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Abstract

In this paper, the averaged Hamiltonian of a nonrestricted hierarchical triple system truncated at the third order is
investigated. First, each secular resonant term is studied. For the well-studied secular quadrupole theory, it is
analytically reformulated in a different manner in our work. The resonance width is numerically determined and
displayed on the - - -e e1 11

2
2
2 plane (also denoted as the  -e e1 2 plane). In terms of the octupole terms,

we show that for a near-planar configuration of the system, considerable variations of both the eccentricities of the
inner and outer orbits can be generated by a single resonant term. The resonance width for every secular resonant
angle from the octupole terms is also numerically determined and displayed on the  -e e1 2 plane. The results show
that an orbit flip with a near-perpendicular initial mutual inclination is possible for each secular resonance. By
displaying the resonance widths of different resonant terms on the same  -e e1 2 plane, we intuitively show the
overlap of different secular resonances. Then, the full averaged Hamiltonian with both quadrupole and octupole
terms is investigated using the Poincaré surface of section, with a special focus on the orbit flip. For the cases we
exploited, we find that the near-planar flip of the inner orbit can be either regular or chaotic while the outer orbit
flip is generally chaotic.

Unified Astronomy Thesaurus concepts: Orbital resonances (1181); Three-body problem (1695); Exoplanet
dynamics (490); Celestial mechanics (211)

1. Introduction

The nonrestricted hierarchical three-body problem is con-
sidered in this paper. The original spatial three-body problem is
a Hamiltonian system of nine degrees of freedom (DOF). The
implement of the Jacobi frame passes the system to an
equivalent six-DOF Hamiltonian system. The hierarchical
configuration indicates that the Keplerian motion of two bodies
of m0 and m1 is perturbed by a third body m2, which orbits the
inner binary on a much wider orbit. Because the separation
between m0 and m1 (denoted as r1) is much smaller than the
distance of their barycenter from m2 (denoted as r2), the ratio of
the separations, i.e., /r r1 2, is a small parameter. In this case, the
potential function of the system can be expanded as a
converged series of /r r1 2. For the general three-body problem,
the invariable plane can be introduced to eliminate the nodes
from the potential function (Deprit 1983) and the system is
further reduced to four DOF. In order to study the secular
dynamics, the system is then double-averaged to eliminate the
fast angles and reduced to two DOF. This process was
originally shown by Harrington (1968) for the nonrestricted
hierarchical three-body problem, and it was shown that
truncated at the second order of the expansion, namely at the
quadrupole approximation, the system has one DOF and thus
integrable. This integrable system was actually used in an
earlier time by Lidov (1962) and Kozai (1962) for the restricted
case where the inner body is assumed massless and the outer
body moves on a circular orbit. It was shown that the inner test
particle’s eccentricity and inclination may undergo large
oscillations if its inclination is initially large enough. This
dynamical behavior is the now well-known Kozai–Lidov
mechanism. Vashkov’Yak (1999) and Kinoshita & Nakai
(2007) presented the general analytic solutions for the Kozai–
Lidov mechanism in the restricted case. For the nonrestricted

case, Lidov & Ziglin (1976) developed a complete quadrupole
theory, which analytically investigated the equilibrium points
for all permissible values of the system parameters. Ferrer &
Osacar (1994) applied the reduction theory to the problem and
showed that the reduced phase space is a two-dimensional
sphere instead of a cylindrical plane. More recently, Naoz et al.
(2013) showed that at the quadrupole approximation, it is
possible for the system to oscillate from prograde to retrograde.
Martin & Triaud (2016) numerically investigated the behavior
of the Kozai–Lidov effects on an inner stellar binary with a
planetary mass as the outer third body.
Extending the theory to the third-order truncation of the

potential, namely the octupole approximation, people found
some new dynamics of the system. Ford et al. (2000)
performed a number of numerical integrations to test the
validity of the octupole-order secular approximation and found
that the inner orbit’s eccentricity could grow very close to unity
in some cases. Lee & Peale (2003) used both the octupole-level
secular perturbation theory and direct numerical orbit integra-
tions to investigate the dynamical evolutions of hierarchical
coplanar exoplanetary systems and their variants. Ji et al.
(2003) utilized N-body simulations to explore the dynamical
evolution of the HD 82943 planetary system, and two
mechanisms of stabilizing the system were found, including
secular resonance from the octupole terms. Naoz et al. (2011)
showed that in a planetary system with two planets orbiting a
star, the orbit of the inner planet may flip from prograde to
retrograde due to the octupole effects. This finding may help
explain the origin of some hot Jupiters (see Dawson &
Johnson 2018 for a review) whose orbits are retrograde (e.g.,
Albrecht et al. 2012). The dynamics arising from the octupole-
level approximation is also referred to as the eccentric Kozai–
Lidov mechanism and has seen many applications in the
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secular evolutions of various natural systems (see Naoz 2016
for a review). In terms of the orbit flip in the restricted
hierarchical three-body system where one of the inner bodies is
a test particle, Lithwick & Naoz (2011) numerically mapped
out the conditions of the orbit flip and the occurrence of
extreme eccentricities. Katz et al. (2011) gave an analytical
criterion for the flip of the inner orbit with high initial
inclination in the restricted case. Li et al. (2014a) investigated
the dynamics of the orbit flip of the inner test particle by
studying the surfaces of section and the Lyapunov character-
istic exponents. Li et al. (2014b) showed that the flip of the
inner test particle is even possible starting from a near-planar
configuration and derived an analytical criterion for this kind of
orbit flip. For the restricted case where the outer body is a test
particle, Naoz et al. (2017) showed that the orbit flip of the
outer body is also possible when the outer orbit’s eccentricity is
high with a perpendicular mutual inclination and the dynamics
is generally chaotic.

Here, we focus on the secular evolution of the nonrestricted
hierarchical three-body system, which is beyond the test
particle limit of the restricted problem. The results obtained
in the nonrestricted case may be applied to a wider range of
natural systems. In this paper, each secular resonant term of the
Hamiltonian truncated until the octupole order is first studied.
(1) For the quadrupole term, the well-studied secular quadru-
pole theory is analytically reformulated in a different manner.
An analytical criterion for the prograde or retrograde state of
the equilibrium point is presented. A necessary but insufficient
condition for the orbit to flip is derived. The resonance width is
numerically determined and for the first time displayed on the
 -e e1 2 plane. When the flip condition is satisfied, an analytical
expression for the resonance width is also derived and shows
good agreement with the numerical results. (2) In terms of the
four octupole secular resonant terms, we show that they can
lead to considerable oscillations of the eccentricities of both the
inner and the outer orbits for the near-planar configuration of
the system. In some cases, the eccentricity can even go from
near zero to almost unity and vice versa. The resonance widths
for each secular resonant term are numerically determined and
displayed on the  -e e1 2 plane. We find that each secular
resonance can cause the orbit to periodically flip from prograde
to retrograde and vice versa with an initial near-perpendicular
configuration of the system. (3) From the numerical results of
the resonance width of each secular resonance, we use the
overlap criterion to analyze the occurrence of unstable motions
due to the interaction of resonances. The predictions by the
overlap criterion are verified by the surfaces of section. (4) In
the end, using the full averaged Hamiltonian truncated at the
octupole order, the near-planar orbit flip in the nonrestricted
three-body problem is systematically investigated by studying
the surfaces of section. We find that the near-planar flip of the
inner orbit can be either regular or chaotic while the outer obit
flip is generally chaotic for the cases we exploited.

2. Model

2.1. Jacobi Coordinate and Harrington’s Hamiltonian

Let m0 and m1 be the masses of the inner binary and m2 be
the third body orbiting the inner binary on a much wider orbit.
In the Jacobi frame, the position vector r1 of m1 is defined to be
the vector from m0 to m1 and the position vector r2 of m2 is
defined as the vector from the mass center of m0 and m1 to m2.

Starting from Newton’s law of universal gravitation, one may
obtain the equations of motion for m1 and m2 as follows:

( )

m

m
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where G is the gravitational constant, ( )m = +G m m1 0 1 ,

( )m = + +G m m m2 0 1 2 , ( )
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b = + +
+
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common part of the disturbing functions, which is defined as
follows
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where Φ is the angle between r1 and r2, Pl is the Legendre
polynomial of order l, and
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+ +
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, which are

referred to as the reduced masses in classic literatures. It can be
easily shown that Equation (1) can be described by the
following Hamiltonian:
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+
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Henceforth, we refer to Equation (4) as Harrington’s
Hamiltonian (Harrington 1968). The canonical variables are
defined as

( )

m m= =

= - = -
= =

~ ~L m a L m a

G L e G L e

H G i H G i

,

1 1 ,

cos cos , 5
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2
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where a is the orbit’s semimajor axis, e is the orbital
eccentricity, i is the orbital inclination, and the subscript i
refers to m1 or m2. Throughout this paper +i i1 2 is also denoted
as itot. The conjugated angle variables li, gi, and hi stand for the
mean anomaly, the argument of perigee, and the longitude of
the ascending node of the inner or the outer orbit. Further, we
introduce two parameters defined as follows:

( ) a = =
+
JL

L
J

L L
, , 61

2 1 2

where = +J J J1 2 is an integral of motion, which is the total
angular momentum vector of the system.

2.2. Invariable Plane and Some Constraints

It is well known that the ascending nodes can be eliminated
from the Hamiltonian if the invariable plane (which is
perpendicular to J) is chosen as the first plane of the reference
frame. In this frame, the following constraints can be easily
derived (see Appendix A for details):

( )a - = -e i e i1 sin 1 sin , 71
2

1 2
2

2

2

The Astronomical Journal, 160:139 (21pp), 2020 September Tan et al.



( )a
a a+

- +
+

- =e i e i J
1

1 cos
1

1
1 cos . 81

2
1 2

2
2

More identities can be obtained from Equations (7) and (8) as
follows:
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These constraints will be used in following studies.

2.3. Literal Expansion

In the reference frame with the invariable plane as the first
plane, the relation q p= - =h h1 2 always holds (see
Appendix A for details). Substituting θ=π into the expression
of Fcos , one may obtain

( )F = - -u u u u icos cos cos sin sin cos , 131 2 1 2 tot

where = +u f g and f is the true anomaly of the orbit. Using
the addition theorem of the spherical harmonics, one may
obtain

( ) ( ) ( ) ( )!
( )!

( ) ( ) ( ) ( )

å dF = - +
-
+

´
=

P
l m

l m

P u P u mi

cos 1 1

cos cos cos , 14

l
l

m

l

m

l
m

l
m

0

1 2 tot

where

⎧⎨⎩ ( )d =
=
¹

m
m

0, 0
1, 0

. 15m

From the definition of the associated Legendre polynomial, one
may obtain that
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where [·] means the floor function. Applying the trigonometric
identities presented in Kaula (1961) to Equation (16) and
rearranging the index in the summation in a similar way as

shown in the same paper, one may obtain that
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where (·)exp means the exponential function, = -j 12 , and
Flmj is a real function defined as follows:
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Applying Equations (14) and (17) to Equation (2), one may
obtain that
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2.4. The Averaged Hamiltonian

The fully expanded disturbing function, Equation (19), is
then double-averaged to eliminate the short-period harmonic
terms. The double-averaged result of the disturbing function
truncated at the third order is as follows:
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where R2 and R3 are referred to as the quadrupole and the
octupole terms, respectively. The quadrupole and octupole
terms are equivalent to the ones used by Ford et al. (2000) and
Naoz (2016). The double-averaged system admits five
independent parameters, namely ( )m m a a J, , , ,1 2 1 2 . The
Hamiltonian, i.e., the energy of the averaged system, can be
denoted as ( )= - +H C R R0 2 3 if we ignore the first two
constant terms in Equation (4).
The double-averaged system truncated at the octupole order has

two DOF, with its Hamiltonian consisting of five phase
combinations, namely - + - +g g g g g g g g g2 , , , 3 , 31 1 2 1 2 1 2 1 2,
which can be denoted as y = -mg ngm n, 1 2. The angle ψ2,0

belongs to the quadrupole term, while the rest belongs to the
octupole terms.
Throughout this paper, the unit of mass is assumed as the

mass of the Sun, i.e., M☉. The unit of length is the mean
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distance of Earth from the Sun, i.e., L⊕. The unit of time is
assumed as / ÅL GM3 . The mass of the central body is
assumed as the unit mass, namely m0=1. We also note that
the calculations presented in this paper for different system
parameters and initial conditions are all conducted in the sense
of semianalytical calculations using the RKF7(8) integrator and
the averaged Hamiltonian described above.

3. The Quadrupole Term ψ2,0

3.1. Equilibrium Points and Level Curves

To start with, we introduce some new variables:
( ) q a h b= + = - = -J e e1 , 1 , 11

2
2
2 and x q b= -2 ,

which will be used in this subsection to simplify the formulas.
Focusing only on the ψ2,0 term by ignoring other secular
resonant angles, we have
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, 222,0
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0 1 2

0 1
. Obviously, the Hamiltonian is indepen-

dent of g2, so G2 is an integral of motion, which is equivalent to
the invariance of the outer orbit’s eccentricity e2. As a result,
the Hamiltonian described by Equation (22) has one DOF, and
the equations of motion are as follows:
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dt
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From Equation (23), one may see that the stationary point only
exists at g1=0 or p=g2 1 . Substituting g1=0 into
Equation (24), one may obtain the condition satisfied by the
equilibrium at g1=0 as follows:

( )+ =i i isin cos sin 0. 251 2 tot

From Equations (12) and (25),
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Substituting Equation (26) into Equation (8), one may obtain
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a
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So the location, i.e., the inner orbit’s eccentricity, of the
equilibrium at g1=0 is uniquely determined by Equation (28).
We denote this value as η0. Because -icos 12 and η�1,

from Equations (26) and (28), one may obtain that

( )b
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a b
a+

-
+

 J
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3

1
, 29

2

which naturally gives a b 2 . To allow the existence of the
equilibrium at g1=0, Equation (29) is the constraint on the
system parameters. By Equation (26), cos i2 is strictly negative,
which implies that > i 902 and in the same way one may see
that < i 901 from Equation (27). Thus, the system is in
retrograde state, i.e., > i 90tot , for the resonance g1=0.
Substituting 2g1=π into Equation (24), one may obtain the

condition satisfied by the equilibrium point at p=g2 1 as
follows:

⎛
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It is not hard to find that Equation (30) is in nature a cubic
equation for the variable η and the analytical expression of
roots is complicated and in complex form. In fact,
Equation (30) can be transformed into a quadratic equation
of the variable ξ as follows with the help of the
Equations (10)–(12):
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The roots of the Equation (31) are simply as follows:
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Obviously, x1 and x2 determine the value of J if e1 is known for
fixed values of system parameters. The simple expressions of x1
and x2 can be used to analytically investigate the properties of
the equilibrium point. In fact, we show that (see Appendix B
for details) the equilibrium point for the resonance ψ2,0=π is

in retrograde state when ˜ ( )/ a< - +J e1 12
2 while the

equilibrium point for the resonance ψ2,0=π is in prograde

state when ˜ ( )/ a> - +J e1 12
2 . We refer to this relation

between the system parameters ( )ae J, ,2 and the state of the
equilibrium point for the resonance ψ2,0=π as the quadrupole
criterion for the prograde–retrograde state of equilibrium point.
This criterion will be numerically examined later.
Moreover, for fixed values of ( )m m a a e, , , ,1 2 1 2 2 , if

˜ ( )/ a= - +J e1 12
2 , then Equation (31) shows that the

resonance ψ2,0=π admits an equilibrium point at e1=1 with
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perpendicular mutual inclination, namely itot=90°. In fact, we
show that (see Appendix C for details)

( )
a

=
-

+
 =  =  =J

e
e i i

1

1
1 90 and 0. 342

2

1 1 2

Equation (34) suggests that the special equilibrium point
located at e1=1 is uniquely determined by the system

parameter ˜ ( )/ a= - +J e1 12
2 or by the perpendicular

mutual inclination. Moreover, it has been shown by Lidov &
Ziglin (1976) that it is a special equilibrium point and all
trajectories will inevitably approach this equilibrium point, i.e.,
the state e1=1. In other words, the system satisfying
˜ ( )/ a= - +J e1 12

2 will experience a collision between
m0 and m1 in the process of evolution.

The Hamiltonian in Equation (22) has one DOF, so its
trajectories are its level curves, which can be numerically
computed by choosing different values of H2,0. Considering the

fact that a1, a2, and e2 are constant, an identical way to compute
these level curves is by choosing different values of E in the
following equation:

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

= + - +E e i e i g1
3

2

1

4

3

8
sin

15

16
sin cos 2 .

35

1
2 2

tot 1
2 2

tot 1

As two examples, the right figures of Figure 1 show how the
level curves look like for this resonance. Substituting g1=0
into Equation (35), one may obtain that

⎜ ⎟⎛
⎝

⎞
⎠ ( )( ) ( )- = - +E e i

8

3

5

8
1 1 sin . 361

2 2
tot

With Equations (11) and (36) can be rewritten as

¯ ( ) ( )h h= - -
+

E c
cd

c

1 2
, 372

0
2

2

Figure 1. Left: the location of the resonance centers and the resonance width of the quadrupole term on the  -e e1 2 plane for two sets of system parameters. Right: two
example level curves described by Equation (35). The resonance width, i.e., the maximum range in which the orbit eccentricity of the inner orbit e1 can vary is
indicated by the vertical blue lines in the right frame. Their corresponding positions in the left frames are also denoted as blue dotted lines. The right ordinate of the
right frames is the mutual inclination itot.
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where η0 is given by Equation (28) and

¯ ( )a
b

x
a b

=
-

= =E
E

c d
8 5

3
,

2
and

2
. 38

Equation (37) suggests that if ( )h Î 0, 10 , then the energy E at
the point ( )h h= =g 0,1 0 is the minimum along the line
g1=0 on the phase plane. According to Equation (28),
( )h h= =g 0,1 0 is also the equilibrium point of the system. It
is obvious from Equation (35) that the energy E is the
maximum along the line h h= 0 on the phase plane. Because
the energy at the equilibrium point ( )h h= =g 0,1 0 is not an
extremum in its neighborhood, the equilibrium point must be a
saddle if it exists.

Substituting 2g1=π into Equation (35), one may obtain that

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )- = + -E e i

8

3

5

32

1

4
1 4 sin , 391

2 2
tot

which is in nature a cubic equation for η and can be solved with
the help of Mathematica. One of the three roots of
Equation (39) is in the real form and is denoted as root1, while
the other two are in the complex form and are denoted as root2
and root3 (see Appendix D for details). Given a specific
Hamiltonian, the maximum and minimum eccentricities along
the level curve can be denoted by e1,max and e1,min. If the orbit
flips along the level curve, icos tot must change its sign. Then
according to Equation (11), the strict orbit flip criterion is as
follows:

( ) ( )x a- - >e1 0, 402
1,max
2

( ) ( )x a- - <e1 0. 412
1,min
2

A necessary but insufficient condition for the orbit to flip at the
quadrupole order can be easily derived. First, it is obvious that
˜ a> - +J e1 12

2 is necessary for icos tot to change its
sign. Second, substituting =e 01,min into Equation (41), we

have ˜ a a< + - +J e1 12
2
2 , so a necessary condition for

the orbit to flip is as follows:

( )
a

a
a

-

+
< <

+ -

+

e
J

e1

1

1

1
. 422

2 2
2
2

We note that the orbit flip is always possible when
Equation (29) is satisfied, because in this case, we have shown
that the saddle at g1=0 is always in retrograde state and the
center at /p=g 21 is always in prograde state.

3.2. Resonance Width

In the above subsection, we have studied the position and
stability of the equilibrium points for the resonance ψ2,0.
According to the studies, we know that the center, i.e., the
stable equilibrium point, for the resonance, ψ2,0 must be
ψ2,0=π. In this subsection, we display the resonance width in
both the numerical and analytical way. For fixed values of
( )m m a a J, , , ,1 2 1 2 and e2, level curves of the Hamiltonian by
Equation (35) can be easily computed (see the two examples in
the right frames of Figure 1). From the level curves, we can
separate libration from circulation and determine the resonance
width. The separatrix of the resonance can be numerically
computed by the condition that 2g1 can vary in the entire range

of [0, 2π] when the trajectory changes from librational motion
to circulational motion. Further, an analytical expression for the
resonance width can be derived when the flip condition,
namely Equation (42), is satisfied (see Appendix E for details).
Because the orbit eccentricity of the outer orbit e2 remains
unchanged, the resonance width describes the maximum range,
namely (e1,min, e1,max), in which e1 can vary if the inner orbit is
trapped in this resonance. Obviously, for fixed values of
( )m m a a J, , , ,1 2 1 2 , the resonance width changes with the value
of e2. By changing the value of e2, we can display the
resonance width in the e1− e2 plane. As two examples, yellow
regions in left frame of Figure 1 displays the numerical result of
the resonance width on the  -e e1 2 plane. The reason why we
choose this plane instead of the e1−e2 plane will be explained
later. The result of the analytical approach is presented as the
green dashed lines and shows agreement with the numerical
result. In the upper-left frame, only a limited range of e2 is
covered by the analytical approach and the result for the
resonance width is presented as the green region. In the lower-
left frame, the analytical method covers the whole range of e2.
The red solid curves are the resonance center 2g1=π
which can be obtained by solving Equation (30). The
boundaries (solid black lines) are determined by Equation (8)
with the substitution of ( )= =i i 01 2 , ( )p= =i i0,1 2 , and
( )p= =i i, 01 2 . As far as we know, this is the first time that
the resonance width of the quadrupole term for the non-
restricted hierarchical triple system is displayed on such a
plane.
The vertical lines in the right frames of Figure 1 passing

through the resonance center 2g1=π appear as a blue vertical
line in the upper-left frame or the horizontal line in the lower-
left frame. The black dashed curves in the left frames are
obtained from Equation (11) by setting itot=90°. From the left
frames, we know that for some values of e2, the vertical lines in
the upper-left frame or the horizontal lines in the lower-left
frame intersect with the dashed black line. This means that the
orbital inclination can change from < i 90tot to > i 90tot and
vice versa in one resonant period. This phenomenon, i.e., the
orbit flip caused only by the quadrupole term, has already been
pointed out by previous researchers (Naoz et al. 2013). One
remark is that this kind of orbit flip is regular and only happens
for values of itot close to 90 . The necessary condition for the
orbit flip to happen is given by Equation (42). Further, it is
obvious from Figure 1 that the quadrupole resonance ψ2,0=π
can lead to considerable variations of the mutual inclination
and the inner orbit eccentricity. Generally speaking, when the
system is trapped in resonance, the inner orbit eccentricity
grows when the mutual inclination decreases and vice versa.
The comparison of upper frames and lower frames of Figure 1
also shows that as the value of α grows the maximum range of
the oscillation of e1 decreases while the maximum range of the
oscillation of itot increases.
We note that the upper-left frame of Figure 1 also

demonstrates the quadrupole criterion for the prograde–retro-
grade state of equilibrium point. By definition, the intersection
point of itot=90° and - =e1 01

2 is exactly the bifurcation

point, i.e.,  =
a

-

+
J

e1

1
2
2

, which is defined in the criterion. The
frame shows that the equilibrium points for the resonance
ψ2,0=π are distributed on both sides of itot=90° and
the bifurcation line ( ) a- = +e J1 12

2 . It is obvious that
the equilibrium points on the left side of the bifurcation line,
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i.e., ( ) a- = +e J1 12
2 is in prograde state, i.e., < i 90tot ,

and the equilibrium points on the right side of the bifurcation
line is in retrograde state, i.e., itot>90°. This is exactly the
statement of the criterion.

4. The Octupole Terms

The octupole terms of the disturbing function consist of four
secular resonant angles, namely, -g g1 2, +g g1 2, -g g3 1 2, and

+g g3 1 2, which can be denoted as y m, 1. Focusing on one
secular resonant term and ignoring others, we apply the
canonical transformation by selecting y m, 1 as the new
coordinate. Let the generating function be

( ) ( ) ( )=  +S g g P P mg g P g P, , , , 433 1 2 1 2 1 2 1 2 2* * * *

where ( )q q P P, , ,1 2 1 2* * * * are the new conjugated variables. The
explicit transformations are as follows



= 

=

=

=

q mg g

q g

P G

P G
G

m

,

,

,

.

1 1 2

2 2

1 1

2 2
1

*

*

*

*

The absence of the variable q2
* in the Hamiltonian immediately

shows that the momentum P2* is an integral of motion.

4.1. The Resonance Y -1, 1

4.1.1. Equilibrium Points and Level Curves

Now we consider ψ1,−1 as the resonant angle. It is easy to
obtain the averaged Hamiltonian as follows:

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )
( )

( )
( )

( )

=- -
+

- - + -

-
-
+

+
-

´ + + +
´ -

-

-

H
Gm m

a

G m m m

a

C
a

a
e e i

C
m m

m m

a

a

e e e

e
i i i

g g

2 2

1 1
3

2

1

4

3

8
sin

15

2048

4 3

1
6 cos 10 cos 2 15 cos 3

cos ,

44

1, 1
0 1

1

0 1 2

2

0
1
2

2
3 2

2
1
2 2

tot

0
0 1

0 1

1
3

2
4

1 2 1
2

2
2 5 2

tot tot tot

1 2

3
2

and the equations of motion take the following form:

( )

=
¶
¶

=
¶
¶

-

-

dq

dt

H

G

dG

dt

H

q

,

. 45

1 1, 1

1

1 1, 1

1

*

*

Equilibrium points require that / =*dq dt 01 and / =dG dt 01

hold at the same time. It is easy to see that the second equation
holds when p=q or01

* . Substituting this equality to the first
equation, one may obtain the resonance conditions as follows:

( ) ( )a= =
dq

dt
e e q J P, , 0, , , 0, 461

1 2 1 2

*
* *

( ) ( )p a= =
dq

dt
e e q J P, , , , , 0. 471

1 2 1 2

*
* *

Obviously, the integral of motion is = +P G G2 2 1* . We
introduce a new parameter to replace P2* as follows:

( )

( )

a
a a

=
+

=
+

- +
+

-G
P

L L
e e

1
1

1

1
1 .

48

p0
2

1 2
1
2

2
2*

It is easy to see that ( )G p0 is an integral of the motion identical
to the integral P2* because L1 and L2 are constant.
Now we focus on a special situation of the resonance ψ1,−1.

Notice that the oscillating terms of the original averaged
Hamiltonian from Equations (20) and (21) only involve the
resonant angle ψ1,−1 if =i 0tot . This suggests that the
resonanceψ1,−1 plays a key role when the system is near-
planar and prograde. To put it in a mathematical way,
Equation (48), together with Equation (8), shows that when
( ) - G J 0p0 , the system is nearly coplanar and prograde,
namely i 0tot . For fixed values of ( )m m a a J, , , ,1 2 1 2 and
( )G p0 , the location of the equilibrium, i.e., values of e1 and e2,
is determined by Equations (46) and (47). Level curves of the
Hamiltonian in Equation (44) can be easily computed, and
the flows around the equilibrium point on the phase plane show
the stability of the equilibrium point. For an example value of
( ) - = ´ -G J 2 10p0

6, the location and stability of the
equilibrium points are determined for a wide range of values
of α and ( )G p0 in Figure 2. We may conclude from Figure 2
that:

(1) Influenced by the resonance ψ1,−1, both the inner and
outer orbits’ eccentricities vary oppositely due to the
conservation constraint given by Equation (48). While
both orbits’ eccentricities oscillate with the same period,
the amplitude of oscillation may differ a lot depending on
the system parameters. When α is much smaller than
unity ( L L1 2), the inner orbit eccentricity can vary
from near zero to almost unity and vice versa, while the
outer orbit eccentricity varies in a much smaller range.
When α is much larger than unity ( L L1 2), the outer
orbit eccentricity can vary from near zero to almost unity,
while the inner orbit varies in a much smaller range.
When α is close to 1, both inner and outer orbit
eccentricities vary considerably.

(2) For each value of ( )G p0 , there is at most one equilibrium
point for the case of ψ1,−1=0, and this equilibrium is
always accompanied by the equilibrium point of
ψ1,−1=π. There are at most three equilibrium points
for the case of ψ1,−1=π when α is large enough. The
equilibrium point for the case of ψ1,−1=0 is always a
stable center if it exists. If there is only one equilibrium
point of ψ1,−1=π, it is a stable center. If there are three
equilibrium points of ψ1,−1=π, the one with the middle
value of e1 is unstable while the other two are stable.

(3) For a  0.3 (a  3) and suitable values of ( )G p0 , the
eccentricity of the inner (outer) orbit can reach almost unity
for some initial conditions. We will see that this dynamical
behavior is closely related to the near-planar orbit flip.

4.1.2. Resonance Width

In this subsection, we display the resonance width for the
resonance ψ1,−1. From the level curves presented in Figure 2, we
know that the centers for the resonance ψ1,−1 are ψ1,−1=0 and
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ψ1,−1=π. The separatrix that separates the libration from
circulation can be numerically determined as in the case of the
resonance ψ2,0. The difference of the resonance ψ1,−1 is that the
integral of motion is ( )G p0 instead of e2. Because ( )G p0 remains
unchanged, the feasible range for e1, i.e., (e1,min, e1,max), also
determines the feasible range for e2, i.e., ( )e e,2,min 2,max . Therefore,
for fixed values of ( )m m a a J, , , ,1 2 1 2 and ( )G p0 , the resonance
width for the resonance ψ1,−1 is characterized by ( )e e,1,min 1,max ,
( )e e,2,min 2,max , and ( )G p0 . From the definition of ( )G p0 by

Equation (48), ( )G p0 is a linear function of - e1 1
2 and

- e1 2
2 , which implies that ( ) =G constp0 is a straight line

on the  -e e1 2 plane. Therefore, the resonance width for the
resonance ψ1,−1 is presented by a segment of the line

( ) =G constp0 with two ends at ( )- -e e1 , 11,max
2

2,min
2

and ( )- -e e1 , 11,min
2

2,max
2 on the  -e e1 2 plane. As

mentioned previously, this is the reason why we choose this plane
instead of the e1−e2 plane to display the resonance width.

Figure 2. First row: location of the equilibrium points ( )e1 of the resonance ψ1,−1 for fixed values of system parameters ( )m m a a J, , , ,1 2 1 2 and different values of
( )G p0 . The other system parameters which are not shown in the frame are a1=1, a2=10, and ( ) = - ´ -J G 2 10p0

6. The example resonance marked by the black
vertical line in each frame is investigated in the second row. Second row: the one-DOF phase plane of the example resonance which is marked by the black vertical
line in the upper frame in the same column. The left/right ordinates of the lower frames show the inner/outer orbit eccentricity.

Figure 3. The location of the resonance centers and the resonance width for the resonance ψ1,−1 on the  -e e1 2 plane for two sets of system parameters.
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As two examples, the red and blue regions in Figure 3
display the resonance width around the equilibrium points
ψ1,−1=0 and ψ1,−1=π, respectively. The blue solid curves
indicate the equilibrium point of ψ1,−1=0, which can be
obtained by solving Equation (46). The red dashed curves
indicate the equilibrium points of ψ1,−1=π, which can be
obtained by solving Equation (47). The boundaries and black
dashed curves of itot=90° are the same as those in Figure 2.
The blue dotted lines passing through the resonance center
y p=- or01, 1 are examples of the lines given by
Equation (48). Their length indicates the resonance width for
the chosen value of ( )G p0 . By surveying in the feasible range
for the value of ( )G p0 , the blue and red regions in Figure 3 are
generated. From the two frames, one remarkable phenomenon
is that for some values of ( )G p0 , the blue dotted lines
( ) =G constp0 intersect with itot=90°. This means that the
mutual inclination can change from < i 90tot to itot>90° and
vice versa in one resonant period. This suggests that the
resonance ψ1,−1 itself can already cause the orbit to
periodically flip.

In the previous subsection, we have shown that the inner or
outer orbit’s eccentricity can reach almost unity. One may see
that these resonance centers with near-planar prograde config-
uration are also demonstrated in Figure 3. To be more specific,
in the case of a » 0.1 in Figure 3, these resonance centers with
large resonance widths are located in the leftmost red and blue
regions which touch the left border. In the case of a » 3 in
Figure 3, these resonance centers dwell in the leftmost red
regions which touch the left border. Further, the right frame of
Figure 3 also demonstrates resonance centers with a spatial
configuration and large resonance widths that were not studied
in the previous subsection. These centers are in the middle-left
red region, which extends from top to bottom.

4.2. The Resonance Y1,1

4.2.1. Equilibrium Points and Level Curves

Now we consider ψ1,1 as the resonant angle. It is easy to
obtain the averaged Hamiltonian as follows:

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )

=- -
+

- - + --

H
Gm m

a

G m m m

a

C
a

a
e e i

2 2

1 1
3

2

1

4

3

8
sin
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+

+
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1
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0
0 1

0 1

1
3

2
4

1 2 1
2

2
2 5 2

tot tot tot 1 2

and equations of motion are as follows:

( )

=
¶
¶

=-
¶
¶

dq

dt

H

G

dG

dt

H

q

,

. 51

1 1,1

1

1 1,1

1

*

*

The conditions for the resonance ψ1,1 take exactly the same
form as Equations (46) and (47). Obviously, the integral of
motion is now = -P G G2 2 1* . We introduce a new parameter
to replace P2* as follows:

( )

( )

a
a a

=
-
+

=
+

- -
+

-G
P

L L
e e

1
1

1

1
1 .

52

r0
2

1 2
1
2

2
2*

Figure 4. The location of equilibrium points for the resonance ψ1,1 for fixed values of ( )m m a a J, , , ,1 2 1 2 and different values of ( )G r0 for the near-planar retrograde
configuration. Blue solid curve: the equilibrium points of ψ1,1=0. Red dashed curve: the equilibrium points of ψ1,1=π. First row ( p i i, 01 2 ): the other system
parameters which are not shown in the frames are a1=1, a2=10, and ( ) = - + ´ -J G 2 10r0

6. Second row ( p i i0,1 2 ): the other system parameters which
are not shown in the frames are a1=1, a2=10 and ( ) = + ´ -J G 2 10r0

6.
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It is easy to see that ( )G r0 is an integral of motion identical to
P2* because L1 and L2 are constant.

Like the coplanar prograde case for the resonance ψ1,−1, we
focus on a special situation of the resonance ψ1,1. Notice that
the oscillating terms of the original averaged Hamiltonian in
Equations (20) and (21) only involves the resonant angle ψ1,1 if

p=itot . This suggests that the resonance ψ1,1 dominates when
the system is near-planar and retrograde. To put it in a
mathematical way, Equation (52) together with Equation (8)
shows that when ∣( ) ∣ + G J 0r0 , the system is near-planar
and retrograde, namely, pitot . However, there are two
different situations for the near-planar retrograde case, which
need separate discussions: p i i, 01 2 and p i i0,1 2 .

(1) p i i, 01 2 : because the invariable plane is assumed
as the first plane of the reference frame, the inclination of
the inner or outer orbit is the angle between Ji and J .
Obviously, p i i, 01 2 implies that    >J J2 1 . In
other words, the angular momentum of the outer orbit
dominates in this case, which naturally requires an upper
limit for the value of α. For an example value of
( ) + = ´ -G J 2 10r0

6, the location of the equilibrium
point is numerically determined for a wide range of
values of α and ( )G r0 . The result is presented in the upper
row of Figure 4. Take the value of ( )G r0 indicated by the
vertical line in the upper-left frame as an example. The
left frame of Figure 5 shows the level curves for this
resonance. The upper row of Figure 4 shows that there
exists a center for the resonance ψ1,1=0, which is very
close to unity. Depending on the value of ( )G r0 , one or
more of the equilibrium points for ψ1,1=π may also
exist. The left frame of Figure 5 shows that the resonance
ψ1,1 can lead to considerable oscillation and even to
extreme values of e1.

(2) p i i0,1 2 : in this case, the angular momentum of the
inner orbit dominates, which suggests that α has a lower
bound. For an example value of ( ) - + = ´ -G J 2 10r0

6,
the location of the equilibrium point is numerically
determined. The result is presented in the lower row of
Figure 4. Take the value of ( )G r0 denoted by the vertical
line in the lower-right frame as an example, right frame of
Figure 5 shows the level curves for this resonance. The
lower row of Figure 4 shows that there exist a center and a

saddle for ψ1,1=π, but no equilibriums at ψ1,1=0 are
identified. The right frame of Figure 5 shows that the the
resonance ψ1,1 can also lead to considerable oscillation and
even extreme values of e2.

4.2.2. Resonance Width

For the resonance ψ1,1, the integral of motion is ( )G r0 , which is

also a linear function of - e1 1
2 and - e1 2

2 . Therefore, it is
obvious that the resonance width for the resonance ψ1,1 is
presented by a segment of the line ( ) =G constr0 with two ends at

( )- -e e1 , 11,max
2

2,min
2 and ( )- -e e1 , 11,min

2
2,max
2

on the  -e e1 2 plane. As two examples, the red and blue regions in
Figure 6 display the resonance width around the equilibrium points
ψ1,1=0 and ψ1,1=π, respectively. The blue solid curves are the
equilibrium point of ψ1,1=0 while the red dashed curves are the
equilibrium point of ψ1,−1=π. The boundaries and black dashed
curves of itot=90° are the same as those in Figure 2. The blue
dotted lines passing through the resonance center y p= or01,1
are examples of the lines described by Equation (52). Their length
indicates the resonance width for the chosen fixed value of ( )G r0 .
From Figure 6, we know that for some values of ( )G r0 , the blue
dotted lines ( ) =G constr0 intersect with the dashed black curve
itot=90°. This suggests that the resonance ψ1,1 alone can also
cause the orbit to periodically flip.

4.3. The Resonances ψ3,−1 and ψ3,1

4.3.1. Equilibrium Points and Level Curves

Now we consider ψ3,−1 and ψ3,1 as the resonant angles. The
averaged Hamiltonians for ψ3,1 and ψ3,−1 are presented as
follows:
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Figure 5. The one-DOF phase plane of two example resonances marked by the vertical dashed line in the upper-left frame and the lower-right frame of Figure 4.
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Notice that the oscillating terms in Equations (53) and (54) both
have a factor of e1

3, which suggests that the resonance ψ3,−1 and
ψ3,1 are of higher-order magnitude compared to other isolated
resonances. Their effects are obvious only when e1 is large
enough. It is obvious that the integrals of motion similar to

those in Equations (48) and (52) are as follows:
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For fixed values of ( )m m a a J, , , ,1 2 1 2 and different values of
( ) -G0 3, 1 (( )G0 3,1), the location of the equilibrium points and
level curves for the resonance ψ3,−1 (ψ3,1) can be numerically
determined using the same method as above. Notice that both

Figure 6. The location of the resonance centers and the resonance width for the resonance ψ1,1 on the  -e e1 2 plane for two sets of system parameters.

Figure 7. The location of the resonance centers and the resonance width for the resonance ψ3,−1 on the  -e e1 2 plane for two sets of system parameters.
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resonance terms vanish if the system is coplanar, namely
p=i or0tot . This suggests that a necessary condition for the

resonance ψ3,1 or ψ3,−1 to play its role is a spatial configuration
of the system.

4.3.2. Resonance Width

For the resonance ψ3,−1 (ψ3,1), the corresponding integral of
motion ( ) -G0 3, 1 (( )G0 3,1) is also a linear function of - e1 1

2

and - e1 2
2 . Therefore, the resonance width for the resonance

ψ3,−1 (ψ3,1) can be presented by a segment of the line
( ) =-G const0 3, 1 (( ) =G const0 3,1 ) with two ends at

( )- -e e1 , 11,max
2

2,min
2 and ( )- -e e1 , 11,min

2
2,max
2

on the  -e e1 2 plane. Figure 7(Figure 8)shows two examples
of the resonance width for the resonance ψ3,−1 (ψ3,1). The red
and blue regions display the resonance width around the
equilibrium points ψ3,±1=0 and ψ3,±1=π, respectively. The
blue solid curves indicate the equilibrium point of ψ3,±1=0
while the red dashed curves indicate the equilibrium point of
ψ3,±1=π. The boundaries and black dashed curves of
itot=90° are the same as those in Figure 2. The yellow dotted
lines passing through the resonance center ψ3,±1=0 or π are
examples of the lines described by Equations (55) and (56).
Their length indicates the resonance width for the chosen value
of ( ) G0 3, 1.

From Figures 7 and 8, one may see that the equilibrium
points for ψ3,1 and ψ3,−1 are mainly located spatially around
the dashed curve itot=90°, and they have larger resonance
widths when compared with those of ψ1,1 and ψ1,−1. More
importantly, the flip of orbit is possible.

5. Orbit Flip

In the long-term evolution of the hierarchical three-body
system, the directions of the orbit planes may exhibit long-term
variations due to gravitational interactions. In some cases, the
orbit plane of one body may evolve from prograde to
retrograde with respect to the total angular momentum vector
of the system. This dynamical behavior is known as orbit flip in
celestial mechanics. The observations of misaligned hot
Jupiters confirmed the possibility of orbit flip in the planetary

systems. Other astrophysical systems, such as triple stars and
circumbinary system, are potential candidates for observations
of the orbit flip. From the theoretical point of view, this
dynamical behavior stems from the secular resonance of the
long-term gravitational perturbation and has been studied by
many authors in the restricted case (Katz et al. 2011; Lithwick
& Naoz 2011; Li et al. 2014a, 2014b; Naoz et al. 2017). In this
section, we investigate the inner and the outer orbit flips in the
nonrestricted case and especially focus on a special case called
the near-planar orbit flip.

5.1. Orbit Flip Caused by a Single Resonance

The above investigation of each of the five secular resonant
angles of the Hamiltonian truncated at the octupole level has
shown that each single resonance term is capable of
periodically flipping the inner or the outer orbit.
At the quadrupole order, we have derived the analytical

expression for the resonance width when the flip of the orbit is
possible due to the resonance ψ2,0. As an example of the inner
orbit flip at the quadrupole, the upper-right frame of Figure 1
shows that in the process of the inner orbit flip, the mutual
inclination only oscillates around 90° with a small amplitude
while the inner orbit eccentricity may vary in [0, 1]. As an
example of the outer orbit flip at the quadrupole, the lower-
right frame of Figure 1 shows that in the process of the outer
orbit flip, the mutual inclination can oscillate with a larger
amplitude while the oscillation of the inner orbit eccentricity e1
is confined to a narrow range.
At the octupole order, there are in total four secular resonant

angles. To the best of our knowledge, this is the first time that it
is shown that each single octupole resonance can periodically
flip the orbit. As an example of the inner orbit flip caused by
the resonance ψ1,−1, the left frame of Figure 9 presents the
trajectories on the phase plane to show the oscillation of e1 and
itot. The blue pentagram marks the location of the resonance
center. The resonance width of this center is showed by the
black dotted line ( ) =G constp0 in the left frame of Figure 3.
The right frame of Figure 9 presents an example of the inner
orbit flip caused by the resonance ψ3,−1. The red pentagram
marks the location of the resonance center. The resonance
width of this center corresponds to the yellow dotted line which

Figure 8. The location of the resonance centers and the resonance width for the resonance ψ3,1 on the  -e e1 2 plane for two sets of system parameters.
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passes through the resonance center ψ3,−1=π in the left frame
of Figure 7. These two examples show that the orbit flip caused
by a single resonant term from the octupole terms requires a
high initial mutual inclination, and the system trapped in
resonance is confined to the nearly perpendicular configuration
throughout the evolution.

5.2. Near-planar Orbit Flip

In our context, a near-planar orbit flip refers to the inner or the
outer orbit flip in the three-body system with an initially near-
planar configuration. In other words, the mutual inclination itot of
the system grows from near zero to over 90° in the long-term
evolution or vice versa, from nearly 180° to smaller than 90°. The
inner near-planar orbit flip was first pointed out by Li et al. (2014b)
in the restricted case. In this subsection, we study the near-planar
orbit flip in the nonrestricted hierarchical three-body system and
investigate the inherent mechanism behind this dynamical
behavior. From these studies, we show that the near-planar orbit
flip is in nature different from the orbit flip caused by a single
resonance. In the case of the near-planar inner orbit flip, it can be
either regular or chaotic, while in the case of the outer orbit flip, the
motion is generally chaotic.

5.2.1. Three Examples

As a start, we show three examples of the near-planar orbit flip
in the nonrestricted hierarchical three-body system (see Figure 10).
Examples 1 (left frame) and 2 (middle frame) correspond to the
inner orbit flip while example 3 (right frame) corresponds to the
outer orbit flip. The intuitive information from the figure is that
example 1 is regular while examples 2 and 3 are chaotic.

In the case of example 1, the evolution of the mutual inclination
itot shows that the system quasi-periodically flips from prograde to
retrograde and vice versa, and the system can always return to
near-planar configuration in the process of flipping. The inner orbit
eccentricity e1 oscillates with the same period as itot, and it can go
from 0.4 to almost unity. The evolutions of resonant angles show
that ψ1,−1/ψ1,1 is in libration when the system is prograde/
retrograde. However, neither of the two resonant angles can
undergo a complete revolution of libration, which suggests that the

system is not trapped in either of the two resonances. We will
show later that this quasi-periodic motion corresponds to a family
of invariant tori in the full averaged Hamiltonian.
In the case of example 2, the middle frames of Figure 10

obviously show that the orbit flip is chaotic. To the best of our
knowledge, the chaotic inner orbit flip like example 2 has not
been pointed out in both the restricted and nonrestricted cases
before. The evolution of itot shows that the system is
temporarily confined to the near-planar prograde configuration.
The evolution curves of two resonant angles in the corresp-
onding time interval shown in the two middle-lower frames
suggest that the system is temporarily trapped in the resonance
island ψ1,−1=π. We will show later that this chaotic flip orbit
results from the overlap of different resonance regions.
In the case of example 3, the evolution of mutual inclination

shows that the orbit also flips in an unpredictable way, and the
evolutions of two resonant angles are both irregular. One may see
that the extreme value of the outer orbit’s eccentricity e2 can still be
expected at the flip moment. We will show later that this
irregularity results from the complicated overlap of multiple
resonances.

5.2.2. Resonance Overlap and Chaos

It is well known that resonance overlap leads to chaos
(Chirikov 1979). As a result, it is reasonable for us to speculate
that the chaos in examples 2 and 3 is caused by the overlap of
different secular resonance terms. Figure 11 puts together all five
single resonances for the case of the outer orbit flip. The figure tells
us that overlap of the resonances is possible, especially when e2
approaches unity. More specific, the left frame of Figure 11 shows
that the red region (resonance width of ψ1,−1) overlaps with the
blue region (resonance width of ψ1,1) while the yellow region
(resonance width of ψ2,0) serves as a simple background. This
suggests that the chaotic motion that migrates between the
resonances ψ1,−1 and ψ1,1 is possible even in the reduced system
where only these two resonant angles are considered (a
phenomenon we verified but for which no details are shown).
The right frame of Figure 11 shows the superimposition of the
dark-gray region (resonance widths of ψ3,−1 and ψ3,1) on the light-
gray region (resonance widths of the three resonant terms shown in

Figure 9. Left: the one-DOF phase plane of an example of the orbit flip caused by the resonance ψ1,−1. The other system parameters that are not shown in the frame
are the same as those of the left frame of Figure 3. Right: the one-DOF phase plane of an example of the orbit flip caused by the resonance ψ3,−1. The other system
parameters which are not shown in the frame are the same as those of the left frame of Figure 7.
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the left frame). It shows that the resonances ψ3,−1 and ψ3,1 are
mainly distributed around itot=90° and have nonnegligible
resonance widths although they are weaker compared to other
secular resonant terms.

For the case of the inner orbit flip, Figure 12 puts together all
five single resonances in the same way as Figure 11. The left frame
of Figure 12 shows that the resonance ψ1,−1 overlaps with the
resonance ψ1,1 around the dashed line itot=90°while the red/blue
region that touches the left/right boundary is detached from each
other. The overlap around itot=90° means that it is possible for
the inner orbit to shift between the resonances ψ1,−1 and ψ1,1. On
the other hand, the detachment between the leftmost and rightmost
regions suggests that the motion initially starting from these
isolated regions is confined to the corresponding region. In other
words, the system with an initial near-planar prograde configura-
tion cannot flip to a near-planar retrograde configuration and
vice versa without the help from other resonance terms. The left
frame of Figure 12 also shows the resonance width of ψ2,0, which
is indicated by the yellow region. The yellow region bridges the
gap between the leftmost red region and the rightmost blue region.
This means that the near-planar orbit flip is possible with the
addition of the ψ2,0 term (a phenomenon we verified but for which

no details are shown). Similarly, the right frame of Figure 12
shows the resonance regions for ψ3,−1 and ψ3,1, which also bridge
the gap between the leftmost red region and the rightmost blue
region. This means that the near-planar inner orbit flip is possible
with the addition of these two terms (a phenomenon we verified
but for which no details are shown).

5.2.3. Surfaces of Section

The resonance widths in Figures 11 and 12 are plotted by
treating each resonance term separately and ignoring the others.
In the full averaged Hamiltonian, all five secular resonant terms
are present simultaneously, so the phase space is different from
the one by simply adding the phase spaces of each resonance
term. As a result, the overlap criterion only serves as an
intuitive description of their mutual influence. The purpose of
Figures 11 and 12 is to intuitively show readers that
overlapping of different resonances is widespread in the phase
space. In the following, we will use a stricter tool—the surface
of section—to study the near-planar orbit flip problem.
The surface of section is initialized by selecting a plane that

transversally intersects the three-dimensional energy level

Figure 10. Three examples of a near-planar orbit flip in the nonrestricted hierarchical triple system with the evolutions of the mutual inclination, the eccentricity, and
three resonant angles ψ2,0, ψ1,−1, and ψ1,1. The results are obtained by numerical integration of the double-averaged Hamiltonian truncated at the octupole.
Left (example 1): the system parameters are ( )= ´ = = = =- -m m a a J4 10 , 10 , 1, 10, 0.551

3
2

2
1 2 . The initial conditions of the trajectory are

( )= = = =g g e e0, 0, 0.4, 0.8641,0 2,0 1,0 2,0 with the Hamiltonian = - ´ -H 1.410 10 7. Middle (example 2): the system parameters are the same as those of example
1. The initial conditions of the trajectory are ( )p= = = =g g e e, 0, 0.5, 0.8601,0 2,0 1,0 2,0 with the Hamiltonian = - ´ -H 4.839 10 8. Right (example 3): the system

parameters are ( )= = = = =- -m m a a J10 , 10 , 1, 10, 0.71
2

2
3

1 2 . The initial conditions of the trajectory are ( )= = = =pg g e e, 0, 0.68, 0.791,0 2 2,0 1,0 2,0 with the

Hamiltonian = - ´ -H 1.554 10 8.
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manifold. This can be achieved by fixing the value of one of the
conjugated coordinates. In the case of the inner/outer orbit flip, the
evolutions of two resonant angles g1 and g2 show that the sign of
g2/ g1 changes at the flip moment while g1/ g2 remains generally
positive. For this reason, we choose the section as g1=0/g2=0
in the case of the inner/outer orbit flip.5 Each surface is plotted
by collecting the intersection points with the section of
trajectories with the same energy. By varying the energy, we
obtain a series of surfaces that can reveal the structure of the
phase space. Generally, a periodic trajectory leaves only finite
intersection points on the surface while the intersection points
of a quasi-periodic trajectory form a set of regular curves, and
the intersection points of a chaotic trajectory seem to be
randomly spread on the surface.

The surface presented in frame (a) of Figure 13 has the same
energy as example 1, for which the intersection points are marked
with red dots. The whole phase space seems to be composed of all
regular Kolmogorov–Arnold–Moser (KAM) curves. These regular
curves can be generally classified into two types, the type that can
intercept the horizontal line that separates prograde orbits from
retrograde ones (such as example 1), and the type that cannot.
None of these curves are chaotic. It seems difficult to understand
the regular flip orbit as example 1, which according to the third
frame in the left column of Figure 10 is not trapped by either the
resonance ψ1,−1=0 or the resonance ψ1,1=0. We can interpret
its existence as the regular KAM curves encompassing both
resonance islands. A more intuitive picture showing its existence is
given in Figure 14(b). Although two types of trajectories exist, we
can take the whole space enveloped by the red curve shown in
Figure 13(a) as a resonance island. Increasing the Hamiltonian
value to the one corresponding to example 2, Figure 13(b) shows
the corresponding surface of section. In this case, the same
resonance island as the one shown in Figure 13(a) still exists.
Meanwhile, the resonance island ψ1,−1=π gradually appears. The
mutual influence of the two resonances causes the splitting of the

separatrix separating them and the occurrence of chaotic layer
(Chirikov 1979); the trajectory of example 2 resides in this chaotic
layer. Further increasing the Hamiltonian to the value of
Figure 13(c), the resonance island ψ1,−1=π becomes more
dominant and the chaotic layer separating the two resonance
islands becomes thicker. Meanwhile, the resonance island ψ1,1=0
becomes obvious. With the Hamiltonian further increasing, the
same resonance island as the one in Figure 13(a) completely
disappears, and now the battle is between the resonances
ψ1,−1=π and ψ1,1=0.
To conclude, for the inner orbit near-planar flip, we find two

types of trajectories. One type is regular, as in example 1,
which encompasses both resonances ψ1,−1=0 and ψ1,1=0
but is not trapped by either of them. The other type is chaotic
due to overlap of different resonances, as in example 2.
Figure 14 presents the surfaces of section in the case of the inner

orbit flip for another set of system parameters based on the
exoplanet system HD 4113 (Tamuz et al. 2008; Cheetham et al.
2018).6 The ratio of masses, i.e., =m m 0.024361 2 indicates that
m1 is nonnegligible compared to the third companion m2. When
the Hamiltonian is low, the surface in frame (a) presents a single
resonance island which is similar to Figure 13(a). The red dots in
frame (a) highlight a regular near-planar flip orbit along which itot
can vary in [ ] 5 , 174 . As the Hamiltonian increases, the chaotic
near-planar inner orbit flip as presented in Figure 13(b) is not
found. Further increasing the Hamiltonian to the value of
Figure 14(b), the resonance centers ψ1,−1=0 and ψ1,1=0 both
show up. The red dots highlight one of the regular KAM curves

Figure 11. The resonance width of multiple resonances on the  -e e1 2 plane in the case of the outer orbit flip. Left: the yellow region corresponds to the resonance ψ2,0

(also see the lower-left frame of Figure 1). The red region corresponds to the resonance ψ1,−1 (also see the right frame of Figure 3). The blue region corresponds to the
resonance ψ1,1 (also see the right frame of Figure 6). Right: the dark-gray regions correspond to the resonances ψ3,−1 and ψ3,1 which have been presented in the right
frames of Figures 7 and 8

5 If we choose the section =g const2 in the case of the inner orbit flip, the
flow trapped in the resonance ψ1,−1/ψ1,1 will intersect the section in the
positive/negative direction. In this way, for a flip orbit, we will get two
surfaces instead of one, which may be inconvenient to study.

6 Table 6 in Cheetham et al. (2018) presented the astrocentric orbital
parameters of the planet HD 4113Ab and the third companion HD 4113C with
respect to the stellar host HD 4113A. It was pointed out there that the
inclination iAb and the longitude of the ascending node WAb of HD 4113Ab
are unconstrained by the observation. Let iC and ΩC be the inclination and the
longitude of the ascending node of HD 4113C. We take =  »i i88Ab C and
W = WAb C so that the system has an initially near-planar configuration.
The derived orbital parameters in the Jacobi frame of the planet system
HD 4113 are m0=1, = ´ -m 1.449243 101

3, = ´ -m 5.948947 102
2,

a1=1.298, a2=23.72618, =e 0.89991 , e2=0.4573286, = i 2 . 1106741 ,
= i 0 . 00606022 , = - h 31 . 624011 , = h 148 . 37602 , = g 73 . 128601 , and =g2
139 . 2049 with the averaged Hamiltonian = - ´ -H 8.784517 10 9 and the

normalized total angular momentum  =J 0.8866574. This set of system
parameters is partially used in Figure 14.
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which envelop these two resonances but are not trapped by either
of them. As the Hamiltonian increases to the positive value of
Figure 14(c), the surface is dominated again by the single
resonance island as in frame (a), and the motion is generally
chaotic outside the resonance island. The red dots in frame (c)
highlight a regular flip orbit along which itot can vary in [38°,
141°]. The surfaces in Figure 14 can be compared with Figure 4 of
Li et al. (2014b), which was obtained under the inner test particle
approximation. One remark is that in the cases exploited by us, the
regular KAM curves highlighted in frame (b) generally break and
no longer exist when m1 and m2 are comparable in the
nonrestricted problem.

In the case of the outer orbit flip, the surfaces of section are
presented in Figure 15. Different from the case of the inner orbit
flip, only a chaotic flip of orbit is found because of the overlap of
resonances ψ1,−1 and ψ1,1 and other resonance terms as discussed
in Section 5.2.2. Frame (a) shows that even if the energy is very
low, the resonance islands of ψ1,−1=0 and ψ1,1=0 both show
up, and the chaotic flip orbits that migrate between these two
resonances also show up. As the energy grows, the surfaces in
frames (b) and (c) are generally similar to frame (a). The mutual
inclination itot along the chaotic flip orbit marked with red dots in
frame (a) can vary in [2°, 170°] while itot can vary in [2°, 150°] in
frame (b). The intersection points of example 3 are marked with
red dots on the surface in frame (c). To conclude, for the outer orbit
near-planar flip and the cases we studied, the regular near-planar
flip orbit as in example 1 does not exist, and only the chaotic near-
planar flip orbit as in example 3 exists. The results obtained here
can be compared with Naoz et al. (2017) where both regular and
chaotic flips of the outer orbit were found in the restricted problem.

6. Conclusion

In this paper, secular resonances in nonrestricted hierarchical
triple systems were investigated. The properties of equilibrium
points, i.e., number, location, stability, and resonance width, for
each secular resonant term were first investigated. The resonances
introduce large-amplitude variations in the orbit eccentricity or the
inclination, and thus lead to some extraordinary dynamical

behaviors, such as the phenomenon that the orbit eccentricity
goes from near zero to almost unity and the phenomenon of orbit
flip with near-perpendicular configuration of the inner and the
outer orbit. After treating with each single resonance term
separately, we combine them together to study the general secular
dynamics of the nonrestricted system, with a special focus on the
near-planar orbit flip. We find that only the joint effects of
different resonance terms can generate the near-planar orbit flip.
In Section 2.1, the nine-DOF Hamiltonian of the original

spatial three-body problem was reduced to Harrington’s
Hamiltonian using the Jacobi coordinate. We showed that the
invariable plane could be naturally derived from the definition
of the elimination of nodes, i.e., the relation p- =h h1 2 ,
without the need for the quadrupole approximation or the
double-averaging process. The disturbing function with the
nodes eliminated was fully developed using Kaula’s (1961)
method. The explicit expression of the double-averaged
Hamiltonian truncated at the octupole order was presented.
The theory on the quadrupole term was reformulated in

Section 3. The equilibrium points of ψ2,0=π were solved as a
quadratic equation. The roots of the quadratic equation were used
to derive the criterion for the prograde–retrograde state of the
equilibrium point. A necessary but insufficient condition for
the orbit flip due to the quadrupole term was presented. The
resonance width was determined and for the first time displayed on
the  -e e1 2 plane.
In Section 4, all four resonant octupole terms were investigated.

The resonances ψ1,−1 and ψ1,1 dominate other resonance terms in
the near-planar configuration. The inner orbit eccentricity and the
outer orbit eccentricity vary in opposite directions when
influenced by these two terms. In some cases, the orbit
eccentricities can even reach almost unity. The resonances ψ3,−1
and ψ3,1 are weaker because their strength is proportional to e e1

3
2

and only matters when the orbit eccentricities are large enough.
Different from the resonance terms ψ1,−1 and ψ1,1, they are only
obvious when the inner and outer orbits have a near-perpendicular
configuration. The resonance widths of four octupole resonant
terms were numerically determined and displayed on the  -e e1 2
plane. For each of them, we found that the orbit flip is possible.

Figure 12. The resonance width of multiple resonances on the  -e e1 2 plane in the case of inner orbit flip. Left: the yellow region corresponds to the resonance ψ2,0

(also see the upper-left frame of Figure 1). The red region corresponds to the resonance ψ1,−1 (also see the left frame of Figure 3). The blue region corresponds to the
resonance ψ1,1 (also see the left frame of Figure 6). Right: the dark-gray regions correspond to the resonances ψ3,−1 and ψ3,1, which have been presented in the left
frames of Figures 7 and 8.
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Figure 13. The surfaces of section g1=0 in the case of the inner orbit flip. The system parameters are ( )= ´ = = = =- -m m a a J4 10 , 10 , 1, 10, 0.551
3

2
2

1 2

with a = 0.12661. The horizontal solid line is determined by ( ) a= - +e J1 12
2 2 , which is the intersection point of itot=90° and e1=1. As shown in the left

frame of Figure 12, this point is where the separatrices of two single resonances ψ1,−1 and ψ1,1 touch for the near-planar configuration. In this way, the horizontal
straight line on the surface approximately separates prograde orbits from retrograde orbits. Generally, the orbit that crosses this line on the surface will flip. The red
dots in frame (a) highlight the intersections points of example 1. The red dots in frame (b) highlight the intersections points of example 2. The red dots in frame (c)
highlight one of the chaotic flip orbits along which itot can vary in [ ] 30 , 150 .

Figure 14. The surfaces of section g2=0 in the case of inner orbit flip. The system parameters are ( = ´ -m 1.449243 101
3, = ´ =-m a5.948946 10 , 1.2982

2
1 ,

)= =a J23.72618, 0.88665742 with a = ´ -5.843 10 3, which are derived from the orbital parameters of the exoplanetary system HD 4113. The horizontal solid

line is determined by ( ) a= - +e J1 12
2 2 .

Figure 15. The surfaces of section g2=0 in the case of the outer orbit flip. The system parameters are ( )= = = = =- -m m a a J10 , 10 , 1, 10, 0.71
2

2
3

1 2 with

a = 3.1325. The horizontal solid line is determined by ( ) = - a
a

+e 1 J
1

1 2 2

2 , which is the intersection point of itot=90° and =e 12 .
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However, all orbit flips caused by a single resonance (including
the quadrupole term) only happens for the near-perpendicular
configuration of the inner and the outer orbits.

In Section 5, the full averaged Hamiltonian truncated at the
octupole level was studied, with a special focus on the
phenomenon of orbit flip. With the aid of three examples,
we intuitively showed readers two types of near-planar flip orbits.
One type is regular and the other type is chaotic. The regular type
of near-planar flip orbit can be viewed as a special type of regular
orbits which encompass both the resonance islands ψ1,−1 and ψ1,1

but are not trapped by either of them (see Figures 13(a) and 14(c)).
This type of flip orbit only exists in the full averaged Hamiltonian.
The chaotic type of near-planar flip orbit is due to the overlap of
different resonances and resides in the chaotic layers separating
these resonances. Using the tool of surface of section, we were able
to clearly show the difference between the two types of flip orbits
in phase space. For the cases we studied, we found both types of
flip orbits existed for the inner orbit flip, but only the chaotic type
of flip orbits existed for the outer orbit flip.

Based on the nonrestricted secular octupole perturbation theory,
the phase space where the planet system HD 4113 dwells in was
investigated. The results in Figure 14 showed that the dynamics
introduced by the secular octupole terms may play a key role in the
long-term evolution of the planet system HD 4113. The highly
eccentric orbit of HD 4113Ab can be explained by the dominating
resonance ψ1,−1 with the near-planar configuration of the system.
The interactions of multiple secular resonant terms can lead to the
dramatic growth of mutual inclination and the near-planar flip of
the orbit. This near-planar flip of orbit is regular, as discussed in
Section 5. Like the exoplanetary system HD 4113, it is believed
that the nonrestricted octupole perturbation theory may be applied
to a wider range of natural hierarchical systems where the the mass
of each member is nonnegligible.

This work is supported by the National Natural Science
Foundation of China (11973010, 11773017).

Appendix A
Introduction of the Invariable Plane

Naoz et al. (2013) pointed out that the elimination of nodes
should be conducted on the level of the equations of motion
instead of the Hamiltonian, otherwise one may be led to the
wrong conclusion that the vertical component of the inner orbit’s
angular momentum is conserved. We note that this problem can
be overcome with the use of Deprits elements in the process of the
elimination of nodes (Ferrer & Osacar 1994; Palacian et al. 2013).
Here, we show that the definition of the invariable plane can be
naturally derived from the equations of motion with the condition
q = - =h h const1 2 . We note that this process does not
depend on the quadrupole approximation or the double-averaged

approximation of the system. The cosine of the angle Φ can be
expressed in terms of the orbital elements as follows:

( )

q q
q

q

F = +
´ -
+
+

u u u
u i u u i

u u i i
u u i i

cos cos cos cos sin cos
sin cos sin cos sin cos
cos sin sin cos cos
sin sin sin sin , A1

1 2 1

2 2 2 1 1

1 2 1 2

1 2 1 2

where = +u f g and f is the true anomaly of the orbit. As the
Hamiltonian only depends on the conjugated momentum Hi

through Fcos , we have

Taking the assumption that the orbital phases, i.e., u1 and u2,
are random, then the condition q = - =h h const1 2 suggests
that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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1 1
2
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1
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1

1
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( )q p= or0 . A4

Substituting Equation (A4) into Equation (A3), one may find
that

( )q= - =G i G isin sin when 0, A51 1 2 2

( )q p= =G i G isin sin when . A61 1 2 2

If we assume that the inclination is defined within the range
[ ]p0, , then only Equation (A6) holds. It is not hard to find that
the angular momentum Ji of mi is defined as follows:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( )m= - -~J m a e

h i
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cos sin

cos
. A7j j

j j

j j

j

1 1 1
2

Using Equations (A6) and (A7), one may find that the
projections of the total angular moment vector, i.e.,
= +J J J1 2, on the x-axis and y-axis both equal zero, which

suggests that J is perpendicular to the x–y plane, and this is
exactly the definition of the invariable plane. The conservation
of J guarantees that the condition q p= - =h h1 2 holds all
the time if the z-axis is initially set along the direction of J .
It is obvious that the constraint presented by Equation (7)

can be easily derived from Equation (A6) and the constraint by
Equation (8) holds because of the conservation of the
magnitude of the angular momentum, i.e., · =J z const.
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Appendix B
Quadrupole Criterion

It can be shown that x < 01 (see Section B.1 for details), which
naturally gives x a h- < 01

2 . According to Equation (11), one
may easily see that ∣ <xicos 0tot 1

. Notice that by the definition of

ξ, ⟺ ˜x a< < - +J e0 1 12
2 . So, the equilibrium point

for the resonance ψ2,0=πis in retrograde state when
˜ a< - +J e1 12

2 . Also it is obvious that x > 02 by its

definition and ⟺ ˜x a> > - +J e0 1 12
2 . It can be

shown that ∣ >xicos 0tot 2
(see Section B.2 for details). As a

result, the equilibrium point for the resonance ψ2,0=π is in
prograde state when ˜ a> - +J e1 12

2 .

B.1. Proof 1

Supposing that x > 01 , Equation (32) requires that

h h> = + b
ac

5

8

3

2 2 , which naturally gives / /b a < 1 42 . We
show that this assumption will lead to >icos 11 , which is an
obvious error.

First, we calculate the value of icos 1 when h h= c,

∣
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Then, when η=1 we have
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where ( )= + Îb
a

y 1 60 1, 42 . It is easy to calculate that

( )df y
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y100 1y

1

2

7

3

4

5
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3
2

, ( ) /=f 1 16 15 , and ( ) =f 4 1,

which suggests that ∣ >h=icos 11 1 . From the intermediate value
theorem, as ∣ >h h=icos 1or1 1 c

, if ( )h h$ Î , 1c0 such that
∣ <hicos 11 0

, then ( )h h$ Î , 1c0 such that ∣ =hicos 11 0
. Apply-

ing ∣ =hicos 11 0
to Equation (9), one may obtain that

( )x a h x a h a bh- + - =2 4 0. B32 2
0

4
0
2 2

0

The roots of Equation (B3) are x a h a bh=  22 . Because

x a h- < 01
2 , then we have x a h a bh= - 21

2 , which is
equivalent to the following equation:
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Now we prove that Equation (B4) has no root. The first
derivative of ( )hg is

( ) ( )

( )
( )h

h
e e

h h
=

- +

- + b
a

dg

d

h x,

2 4 5 60
, B5

2
2

where ( ) ( )( )e= - + +h x x x x10 3 2 , e = <b
a

60 152 and

( )h= - Î - b
a

x 5 4 1, 5

2

6
2 . The first derivative of ( )h x is
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e < 15, which shows that ( ) e>h x , hence ( )/h h <dg d 0, then

( ) ( )h =g g 1min . It is easy to verify that ( ) - =b
a

g 1 10 2

( )+ + - >b
a

b
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1 1 60 10 02 2 when / /b a < 1 42 .
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B.2. Proof 2

From Equations (10) and (12), we have

( )x a h b
b

=
- +i

i
i

sin

sin
cos

2

2
. B7tot

1
2

2

Substituting Equation (B7) into Equation (30), we have

( ) ( ) ( )h h
x a h b

b
- - + -

- +
=i5 1 cos 5 4

2

2
0. B82

tot

2

From Equation (11), we have

( )x a h a hb- = i2 cos . B92
tot

Substituting Equation (B9) into Equation (B8), we have

( ( )) ( ) ( )a bh h b h- = -i i5 4 cos 3 5 cos . B10tot
2

tot

From Equation (B10), one may easily verify that the following
relations hold:

( )h =  = i0 90 , B11tot

( )h<   >i i90 3 5 cos , B12tot
2

tot

( )h>   <i i90 3 5 cos , B13tot
2

tot

where ⇔ means “if and only if”. To determine the sign of
∣xicos tot 2
, we only need to calculate the value of
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∣ h-xi5 cos 32
tot 2

. From Equations (11) and (33), we have
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From Equation (B12), it is obvious that ∣ >xicos 0tot 2
. +

Appendix C
Special Equilibrium

It is obvious from Equation (31) that ⟹h x= =0 0.
Substituting ξ=0 into Equation (31), we have

⎜ ⎟⎛
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⎞
⎠ ( )h h
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5

8
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2
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holds, we have
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Substituting h = + b
a

5

8

3

2 2 and ξ=0 into Equation (9), one
may obtain
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a bh
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2

1 4
1

4
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2
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Equations (C2) and (C3) imply that /b a= 42 must hold,
which gives η=1. Substituting η=1 and ξ=0 into
Equations (9) and (10), it is easy to see that =i 01 and

p=i2 . This is the planar situation where the Hamiltonian of
the quadrupole term is zero and will not be considered here.
Thus, η=0 must hold. As a result, we have shown that
h x=  =0 0. Further, one may see that x =  = i0 901

from Equations (12) and (B11). Now, it can be concluded that
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Appendix D
Three Roots
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Appendix E
Analytical Expression for the Resonance Width of ψ2,0

When the necessary condition for the orbit to flip at the
quadrupole approximation, namely Equation (42), is satisfied,
the energy for the separatrix between circulation and libration
is as follows:
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We briefly explain how the above expression is obtained. In
case (1), we know that the saddle at g=0 exits according to
Section 3.1. Then, the energy of the separatrix is given by the
energy of the saddle, which is ¯ = - +E cd

c

1 2
2 . Case (2)

corresponds to region II′ of the Figure 1 in Lidov & Ziglin
(1976) and the energy of the separatrix is given by
Equation (41) there. Then, the maximum range of e1

determined by the separatrix is as follows:

( ) ( ) ( )= - -e e, 1 root , 1 root . E21,min 1,max 2 3
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