
The Fermi Paradox and the Aurora Effect: Exo-civilization Settlement, Expansion, and
Steady States

Jonathan Carroll-Nellenback1 , Adam Frank1, Jason Wright2,3,4 , and Caleb Scharf4,5
1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA

2 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
3 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA

4 PI, NASA Nexus for Exoplanetary Systems Science, USA
5 Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA
Received 2019 February 11; revised 2019 July 2; accepted 2019 July 10; published 2019 August 20

Abstract

We model the settlement of the Galaxy by space-faring civilizations in order to address issues related to the Fermi
Paradox. We are motivated to explore the problem in a way that avoids assumptions about the agency (i.e., questions
of intent and motivation) of any exo-civilization seeking to settle other planetary systems. We begin by considering
the speed of an advancing settlement front to determine if the Galaxy can become inhabited with space-faring
civilizations on timescales shorter than its age. Our models for the front speed include the directed settlement of
nearby settleable systems through the launching of probes with a finite velocity and range. We also include the effect
of stellar motions on the long-term behavior of the settlement front which adds a diffusive component to its advance.
As part of our model we also consider that only a fraction, f, of planets will have conditions amenable to settlement by
the space-faring civilization. The results of these models demonstrate that the Milky Way can be readily filled-in with
settled stellar systems under conservative assumptions about interstellar spacecraft velocities and launch rates. We
then move on to consider the question of the Galactic steady state achieved in terms of the fraction X of settled
planets. We do this by considering the effect of finite settlement civilization lifetimes on the steady states. We find a
range of parameters for which 0<X<1, i.e., the Galaxy supports a population of interstellar space-faring
civilizations even though some settleable systems are uninhabited. In addition we find that statistical fluctuations can
produce local overabundances of settleable worlds. These generate long-lived clusters of settled systems immersed in
large regions that remain unsettled. Both results point to ways in which Earth might remain unvisited in the midst of
an inhabited galaxy. Finally we consider how our results can be combined with the finite horizon for evidence of
previous settlements in Earth’s geologic record. Using our steady-state model we constrain the probabilities for an
Earth visit by a settling civilization before a given time horizon. These results break the link between Hart’s famous
“Fact A” (no interstellar visitors on Earth now) and the conclusion that humans must, therefore, be the only
technological civilization in the Galaxy. Explicitly, our solutions admit situations where our current circumstances are
consistent with an otherwise settled, steady-state galaxy.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Milky Way evolution (1052); Astrobiology (74)

1. Introduction

The Fermi Paradox has a long history in discussions of the
prevalence of alien technological civilizations (i.e., exo-civiliza-
tions) in the Galaxy (Webb 2002; Cirkovic 2018). Originating
with a lunchtime conversation in 1950 where Enrico Fermi
famously asked “where is everybody?” (Eric 1985), the Fermi
Paradox was first formalized by Hart (1975) and has since become
a standard framework for addressing questions concerning the
prevalence of exo-civilizations (but see Gray 2015). Formally the
paradox might be expressed as follows: “if technologically
advanced exo-civilizations are common, then we should already
have evidence of their existence either through direct or indirect
means” (Frank 2018). Here we take indirect detection to mean the
search for technosignatures (Tarter 2007) from distant sources
outside the solar systems (e.g., Siemion et al. 2013; Wright et al.
2014), while direct detection means material evidence for an exo-
civilization’s visit to Earth or our solar system (Davies 2012;
Haqq-Misra & Kopparapu 2012; Wright 2018).

Such a distinction between direct and indirect detection is
important. In Hart’s formulation of the Fermi Paradox his “Fact
A” was the lack of aliens on Earth now. It was Fact A that then
led Hart to conclude that no other technological civilizations of
any kind exist or have existed. The lack of indirect detection of

exo-civilizations via radio or other signals represents a different
constraint on alien life (but see Kuiper & Morris (1977), who use
the idea that there should be probes in the solar system as a reason
to search for radio communication to those probes from abroad).
This apparent absence of signals has been been called a “Great”
(Brin 1983) or “Eerie” (Davies 2011) Silence. Such silence has
been taken by some to serve as as its own answer to Fermi’s
Paradox (i.e., we do not see them because they do not exist). The
assumption in this interpretation of the paradox is that the Search
for Extraterrestrial Intelligence (SETI; e.g., Tarter 2001) has been
extensive enough to place firm limits on the prevalence of exo-
civilizations. This conclusion is, however, unwarranted. Tarter
et al. (2010) examined the volume of radio SETI search space,
and concluded that only a tiny fraction of the radio SETI
parameter space necessary to reach such conclusions has been
covered. Wright et al. (2018) amplified this conclusion with a
similar calculation and concluded that the situation is equivalent
to searching unsuccessfully for dolphins in a small pool’s worth
of ocean water and then concluding the ocean was dolphin-free.
The Fact A interpretation of the Fermi Paradox, focusing on

their presence on Earth (or at least in the solar system), presents
greater difficulties in resolution. One of the first rigorous
discussions of the possibility of contact via interstellar probes
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was that of Bracewell (1960), and Freitas (1980) and Tipler
(1980) extended the idea to include self-replicating probes that
would saturate the Galaxy. Hart (1975) had in mind interstellar
settlement by the intelligent species itself. Either way, the math
is the same: both Tipler and Hart showed that subrelativistic
probes sent out by a single interstellar faring species would
cross the Galaxy in approximately 6.5×105 yr. Given that this
is a small fraction of the Galaxy’s lifetime, it would seem that a
single species intent on visiting or even settling the Galaxy has
had ample time to do so. But Freitas (1985) challenged this
version of the Fermi Paradox as well, noting that it is not a
formal paradox at all, both since it relies on the assumptions
that alien life would certainly launch such probes, that those
probes would be in the solar system today, and that we would
have noticed them by now.

A number of authors have attempted to explore these
nuances. Ashworth (2014) included settlement parameters such
as a maximum probe range and a maximum travel speed among
his categorization of solutions to the Fermi Paradox. Others
have attempted to invalidate or verify the order-of-magnitude
results of Hart and Tipler using both general arguments and
more detailed models.

Stull (1979) argued that competition among settled systems
for the small number of frontier systems would stall the
expansion front. Jones (1976) argued that a species might
intentionally slow its expansion in the Galaxy by at least an
order of magnitude via population restrictions. Jones (1978)
expanded on this theme with a Monte Carlo approach,
performing the calculation of a settlement wave numerically,
under the assumption that the spread of life through the Galaxy
is driven by population growth, and that only planets or stellar
systems with large populations would spread to other stars. He
found rapid progress of the interstellar settlement front with the
front moving at 6% of the speed of the ships themselves. Based
on these results and the lack of material evidence of exo-
civilizations on Earth, Jones conjectured that no interstellar
civilizations had yet arisen, consistent with Hart and Tipler.
Later calculations by Jones (1981) exploring a wider range of
population growth assumptions came to similar conclusions.

On the other hand, Sagan & Newman (1983) argued that the
sorts of self-replicating probes imagined by Tipler would be
inherently dangerous and uncontrollable, and therefore would
not be constructed in the first place. Chyba & Hand (2005)
argued that self-replicating probes would be subject to
evolution, mutation, and predation much like life is, greatly
complicating the analysis, a proposition explored numerically
by Wiley (2011).

Regarding the Hart scenario, Newman & Sagan (1981)
describe an analytic calculation that reproduced the results of
Jones (1978), but found that under reasonable assumptions
about low population growth rates, the progression of the wave
could be slow and the time to populate the Milky Way would
approach or even exceed its age. Roughly speaking, their
argument is that to be long-lived, a civilization must have low
population growth, but if they have low population growth,
they will not settle nearby systems (see also the sustainability
solution of Haqq-Misra & Baum 2009).

Sagan & Newman also suggested that the colonization phase
of the civilization would necessarily be finite in duration, and
found that for durations less than 3×106 yr we should not
expect Earth to have been colonized. They argued that since
longer durations were not plausible, Fact A posed no significant

challenge to the hypothesis that the Milky Way is endemic with
space-faring life.
Tipler responded in a series of papers, prompting Sagan &

Newman (1983) to present a detailed rebuttal to Tipler and
defense of the Newman & Sagan calculation, referring to
Tipler’s position as the “solipsistic approach to extraterrestrial
intelligence.” Here they defended their choices of parameters
for population growth, including their assertion that only well-
populated planets would launch new settlement ships, and that
civilizations would have finite colonization lifetimes.
Walters et al. (1980) pointed out that the possibility of life

spreading among the stars has implications for the Drake
equation (Drake 1965), and computed that for a maximum
travel time of 103 yr one should multiply N by a factor C10 to
account for this, effectively arguing that the difficulty of
interstellar travel would limit each civilization to no more than
10 additional systems.
Additional work has been performed by Landis (1998), who

included a maximum probe range in his percolation model and
had some settlements permanently cease sending out probes.
Kinouchi (2001) used an analogy to the large number of
uninhabited portions of the Earth to derive a simple model for
the persistence of uninhabited regions of the Galaxy, a model
Galera et al. (2018) refined and expanded.
Bjørk (2007) and Hair & Hedman (2013) performed

numerical calculations in a 3D grid of stars representative of
the Galaxy. Cotta & Morales (2009) used a 2D grid of stars to
explore a two-stage colonization strategy with fast exploration
probes and slower colonization probes. Gros (2005) explored
the possibility that the settlement wave would cease for cultural
reasons. Zackrisson et al. (2015) explored the settlement
patterns of in-progress Galactic settlement to guide observa-
tional searches for Type III Kardashev civilizations.
Lin & Loeb (2015) modeled the spread of nontechnological

life via panspermia, concluding that spatial correlations among
life-bearing exoplanets would provide strong evidence for the
hypothesis. Forgan (2009) describes a general numerical model
for the rise and spread of life in the Galaxy, suitable for testing
a wide variety of Fermi-Paradox-related hypothesis (see
references therein). Vukotić & Cirković (2012) expand on
Forganʼs work with cellular automata theory.
With the exception of Zackrisson et al. (2015), who included

both 3D stellar thermal motion and Galactic shear in their
calculations, all of these studies assumed that settlement occurs
across a static substrate of stars, and most worked in 2D. As
pointed out by Brin (1983), Ashworth (2012), and Wright et al.
(2014), this assumption is probably fine in the case of rapid
settlement of the Galaxy by relativistic probes, but it cannot be
used to support any conclusion that there are regions of
parameter space in which settlement stalls or large uninhabited
regions persist for long times in an otherwise inhabited Galaxy,
because it assumes that settlements cannot be spread through
the Galaxy by the motions of the stars themselves. This is
particularly important in scenarios with short maximum probe
lifetimes (meaning probes that are either slow or have short
range).
Ashworth (2012) and Wright et al. (2014) also repeated the

admonition of Hart (1975) against reaching for solutions to the
Fermi Paradox that invoke a permanent lack of interest in
settling nearby stars, as done by Newman & Sagan (1981) and
Sagan & Newman (1983), which is an example of what Wright
et al. (2014) dubbed as the monocultural fallacy. Such solutions
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invoke the unknown and unknowable intentions or motivations
of exo-civilizations, and so unless a species goes extinct we
should not suppose that any propensity for colonization should
go to zero permanently for all settlements.

Wright et al. (2014) also address the assumption of Newman
& Sagan (1981) and Sagan & Newman (1983) that the drive to
settle new systems would be driven entirely by population
pressure, since interstellar migration can hardly be expected to
reduce overcrowding (von Hoerner 1975) and such motivations
for settlement probably do not even describe most migrations
of humans across the Earth.

In addition to the question of the settlement front speed, one
can also ask about the steady-state properties of a galaxy which
have already been swept across by civilization-bearing probes. If
we assume that civilizations have finite lifetimes, then an
eventual balance should be achieved between the settlement of
currently empty worlds and the death of civilizations on
previously settled worlds. This question bears directly on Hart’s
Fact A. If civilizations have a finite duration, then it is possible
that Earth was settled some time in the distant past and all traces
of that settlement have been erased by geological evolution. In
Schmidt & Frank (2019) it was shown that evidence of previous
industrial civilizations in Earth’s deep past would likely be found
only in isotopic and chemical stratographic anomalies and that
the experiments needed to pinpoint non-natural origins for such
signals had yet to be performed. The question of solar system
artifacts of previous civilizations (alien or otherwise) has also
been addressed in Davies (2012), Haqq-Misra & Kopparapu
(2012), and Wright (2018).

In this paper we focus on the Fermi Paradox in the form of
Hart’s Fact A. We first reexamine the issue of settlement front
speeds using both analytic and simulation based methods to
track the settlement front in a realistic gas of stars.

We next take up the issue of equilibrium models for Galactic
habitation. Novel aspects of our study include the explicit
inclusion of thermal stellar motions coupled with the possibility
that not all worlds are inherently settleable. Often there is the
assumption that any planet can be terraformed to the specific
needs of the settling civilization. But the idea that the purpose
of probes is to build habitable settlements and that all stellar
systems are viable targets for such settlements goes to the
agency of an exo-civilization; in our work we therefore relax
this assumption. In addition, some stars may host indigenous
forms life, which may preclude settlement for practical or
ethical reasons (see, for instance, Kuiper & Morris 1977 who
suggested the biology of Earth might be incompatible with that
of would-be settling species.) This theme was explored in
(spoiler alert) the novel Aurora by Kim Stanley Robinson
(Robinson 2015) in which even though a world was formally
habitable it was not what we would call settleable. Thus we
include the possibility that good worlds are hard to find—what
we call the Aurora Effect—via a pre-settlement fraction, f, in
our calculations. Separating the observable space density of
stars from the unknown density of settleable represents an
important aspect of our study.

Finally we consider the effect of finite lifetimes for
civilizations which arise on the settled worlds in our calculations.
This allows us to include the possibility that Earth was settled by
an exo-civilization at some time in the deep past but no evidence
remains of its existence (Schmidt & Frank 2019). By including
the temporal horizon over which evidence of such a settlement

would persist, we are able to constrain the Galactic equilibrium
fraction.
The plan of the paper is as follows. In Section 2 we introduce

and explore an analytic model for the speed of the settlement
front including stellar motions and the fraction of settleable
systems, f. In Section 3 we present an agent-based numerical
model for the evolution of a settlement front. In Section 4 we
discuss the results of the numerical model and the implications
for the long-term evolution of the settlement of the Galaxy. In
Section 5 we discuss an equilibrium model for the Galaxy
fraction of settled systems and discuss the resulting implica-
tions given evidence implied by geological Earth’s record and
in Section 6 we present results of the steady-state numerical
models.

2. Dynamic Model

We first consider the speed of a settlement front driven by
the spread of intelligent agents (i.e., agents following a set of
algorithmic rules) constrained by the limited range of the
spacecraft and the dynamical diffusion of the stellar substrate.
In this model we assume that expansion proceeds via short-
range probes that travel to a nearby system and settle it. A
settled system in this model takes on identical properties to the
Ur system, launching additional probes to an unsettled nearby
system.
For simplicity we fix the maximum speed of settlement

probes, vp (relative to their host systems), as well as the
maximum distance a probe can travel, dp, in the rest frame of
the host system. We also model the stellar substrate as having a
Maxwellian velocity distribution with an average velocity of vs,
and a mean density of systems, ρ, of which some fraction f are
settleable. Probes can be launched from a system with a
periodicity, Tp. For each probe launched the intelligent agents
target the uninhabited system with the shortest travel time. We
also assume for simplicity that systems once settled continue to
be so, although later in this study we will consider steady-state
models in which settled systems have finite lifetimes.
We can scale the model in terms of the probe range (dp),

velocity (vp), and travel time ºt d vp p p( ) to reduce the five
parameters described above into three dimensionless quantities:

h r= f d 1p
3 ( )

n =
v

v
2s

s

p
( )

t =
T

t
, 3p

p

p
( )

where η is the normalized density of settleable systems and
roughly corresponds to the expected number of systems within
a range at any given point, νs is the relative speed of stellar
substrate motions to probe motion and tracks the importance of
the velocity of stars in aiding or restricting Galactic settlement,
and τp is the ratio of the probe launch period to the probe travel
time and corresponds to the relative delay due to building
probes before they can be launched. For reference, Henry et al.
(2018) estimate the density of stars in the solar neighborhood
between -0.07pc 3 and -0.09pc 3. Assuming r = =-0.08 pc 3

-0.0023 lyr 3 and = -v 30 km ss
1, we have h = f2.3

d

10 lyr

3
p( ) ,

n =
-

0.01s
v

c0.01

1p( ) , and t =
-

0.1p
T v

c

d

100 yr 0.01 10 lyr

1
p p p( ) ( )( ) . We

then seek a solution to the motion of the agents expansion front
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r(t)=vt, or in scaled units ξ(τ)=ν τ where t = t

tp
, x = r

dp
,

and n = v

vp
. A summary of the parameters of our model is

provided in Table 1.

2.1. Approximation of the Expansion Speed

We next derive the expected front speed, ν, as a function of
normalized density, η, substrate velocity, νs, and launch period,
τp, by first considering various limiting cases.

2.2. High Stellar Density Limit

We first consider the simplest case where the normalized
density of settleable systems η ? 1, so that there are always
plenty of neighboring systems within range. In the static limit
for the stellar substrate, n  0s , we would expect expansion to
simply occur as fast as the probes can travel (including the time
needed to built the next probe). The time to travel the probe
range, dp, and launch another probe would be + T

d

v p
p

p
. This

gives a front speed of =
+

v
d

d v T
p

p p p
or in our scaled units

n =
t+

1

1 p
. This assumes that systems are evenly spaced at the

probe distance. If we assume that the probe destination is
another system randomly located within the sphere of radius dp,

the average distance travelled by probes per trip in our scaled
units x = d

dp
will be the volume averaged radius

ò òx
p

x xá ñ = W =d d
3

4

3

4
. 4

0

1
3 ( )

The average speed (including the probe launch period) in our
scaled units n =p

v

vp
will then be

ò òn
x

x t p
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x t
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+
= W

+
d d

3
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5p

p p0

1
2 ( )
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1
3
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2
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3 2 ( )

t
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+
2 3

2 3
for 1. 7

p
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Note the last line means that in the limit τp = 1 the probe
speed is the same as what would be expected for uniform trips
of an effective distance of 2/3dp. And when t  0p , the front
speed is just the probe speed and n  1p . However, if probes
are slow enough or the time to launch is long enough, the
stellar substrate may actually move faster, νs ? νp, in which
case the stellar diffusion would control the rate of expansion.
When this is the case the fastest stars, in the tail of the
distribution, will determine the expansion rate. Combining

Table 1
Table of Parameters

Symbol Definition Description

f Fraction of systems that are settleable

ρ Density of systems

dp Probe range

vp Probe velocity

vs Average velocity of stellar substrate

Tp Probe launch period (equivalent to the probe assembly time)

tp dp/vp Probe travel time

Tc p r -f d vp s
2 1( ) Encounter time between systems due to stellar motions

Tl + - T T1p c1 1( ) Effective probe launch period

Ts Settlement civilization lifetime

η rf dp
3 Normalized density of settleable systems within probe range

νs vs/vp Velocity of stellar substrate normalized by probe speed

τp Tp/tp Probe launch period normalized to probe travel time

τc phn -
s

1( ) Encounter time normalized to probe travel time

1 - h- p e1
4
3 Odds of another unsettled system being in range and ahead of the settlement front

τl t t+ - 1p c1 1( ) Expected probe launch period normalized to probe travel time

ò 1

4
Odds of an upwind system being unsettled (parameter)

νl t t t+ + -t
t +

1 3 log 3l l l
3

1
2 3

2
l

l
Average effective probe velocity normalized to probe velocity

 2–3.5 Ratio of fastest speed to average speed for the Maxwell–Boltzmann system

ν n nmax ,s l[ ] Front speed normalized to probe speed

Δξ nt ln 2l Front thickness normalized to probe range
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these possibilities we can estimate the front speed in the high
stellar density limit as n n n= max ,s p[ ].

2.3. Low Stellar Density Limit

At low densities, η=1, host systems do not typically have
other settleable systems in range (dp) and must wait for the
background stellar substrate motions to bring them within range.
The frequency of these close encounters can be thought of as
collision rates of particles with a radius of

d

2
p . For particles to

collide the total distance between them must be twice their radius
—or dp. This gives a collisional cross section of s p= dp

2, and
an average encounter time of r s= -T f vc s

1( ) , or in dimension-
less units t phnº = -

c
T

t s
1c

p
( ) . Defining a dimensionless effec-

tive probe launch period τl we can, therefore, not exceed this
encounter period to get t t t= max ,l c p[ ]. Combining this with
the high density limit gives a resulting front speed of

n t
t

t
t t= +

+
+ -1 3 log

1
3

3

2
. 8l l

l

l
l l

3 2 ( )

Also, note that when the density drops below h <
p
1 , the

collision time becomes longer than the stellar drift time
t n> -

c s
1 or equivalently < v

d

T s
p

c
. In this limit, probes,

regardless of their speed or assembly time, can only advance
a distance dp per encounter time Tc. In this limit, the maximum
effective probe speed

d

T
p

c
is less than the stellar drift speed

vs—so probe launches/relaunches cannot outpace the stellar
motions. Even a probe launched forward from the fastest
moving system at the leading edge of the front will land on a
system drifting back toward the front and it will not be able to
find another system in range fast enough to further advance the
front.

2.4. Static Limit

Before discussing intermediate system spatial densities with
a dynamic stellar substrate, it is instructive to first consider the
static limit νs=0. In this case the front propagation speed is
limited by the effective probe speed (including launch times)
ν=νp. However if the density of settleable systems η drops
below a critical density ηc, the expansion of the front can be
halted due to insufficient connectivity among neighbors.

2.4.1. Critical Density

We first examine the effects of neighbor system connectivity
via probes. In other words what are the dynamics of probes
hopping from neighbor to neighbor. We begin by considering
the 1D equivalent of N systems distributed at random along the
unit line (so that ρ=N) and ask what is the minimum probe
range dp needed to ensure that no gaps exist that exceed the
probe range, thereby halting the settlement front. If N?1, the
gaps are very weakly correlated and the gap sizes will have a
beta distribution of a b= = - N1, 1( ). The odds that any
gap is smaller than dp is given by the cumulative distribution
function (CDF) of the beta function which is the regularized
incomplete beta function a b= = -I N1, 1dp ( ). And the odds
that no gap is larger than dp is 1 minus the odds that every gap is
smaller than dp and is given by a b- = = -I N1 1, 1d

N
p ( ) .

Figure 1 shows what we call the failure probability, Pf, for the
settlement front as a function of the normalized density (1D
equivalent) η=ρ dp=N dp. This is defined as the odds of any

gap size between systems being larger than the probe range. For
normalized densities η such that Pt(η)∼1 the settlement front
can cross the domain. We also show the effect on Pt of adding
more systems to a domain of constant size.
In 3D, a single gap cannot stall the front, but in the static

limit, we can treat the system as a homogeneous Poisson point
process with a volumetric rate parameter of λ=ρ, which
gives an occurrence rate for a volume of radius d of

pr phxL = =d4

3
3 4

3
3 where we define a normalized distance

x = d

dp
. This gives the probability of finding N neighbors within

some normalized distance, ξ,

x
phx

=
L

= phx-L -P
N

e
N

e . 9N

N
N4

3
3

4
3

3( )
( )

! !
( )

The probability of having one or more neighbors within a
distance ξ is given by

x x= -D P1 . 101 0( ) ( ) ( )

And the probability of having N or more neighbors within a
normalized distance x = d

dp
is given by

åx x= -
=

-

D P1 . 11N
i

N

i
0

1

( ) ( ) ( )

The differential change in the probability of finding N or more
neighbors as a function of ξ is equal to the probability of
finding the Nth nearest neighbor at a distance ξ. Taking the
derivative we get the probability of finding the Nth nearest
neighbor,

åx
x

x
x
x

= = -
=

-


dD

d

dP

d
. 12N

N

i

N
i

0

1

( ) ( ) ( ) ( )

We can use the recurrence relation

x
x

phx x x
phx x

=
- >

- =
-dP

d

P P i

P i

4 if 0

4 if 0
13i i i

i

2
1

2

⎧⎨⎩
( ) ( ( ) ( ))

( )
( )

Figure 1. Failure probability for a settlement front to completely cross a 1D
domain vs. the density of neighbors normalized to the probe range η. As the
density increases, the average gap size decreases as does the probability of
failure. As the number N of systems grows, the failure probability for a given
average gap size increases as there are more opportunities for a gap to exist that
exceeds the probe range.
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to write the probability of finding the Nth nearest neighbor at a
distance ξ,

åx
x
x

phx x= - =
=

-

-
dP

d
P4 , 14N

i

N
i

N
0

1
2

1( ) ( ) ( ) ( )

and then calculate the average distance to the Nth nearest
neighbor by taking the mean of the distribution

ò òx x x phx x x= =
¥ ¥

-l d P d4 15N N N
0 0

3
1( ) ( ) ( )

ph
=

G +

-

- N

N

4

3 1
. 16

1 3 1

3⎜ ⎟⎛
⎝

⎞
⎠

( )

( )!
( )

We can then determine what value of η is required so that the
average distance to the Nth nearest neighbor is equal to the
probe range (lN=1),

h
p

=
G +

-

N

N

3

4 1
. 17N

1

3

3⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
( )!

( )

From this relation we find that when η�η1≈0.1700, the
average distance to the nearest neighbor is within the probe
range. When η�η2≈0.4030 the average distance to the
second nearest neighbor will be within the probe range, and
when η�η3≈0.6399, the average distance to the third
nearest neighbor will be within the probe range.

These relations allow us to understand how the availability
of multiple hops leads to a fully connected space of settleable
systems. To that end we consider how the typical number of
connected systems changes as a function of the normalized
density η. To determine this we created a set of random points
in a 3D box (with periodic boundary conditions) and then
calculated the sizes of each isolated subregion Ni for various
values of η. In this the average number of accessible systems
(not counting oneself) is given by

= å -
å

N
N N

N

1
. 18a

i i

i

( ) ( )

Figure 2 shows the resulting average number of accessible
systems as a function of density for N=101, 102, 103, & 104.
For ηη1, systems have on average a handful of other
accessible systems. Once ηη4≈0.8777, systems are nearly
fully connected. This means and the number of accessible
systems for settlement is only limited by the total number of
systems in the box. Thus h h h> º ~ 0.88c 4 represents a
threshold density for settleable systems past which the
settlement front should expand freely with the probe speed.

2.5. Intermediate Density

Finally we consider the transition from the low density limit
h <

p
1 (stellar diffusion limited) to the high density limit

η>η4 (probe speed limited). For intermediate densities, the
actual time for probe launches will either be τp, if at least one
other unsettled system is in range, or it will be collision time τc.
The odds that there is another unsettled system in range and
positioned to advance the front is

= - h- p
 e1 , 191

4
3 ( )

where ò is the product of the fraction of the volume that will
assist in advancing the front and the fraction of systems in that

volume that are not already settled. For the system to be
upwind of the front, ò<1/2. And for our models, we find
reasonable agreement with = 1

4
.

Using this we can refine our effective launch time that would
advance the settlement front from t t t= max ,l p c[ ] to

t t t= + - 1 . 20l p c1 1( ) ( )

2.6. Stellar Velocity Distributions

One final caveat, is that while νs is the average stellar speed,
the front in the low density limit will be driven by the fastest
stars. Given N stars with velocities taken from the Maxwell–
Boltzmann distribution, the fastest moving star will be
travelling a few times vs at  N vs( ) , where  N( ) is the
expectation value for the maximum of N systems taken from a
Maxwell–Boltzmann distribution. This factor scales fairly
weakly with N going from 2 to 3.5 for values of N from 102 to
105 (see Appendix A.1) This then gives our final model for the
front speed

n n n= max , 21s l[ ] ( )

n t
t

t
t t= +

+
+ -1 3 log

1
3

3

2
22l l

l

l
l l

3 2 ( )

t t t= + - 1 23l p c1 1( ) ( )

t
phn

=
1

24c
s

( )

= - h- p
 e1 . 251

4
3 ( )

2.7. Front Thickness

After the leading edge of the front passes a given point, the
local fraction of settled systems to total systems X in the
average rest frame should grow exponentially until it saturates.

Figure 2. Average number of accessible settleable systems vs. the space
density of such systems. The density is normalized to the probe range (η). Note
that systems tend to have a single settleable neighbor when the average nearest
neighbor distance equals the probe range η=η1. The space becomes fully
connected, meaning a single original civilization can settle all settleable
systems, when the average distance to the 4th nearest neighbor equals the probe
range η=η4.
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The growth rate should be proportional to the frequency of
encounters between settled and unsettled systems. The average
encounter frequency (normalized to the probe travel time) is
just

t
1

l
and the average encounter frequency between one settled

and one unsettled system is -
t

X X11

l
( ). This gives the

doubling rate, which corresponds to a continuous growth rate
of the fraction of settled systems of -

t
X X1ln 2

l
( ). The time

evolution of the settled fraction can therefore be written as

t t
= -

dX

d
X X

ln 2
1 . 26

l
( ) ( )

This results in a logistic growth with a growth timescale of t
ln 2

l .
In the frame of the front, this exponential growth is stretched
out spatially by the front speed ν. We expect the front to grow
from unsettled to fully settled following a logistic curve with a
dimensionless width of xD = nt

ln 2
l . Note in the low density

limit, we have t phn= -
l s

1( ) and the front speed is n n=  s.

This gives a width of x h hD = »
p

- -

ln 2
1 1.

3. Numerical Model

To test our analytic model we ran a suite of numerical agent
based simulations. During each timestep, settled systems check
to see if they are ready to launch a probe. Systems that are
ready to launch a probe will target the unsettled system with the
shortest intercept time subject to the constraint that the distance
to intercept (in the systems frame of reference) is less than the
probe range and that the time to intercept is less than the probe
travel time. If the time to intercept is longer than the probe
travel time, a system waits to launch the probe until the time to
intercept is less than or equal to the probe travel time. Probes
are not preemptively launched at subprobe speeds toward
intercept locations—as those locations can be reached with a
shorter trip duration by simply waiting to launch a probe at the
probe speed provided the probe has not been launched toward
another system in the meantime—or enough time has passed to
have built another. This also avoids systems preemptively
targeting other systems that they would not be able to settle for
a long time, allowing those systems to potentially be settled
sooner. Once a system is targeted, it will not be targeted
by other probes, and will become settled after the probe
intercept time.

3.1. Initial Setup

Initially the systems are randomly distributed within a
periodic box with velocities taken from a Maxwell–Boltzmann
distribution. The initial distribution of settled systems is a
Heaviside function, - x x0( ). This creates a gradient in
settled systems that causes the front to naturally propagate to
the right (+x). To follow the front over many crossing times,
the reference frame is also shifted into one moving to the right
at the expected front velocity. Settled systems that leave the left
boundary are reused and become unsettled as they wrap around
and re-enter through the right boundary. Initially the speed of
this front is estimated using the analytic prescription, but if the
front comes within the probe range of either the left or right
boundary, the simulation is stopped, the front speed is
reestimated using the result of the simulation, and the process
repeats.

One final caveat is that in the low density diffusion limited
regime, the system with the fastest velocity in the +x direction,
will eventually reach the front. As it crosses the front it will
settle additional systems that it encounters leaving a cone
shaped wake of settled systems and locally increasing the speed
of the front. In a truly infinite plane parallel model, the front
would have several fast stars located at different locations
along the front causing the front to be somewhat corrugated as
the overlapping wakes from the fastest stars intersect. In the
simulations, the transverse periodic boundaries effectively
limit the corrugation scale and the normal periodic boundary
conditions ensure that the fastest moving star eventually
emerges from the front, at which point the front speed naturally
increases to match the fastest particle’s speed. In our setup, we
therefore shift the systems so that the system with the fastest
velocity in the +x direction starts at x0 at the leading edge of
the front. This position is chosen to be two-thirds of the
distance across the box.
The simulation box volume was chosen to contain N=104

habitable systems and simulations were performed for various
values of η=[10−1, 101], τp=[0.1, 1.0], and νs=[10−3,
10−1]. The volume (in units of dp

3) is given by
h
N , which using

our standard probe range =d 10 lyrp corresponds to volumes
ranging from 100 lyr 3( ) to 464 lyr 3( ) and densities of habitable
systems ranging from 0.04 to 4 times the density of stars in the
solar neighborhood. The extents in x, y, and z (in units of dp)
were [w+15Δξ, w, w], where Δξ=ν τl was the approxi-
mated front width which varied from 4.6 to 117 lyr and w was
solved for using the volume constraint. For the various
parameters, w varied from 80 lyr to 224 lyr and in all cases
w was at least 8 probe travel distances as well as at least 10
times the system separation scale η−1/3, which went from
4.6 lyr to 22 lyr. In addition if we assume background stellar
motions of -30 km s 1, the probe speed varied from 10−3c to
10−1 c giving probe travel times that varied from 100 to
10,000 yr and probe assembly times that varied from 1 to
1000 yr. The simulations were each run for the longer of 100
effective launch periods tl( ) or 10 probe travel times and varied
from 1000 yr to 30 Myr and was sufficient for the system to
have reached a steady state.

4. Results

The top panel of Figure 3 shows a typical snapshot of the
numerical simulation (projected to 2D). The red circles
correspond to settled systems while the blue circles are
unsettled. Green systems are also unsettled, but have been
targeted by a settled system. The lower panel shows the
fraction of settled systems projected onto 1D as well as the fit

to the logistic curve = + x x
x

¢ -
D

-
X 1 exp

1⎡
⎣⎢

⎤
⎦⎥( ) , where X is the

fraction of systems that are settled, ξ′ is the dimensionless
position (normalized to dp in the approximately comoving
frame), and ξ and Δξ are fit parameters that indicate the
dimensionless position and thickness of the front (in the
comoving frame). The change in the dimensionless position ξ
in the approximately comoving frame is then used to measure
the front velocity. For each run, we then calculate the location
and average thickness from 20τl to 100τl and calculate the
average front speed and thickness over this time period.
Figure 4 shows the resulting front speed from the numerical

model over a range of values for η for various combinations of
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Figure 3. Agent based model simulation of the expansion of a Galactic settlement front after reaching steady state. The top panel shows a projected 2D snapshot of a
3D simulation with the density normalized to the probe range (η=0.2783). Red circles correspond to settled systems, green to targeted systems, and blue to unsettled
systems. The settlement front is apparent in the transition from red to blue. The bottom panel shows the 1D fraction of settled systems along the direction of front

propagation (+x) and the logistic fit + x x
x

¢ -
D

-
1 exp

1⎡
⎣⎢

⎤
⎦⎥( ) used to determine the position (ξ) and width (Δξ) of the front.

Figure 4. Comparison of analytic and simulation results for the settlement front propagation speed. This figure shows 1D front speeds vs. normalized density. The red
line comes from the analytic model and the blue dots come from the simulations. We show runs with the ratio of stellar speeds to the probe speed νs=[0.001, 0.01,
0.1] and the ratios of probe relaunch times to probe travel time τp=[0.1, 0.31623, 1]. As η increases, the front speed goes from diffusion limited, to collision limited,
to probe speed limited. This figure (and the next) demonstrate the general accuracy of the analytic model discussed in the text.
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νs and τp as well as the analytic estimate. In the low density
region, the front speed is just given by n s. In the intermediate
density region, there is a transition from n s to νp as the
effective launch period τl transitions from the encounter time τc
to the probe assembly period τp.

Figure 5 shows the measured front thickness as well as our
analytic estimate. The analytic estimate does well in the low
density regime, where the local growth following the passage
of the front may well be described by a logistic curve.
However, in the high density regime the front thickness
becomes less than dp and the simple exponential growth model
breaks down.

These results demonstrate that the analytic model developed
in Section 2 captures most of the important behavior of the
settlement front in the low, intermediate, and high settleable
system limits. We now use these results to estimate the crossing
time of the settlement front across the Galaxy.

4.1. Galactic Crossing Time

We can now apply a very simple order-of-magnitude
calculation for the Milky Way, assuming a size of 10 lyr5

and a single stellar velocity dispersion of = -v 30 km ss
1,

characteristic of the solar neighborhood. While in reality
differential rotation, motion of halo stars, and spatial variations
in stellar densities and velocities will all be important
corrections for realistic models of an expansion of an space-
faring civilization, this speed (or rather » -v 100 km ss

1)
provides a reasonable lower limit for the rate stellar motions
can spread life across the Galaxy interior to our Galactic radius.
Using this lower limit on speed, we can calculate an upper limit
on the Galactic crossing time of 300 Myr. This upper limit is
independent of any probe speed, vp, settleable fraction, f, or
probe range, dp. Figure 6 show the Galactic crossing time for a
range of probe speeds and probe ranges assuming it takes
100 yr to be able to relaunch a probe from a newly settled
system. Note in the low density limit η<1, this gives
300 Myr. Also as the probe speeds approach the stellar
velocities n  1s , the front speed becomes comparable to the
stellar motions and again the Galactic crossing time goes to
300 Myr. If the probe speed is greater than the stellar speeds
(νs<1), and the typical distances to settleable systems is less
than the probe range (η>1), the Galactic crossing time
approaches the light-crossing time 0.1 Myr as the probe
velocity approaches the speed of light v c 1p( ). Also note
the crossing time tends to increase for shorter probe ranges in

Figure 5. Comparison of analytic and simulation results for the settlement front propagation width. Parameter ranges are the same as in Figure 4. Note that in the low
density limit (η<1), the launch time is t h nµ - -

l s
1 1 while the front speed is ν∝νs, so the front thickness Δξ∝ν τl∝η−1 is independent of νs.
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the high density (η>1) and high velocity v cp( ) limit
because there are more frequent hops and the time to relaunch a
probe begins to become significant. Figure 7 shows the same
but for relaunch periods of 1000 yr.

4.2. Fill-in Time

While the front of settled systems may have had more than
enough time to cross the Galaxy, it is worth asking whether the
Galaxy has had sufficient time to fill in. Starting from a single
technological civilization, what is the timescale for such a
civilization to grow to 100 billion civilizations? To settle 1011

systems requires only 36 doubling times, so unless the effective
probe launch time Tl=τl tp is greater than = 270 Myr

log

10 Gyr

102
11( )

,
the Galaxy is old enough for every system to have been settled
from an initial single civilization. This is of order the crossing
time of the entire Galaxy. To restrict launches to once every
270 Myr the encounter time period Tc must be greater than
270 Myr. This requires r p >-f v d 270 Myrs p

2 1( ) or using solar

neighborhood densities and velocities, <f d 0.071 lyrp or
4520 au. This makes close enough encounters with settleable
systems extremely rare.
This result confirms the intuition of Brin (1983), Ashworth

(2012), and Wright et al. (2014): using realistic values for
stellar motions yields Galactic settlement times shorter than the
age of the Milky Way, even for slow ships.

5. Steady-state Model

Given that the Galactic crossing time and potential fill-in
time are much less than the age of the Galaxy, we next consider
steady-state solutions for a completely settled galaxy. We
assume that civilization lifetimes are finite and seek to
determine under what conditions settleable systems can be left
unsettled for significant periods of time.
If we assume the Galaxy has had time to reach a steady state

—and is homogeneous—we can model the ratio of settled to
unsettled systems (X) using a simple ordinary differential
equation (ODE),

= - -
dX

dt T
X X

T
X

1
1

1
, 27

l s
( ) ( )

where Ts is the average lifetime of settlements and Tl is the
effective probe launch rate. For our purposes a settlement dies
when it ceases to be capable of launching probes. This could be
from an extinction event, resource depletion, environmental
collapse, or a permanent culture shift to one that does not settle
nearby stars.
Note that Tl, the effective probe launch period, is restricted

by either the time to assemble a new probe Tp (in the high
density limit) or by the time one would have to wait for an
encounter with another settleable system within the probe
range. As before we set the launch time as the weighted
average of the probe assembly time Tp and the collision time Tc,

= + - T T T1 28l p c1 1( ) ( )

= - h- p
 e1 , 291

4
3 ( )

where  represents the odds of a system having at least one
neighbor in range. Note we have dropped the factor of = 1

4
since in the steady state we are not concerned with advancing a
front, but rather simply launching a probe to any nearby
unsettled system.
The factor of (1− X) represents the odds that an encounter

with a settleable system will be with an unsettled system. There
is a trivial steady-state solution at X=0 which occurs if
civilizations die off before they can launch any probes
(Ts<Tl). Otherwise, the equilibrium solution occurs at

= -X
T

T
1 . 30l

s
eq ( )

In equilibrium, each system must birth (i.e., have an
encounter and settle) an average of one unsettled world in
their lifetime to compensate for their own death. If systems
have several encounters with settleable systems during their
lifetime then on average all but one of those will be with other
systems that are already settled and the average fraction of
systems that are settled will be high. Note that there may be
many encounters with systems that are inherently unsettleable,
emphasizing our use of the settleable fraction f. If, on the other
hand, systems survive just long enough to encounter another

Figure 6. Plot of front crossing time vs. probe speed and settleable system
density. The plot assumes a galaxy size of 10 lyr5 , densities similar to the solar
neighborhood, stellar speeds of -30 km s 1, and a probe launch period
Tp=100 yr. Note that the crossing time never exceeds 300 Myr, which is
much less than the age of the Galaxy. For reference, Voyager 1 is traveling at
∼10−4 c.

Figure 7. Same as Figure 6, but with the probe launch period increased to
Tp=1000 yr. Increasing the time between probe launches cannot bring the
settlement front crossing time above the age of the Galaxy.
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settleable system (or rarely two), nearly all of those encounters
can be with a unsettled but settleable system.

Figure 8 shows the resulting equilibrium settled fraction as a
function of Tl and Ts. In the low density limit (η = ηc) the
launch time Tl is a function of the settleable fraction f and the
probe range dp (assuming solar neighborhood values for
density ρ and stellar substrate velocities vs). This scaling is
shown along the bottom axis. In the figure dark red regions are
fully settled because encounters with a settleable system are
frequent. Dark blue regions are sterile as encounter times are so
long that civilizations die before they encounter a system to
which they can send a probe. As we will see in the following
sections the shaded region of the plot corresponds to nonsterile
conditions that could be interpreted as being consistent with the
geologic record of Earth history (see Section 1 of Schmidt &
Frank 2019).

6. Steady-state Simulations

To validate the model we ran a sequence of 117 simulations
using parameters for the solar neighborhood and explored the
dependence on the final settled fraction X on the fraction of
settleable systems f and the lifetime for civilizations Ts. We
took a constant probe range of 10 lyr and a probe speed of 0.01
c and set the probe launch period to =T T T0.01 min ,p s c( ).
Each simulation contained N=104 particles in a periodic box
with a Maxwellian distribution of velocities. We ran each
simulation for 20Tc, which was long enough for the settled
fraction X to have reached a steady state. Initially the fraction of
settled systems was set to Xmax 0.01, eq[ ] randomly distributed
throughout the box. This was sparse enough that at early times
these initial systems evolved essentially independently. This
means one would need need ever larger samples to study the

behavior for lower values of the initial settled system
population (Xeq = 1).
We then looked at the equilibrium settled fraction (averaged

over the final Tc) compared with our analytic model. The right
panel of Figure 9 shows the resulting settled fraction. In the
high density limit (η>1), Tl=Tp=0.01Ts and we would
naively expect =X 0.99eq , however the measured settled
fractions are lower. This is because in the numerical models,
probes are not launched toward systems until after they are no
longer settled. And if the travel time is longer than the
lifetimes, this delay can create many more targeted systems
than settled systems. Appendix A.2 contains a modified model
that accounts for this delay and its predictions are shown in the
left panel of Figure 9. At both low and high densities it agrees
fairly well with the numerical results, though the transition to
higher settled fractions appears to be much broader and to have
happen much sooner around η≈0.2 as opposed to ηc. This is
likely due to a degree of back-filling discussed below.

6.1. Resettlement in the Numerical Models

The numerical models showed two interesting phenomena.
First, many of the models with Ts=Tl continued to have a
handful of systems (N<6) survive for very long times. This
was due to pairs of systems very close in phase space with
similar velocities and positions that were able to resettle each
other over much longer timescales than their own lifetimes.
Looking at the number of unique systems settled over the latter
half of the steady-state simulations, we found a clear break
between those with only a handful of systems (N=6% or
0.06%) and those that used a substantial fraction of the systems
(48%). While this back and forth allows for settled systems to
exist in the numerical model, we consider any simulation that
survives by reusing fewer than six systems as having a settled
fraction of zero.
The other interesting phenomena was the excess of systems

visible in the right panel of Figure 9 below =T 10 yrs
5 for η

between 0.1 and 1.0. This too is likely due to an increased
probability of resettling reducing the effective launch period in
regions with above average density approaching the critical
density. For η=η1=0.25, systems typically have a single
neighbor in range allowing for pairs of systems to resettle one
another even if their lifetimes are very short. By η=η2=0.4
there can be subgroups containing ≈10 systems that can
continually resettle one another. Within these groups, the probe
launch time is just the probe assembly time and if a system dies
it can be resettled by nearby systems. These pockets of settled
systems can settle other systems that migrate through. These
become the seeds for other pockets to arise if encountered
before the system’s lifetime. And by η=η4=0.88 systems
are fully connected.
Figure 10 shows the results from a run with a settlement

lifetime of = ´T 1.25 10 yrs
5 and a encounter time of

= ´T 3.18 10 yrc
5 . The density η=0.1 gives a neighbor

probability of = 0.3421 and an average launch time of
= ´T 2.1 10 yrl

5 . While this is still longer than the settlement
lifetime, implying =X 0eq , a significant number of systems are
able to survive in local pockets with higher than average
settlement fractions. This is because settled systems (having
just been settled) are more likely to have neighbors in range—
some of which will have recently become unsettled.

Figure 8. Steady-state fraction of settled systems X vs. settlement civilization
lifetime Ts and probe launch times Tl. Note that in the low density limit (η =
1), Tl reduces to the time between encounters with a settleable world due to
stellar motions. Dark red regions are fully settled because encounters with a
settleable system are frequent (encounter times are less than 1 million years).
Dark blue regions are sterile as encounter times are so long that civilizations die
before they encounter a system to which they can send a probe. The shaded
region corresponds to nonsterile conditions that could be interpreted as being
consistent with Earth history (encounters times >1 Myr; see the text).

11

The Astronomical Journal, 158:117 (16pp), 2019 September Carroll-Nellenback et al.



7. Evidence Horizons and Hart’s Fact A

We know turn our attention to Hart’s Fact A which focuses
on the question of why Earth has not, apparently, been settled
(or at least visited) by another space-faring civilization. The
important point to consider is the temporal one. How long ago
could Earth have been (temporarily) visited or settled by such a
civilization without leaving any obvious trace? If the settlement

occurred 4 billion years ago and lasted for just 10,000 yr would
any record of it survive in the geological record?
The answer is: almost certainly not. This implies a temporal

horizon over which a settlement might not be seen. We now
use the equilibrium solutions to our steady-state model and
attempt to constrain the reasoning used in linking Fact A to
conclusions about Fermi’s Paradox.
Given assumptions about probe range 10 lyr( ) and velocity

(0.01c), we now calculate the typical launch time and
equilibrium fraction as a function of the fraction of settleable
systems f and the average settlement lifetime Ts (assuming solar
neighborhood density of systems and stellar velocities). If
encounters between unsettled and settled systems are uncorre-
lated, we would expect the distribution of times a system
remains unsettled (Tu) to follow a Poisson distribution,

= -P T e . 31u
XTu

Tl( ) ( )

We can then inquire about the probability of being unsettled
for some period that can be compared against evidence in
Earth’s geological record. Schmidt & Frank (2019) discuss the
mechanisms by which evidence of a previous technological
civilizations on Earth would be problematic to find and would
likely only exist as potentially ambiguous chemical or isotopic
signals, if at all. Motivated by the maximum time span of our
simulations, we choose this horizon to be at least 1 Myr. Note
that this is a lower limit in that our results are relevant to being
unsettled for at least this long. As the horizon time gets longer,
the lighter red region in Figure 9 that allows for a reasonable
probability of X>0 moves upwards toward longer settled
times Ts and to the left toward lower fractions of settleable
systems f.
The resulting probability of a given system being unsettled

for at least 1 Myr is plotted in Figure 11 versus civilization
lifetime Ts and the density of settleable systems η. The left
panel shows results for the analytic model; the right panel
shows results from the simulations, which validate the analytic
model over most of the parameter space we have explored.

Figure 9. Fraction of settled systems X vs. civilization lifetime Ts and density of settleable systems η. Red corresponds to a fully settled galaxy (X = 1) and blue
corresponds to a sterile galaxy (X=0). The plot uses solar neighborhood densities and stellar velocities, a probe range of 10 lyr, and velocity of 0.01 c. f is the fraction
of settleable systems. The left panel uses the analytic solution while the right is calculated from an array of simulations. The white dot corresponds to the snapshot
shown in Figure 10. Note the transition in the settled fraction as a function of density (around η∼1 and f∼1). For η>1 full settlement X=1 might be expected,
however short lifetimes can produce low settlement fractions. Note also that the simulations show a higher than expected settlement fraction for densities 1. This is
due to local statistical fluctuations producing overabundances of settleable worlds. These continue to resettle each other after the parent civilization dies.

Figure 10. Settlement simulation snapshot. Blue dots are unsettled systems.
The colored circles show settled systems. Systems with the same color share a
common ancestor. For these conditions we expect X∼0 because the effective
launch time is longer than the civilization lifetime (Tl/Ts∼2). Clusters persist,
however, because local statistical fluctuations produce overabundances of
settleable worlds which can continually resettle one another.
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The dark red regions of Figure 11 show a probability of 1
that the Earth has not been recently visited because X=0 (i.e.,
because there are no space-faring civilizations, because
civilization lifetimes are shorter than the time to encounter
another settleable system.) The dark blue regions (indicating a
very small probability of Earth having gone 1 Myr or more
without encountering another space-faring civilization) repre-
sent parameter space where most systems are already settled,
and the densities of settleable systems are high enough that
encounter times between them and the Earth are short.

The most important point we draw from these plots is that
between these two possibilities lies a range of conditions in
which the Galaxy supports a population of interstellar
civilizations even though Earth would likely not experience
settlement attempts for 1 Myr or more. Consider, for example,
the situation with a settlement fraction f=0.03 and civilization
lifetime of 106. In this case we find it is not terribly unlikely
(P∼0.1) that Earth has remained unvisited for the past 1 Myr
or longer, even though X>0. As we will discuss, this result
has important conclusions for interpretations of Hart’s Fact A
and the Fermi Paradox. Also we note that as the look-back time
is extended the analytic version of plots like those shown in
Figure 11 tend to have smaller intermediate probabilities for
short-lived settlements. We expect however that longer run
simulations would retain their wider range in probabilities. We
note that the question of evidence horizons should be the focus
of its own in-depth future study.

Finally, it is worth pointing out a few features of the
probabilities found in our steady-state numerical models (right
panel of Figure 11). We found a small probability of Earth
remaining unsettled for the past1 Myr or longer for <T 10 yrs

5

for values of η∼0.3 primarily due to small equilibrium values
of X supported by resettling near the critical density. This
occurs without balancing Ts and Tl. The black “+” in the right
panel of Figure 11 represents a run in which a few clusters
containing tens of systems tended to persist. In this run the
odds of going 1 Myr without a settlement was ∼89%. Thus if
the parameters in this run where to represent the situation in our
region of the Galaxy and Earth was not in one of the
resettlement clusters, it would be highly probable that we

would not have been settled (or visited) by another civilization
for at least 1 Myr. Note also that the narrow transition from
P=10−4 to P=1 for <T 10 yrs

5 between η=0.1 and
η=0.3 seen in the left panel of Figure 11 could not be
resolved by our grid of runs. The width of the transition seen in
the contour plot on the right panel roughly corresponds to the
resolution in η of our grid of simulations and could not be any
narrower given the interpolation used to generate the contours.

8. Discussion and Conclusions

8.1. Conclusions

We now review and discuss the principle conclusions of our
work. We can summarize our conclusions as follows:

1. When diffusive stellar motions are accounted for, they
contribute to the Galaxy becoming fully settled in a time
less than, or at very least comparable to, its present age,
even for slow or infrequent interstellar probes.

2. If a settlement front forms, all settleable systems behind it
become filled-in in a time less than the current age of the
Galaxy.

3. While settlement wave crossing and fill-in times are short,
consideration of finite civilization lifetimes in a steady-
state model allows for conditions in which the settled
fraction X is less than 1. Thus the Galaxy may be in a
steady state in which not every settleable system is
currently settled.

4. Even for regions of parameter space in which one might
expect X∼0 for typical regions of the Galaxy, statistical
fluctuations in local density of settleable systems allows
for the formation of settlement clusters which can
continually resettle one another. These clusters are then
surrounded by large unsettled regions. If such conditions
represent the situation in our region of the Galaxy and
Earth was not in one of the resettlement clusters it would
be highly probable that we would not have been settled
(or visited) by another civilization for some time.

5. By consideration of the convolution of steady-state
solutions with geologic evidence horizons, it is possible
to find situations in which Earth may not have

Figure 11. Equilibrium Galactic settlement vs. Earth observation constraints. Here we show the probability of systems being unsettled for at least 1 Myr vs.
civilization lifetime Ts and the density of settleable systems η. The left panel shows analytic model results. The right panel shows simulation results. The dark red
regions have a probability of 1 because X=0, meaning there are no space-faring civilizations which explains why Earth has not been settled in the last 1 Myr. The
absence of civilizations occurs because they die out before being able to encounter another settleable system. The dark blue regions have a very small probability of
going 1 Myr without encountering another space-faring civilization. This is because most systems are settled and densities are high enough that encounter times are
short.

13

The Astronomical Journal, 158:117 (16pp), 2019 September Carroll-Nellenback et al.



experienced a settlement event for longer than some
horizon time (set to 1Myr in this work) even though the
Galaxy supports a population of interstellar civilizations.

Our first conclusion shows that if diffusive stellar motions
are accounted for it appears almost unavoidable that if any
interstellar space-faring civilization arises, the Galaxy will
become fully settled in a time less than, or at very least
comparable, to its present age. In particular, we confirm that
thermal motions of stars prevent settlement fronts from stalling
for timescales longer than the age of the Milky Way, as
suggested by Brin (1983), Ashworth (2012), and Wright et al.
(2014). Thus if the practical and technological impediments to
interstellar settlement are overcome, then the wave of
settlement should sweep across the entire Galaxy.

Note that we find that the settlement front crossing time and
fill-in time takes of an order of 1 Gyr even for slow probes

-30 km s 1( ). This speed is significant because it corresponds to
typical interplanetary probe speeds we can design today, and is
of the order of the speeds a ship of any size can achieve via
gravitational slingshots with giant planets in 1 au orbits.

Our conclusions on the settlement time of the Galaxy are
almost certainly lower limits for two reasons. The first is that
we have not included the effects of Galactic shear or halo stars
in our simulations, and these will provide additional opportu-
nities for mixin” in the case of slow ships that will cause the
settlement front to expand faster than the speeds of the ships
themselves.

The second is that we have assumed zero variation or
improvement with time in probe launch rates, probe ranges,
probe speeds, or exo-civilization lifetimes. A more realistic
description of spaceflight technology on gigayear timescales
would include variation among the settlements, and the
expansion would likely be dominated by the high expansion
rate tail of this distribution.

Our third conclusion concerns steady states for Galactic
settlement. Allowing for civilizations to have finite lifetimes,
the steady-state fraction of settled worlds will be a function of
both civilization lifetime and the rate of encounters with empty
unsettled worlds. Our results show that there are regions of the
parameter space where 0<X<1. Thus our steady-state
model quantifies a possibility not generally considered in
previous discussions of the Fermi Paradox and Galactic
settlement. It is possible to achieve a galaxy in which there
remain unsettled worlds even though the settlement front has
crossed the entire Galactic disk.

Our fourth conclusion comes from numerical simulations of
the steady-state model. Here we find under some conditions the
encounter times can be so long that we would expect X=0
throughout the Galaxy. This would occur because civilizations
would always die out before a settlement opportunity occurred.
Our simulations show however that local statistical over-
abundances of settleable systems can occur. This leads to
clusters of closely packed settled systems surrounded by larger
unsettled voids. If Earth were to exist within one of these voids
then it would mean that there was a high probability that Earth
might never have experienced a settlement event.

Our final conclusion concerns the temporal aspect of the
Fermi Paradox and Hart’s Fact A—the lack of any obvious
settlement of the solar system—which Hart argues compels the
conclusion that there can be no other technological civilizations
in the Galaxy. By including a finite time horizon past which
evidence of prior settlement civilization might not be seen, we

have shown that it is possible to break the link between Hart’s
Fact A and his conclusion. To wit, it is possible to have a
Galaxy with some non-zero settlement fraction and still have
evidence for a prior Earth visit lie over the horizon available via
Earth’s geological record. Indeed, the last three of our
conclusions all break the link between conclusions about rapid
Galactic settlement and the current absence of technological
civilizations. This occurs because the steady-state model
implies that not all settleable systems need be currently
occupied.

8.2. Discussion

For low densities of settleable systems, our steady-state
calculation finds that consistency with the lack of evidence for
Earth’s past settlement requires that each civilization has, on
average, only one chance to reproduce, i.e., to settle another
world. This does not mean that only one settlement probe was
launched however. Our result can be interpreted to mean that
on average only one settlement probe was successful. Inherent
in our calculation was the settlement fraction f. Our steady-state
calculation was carried out in the low density limit which
implies f<1 (note that in the high density limit the fraction
simply tends to X= 1). As described earlier, low values of f
implies that good planets are hard find. Our steady-state
calculations in the low density limit further imply that
successful settlements are hard to achieve. The lack of
settlement success could come for many reasons ranging from
failure of interstellar vessels capable of establishing persistent
settlements to the inability to develop viable progeny
civilizations on new worlds.
Because Hart’s conclusions stem from his assumption that

we would have noticed if extraterrestrial technology had ever
settled the solar system, they are challenged by the work of
Freitas (1985), Schmidt & Frank (2019), Davies (2012), and
Haqq-Misra & Kopparapu (2012) who show that this is not
necessarily the case.
We can go further though: Hart’s conclusions are also

subject to the assumption that the solar system would be
considered settleable by any of the exo-civilizations it has come
within range of. The most extravagant contradiction of this
assumption is the Zoo Hypothesis (Ball 1973), but we need not
invoke such solipsist positions (Sagan & Newman 1983) to
point out the flaw in Hart’s reasoning here. One can imagine
many reasons why the solar system might not be settleable (i.e.,
not part of the fraction f in our analysis), including the Aurora
effect mentioned in Section 1 or the possibility that they avoid
settling the environment near the Earth exactly because it is
inhabited with life.
In particular, the assumption that the Earth’s life-sustaining

resources make it a particularly good target for extraterrestrial
settlement projects could be a naive projection onto exo-
civilizations of a particular set of human attitudes that conflate
expansion and exploration with conquest of (or at least
indifference toward) native populations (Wright & Oman-
Reagan 2018). One might just as plausibly posit that any
extremely long-lived civilization would appreciate the impor-
tance of leaving native life and its near-space environment
undisturbed.
So our conclusions have strong implications for the

likelihood of success of SETI, but the specific nature of that
optimism is strongly dependent on assumptions regarding
either the limits of technology or the agency of exo-
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civilizations. If large-scale terraforming is not a realistic
possibility then f may be limited by worlds matching the
biology of the parent or Ur civilization. Earth may simply not
be one of those worlds even though such settlements exist
elsewhere. Likewise if, for whatever reason, all extraterrestrial
civilizations that have had to the opportunity to settle the solar
system have avoided it, then the Milky Way should be filled
with stars hosting potentially detectable extraterrestrial tech-
nology if even a single settlement front has never been
established.

If instead one follows Hart and assumes that solar system
settlements would be inevitable, then our analysis quantifies the
regions of parameter space consistent with his Fact A in which
the Galaxy is filled with, or devoid of, space-faring technology.
Those sets of parameters in which Fact A does imply an empty
Milky Way are those in which Galactic settlement is especially
efficient. This implies that other galaxies where technological
life has arisen should have been thoroughly settled, raising the
prospects that they might be detected at extragalactic distances.

We note also that in the classic argument, Hart’s Fact A is
linked to conclusions about exo-civilizations because it is
assumed that interstellar travel is a natural result of their
evolution. But this need not be the case. In Ashworth (2012),
the energetics of developing interstellar ships that could host
long-term viable populations was explored. Given the travel
times between stars, these would be multigenerational world
ships. Ashworth (2012) attempted to calculate the cost of
building such machines, including factors such as speed and
mass. His finding was that that economies equivalent to that of
entire solar systems would be required to develop and launch
world ships. As an example, consider his “medium multi-
generational cruiser” case. This was ship traveling at
v=0.05c, carrying a population of 104 people and weighing
107 tonnes. Such a ship would require a power of 6900
zettajoules (ZJ). He estimates that a solar-system-wide
civilization of 900 billion people would generate 1136 ZJ per
year. Thus while the creation of world ship by such an
economy would be possible, it would require a significant
proportion the civilization’s resources. We note that these
estimates are, of course, highly speculative and Ashworth
(2012) also provides estimates for solar-system-wide civiliza-
tions generating even higher power economies.

For our present results these factors indicate that it is
possible that developing the requirements for interstellar
settlement may be expensive enough to be universally
prohibitive. In addition, if establishment of viable settlements
proves difficult, meaning the success rate of world ships is low,
then civilizations may be unwilling to continue investing in
them over time. This is particularly true if one considers that
the long travel and communication times may make it difficult
to establish an interstellar civilization. Unless the individuals in
the species driving the settlement have very long lifetimes
(>100 yr) it is difficult to see how a galactic scale culture can
arise (i.e., commerce, etc.; Krugman 2010). Thus each
settlement may, in practice, be relatively isolated culturally,
which may limit the effort civilizations are willing to put into
long-term programs of expansion.

It is also worth considering the distribution of natural
catastrophes which might lead to end of settlements. Weak
constraints might be obtained using Earth as an example by
looking for cross-correlation with the ages of the impact
craters, super-volcanic deposits, and extinctions. The

timescales between such events is likely longer than 1 Myr
and more work can be done to explore the question of look-
back horizons for evidence of settlement events. As noted
earlier, as the look-back time is extended plots like those shown
in Figure 11 tend to have smaller intermediate probabilities for
short-lived settlements.
In summary: our work demonstrates that even though

settlement fronts can be expected to cross the Galaxy quickly,
every settleable system need not be inhabited. We note that
much work needs to be done to extract the maximum amount
of information from this fact when convolved with both the
expected conditions for different regions of the Galaxy along
with what can plausibly be expected from Earth’s geologic
record. In particular further studies of the settlement steady
states may help understand the creation, extent, and longevity
of settlement voids, which provide one explanation for the lack
of evidence for Earth’s past settlement. Our calculations open a
new avenue in consideration of exo-civilizations and their
prevalence in the Galaxy, and have strong but assumption-
dependent implications for the prospects of the success
of SETI.
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Appendix

A.1. Calculating  n( )
The expectation value for the maximum velocity from N

samples from a Maxwell–Boltzmann distribution

= n E V n , 32max( ) [ ( )] ( )

where Vmax is the distribution of maximum values from a
sample of n velocities taken from a velocity distribution P(v).
For a given velocity distribution P(v) with CDF C(v), the odds
that n random samples are below a particular value v0 is C(v0)

n.
This is then the CDF for the maximum value is C vmax ( ). To get
the expectation value, we have ò= ´E v v P v dvmax[ ] ( ) , where

= =P dC v

dv

dC v

dvmax
n

max ( ) ( ) . So we have

ò= n v
d C v

dv
dv. 33

n

( ) ( ( ) ) ( )

A.2. Including Targeted Systems

If we assume that settled systems do not launch probes at
other systems that are already settled, we can modify our model
by including the fraction of systems that are targeted in addition
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to those that are settled and habitable,

= -
dN

dt t
N
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N
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N
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dt T
N

T
N N

1 1
, 36h
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where Ns is the number of settled systems, Nt is the number of
targeted systems, and Nh is the number of habitable systems. In
addition tp is the probe travel time, Ts is the settled time, and Tl
is the effective launch time (due to either probe production
rates or encounter times). We can dimensionalize the equation
where =X N

N
s , =Y N

N
t and = - -X Y1N

N
h . The resulting

equations are

= -
dX

dt
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X
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Solving for equilibrium, we find = -
+
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