellar rotation periods.

In addition, there are some other potential indirect age
proxies we can measure:

Flicker—the brightness variation on timescales of 8 hr and
less caused by convection-driven fluctuations on the stellar
surface (Bastien et al. 2013). By comparing flicker with
asteroseismic glog , Bastien et al. (2013) concluded that glog
can be estimated from flicker with ∼0.1 dex uncertainty. If we
are able to measure flickers for main-sequence stars, these
measurements should be able to provide information about the
surface gravity, which decreases as a star ages. As a result, it is
possible to predict rotation periods by combining flicker with
other stellar properties. One of the advantages of using this
method is that flicker occurs on very short timescales.
Therefore, we can extract granulation signals from light curves
that are only 27 days long. However, flicker can be hard to
measure in the light curves of M dwarfs due to the granulation
signal being weak.

Flaring activities—both a star’s flare energy and frequency
of young, active stars are associated with their ages and rotation
periods (Davenport et al. 2019). Because low-mass stars have
deeper convective envelopes that are associated with stronger
magnetic fields, flares are more commonly detected in these
stars (Ilin et al. 2019). Therefore, flare rates could potentially be
an indicator of the rotation periods of M dwarfs. However, one
major limitation is that for inactive stars, which are typically
older and have longer rotation periods, the rate of flaring is
often too low to be detected within the short 27 day light curves
of TESS.

Stellar kinematics—The kinematic properties of a star is
shown to be related to the age of a star. For example, the vertical
velocity dispersion of stars increase over time at a rate that can
be quantified with an age–velocity dispersion relation (AVR).
Strömberg (1946) and Spitzer & Schwarzschild (1951) first
discovered older stars have higher vertical velocity dispersion,
and this relation has been confirmed by further observations
(e.g.,Nordström et al. 2004; Holmberg et al. 2007, 2009; Aumer
& Binney 2009; Yu & Liu 2018; Ting & Rix 2019). Two

possible theories can explain these observations. One such
theory is that all stars formed kinematically “cool,” and as the
Milky Way evolved, older stars were scattered to higher galactic
latitudes by the giant molecular clouds and spiral arms.
Therefore, these older stars have a higher velocity dispersion
(e.g.,Barbanis & Woltjer 1967; Lacey 1984; Sellwood &
Carlberg 1984; Sellwood 2014). Another theory is that these
older stars were born kinematically “hot” in the first place
(e.g.,Bird et al. 2013). Because the age and rotation period of a
main-sequence star are correlated, the velocity dispersion, or
other kinematic information (e.g., vertical velocity, galactic
latitude, etc.), could also be useful in determining the rotation
periods of stars.
Although there are many stellar properties closely tied to the

rotation period of a star, it is hard to model the relations between
stellar rotation and other physical properties. Low-order poly-
nomial fits are often used to interpolate these relationships, but it is
clear that the correlations are not simple. ML algorithms are
particularly good at modeling complex, nonlinear relations. An
ML model is normally trained on a large training data set for it to
learn the complex relations between features and labels in the
data. In this project, the features are the stellar properties (e.g.,
surface temperature, radius, color, etc.) and the label is the rotation
period. After being trained, the ML model will be able to predict
labels from features at a very fast speed. In addition, the same ML
models can be adapted to different missions fairly straightfor-
wardly by using the right training data. As a result, ML algorithms
are likely to become more popular as astronomers march into the
big data era. In particular, current and future missions observing
stars, such as Kepler (Borucki et al. 2010), Gaia (Gaia
Collaboration et al. 2016, 2018), TESS (Ricker et al. 2015), the
Vera C. Rubin Observatory (LSST Science Collaboration et al.
2009), and the Planetary Transits and Oscillations of stars
(PLATO; Rauer et al. 2014) will require rapid data-processing
algorithms to accommodate the large data flow. It is essential to
analyze data quickly and efficiently in order to maximize the
information usage of these missions. Another benefit of using
data-driven ML algorithms is that we can get insight on the data
set itself. For example, a trained ML model can identify
interesting anomalies or outliers in the data. We will describe
briefly how the ML model we trained could potentially be used as
a binary identifier in Section 5.
We use the particularly well-studied ML approach of random

forest (RF; Breiman 2001) to predict the rotation periods for
stars in the TESS 27 day observing fields, based on their stellar
properties (Table 1 shows the list of properties used to predict
rotation periods). RF is an ML algorithm that combines
multiple decision trees to prevent overfitting and a suitable
algorithm to learn complex nonlinear relations between
different stellar properties. Decision trees use multiple para-
meters (e.g., effective temperature, radius, luminosity, etc.),
which are often called “features,” to split the data into different
subsets (where the data split is called a “node.”) and predict the
“label” (e.g., rotation period). An RF algorithm trains a number
of decision trees on different subsets of the data and predicts
the label by averaging the resulting predictions from each
decision tree. This ML approach has huge potential to automate
the delivery of rotation period from observation data. RF,
compared to neural networks or deep learning, is relatively
easier to interpret as the input features are selected by the user
and the user can calculate the feature importance and gain
insight into the data itself. This method can be used to capture
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and effectively model the relationships between stellar rotation,
stellar age, and stellar parameters including temperature, radius,
and surface gravity. RFs are already used in astronomy, both in
classification and regression problems. For example, Richards
et al. (2011) classified variable stars with sparse and noisy time-
series data with a ∼20% error, and Miller et al. (2015) inferred
fundamental stellar parameters for ∼54,000 known variables
with an RF regressor.

In this paper, we exploit the relationships between rotation
periods and other fundamental stellar parameters, which occur
as a result of stellar evolution. We predict rotation periods
without requiring long time-series observations using an RF
algorithm. The features we used to train the model and their
origins are described in Section 2. We first classify stars to
determine whether their rotation periods are measurable and
then use an RF regressor to predict the rotation periods of those
classified as “measurable.” The details of how we trained and
optimized the models are described in Section 3; the testing
results for Kepler and TESS stars are described in Section 4.
Limitations and reasons why we are able to predict long
rotation periods from short-duration light curves are discussed
in Section 5.

2. Data and Methods

In order to train and test an ML model, we need both a
training data set (Section 2.1) and a testing data set
(Section 2.2). The purpose of a training data set is to train
the model to learn the complex relations between a number of
“features” (stellar properties; Section 2.3) and the “label”
(rotation period). The purpose of a testing set is to have a
number of stars that are not from the training set to validate the
trained model.

After constructing a reasonable training and testing set, we
selected the useful stellar properties that are important to
predict the rotation period in Section 2.3. One of the features

we focused on is the variability of the light curve, which
normally is the flux variation (range or standard deviation)
averaged over one or multiple rotation period(s). Because we
do not have information on the rotation periods, we will discuss
how we can use the flux variation over the entire observing
period to approximate the variability of the light curve (see
Section 2.3).
The training process for the RF classifier and the RF

regressor is described in Section 2.4. A classifier is used to
identify a group(s) of data that are similar. A regressor is used
to model the complex relationships between features and labels
in order to predict new labels from new features (the simplest
regressor is a linear regressor).
By combining a classifier and a regressor, we are able to

classify whether or not a star has a “measurable” stellar rotation
period and predict its period if the period is “measurable.”
Figure 1 shows the pipeline of Astraea,4 the RF package
(classifier + regressor) used to predict the rotation period from
stellar parameters. Details of how it is built will be described in
this section.

2.1. Kepler Training Set

We selected our training data from the Kepler field because
there already exist catalogs for the rotation periods of these
stars and long rotation periods measured from 4 yr Kepler light
curves are more reliable. The majority of the rotation periods
we used to train our models were from McQuillan et al. (2014).
They analyzed 133,030 main-sequence Kepler targets and
measured rotation periods (between 0.2 and 70 days) for
34,030 stars by using an automated ACF-based method. The
ACF-based method has its advantages over a Fourier-based
method or Lomb–Scargle periodogram because the rotation

Table 1
Final Training Features Used in This Project Sorted into Four Categories

Feature Name Description Categories

bp_g (c, r) Integrated BP mean magnitude—G-band mean magnitude. Direct Gaia observations (gaia-kepler.fun).
phot_g_mean_flux_over_error (c, r) Mean flux in the G band divided by its error.
parallax (c) Parallax.

Teff (r) Estimate of effective temperature from Apsis-Priam (Andrae et al.
2018).

Stellar properties derived from Gaia observations (gaia-
kepler.fun).

lum_val (r) Estimate of luminosity from Apsis-FLAME (Andrae et al. 2018).
radius_val (r) Estimate of radius from Apsis-FLAME (Andrae et al. 2018).
r_lo/r_hi (c) 68% confidence interval on distances from Bailer-Jones et al.

(2018).

v_tan (r) Velocity tangential to the celestial sphere ( +v vra
2

decl.
2 ). Kinematic derived from Gaia proper motion, R.A., decl.

and parallax using astropy.
v_b (r) Velocity in the direction of galactic latitude.
b (r) Galactic latitude of the object at the reference epoch (Butkevich &

Lindegren 2014).

LG_peaks (c) Maximum peak height from the Lomb–Scargle periodogram. Light-curve statistics.
Rvar (c, r) Photometric variability of the light curve (95th percentile—5th

percentile of the normalized flux).
flicker (r) Brightness variation on timescales of 8 hr and less calculated with

the FLICKER software.

Note. Other than the radius value itself, we also included the 68% confidence interval of distances (r_hi/r_low) from Bailer-Jones et al. (2018) as training features. “c”
and “r” represent whether the feature was used in training the classifier and regressor, respectively.

4 Available at https://astraea.readthedocs.io/en/latest/.
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period signals in the light curves are neither purely sinusoidal
nor strictly periodic.

We utilized all the 133,030 main-sequence stars analyzed in
McQuillan et al. (2014) to train a model to determine whether
the rotation period for a star can be obtained. Because our main
goal was to predict long rotation periods from short-duration
light curves, in addition to the 34,030 stars with rotation period
measurements from McQuillan et al. (2014), we also added
4637 stars that have rotation periods up to ∼150 days from
Santos et al. (2019) and García et al. (2014), in which they used
a combination of wavelet analysis and the ACF to measure the
periods. Within these added rotation periods, 70 of them have
rotation period >70 days. This provided us with ∼38,000
Kepler stars. Figure 2 shows a histogram of the rotation periods
in our training set.

We split the data into the training data set and a validation data
set so we can train our model on the training set and tune our
trained model on the validation set. The difference between a
validation data set and a testing set is subtle, but the validation
data are typically used to tune the hyperparameters (parameters
relate to the ML model; see Section 3) and the testing set is used
to test the optimized model. The validation and testing sets are
both important because although the validation set can be used to
optimize the model in order to make sure the ML model is not
overfitting the validation data, a testing set is needed to test the
final optimized model. The training set is composed of 80%

random selection of stars from McQuillan et al. (2014) and the
4637 stars from García et al. (2014) and Santos et al. (2019). The
validation set is the remaining 20% stars.

Figure 1. Pipeline of Astraea, our open-source software developed in this project. Features (stellar properties and light-curve statistics) of the star are first passed
through the RF classifier to identify whether or not the period is “measurable.” If the period is “measurable,” the features will then be passed through the RF regressor
to predict its stellar rotation. The feature descriptions are provided in Table 1.

Figure 2. Histogram of the rotation periods in the Kepler training set. 34,030
stars are from García et al. (2014) and 4637 stars from Santos et al. (2019) and
García et al. (2014). Supplementing the main set with these later catalogs
increased the number of long-period rotators, including 70 stars with periods
longer than >70 days. Note that the y-axis is in log scale.
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2.2. TESS Test Set

After cross-matching with the TESS light-curve database
hosted by the Mikulski Achieve Space Telescopes (MAST),5

we were able to find 205 Kepler targets with TESS 2 minute
cadence PDCSAP light curves. We excluded 10 stars from the
equal-mass binary sequence by performing a magnitude cut on
the color–magnitude diagram (CMD). A star in a unresolved
close binary system with an equal-mass companion will not
affect its color but double its luminosity due to the starlight
from its equal-mass companion. As a result, these stars will lie
on the CMD above the main-sequence stars and form a “binary
sequence.” To exclude these stars, we first fitted a sixth-order
polynomial to the McQuillan data sample in CMD and shifted
the function up by ∼0.27 dex in absolute G magnitude and
excluded any stars lying above the shifted polynomial function.
After the cut, we were able to obtain a testing set of 195 stars.

2.3. Feature Selection

Measuring variability—The brightness variation due to
magnetic activity on the surface of a star has been shown to
correlate with stellar activity and therefore should be related to
the rotation period (e.g.,Pizzolato et al. 2003; Hartman et al.
2011; McQuillan et al. 2014; Davies et al. 2015; Santos et al.
2019). However, brightness variation from a light curve
includes more than the magnetic activity from the surface.
Granulation, instrumental noise, p-mode oscillations, etc. can
also modulate a light curve. As a result, ideally, we would
measure the light-curve variability by taking into account
the stellar rotation period. Two popular measurements are the
average amplitude of variability within one period and
the standard deviation of a subseries of length five timesthe
rotation period, and these can be parameterized by Rper or Sph,
respectively. These two variables take into account the rotation
period of a star and are shown to be closely correlated with
the magnetic activity and rotation period of a star. However, in
order to measure these quantities accurately, the stars would
have had gone through more than one full revolution in the
observation window. For stars observed by TESS, most slow
rotators have not gone through even one full revolution within
the 27 day observing period. Therefore, it is almost impossible
to get accurate measurements for either quantity, especially for
the slow rotators.

Fortunately, Rvar (95th percentile—5th percentile of the
normalized flux) is a good estimator for Rper and Sph, and its
measurement does not require information on the stellar rotation.
Rper is calculated by computing the 5th–95th percentile range of
the flux of each full stellar revolution and then taking the average
of these quantities. On the other hand, Rvar is the 5th–95th
percentile flux range of the entire light curve. Rvar and Rper are
therefore most similar when the stellar rotation period is long,
because fewer full revolutions take place. Stars with long periods
usually have smaller variability amplitudes and therefore smaller
Rvar and Rper values (e.g., see Figure 3). This is why the two
quantities are similar at small values. Rvar is more sensitive to
long-term light-curve systematics than Rper, and this is particularly
true for rapid rotators where Rper is calculated over many short
time intervals and averaged. This is also why Rvar is slightly larger
than Rper at large values (i.e., for rapid rotators): long-term light-
curve systematics slightly increase the variance in the light curve,

which inflates Rvar relative to Rper. This could potentially mean we
will be able to predict long rotation periods better than short
rotation periods because Rvar is a better proxy for Rper and Sph for
slow rotators.
Features used—The features used to train/test the models

are (i) three measurements directly from the light curves, (ii) all
the Gaia columns (including error columns), in which nine
were later found useful in predicting stellar rotations, and (iii)
two kinematic statistics derived from Gaia parameters.
To obtain Gaia parameters of our sample of 133,030 Kepler

stars, we used the publicly available Kepler–Gaia DR2 cross-
matched catalog.6 The majority of stellar features used for
rotation period prediction were obtained from the Gaia DR2
catalog, and the distance measurements were obtained from
Bailer-Jones et al. (2018).
In addition to the features from Gaia, we also calculated

three variables directly from the light curves and two additional
kinematic features. These features have been shown to be
related to the rotation period of a star (details described later in
this section).
The features measured from the light curves are: (i) Rvar, the

range of variability in the light curve, which was calculated as
the difference between the flux values at the 95th percentile and
the 5th percentile, (ii) flicker, brightness variation on timescales
of 8 hr and less, calculated with FLICKER, our new open-
source software we developed to calculate flicker using the
method described in Bastien et al. (2013; detailed description in
Section Appendix), and (iii) the Lomb–Scargle periodogram
maximum peak height.
Additional kinematic features we calculated are v_tan, the

velocity tangential to the celestial sphere, and v_b, the velocity
in the direction of the galactic latitude from Gaia R.A. and decl.
coordinates, proper motion, and parallax.
Selecting training features—To start with, our full set of

features consisted of every column in the Gaia DR2 catalog,
plus the three light-curve statistics and the two velocities
described above, making a total of 148 features. However, we
did not expect that every feature in the Gaia DR2 data set
would be useful. For example, it seems unlikely that the R.A.
and decl. would be strongly related to stellar rotation period.
Thus, we performed feature selection (selecting the important
features to speed up the training process and potentially
increase model performance) for both the classifier and the
regressor using the method described in the next paragraph to
isolate features that provide significant information about
rotation periods.
We selected these features by first training the RF models on

all columns from Gaia, the kinematic features and the light-
curve statistics calculated from 4 yr stitched Kepler light
curves. We then calculating the “gini” feature importance
(Breiman et al. 1984) using scikit-learn (Pedregosa et al.
2011). This importance was determined by calculating the
mean decrease in impurity (MDI), which indicates whether a
single feature alone can predict the outcome. For example, if
one can predict the rotation period of a star just by the effective
temperature, then the node, where the data split (refer to
Section 1 for how RF works), is considered pure because the
model will only split the data into different subsets based on the
effective temperature. On the other hand, if the rotation period
is also related to other parameters (the data are split based on

5 https://archive.stsci.edu/access-mast-data 6 Available at gaia-kepler.fun.
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more than the effective temperature), then there is an impurity
in the node. The gini importance is normalized over all features
and ranges from 0 to 1. A gini importance of 1 for a feature
means the prediction of rotation period can be determined
solely by this one feature. Typically, feature values with wildly
different ranges need to be normalized to a common scale in
order to ensure the feature importance does not appear to be
higher/lower than they should because of their range.
However, the RF algorithm does not require feature normal-
ization as it splits the data based on the feature values and the
splitting is independent of the feature range. Calculating this
importance is a good way to eliminate irrelevant features—
features that do not contribute significantly to the prediction of
stellar rotation (gini importance of 0). We sorted the features by
decreasing the gini importance and performed cross-validation
tests using RF regression with an increasing number of features
and selected the smallest number of features that led to a
converged accuracy (for classifier) or χ2 value (for regressor).
The accuracy/χ2 value converges when the change is smaller
than 5%. The accuracy is a way to estimate the performance of
a classifier and the χ2 value is a way to estimate the deviation
between the target rotation period and the predicted rotation
period for a regressor. Cross-validation tests are often used to
maximize the performance of the model. We trained the RF
model on the training set, and by maximizing the model
performance on the cross-validation set, we will be able to
optimize the model. To perform the cross-validation tests, we
randomly excluded 20% of the data in the training phase and
predicted the rotation periods for these stars using the trained
model. For each set of features, we performed the cross-
validation test 10 times and took the median of the average χ2

values. Figure 3 shows the relationships between these features
and rotation periods for the 34,030 stars in McQuillan et al.
(2014), Santos et al. (2019), and García et al. (2014) as well as
their gini importance.

Looking at the relationships in Figure 3, the gini importance,
and the Pearson correlation coefficient (PCC, a statistical value
to measure the linear correlation between two variables), there
exist strong correlations between rotation period and Rvar,
effective temperature, Gaia color (GBP−G, also called bp_g),
luminosity, and radius. There also exist weak correlations
between rotation period and the other features plotted.
Rvar is known to be strongly correlated with rotation period

(Pizzolato et al. 2003; Hartman et al. 2011; Walkowicz &
Basri 2013; McQuillan et al. 2014; Santos et al. 2019). It is also
proven that the rotation period is a strong function of effective
temperature and age (this is the principle behind gyrochronol-
ogy; e.g., Skumanich 1972; Kawaler 1988; Barnes 2003, 2007),
and age is weakly correlated with multiple stellar parameters
such as luminosity, surface gravity, and kinematics. It makes
sense, therefore, that Rvar, effective temperature, and color
would have the strongest correlation with rotation period and
the other stellar parameters would have weaker relations with
rotation period.
There exist both strong and weak correlations between

rotation period and a number of other stellar parameters. These
relationships are difficult to reproduce using physical or simple
empirical models. However, an ML algorithm like RF is
effective at predicting properties from a large number of
weakly correlated features, and this is why it is so well suited to
predicting rotation periods from other stellar parameters.

2.4. Random Forest Classification and Regression

The RF algorithm merges multiple decision trees to get a
more accurate and stable prediction. This algorithm is also
known to reduce overfitting, which is a common problem in
single decision trees. RF can be used in both classification and
regression. It also requires less computational time compared to
deep learning and is able to handle outliers. However, RFs are
not capable of extrapolating data so we could only in theory

Figure 3. Relationships between features used to train the RF regressor and rotation periods for all 34,030 stars in McQuillan et al. (2014), Santos et al. (2019), and
García et al. (2014). It is clear that these stellar quantities are related to the rotation period of a star, but the correlations are complex and often cannot be described with
simple low-order polynomials. The y-axis labels are described in Table 1. The title of each plot shows the gini importance (0to ∼1, where 0 is not important at all) and
the Pearson correlation coefficient (PCC) for each of the features in the final training phase with the optimized hyperparameters, which we will describe in the later
sections.
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predict rotation periods up to ∼150 days, which was
determined by the upper limit for rotation periods in our
training set. We used the Python scikit-learn package to
train our RF classifier and regressor. The hyperparameters were
set to default for the classifier for simplicity, and we explored
the hyperparameters used in our regressor later on in this
section.

Random forest classification—RF models are not good at
extrapolating data. This means we are only able to predict
rotation periods in the same parameter space as the training set,
and this is the main reason we need a classifier—to determine
whether a star lies in the same parameter space as the stars in
the catalog from McQuillan et al. (2014). Another motivation
for a classifier is that not all stars with rotation periods show
detectable signals in their light curve. For example, a star could
be inactive and therefore not have detectable spot modulations.
It could have starspots distributed homogeneously on the
surface that cancel out any variations in its light curve. We
could also be viewing the star pole on and, therefore, not be
able to detect any azimuthal variations. Both of these factors
require us to train a classifier to first determine if it is possible
to predict a reliable rotation period. The labels were created
using stars in the McQuillan et al. (2014) catalog, where the
34,030 stars that have rotation periods were labeled “measur-
able” and the remaining 99,000 stars were labeled “unmeasur-
able.” Because the method of McQuillan et al. (2014) was
conservative, our classifier trained on this data set was also on
the conservative side, i.e., it is possible that the periods of some
stars with periodic brightness variations in their light curves
were classified as “unmeasurable” with our classifier. So this
classifier is not a perfect tool to determine whether a star has a
detectable period but rather a way to classify whether the star
would appear in the McQuillan et al. (2014) catalog.

Features used to train the classifier are LG_peaks, Rvar, bp_g,
phot_g_mean_flux_over_error, r_lo, r_hi, and parallax (refer to
Table 1 for a detailed description of each variable).

Random forest regression—To predict rotation periods,
the regressor was used if a star’s period was labeled as
“measurable” by the classifier. Here we used an RF regressor
because a star’s rotation period is correlated with its other
stellar properties, and RF regression is useful for predicting
continuous values from various features. An RF regressor trains
multiple independent decision trees on a different subset of the
data where each tree could give a slightly different period
prediction. The model then takes the average of all the
predictions from all the trees and their uncertainties to
determine the final predicted rotation period.

Features used to train the regressor are Rvar, teff, bp_g,
lum_val, flicker, radius_val, v_tan, phot_g_mean_flux_over_
error, b, and v_b (refer to Table 1 for a detailed description for
each variable).

3. Optimizing and Assessing the Performance of the
Random Forest Models

We trained both the classifier and the regressor on 80% of
the data and used the remaining 20% to perform cross-
validation tests, which is a good way to prevent overfitting. The
features used for each model and their permutation feature
importance are shown in Figure 5.

3.1. Random Forest Classifier

The outputs of the classifier were numbers from 0 to 1 for each
star, where 0 means the period was 100% “unmeasurable” and 1
means it was 100% “measurable.” One can simply say if the
predicted number was greater than 0.5 (which means the threshold
was 0.5), then the period was “measurable.” However, the best
way to determine the threshold is to maximize the area underneath
a receiver operating characteristic curve (ROC) as shown in
Figure 4. An ROC curve shows the predicted false-positive rate
(FPR) against the true-positive rate (TPR) for various thresholds.
The FPR is the total number of false-positive cases (e.g., the
number of stars where their rotation periods can be measured and
are predicted “unmeasurable”) divided by the total number of
negative cases (e.g., the number of stars where their rotation
periods are predicted “unmeasurable”). The TPR is the total
number of true-positive cases (e.g., the number of stars where
their rotation periods can be measured and are predicted
“measurable”) divided by the total number of positive cases
(e.g., the number of stars where their rotation periods are predicted
“measurable”). These statistics are useful especially in cases
where the training data set is overflowed by one label (positive or
negative). For example, if 98% of the stars in the training set has a
“measurable” rotation period, then an incorrect model that predicts
every star has a “measurable” rotation period will reach an
accuracy of 98%. However, this model is clearly wrong, and by
calculating the TPR and FPR, one can get a better understanding
of the true accuracy of the model. A perfect model would have a
false-positive rate of 0 and a true-positive rate of 1, and the curve
would go straight up the TPR axis until it reaches 1 then go
horizontal on the FPR axis. Thus, the closer the ROC curve
approaches (0, 1), the more accurate the classifier is. We
determined the accuracy and threshold by finding the point along
the curve where TPR-FPR was maximized. This yielded a 98%
accuracy with a threshold of 0.4.

3.2. Random Forest Regressor

Hyperparameter optimization. To achieve the best perfor-
mance of the model, we optimized the hyperparameters

Figure 4. The receiver operating characteristic curve for the classifier. The area
under the curve (AUC) shows how well the model can distinguish between
classes. It is often used to estimate the accuracy or performance of the classifier.
The model reached maximum accuracy of 98% with a threshold of 0.4.
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(parameters describing the model) using a grid-search method.
The hyperparameters we considered and their optimal values
are shown in Table 2. For each set of hyperparameters, we
performed a Monte Carlo cross-validation test 10 times with
20% of the data, chosen randomly each time, left out during the
training process. For each of these tests, we calculated the
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..., N), yi is the expected rotation period value, ypredict is the
predicted rotation period value, and N is the number of data
points. The overall average χ2 and rMAD of the model for each
set of hyperparameters were then represented by the median
values of these 10 tests.

Two sets of optimal hyperparameters were obtained by
minimizing the average χ2 or minimizing the rMAD.
Minimizing the χ2 reduced the spread of the data (variance)
and minimizing the rMAD reduced the systematic bias in the
data (bias). In order to get a more precise result, we selected the
model that minimized the average χ2.

Permutation feature importance—We calculated the permu-
tation feature importance to study how each feature impacts the
prediction results using the optimized model. By calculating
the permutation feature importance, we are able to interpret
the model and potentially gain insight into how the stellar
properties are related to the rotation period. The permutation
feature importance can be calculated by randomly shuffling
values within a single feature and observing how the model
performance changes. This is effectively removing each feature
from the model and preventing it from being informative, and
measures how good the model can still predict the data. This
importance is a more accurate measurement of how much of a
role each feature plays in determining the outcome, compared
to the gini importance. We used the R2 (coefficient of
determination) regression score to measure the model perfor-
mance, ( ) ( )= S - S -R y y y yi i i

2
predict

2 2, where ypredict is the
predicted rotation period and y is the average rotation period. It
provides a measure of how close the data are to the fitted
regression function. The R2 score is commonly between 0 and
1, and the higher the score, the better the fit. To obtain the
importance for each feature, we calculated the R2 score on the
training set and reshuffled the values within one feature and
kept the rest of the training data set unchanged. We then passed
the new training data set to the model again to calculate a
new score based on this modified training set. The feature
importance is the difference between these two scores,
normalized to sum to one across features. Figure 5 shows the
permutation feature importance for both the RF classifier (using
4 yr Kepler light curves) and the RF regressor (separately

calculated for 4 yr Kepler light curves and 27 day Kepler light-
curve segments).
The power of the highest peak in the Lomb–Scargle

periodogram of each star’s light curve (LG_peaks) was the
most important feature for the classifier. Because the classifier
was trained on targets from McQuillan et al. (2014), the RF
classifier learned the algorithm they used to determine whether
the light-curve signal was periodic. McQuillan et al. (2014)
determined whether a rotation period was reliable (or whether a
star has a rotation period signal that can be detected) by setting
a threshold for the maximum peak height from the ACF, which
is similar to the maximum peak height from the Lomb–Scargle
periodogram. As a result, it makes sense that LG_peaks is the
most important feature in determining whether a star can be
included in the catalog from McQuillan et al. (2014).
The confidence interval of the distances also determines

whether or not a star’s period is measurable. One potential
reason is that a larger distance error (or any error from
luminosity, temperature, etc.) is also associated with a larger
error in the observables (photometry and parallax, etc.),
suggesting a fainter or/and more distant star whose period
would normally be harder to determine. Because errors from
stellar properties are correlated (Andrae et al. 2018), the RF
classifier would only use one of these errors as an important
feature (similar to determining the rotation period, the RF
regressor treated the effective temperature as one of most
important features but not the color, though they are very
similar).
Other features, such as Rvar, bp g g over error_ , _ _ , and

distances, not only determine whether or not we can recover
the rotation period but also contain information about the
rotation period itself. Because a shorter rotation period is easier
to recover, it is not surprising that these attributes appear to be
important in both classification and regression models.
The importance of the regressor was more evenly distributed

over multiple features. This implies that the rotation period is
closely related to multiple stellar properties, and precise
rotation periods can only be predicted using multiple features.
Teff and Rvar are known to be strongly correlated with rotation
periods (e.g.,Santos et al. 2019), and the kinematics of a star,
as mentioned in Section 1, could also be used to constrain its
age and, therefore, its period.
The importance trend for the model trained on 27 day Kepler

light curves closely follows the model trained on full 4 yr
Kepler light curves. However, the flicker feature is more
important for 4 yr light curves compared to that of 27 day light
curves. This suggests the flicker value encodes more informa-
tion from the rotation period as we average over longer time
spans or that the flicker measurement becomes more precise,

Table 2
Optimal Hyperparameters in the RF Regressor Model that Minimized the Average χ2 or rMAD

Hyperparameter Name Description
Grid-search

Range
Value that Minimizes the

Average χ2
Value that Minimizes the Aver-

age rMAD

n_estimator No. of decision trees used in the RF model 1–100 20 1

max_depth Maximum depth of the tree 1–150 50 100

max_features No. of features to consider when looking for
the best split

1–10 6 3

Note. By minimizing the average χ2, we had low variance but high bias in the model, and by minimizing the MAD, high variance but low bias was achieved.
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and therefore more discerning of log g, as more quarters are
incorporated.

4. Results

In this section, we present the performance of our optimized
model (M_χ2) on Kepler data with 4 yr light curves, on
simulated TESS data calculated by splitting full Kepler light
curves into 27 day sections, and on real TESS data.

4.1. Performance on Kepler Data

Figure 6 shows the testing result on full 4 yr Kepler light
curves with points colored by their effective temperature. In
general, cooler stars spin more slowly because they have
deeper convection zones, which mean they have stronger
magnetic fields and therefore spin down faster due to magnetic
braking compared to hotter stars. We picked the model with the
lowest χ2, which also minimized the scatter (variance).
However, low-variance models normally have high systematic
bias. It is clear from the residual shown in the bottom panel that
we systematically overpredicted the short rotation periods and
underpredicted the long rotation periods. We estimated the
uncertainty by calculating 1.5*MAD from the residuals, and we

can recover the rotation periods with an uncertainty of 13% and
long rotation periods (>30 days) with an uncertainty of 9%.

4.2. Performance on 27 Day Kepler Light Curves

Testing our model on Kepler 4 yr light curves gave us
promising results. However, our main goal for this model is to
predict rotation periods from 27 day TESS light curves. To do
this, we split each 4 yr light curve from the Kepler training set
into multiple 27 day segments and calculated Rvar and flicker
for these short-duration light curves. Other features from Gaia
remained the same for each target. Breaking up the light curves
from the Kepler training set and treating each 27 day light
curve as a separate star effectively expanded our number of
training targets to over 1.8 million (∼34,000 4 yr light curves
from Kepler, with each of these light curves splitting into ∼54
27 day light curves).
Comparing 4 yr and 27 day light curves—Figure 7 shows a

comparison between Rvar and flicker values from 4 yr light
curves with those of 27 day light curves. We quantified the
differences between these two statistics for the 4 yr light curves
and 27 day light curves by calculating 1.5*MAD (a measure of
the standard deviation that is robust to outliers) of the residuals.
This yielded a standard deviation of 30% and 35% for flicker
and Rvar, respectively. The scatter in these two light-curve

Figure 5. Permutation feature importance on the Kepler cross-validation set (∼7000 stars), where g_over_error is the G-band mean flux divided by its error. The two
lines in the regressor represented the feature importance for training on 27 day light curves (solid black line) and that on full 4 yr Kepler light curves (dashed red line).
Rvar and flicker are measurements for Kepler light curves with their corresponding timescale (measured from the 27 day light curves for the solid black line and from
4 yr light curves for the dashed red line).
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statistics constrains how well we can predict rotation periods
and is discussed in the later paragraphs.

After excluding the 195 stars observed by both Kepler and
TESS, which we later tested our model on, we trained the
model on ∼80% of these 1.8 million 27 day light curves and
tried to recover the remaining 20%. Figure 8 shows the results
for ∼20% of the targets (∼300,000) in the McQuillan et al.
(2014) catalog. We did not optimize the hyperparameters again
because both training sets are from Kepler, and we assumed the
light-curve statistics we calculated will be similar so the
optimized hyperparameters will also be similar. The general
trend follows that shown in Figure 6. But with more training
data (because we broke the Kepler 4 yr light curves into
multiple 27 day light curves), most of the predictions have
uncertainties on the order of 9%, and we are able to predict
long rotation periods (>30 days) with an uncertainty of 5%.
This is important because despite the measurements for flicker
and Rvar from 27 day light curves being worse, we were able to
get a more precise result by increasing the number of training
data by splitting the full 4 yr light curves. A fit could potentially
be used to correct for the bias; however, this bias is subject to
change. For example, the difference in the noise properties
between TESS and Kepler could affect the systematic bias.
More discussion is included in Section 5.

One additional feature worth pointing out is the vertical
streaks in Figure 8. This is most likely due to the variation in
Rvar and flicker (Figure 7). After splitting the 4 yr light curve of
each star into multiple 27 day light curves, there existed
multiple training data that had the same values for every feature
except Rvar and flicker (because we recalculated these two
values for every 27 day light curve). This would cause the
model to have multiple different predictions for the same star

even though this star only has one rotation period measured
with traditional methods.
One concern is that we were not able to recover rotation

periods for fast rotators with high precision when compared
with the use of traditional methods. One potential reason could
be that some very fast rotators are synchronized binaries.
Synchronized binaries are binary stars whose tidal interactions
have synchronized their rotation periods with their orbital
periods, i.e., they are tidally locked with each other. There is
mounting evidence to show that a large fraction of cool stars
which rotate faster than 7–10 days are, in fact, synchronized
binaries (e.g., Simonian et al. 2019; Angus et al. 2020). The
rotation periods of stars in synchronized binary systems have
been influenced by tides and will not be the same as (and will
probably be shorter than) the rotation period expected for each
star based on their temperatures, surface gravities, and ages.
Our main goal with this RF model was to predict long

rotation periods with short TESS light curves, which is difficult
to do using traditional methods. So, not being able to predict
short rotation periods accurately is not a major concern for our

Figure 6. Periods predicted by the RF regressor vs. the rotation periods
measured in McQuillan et al. (2014) for ∼3,000 stars colored by their effective
temperature, where hotter stars tend to rotate faster, as expected. The gray area
occupies the 10% error space. The top panel shows the predicted rotation
period vs. the true rotation period from McQuillan et al. (2014), and the bottom
panel shows the residual. We are able to predict rotation periods with an
uncertainty of 13% and long rotation periods (>30 days) with an uncertainty
of 9%.

Figure 7. Flicker and Rvar values for 4 yr light curves compared to those of
27 day light curves for ∼100,000 Kepler stars (∼5 million 27 day light-curve
statistics from splitting up 4 yr light curves). The solid lines are the identity
functions. The relative MAD between 27 day light curves and 4 yr light curves
are 30% and 35% for flicker and Rvar respectively.
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algorithm because we could combine both methods to measure
the rotation periods of all ranges. Furthermore, we are
predicting rotation periods instead of measuring them. This
means that even though our results are not as accurate as
periods measured with traditional methods, we can still predict
rotation periods when traditional methods fail to measure them.

4.3. Performance on Real TESS Data

We downloaded 195 TESS 2 minute cadence PDCSAP light
curves from MAST and calculated the Lomb–Scargle max-
imum peak height, flicker, and Rvar from the TESS 27 day light
curves. The rest of the features were acquired from Gaia. We
first passed these stars through the trained classifier, and all 195
rotation periods were identified as “measurable.” These targets
were then fed to the trained regressor (trained on 27 day light
curves) in order to predict their rotation periods.

Ideally, we would train the model on TESS targets because
the variables calculated from the light curves (Flicker/Rvar) are
expected to differ between TESS and Kepler due to their
different bandpasses. Detailed discussions of the difficulties of
applying a model trained on Kepler to TESS are included in
Section 5. However, we do not yet have a large-enough training
set for TESS that includes enough rotation periods. Because of
that, the result here is a preliminary test of how well the model,
trained on Kepler, can predict rotation periods from TESS
short-duration light curves.

The major difference between the results for simulated and
real TESS light curves (Figures 8 and 9, respectively) is that the
model, tested on real TESS data, suffers from higher bias for
slow rotators. This may be due to additional white noise scatter
in TESS light curves, which limits measurements of Rvar and
flicker in real TESS light curves. The signal-to-noise ratio for
Rvar (indicated by the size of the marker: the larger the marker,
the higher the S/N) indicated that the summary statistics

calculated from the TESS light curves are not reliable and
are possibly dominated by the noise (further discussion in
Section 5). As a result, the predictions are most likely
dominated by the temperature of the star, which is supported
by the clear color gradient. However, this preliminary test
shows promising results in using RF to predict long rotation
periods from short-duration light curves from TESS.

5. Discussion and Future Work

In performing this analysis, we revealed a few limitations
and unforeseen possibilities for our RF classification and period
prediction. We outline the most important of these below.
Better long rotation period predictions for Kepler stars—It is

clear from the uncertainty analysis in Figures 6 and 8 that we
are able to predict long rotation periods with a higher precision
(∼4% better) than short rotation periods using the RF
regressor. There are a few reasons why this might be the case.

1. Inhomogeneous data—We added stars with long rotation
periods from Santos et al. (2019) and García et al. (2014),
and they did not use the same methods to determine the
rotation periods as McQuillan et al. (2014). Santos et al.
(2019) and García et al. (2014) used the combination of
wavelet analysis and the ACF, whereas McQuillan et al.
(2014) only used the ACF. Because of the differences in
their methods, the rotation period measurements from
Santos et al. (2019) and García et al. (2014) could be
slightly different from those from McQuillan et al.
(2014). This could cause the data splitting in the RF
regressor to be biased, causing it to find a slightly
different relation between features and long rotation
periods, and ending up with better predictions for slow
rotators.

2. Physics of the slow rotators—Slow rotators might have a
more straightforward relationship between their stellar

Figure 8. Results for 370,208 27 day Kepler light-curve segments, colored by
Gaia effective temperature. The top panel shows the comparison between the
predicted rotation periods and true rotation periods. The bottom panel shows
the residual; 3% of the data that has residuals greater than 1 were cut out. There
is a clear temperature gradient from fast rotators to slow rotators, where hotter
stars tend to rotate faster, as expected. The period predictions have an average
uncertainty of 9% for all the stars and 5% for slow rotators (>30 days).

Figure 9. Testing result on 195 TESS targets in the Kepler field using the
M_χ2 model trained on 27 day Kepler light-curve segments, colored based on
the effective temperature. The marker size indicates the signal-to-noise ratio
(S/N). The S/N is calculated by dividing Rvar by the noise floor level
calculated in Figure 10. The uncertainty is 55% for all predictions as well as for
slow rotators.
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properties and their rotation periods. In Figure 3, there
seems to be less scattering in Rvar versus rotation period,
and Rvar is the most important feature in predicting
rotation periods. In addition, rotation periods for fast
rotators might still be affected by initial conditions from
when the stars were born. As stars contract onto the main
sequence, they gradually spin down. As a result, some of
the fast rotators might still contain information on their
birth angular momentum so their stellar properties are not
closely related to their rotation periods.

Information in the light curve—The fact that we are able to
predict long rotation periods (>27 days) by training on 27 day
light curves, plus Gaia photometry, seems counter to intuition.

However, this is demonstrative of the utility of automated
methodologies like RF regressors to learn the mapping from
data to label on a data point-by-point basis. Similarly, Blancato
et al. (2020) used a convolutional neural network to predict
stellar properties, including rotation periods, directly from
27 day Kepler light curves. They are able to recover short
rotation periods better than the method presented here for
<35 day periods. This suggests that, by calculating only a
couple summary statistics, we did not use all the information
contained from the light curve. However, Blancato et al. (2020)
are not able to predict rotation periods >35 days as accurately
as our approach. The comparison could also support the idea
that in order to accurately predict long rotation periods from
short-duration light curves, we need more than just the
information contained in the light curve themselves.

Limitations of predicting TESS rotation periods—There are
a couple of important differences between Kepler and TESS
that make applying a trained model on Kepler to TESS
difficult. Here, we discuss differences in observing direction,
bandpass, precision, and cadence.

1. Observing direction: TESS points at a different area of
the sky every 27 days whereas Kepler only pointed at one
direction. The kinematics used to train the model are not
in the galactic coordinates system because the radial
velocities are not available for most stars. Therefore, the
v_tan and v_b relations with age are different in different
directions. Although the kinematics were not that
important for determining the rotation periods for Kepler
stars (see Figure 5), we expect they may be more
important for predicting stellar rotations for stars in the
TESS observing field. As a result, we will only be able to
predict rotation periods for stars in the direction of the
Kepler field.

2. Bandpass differences: TESS and Kepler also have different
observing bandpass and instrumental precision. TESS is
targeting low-mass stars, which are cooler and redder,
whereas Kepler is targeting Sun-like stars. As a result, TESS
observes in the wavelengths of ∼600–1100nm, whereas
Kepler observed between the wavelengths of ∼400–900nm.
Because of this, any calculations made from the light curves
(e.g., LG_peaks, Rvar and flicker) are likely to be different.
Figure 10 shows comparisons between the Rvar and flicker
calculated from the TESS and Kepler light curves for the 195
testing stars. Flicker calculated from TESS is always greater
than that calculated from Kepler. This could be because the
surface granulation signal of a star corresponding to flicker is
louder in a redder bandpass. This would mean the flicker
could potentially have more information about rotation

periods in the TESS light curves and be a more important
feature than it was in the Kepler training features.
Alternatively, this could be because TESS light curves have
higher-amplitude white noise background than Kepler light
curves, which is added to the flicker estimate (see point
below). One could correct these values based on TESS
magnitude and obtain a better result on the TESS test set.

3. Instrumental precision: TESS has a lower instrumental
precision at all magnitudes compares to Kepler. Figure 11
shows the systematic noise versus TESS magnitude for
the TESS and Kepler light curves of the 195 testing stars.
We calculated the systematic noise for these 195 stars by
measuring the standard deviation of the flux in a 3 hr
window and took the median of these values. Although
following similar trends, the systematic noise in TESS
light curves is one order of magnitude higher than that of
Kepler for a given TESS magnitude.

In addition to the fact that TESS has a higher
systematic noise in the light curves, the noise floor,
especially for high TESS magnitudes, is comparable to

Figure 10. Comparisons between Rvar [ppm] and flicker [ppm] calculated from
the Kepler light curves and TESS light curves of the 195 testing stars, colored
by TESS magnitude. There is a magnitude gradient in both plots, and flicker
values calculated from TESS light curves are systematically higher than those
from Kepler light curves.
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the Rvar and flicker measurements (see Figure 10). This
could mean that these measurements are not accurate or
even worse, we could be measuring the systematic noise
instead of any physical quantities. The noise floor of
TESS could also limit our ability to predict long rotation
periods because stars with longer rotation periods
typically exhibit lower Rvar signals.

4. Pixel size: TESS has a pixel size of 21 arcseconds, which
is large compared to Kepler, which has 3 98 pixels.
This means the TESS light curves are more likely to be
affected by contamination from nearby starlight.

5. Cadence: We calculated the light-curve statistics (Rvar

and flicker) from both the original TESS light curves
(2 minute cadence) and the smoothed light curve (taking
the rolling median of 30 minutes to simulate the Kepler
cadence) and did not find significant changes. Therefore,
the differences between the cadence in TESS and Kepler
would not be significant. However, in this project, we
only investigated the effects between 30 minute and
2 minute cadence data and extending the study to other
cadence differences is interesting but beyond the scope of
this project (Blancato et al. 2020 have done a more
thorough study of the effect of cadence).

Despite the differences, we were still able to recover long
rotation periods from real TESS light curves within 50%
uncertainty. This means our model can potentially be applied to
other surveys such as LSST and PLATO.

Potential alternative uses for this RF regressor—The main
goal for this model is to predict long rotation periods (>15
days) for main-sequence stars from 27 day TESS light curves;
however, it may have other applications. Because RF models
are not particularly good at extrapolating data, any stars that
have anomalous stellar parameters are most likely to be
identified as outliers. Consequently, this model could poten-
tially be used to gain insight on the outliers within data sets.
Here, we list a couple of potential applications for this RF
model:

1. If a star has a predicted rotation period much larger than
the rotation period measured from traditional methods
(LG, ACF, etc.), this star may have undergone tidal
synchronization, resulting from a closely orbiting com-
panion star. We could possibly create a synchronized
binary detector with our regressor.

2. We could try to infer the inclination of a star by
predicting Rvar from the known rotation period. If a star is
inclined to be almost pole on, its photometric variability
measured directly from the light curve will be smaller
than that predicted for the Rvar–stellar rotation relation.

3. We could compare the rotation periods of stars with close
orbiting hot Jupiters and those without to study how these
hot Jupiters might affect the rotation period and magnetic
activity of their host stars.

Future work—Due to the limitations of predicting TESS
rotation periods with a model trained on the Kepler data set, we
will want to train our RF regressor on rotation periods
measured from TESS targets across the entire observing zone
using ACF. We will then want to create a catalog of TESS
rotation periods that can be used by the astronomy community.
It would also be interesting to investigate how the sparsity in
feature parameter space affects the model prediction.

6. Conclusion

Rotation periods are important for studying stellar magnetic
activity, improving RV measurements for exoplanet searches,
and even determining stellar ages. Stellar rotation periods have
been precisely measured using traditional methods, such as
periodograms and ACFs, for Kepler targets. However, instead
of having 4 yr light curves, most TESS stars will only have
27 day light curves for every one-year observing window. This
increases the difficulty of using traditional methods to recover
rotation periods, especially those of M dwarfs, which often
have periods greater than 27 days (McQuillan et al. 2014).
We presented a new method to predict long rotation periods

from short-duration light curves using RF, an ML algorithm.
We first trained an RF classifier on stars from McQuillan et al.
(2014), Santos et al. (2019), García et al. (2014), and Gaia DR2
(Gaia Collaboration et al. 2016, 2018) and distances from
Bailer-Jones et al. (2018) to identify whether the rotation period
of a star is “measurable.” A regressor, trained on the same
targets, was then used if the rotation period of a star could be
predicted based on the classifier. The data set and features used
to train these models were described in Section 2. We find that
the most important features used to predict the rotation periods
are Rvar, effective temperature, Gaia color, luminosity, and
flicker. We calculated the uncertainties by calculating the
median absolute deviation of predicted rotation periods. We
were able to predict rotation periods of Kepler stars with an
average uncertainty of 13% (9% for rotation periods >30 days)
with 4 yr light curves and 9% (5% for rotation periods >30
days) with 27 day light curves. We found that long rotation
periods were predicted more precisely than short rotation
periods. When applying this regressor trained on Kepler data to
TESS data, we were able to recover rotation periods of TESS
stars in the Kepler field with an uncertainty of 55%. The
decrease in precision was most likely due to the differences
between the two missions, described in Section 5. This
preliminary test on TESS stars showed promising results, and
we expect to be able to predict rotation periods with smaller

Figure 11. Systematic noise (standard deviation on a 3 hr window) vs. TESS
magnitude for the 195 stars observed by both missions. At any given TESS
magnitude, the systematic noise in the TESS light curve is always, on average,
one magnitude higher than that of a Kepler light curve for the same star. This
means any measurements extracted from the TESS and Kepler light curves are
expected to be different.
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errors if we can train the regressor on TESS targets. The two
open-source software packages, FLICKER and Astraea,
developed in this project, are available on Github and are
described in Section Appendix. In the future, we hope to train
the RF regressor on TESS data and create a catalog of rotation
periods.
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gaia), processed by the Gaia Data Processing and Analysis
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dpac/consortium). Funding for the DPAC has been provided
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This research made use of Astropy,7 a community-developed
core Python package for Astronomy (Astropy Collaboration
et al. 2013; Price-Whelan et al. 2018).

Facilities: Gaia, Kepler, TESS.
Software: Astraea (this work), Astropy (Astropy Collabora-

tion et al. 2013; Price-Whelan et al. 2018), FLICKER (this
work), Numpy (Oliphant 2006), Scikit-learn (Pedregosa et al.
2011), Scipy (Virtanen et al. 2020), Pandas (pandas develop-
ment team 2020), Matplotlib (Hunter 2007).

Appendix
Software Products

This project resulted in two open-source software packages in
Python: FLICKER (https://github.com/lyx12311/FLICKER) and
Astraea (https://github.com/lyx12311/Astraea). FLICKER
can be used to calculate flicker for one light curve or multiple
light curves. It calculates the median flicker across light curves if
passed through a multidimensional array. Figure A1 shows the
comparison between flicker values provided in Bastien et al. (2013)
and those calculated with FLICKER for 100 Kepler stars listed in
their paper.

Astraea is a software package that includes the RF
classifier and regressor trained on Kepler targets. It can be used
to recover rotation periods for any stars observed by Kepler or
TESS. However, because this model is only trained on Kepler
stars, any rotation periods predicted for targets outside of the
Kepler field are subject to higher uncertainties.
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