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Abstract

Space-based direct imaging missions (HabEx, LUVOIR) would observe reflected light from exoplanets in the
habitable zones of Sun-like stars. The ultimate—but not sole—goal of these concept missions is to characterize
such planets. Knowing an exoplanet’s orbit would help twofold: (i) its semimajor axis informs whether the planet
might harborsurface liquid water, making it a priority target; and (ii) predicting the planet’s future location would
tell us where and when to look. The science yields of HabEx and LUVOIR depend on the number, cadence, and
precision of observations required to establish a planet’s orbit. We produce mock observations using realistic
distributions for the six Keplerian orbital parameters, experimenting with both beta and uniform eccentricity
distributions, and accounting for imperfect astrometry (σ=3.5 mas) and obscuration due to the inner working
angle of a high-contrast imaging system (inner working angle=31 mas). Using Markov chain Monte Carlo
methods, we fit the orbital parameters, and retrieve their average precisions and accuracies as functions of cadence,
number of epochs, and distance to the target. Given the time at which it was acquired, each image provides two
data: the x and y position of the planet with respect to its star. Parameter retrieval based on one or two images is
formally underconstrained, yet the semimajor axis posterior can be obtained semi-analytically. For aplanet at 1 au
around a star at a distance of 10 pc, three epochs constrain the semimajor axis to within 5%, ifeach image is
taken at least 90 days apart.
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1. Introduction

The first generation of space-based direct imaging missions
would observe planets in the habitable zones (HZs) of Sun-like
stars. As recommended by the National Academies of Sciences,
Engineering, and Medicine’s recent Exoplanet Science Strat-
egy, “NASA should lead a large strategic direct imaging
mission capable of measuring the reflected-light spectra of
temperate terrestrial planets orbiting Sun-like stars.”3 To
acquire these spectra, we must first plan the missions cost
effectively.Yet identifying contenders for Earth-like planets is
not straightforward with direct imaging alone. A single direct
imaging observation would distinguish Earths from similarly
bright sub-Neptunes with a one-in-five success rate, due to
degeneracies between radius, albedo, and phase. If the planet’s
semimajor axis is known, on the other hand, thesuccess rate is
one in two(Guimond & Cowan 2018).

In this paper we help prepare for future direct imaging
missions such as the Habitable Exoplanet Observatory (HabEx)
and the Large UV/Optical/IR Surveyor (LUVOIR) by
determining how many visits are required to each newfound
planet before we can confidently know its semimajor axis. In
doing so, we hope to quantify a key input parameter in more
comprehensive mission simulations (see Stark et al. 2018).

1.1. Images to Orbits

A single epoch of direct imaging provides the two-dimensional
position of the planet in the sky plane relative to its host star: x and
y, where the star is at the origin. Six parameters are needed to
uniquely describe the three-dimensional Keplerian orbit of a
planet (listed in Table 1).Given the time at which it was taken,

each imageconstrains x and y,so at most three measurements
should be required to fit all six parameters.
The fitting methods employed in previous direct imaging

orbit-retrieval efforts come from either Markov chain Monte
Carlo (MCMC) or Bayesian rejection sampling (De Rosa et al.
2015; Pueyo et al. 2015; Rameau et al. 2016; Wang et al.
2016, 2018; Blunt et al. 2017; Kosmo O’Neil et al. 2018). The
latter typeare carefully demonstrated in Blunt et al. (2017) for
closely spaced observations over tiny orbital coverage (∼3%).
Mede & Brandt (2017) present a software package to

simultaneously fit direct imaging observations and radial
velocity observations. Such an approach may be fruitful for
eventual Earth twins if high-precision radial velocity can be
sensitive to the 10 cm s−1 signals (Fischer et al. 2016).
As for future direct imaging, previous design reference

missions for HabEx and LUVOIR have not always implemen-
ted an optimized number or cadence of observations. Stark
et al. (2014) look only at single-visit yields; Stark et al.
(2015, 2016) do not consider that a mission would revisit
candidates for the strict purpose of establishing their orbits,
assuming that most stars would be revisited regardless to
increase the total yield.
In this paper, we anticipate space-based observations from

HabEx and LUVOIR. The work presented here is fundamen-
tally distinct from these earlier efforts in that we explicitly
quantify the number, cadence, and precision of observations
required to establish, for targets at any distance, the orbit of a
planet within its star’s HZ.

1.2. A Note on Habitable Zones

The circumstellar HZ is a theoretical shell around a star
within which planets can harbor liquid water at their surfaces.
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The inner and outer edges of the HZ have been variously
modeled based on assumptions about climatic systems. Early
HZ estimates (Hart 1979) were physically driven by the
destabilizing ice-albedo and water vapor feedbacks and were
narrower than in current conceptions.

The HZ estimates we use come from physics gleaned from
the Earth. Assuming the surface of a planet has some exposed
silicate rock, CaSiO3 minerals in the rock will react to consume
atmospheric CO2. The rate of this reaction increases exponen-
tially with temperature, so the planetary effect of warming the
atmosphere is to sequester more carbon and weaken the
greenhouse effect (Walker et al. 1981; Kasting 1988; Kasting
& Toon 1989). This is the well-known silicate weathering
feedback, and is the basis of the HZs proposed in Kasting et al.
(1993) and updated in Kopparapu et al. (2013).

This conception of the HZ has yet to be empirically validated
(but it could through the statistical study of exoplanet
properties; Bean et al. 2017). If a planet does not have exposed
surface rock, for example, then the HZs given by a model based
on the silicate weathering feedback might not apply (e.g.,
Abbot et al. 2012). We therefore base our analysis on a variety
of hypothetical HZ widths, defined as 0.01, 0.05, 0.1, 0.25, and
0.5 au. For completeness, we also consider the inner and outer
HZ limits proposed by Kopparapu et al. (2013). The semimajor
axis precision that would satisfy us depends on the sizes of
these HZs relative to our semimajor axis estimate.

2. The Orbit-retrieval Model

This work quantifies, statistically, the orbit-retrieval accur-
acy and precision for many simulated HZ planets. We simulate
planets with each orbital element randomizedaccording to the
distributions in Table 1, and assuming one planet per star. For
each epoch of each planet, we calculate the planet’s (x, y)
position relative to its star, given a fixed cadence in days and
with added Gaussian noise—here we adopt σθ=3.5 mas as the
baseline astrometric precision (HabEx Team 2018; LUVOIR
Team 2018). Then we retrieve the posteriors on orbital
elements from our synthetic data set using an MCMC.
Figure 1 depicts an example retrieval. We repeat this numerical
experiment under varying assumptions, as described below.

Eccentricity distribution. Since the eccentricity distribution
of HZ terrestrial exoplanets is unconstrained, we repeat our
experiment assuming different eccentricity distributions—a
beta distribution with parameters a=0.867, b=3.03 (Nielsen
et al. 2008; Kipping 2013), or a uniform distribution—for both
the underlying true distribution and the prior distribution used
in the retrieval.

Cadence. The retrieval experiments are repeated, using the
same synthetic orbits, for cadences of 30, 90, 180, and

270days.These cadences were chosen as a starting point
because they are well-separated round numbers. Thispart of
the study reveals which cadence gives the best fit, for the same
number of epochs. Our result is optimized for orbital periods
within the G2V HZ; we expect the best cadence to be set by
how much the planet has moved, which is some fraction of the
period. In principle, a mission simulation would consider data
from previous epochs to choose when to revisit a star. We take
the simpler approach of a fixed cadence to obtain a broad result,
which could conveniently be applied to mission prognoses.
Distance. The distance of the target star will impact orbit

retrieval through astrometric error and the inner working angle
(IWA) of starlight suppression, both of which correspond to
greater projected separations at greater distances. We take a
baseline distance of 10 pc, and repeat our experiment for
distances of 5 and 20 pc.
Each scenario considers100planets with orbital parameters

a, i, e, ωp, Ω, and M0, sampled from the underlying
distributions (Table 1). These are the prior distributions
described in Section 2.4—except e, which we allow to have
different underlying and prior distributions, as detailed
later.Our sample size of 100 planets is justified in that halving
this number gives similar results.
To retrieve posterior probability distributions of the

orbital parameters, we use emcee, an MCMC ensemble
sampler (Foreman-Mackey et al. 2013).The goal of any
MCMC implementation is to evaluate the posterior Prob
model observation( ∣ , σ) ∝ Prob observation model( ∣ , σ)×Prob
(model), where σ is the measurement precision. Given
estimates of the right-hand side, we can estimate the left-hand
side. Thus setting up emceerequires:

1. Estimates of the prior probability distribution, Prob
(parameter), for each orbital parameter,

2. a forward model that calculates the planet positions (x0,
y0), (x1, y1), ..., (xk, yk) up to the kth epoch given orbital
parametersand t0, t1 ... tk,

3. a likelihood function, Pr observation parameters( ∣ , σ), that
calculates the probability of the observed (x, y) position
given the forward model.

The MCMC uses 30 walkers, randomly initialized in a
Gaussian ball around the best-fit parameters from a quick
scipy.optimize likelihood maximization. The walkers have
a burn-in time of 1000 steps and run for up to 5×105 steps. The
rest of the MCMC setup is detailed in Sections 2.1 through 2.4.

2.1. Likelihood Function for Detections

The likelihood of the observed position of the planet at some
epoch is a normal distribution centered on the true position

Table 1
The Keplerian Orbital Parameters and Their Priors

Name Symbol Prior Distribution Prior Range Input

Semimajor axis a Uniform in natural log [0.01, 50] au [0.95, 1.70] au
Eccentricity e Beta (σ=0.081) or uniform [0, 1) [0, 1)
Inclination i Uniform in cosine [0, π] [0, π/2]
Argument of periapsis ωp Uniform [0, 2π) [0, 2π)
Longitude of the ascending node Ω Uniform [0, 2π) [0, 2π)
Mean anomaly at first epoch M0 Uniform [0, 2π) [0, 2π)

Note.The prior range refers to the allowable parameter space explored in the Markov chain, while truth values are drawn from the input range.
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with a width, σxy. If we have k images in which the planet is
detected, then the log likelihood is
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2.2. Likelihood Function for Non-detections

The first epoch is—by definition—a detection, as we are
concerned with the orbit retrieval of actual planets rather than
the odds of spotting a planet in the first place. Subsequent
epochs may yield non-detections, however.

A planet may go undetected in an image for two reasons:
(i) it is imaged at small projected separation and is occluded
along with the starlight, or (ii) it does not reflect enough light.
We ignore the latter case as the brightness of the planet
depends on the geometric albedo and the scattering phase
function, about which we presume nothing. Titan, for example,
appears brighter at the crescent phase, due to a distinctly non-
Lambertian phase function (García Muñoz et al. 2017).

The relevant criterion in (i) is the IWA of the telescope,
defined as the point where photon transmission through the
instrument has decreased by 50%. We adopt an IWA of
31 mas.For a planet of given size, albedo, and phase function,
and given a contrast floor, there will be a unique IWA at which
it becomes undetectable at the gibbous phase, and another
where it becomes undetectable at the crescent phase. We
ignore brightness information and hence adopt a single hard-
cutoff IWA.

A non-detection therefore still provides a constraint; it means
that the angular separation of the planet and the star is less than
the IWA. In this way, a non-detection is analogous to a
measurement centered at the origin with an uncertainty of
θIWA.We use this information in our retrieval exercises. If the
planet is not detected at some epoch, then any set of parameters
that would place it outside the IWA are assigned zero
likelihood, Prob observation model( ∣ , σ)=0.If an orbit-fitting
model were incorporating photometry, then a soft-edge IWA
would be more appropriate; for example, the non-detection
framework in Ruffio et al. (2018). The width of this soft-edge
matters when one knows the orbit and is trying to measure the
brightness of the planet, which will vary from 0% to 100% of
its true value across the soft edge. However, we are interested
in the earlier stage, when we do not yet know the orbit, and do
not strictly care about the measured brightness of the planet. In
other words, there is no need for a soft edge at this point
because the probability of the planet being detected outside the
IWA is always unity, although this statement requires
assumptions discussed further in Section 4.5.

2.3. Posterior Probability for Less Than Three Detections

Given only one or two detections, we expect the MCMC to
converge slowly, if at all, since the problem is formally
underconstrained.The walkers would be exploring a nearly flat
plane of probability; we would not believe the width of their
retrieved distribution. Thus we eschew Kepler’s laws for a
naive, semi-analytic approach, as long as the number of
detections is less than three.

That is, for a given detection, the posterior probability
distribution of ln(a) is a strong function of the projected
separation, aproj. For circular orbits we can express this
analytically as

a a eProb , 0
1

1
, 1, , 3proj

2 2b b
b= =

-
Î ¥( ∣ ) [ ) ( )

where β=a/aproj. Nonzero eccentricities complicate this
analytic distribution, but we can model it numerically for
given values of aproj and aIWA by drawing 1000 random orbits
from the priors in Table 1 with aproj fixed at the observed
value.We keep drawing all six Keplerian parameters until we
have 1000 orbits with the desired aproj. As Figure 2 shows, the
distribution of semimajor axes of these orbitspeaks at the true
a, and is hence a reasonable proxy for the posterior, for a given
measurement of aproj. If a planet is not detected at some epoch,
we also simulate random orbits but with aprojä(0, aIWA].
For two or more epochs, we construct independent posteriors

for each aproj observation and multiply them together. The
resulting joint probability distribution usually has one peak. Of
course these measurements would not be truly independent,
since they are linked by a Keplerian orbit. Thus our semi-
analytic posterior distributions give an upper limit on the true
uncertainty.This semi-analytic method is exchanged for a full
MCMC once we have three detections, allowing the latter
algorithm to converge. Despite the superior speed of the semi-
analytic method, it does not use information about the relative
timing of the different epochs, and hence does not fully
leverage the Keplerian orbit. Figure 3 demonstrates the
relatively poor performance of the semi-analytic method
compared to the MCMC after three epochs.

2.4. Prior Distributions

As summarized in Table 1, parameterizations are chosen
such that all priors save for eccentricity are flat. The log-
uniform prior on the semimajor axis is roughly consistent
with recent literature (Petigura et al. 2013; Foreman-Mackey

Figure 1. Demonstration of orbit retrieval. The true orbit (bold black ellipse) is
shown to scale with the region obscured by the inner working angle (gray
circle). The true location of the planet at each epoch is shown as a small circle
with the radius corresponding to the astrometric error; the hollow circle at the
third epoch indicates that the planet is inside the inner working angle and is not
detected. The retrieved orbits after each epoch are shown from light (epoch 1)
to dark (epoch 4). For this nominal planet r=20 pc, σθ=3.5 mas, and the
observations are spaced 90 days apart.
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et al. 2014; Burke et al. 2015; Christiansen et al. 2015; Silburt
et al. 2015; Kopparapu et al. 2018). We adopt a wide prior
range of aä[0.1, 50] au.

The mean anomaly at the time of the first epoch is uniformly
distributed in [0, 2π), as are arguments of periapsis and
longitudes of the ascending node. The inclination is uniform in

icos ä[−1, 1].
Eccentricity is drawn from a beta distribution with

parameters a=0.867, b=3.03, as determined for radial
velocity planets by Kipping (2013) and in agreement with
Nielsen et al. (2008). Because this parameter’s underlying
distribution is especially hard to constrain, we repeat our

experiment with a uniform prior and uniformly distributed
true eccentricities, and again with a beta prior and unifor-
mly distributed true eccentricities (where we would be
overconfident).

3. Results

Figure 1 illustrates the results of our orbit retrieval for five
epochs of a planet at 20 pc with a 90-day cadence. This
particular planet goes undetected in the second epoch, yet we
still see an increased similarity between the retrieved and true
orbits. In this example, the best-fit orbit after each epoch is the
Markov chain link with the maximum posterior probability.

3.1. Semimajor Axis Retrieval under Different Eccentricity
Scenarios

The three panels in Figures 4 and 5 show the accuracy and
precision—respectively—of semimajor axis retrieval for dif-
ferent prior assumptions and underlying distributions of orbital
eccentricity. The distributions are either both beta (realistic),
both uniform (pessimistic), or beta-distributed in the prior and
uniform in the underlying truths (i.e., a pathological scenario
which may underestimate the error).
Figure 4 shows the accuracy of the retrieved a estimates as a

function of epochs for a sample of100 planets. Errors are
retrieved from semi-analytic posteriors of a for the under-
constrained first two epochs, while the MCMC is used for the
third epoch and up. Accuracy is the difference between the
median of the posterior and the true semimajor axis.
Figure 5 is complementary to Figure 4 and presents the

precisions on the retrieved semimajor axes, along with the
sample median of these precisions. Again, an MCMC is used
for the third epoch on. Precision is the half-width of the 1σ
confidence interval, and it shrinks with each additional
observation. This is as expected by degrees of freedom: the
inflection point near the third epoch indicates that here we
begin to gain less precision with additional measurements.
Our baseline case is shown in the left panels of Figures 4 and

5. Here, by the second epoch we achieve quite good precision.
At 1σ confidence, we can constrain a to <25% with two
epochs, and to 10% with three epochs.These represent the
average results across planets with true semimajor axes
between 0.95 and 1.70 au.
The central subplots in Figures 4 and 5 demonstrate a case

where our precision is overstated; the prior eccentricity
distribution is narrower than the underlying distribution. As
shown in Table 2, the standard deviation of the z-scores for this
scenario of amiss mixed distributions is much greater than
unity, which confirms the overstatement.4 Therefore, if we
were to assume a narrower eccentricity distribution than nature
provides, we would not be able to believe our retrieved
semimajor axis precisions.
The other endpoint draws eccentricity guesses from a

uniform distribution (right panels of Figures 4 and 5). Despite
this pessimistic prior, we can still constrain the semimajor axis
to 25% by the third epoch, and by the fifth epoch retrieval
accuracies are not much different from the best-case scenar-
io.In practice, we would start with a uniform prior until we
know better, but the left panel is realistic in the steady state.

Figure 2. Probability of the semimajor axis given a projected separation.
Normalized histograms of the semimajor axes of 103 simulated planets with
aproj=1 au (dashed black line) and random a, i, e, ωp, Ω, and M. The colors
indicate the different underlying eccentricity distributions: lavender for
circular, green for beta (Nielsen et al. 2008; Kipping 2013), and gray for
uniform.The thick black line traces the analytic derivation for the circular case
(Equation (3)).

Figure 3. Comparison of semi-analytic and MCMC posterior retrievals. Green:
normalized joint probability density resulting from multiplying together the
three histograms (Figure 2) for three independent observations of one planet’s
aproj, assuming 90days between each image. Blue: posterior probability
density after three simulated observations of the same system using an MCMC.
The vertical red line shows the true semimajor axis. The improved performance
of the MCMC comes from the added use of Keplerian orbits over merely using
geometry.

4 The z-score of a fit, defined here as the ratio between our accuracy and
precision, has a standard deviation of about unity if the fit precision reliably
encompasses the true value and the retrieved values are Gaussian.
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Figure 4. Semimajor axis accuracy by epoch. The epoch-dependence of accuracy is defined as (afitted−atrue), where afitted is the median of the posterior semimajor
axis distribution from the MCMC. All simulated planets (100 in each scenario) have a distance of 10 pc and are observed every 90 days. Each dot color represents one
planet. The black error bars show the 16th and 84th percentiles of the retrieved accuracy (i.e., the standard error). Until a planet is detected three times, orbits are
retrieved with a semi-analytic method as opposed to the MCMC and represent a conservative upper limit; the hatched region marks off this distinction. Eccentricities
are either (a) drawn from a low-dispersion beta distribution for both the underlying true orbits and the prior, (b) drawn from a uniform distribution for the underlying
truths and a beta distribution for the prior, or (c) drawn from a uniform distribution for both the input and prior.

Figure 5. 1σ precision on the semimajor axis retrieval as a function of the number of epochs. The colored lines show the100 individual runs using the same scheme as
in Figure 4, while the bold black line is the mean precision (the median is slightly better). Precision is defined as (a+1σ−a−1σ)/2, where the subscripts refer to the
retrieved upper and lower limits of the 68% confidence interval. The horizontal line indicates the measurement uncertainty for 3.5 mas astrometry at 10 pc. Until a
planet is detected three times, fits are done with a semi-analytic method as opposed to the MCMC and represent a conservative upper limit; the hatched region marks
off this distinction. In this scenario, planets are observed every 90 days, and eccentricities are either (a) drawn from a low-dispersion beta distribution for both the
underlying true orbits and the prior, (b) drawn from a uniform distribution and the prior is a beta distribution, or (c) drawn from a uniform distribution and the prior is
uniform. Around the third epoch, the problem becomes constrained, and we see an inflection point in precision.
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3.2. Optimal Cadence

We ran our experiment for different observational cadences
(30, 90, 180, and 270 days) to see which retrieves the most
accurate orbits in the least number of epochs. Here, the host
stars are all at 10 pc and planets have beta-distributed
eccentricities. Our optimal cadence pertains to planets with
periods in or near the G2V HZ.

The results are shown in Figures 6 and 7—by the third
epoch, a can be constrained to within 10% of its true value for
68% of the samples only for cadences of 90 days or greater. In
half a period, the planet will move to the furthest possible
position from its original location. Revisiting the planet at its
antipodal point means that we are less likely to miss the planet
inside the IWA (e.g., compared to revisiting a quarter-period
later), although this is tied to us ensuring the first epoch is a
detection.

Cadences of 180 and 270 days result in the best accuracy on
the semimajor axis at epoch 3, but 180-day cadences for near-
360-day orbits may not break formal degeneracies between ωp

and Ω. Hence the optimal cadence is not necessarily the same
for a as for other orbital parameters. While the 270-day cadence
also performs well, in practice this long wait could risk losing
track of the planet, as discussed below.

3.3. Effects of Distance and Astrometric Precision

We have adopted a distance of 10 pc and a measurement
error of σθ=3.5 mas for our numerical experiments thus far.
However, the number of epochs needed to constrain an orbit is
distance-dependent. More-distant targets impede orbit retrie-
vals in two ways: the corresponding measurement error on the
planet position increases (by a factor of four from 5 to 20 pc);
and the larger projected separation of the IWA is more likely to
obscure targets (nearly 0% non-detections at 5 pc to ∼70%
at 20 pc).

To quantify the effect of distance, we repeated the retrieval
experiments for the same planets at 5 and 20 pc, assuming
90-day cadences. At our assumed IWA and range of true
semimajor axes, HZ planets will be obscured 100% of the time
by 55 pc. This experiment is equivalent to increasing the IWA
and astrometric uncertainty. Particular sources of astrometric
error and their impact on orbit retrievals are discussed in Pueyo
et al. (2015).

Figure 8 illustrates the change in the semimajor axis retrieval
accuracy with distance. As expected, the width of the 1σ
confidence interval increases for more-distant targets, for all
epochs.

The encouraging performance of the fit at 5 pc is attributed to
the small astrometric error. For these nearest targets we would
be capable of measuring a to within <2% by the fourth epoch.

We are only showing this distance dependence of accuracy
for one cadence. The optimal cadence is distance-dependent;

with increasing distance, obscuration dominates the measure-
ment error in worsening the accuracy, preferring 180-day
(antipodal) cadences.

4. Discussion

The minimum number of epochs we need depends on the
science question we are asking.

4.1. Placing the Planet in the HZ

We first consider hypothetical HZs defined only by how
narrow they are. Compare the widths of these hypothetical HZs
with the semimajor axis retrievals of planets on 1 au orbits
(Figure 9, left panel): at 1σ confidence, for an optimistic, 25%-
wide HZ centered on 1 au, a single epoch of direct imaging

Table 2
Z-score Statistics for Data in Figures 4 and 5

(a) Beta (b) Mixed (c) Uniform

Mean Standard deviation Mean Standard deviation Mean Standard deviation
Epoch 3 −0.47 1.19 −1.02 2.56 −0.18 1.26
Epoch 4 −0.10 0.99 −0.28 2.59 −0.14 1.11
Epoch 5 0.15 1.12 0.23 4.11 −0.13 1.10

Note.Cases (a) and (c) are fine, but (b) is dangerous.

Figure 6. 1σ constraints on MCMC retrieval accuracies of the semimajor axis,
as a function of the number of epochs, compared across increasing
observational cadences. Accuracy is given as afitted−atrue, where afitted is
the median of the posterior semimajor axis distribution from the MCMC. The
error bars show the 16th and 84th percentiles of the sample accuracy (100 in
each scenario), and symbols mark the medians, with colors representing
different cadences.

6

The Astronomical Journal, 157:188 (9pp), 2019 May Guimond & Cowan



generally suffices to nail the semimajor axis accurately. For a
pessimistic 1%-wide HZ, four or five epochs are needed.

To compare these results with theoretical HZs from the
literature, the right panel in Figure 9 shows the same semimajor
axis constraints to scale with both a LUVOIR-esque IWA and
with the theoretical HZ inner limits for solar twins from
Kopparapu et al. (2013). By the fourth epoch we are 68% sure
a planet is beyond the moist greenhouse inner limit. To
constrain an orbit beyond the more optimistic recent Venus
inner limit at 0.75 au at the same confidence, about one epoch
is required.

We are implicitly assuming that the HZ is a function of the
semimajor axis only. While high eccentricities may negatively
affect the stability of surface water (Bolmont et al. 2016), the
high thermal inertia of extant oceans can buffer against
transitions to snowball states at apoastron (Dressing et al.
2010). Either way, the long-term stability of a planetary climate
depends, to the first order, on the average incident flux over the
entire orbit (Williams & Pollard 2002), which is proportional to
(1−e2)−1/2.

4.2. Predicting the Future Location of a Planet

In some cases, we would need to constrain all six orbital
elements. For example, knowing the entire orbit would help us
predict the exoplanetary ephemerides.The best theoretical
precision on extrapolating the position of a planet is set by the

detector pixel scale, although in practice, the precision we
achieve depends on the post-processing. Using three epochs,
we have predicted the position of a planet at the fourth epoch to
within a given number of pixels on average. For 180-day
cadences, we find the position to be constrained to within one
pixel; for 90-day cadences, within two pixels, with five
epochs necessary to get down to a one-pixel accuracy. The
trade-off is that waiting longer between observations provides
better accuracies for the Keplerian parameters, but any errors
are amplified by the greater distance the planet will have
traveled.
On a related note, we have only considered single-planet

systems in our study. However, we expect a substantial fraction
of planets to occur in multiplanet systems (Zhu et al. 2018).
This presents an interesting tension with respect to the optimal
cadence: for multiplanet systems, we may prefer shorter
observational cadences because the planet will move less, so
there is less risk of confusing it with other planets. Never-
theless, planet disambiguation in multiplanet systems will be
made a bit easier by the fact that we can expect these targets to
have near-circular orbits (Van Eylen et al. 2019).

4.3. Extension to FGK Stars

We have only considered solar-twin stars in this work.
However, LUVOIR and HabEx will target a larger range of
host stars, whose HZs will scale with stellar mass according to
r M M1 au 2

*µ ( ) . This matters because tighter HZs will be
obscured more often inside the IWA. In terms of angular
separation, then, this scaling is equivalent to varying the
distance to the host star. For example, a planet receiving the
same stellar flux as Earth and orbiting a K2V star (0.70Me)
will have a separation of 0.49 au, which is essentially
isomorphic to doubling the distance to an equivalent G2V
system, as in Figure 8 (barring the astrometric precision
change). The optimal cadence for such a system would also
scale with the orbital period as P M M365 days 3

*µ ( ) ,
holding to the logic that 90days≈0.25P for solar twins.

Figure 7. Sample mean MCMC retrieval precisions of the semimajor axis, as a
function of the number of epochs, compared across observational cadences.
Precision is given as half the distance between the 16th and 84th percentiles of
the retrieved posteriors. The colored lines show the median sample precision
(100 in each scenario) for different cadences. The σxy line marks the
measurement precision for 3.5 mas astrometry at 10 pc.

Figure 8. Targets at distance. The height of each rectangle represents the 1σ
confidence interval of the semimajor axis retrieval accuracy for100 planets,
with shading according to epoch—darker colors are less visits. The green line
indicates the actual sample fraction of observations, where θproj<θIWA. We
would expect accuracy to worsen linearly with distance if only astrometric error
mattered (a geometric effect); it worsens faster than linearly because non-
detections start to dominate after around 17 pc.
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4.4. Uncertainties on Stellar Distance

This model has not considered imperfect knowledge of the
distance to the host star. The uncertainty on this distance would
propagate linearly to an uncertainty on the planet (x, y)
position, which compounds the astrometric measurement error,
σθ. LUVOIR and HabEx target stars would be chosen from the
Hipparcos and Gaia catalogs (HabEx Team 2018; LUVOIR
Team 2018), with known trigonometric parallaxes. For a G2V
star within 50 pc (the maximum LUVOIR survey distance), the
end-of-mission Gaia parallax uncertainty will be on the order
of 0.1 mas (de Bruijne et al. 2014); i.e., at most ±1 pc in
distance, and an order of magnitude lower than our adopted
value of σθ.

4.5. Limitations of Using Astrometry Alone

This work demonstrates a first step in the orbit determination
problem, considering only the planet position data. Yet direct
imaging would also measure the brightness of the planet
relative to its star. Including this photometric information could
both help and hurt the conclusions of this paper.

On the one hand, the brightness at a given (x, y) position
represents a constraint on the orbital phase of the planet.
Although the phase functions of our target planets are unknown
a priori, Lambertian reflection is a fair assumption at phase
angles smaller than the crescent phase (Robinson et al. 2010).

On the other hand, we have so far ignored that a planet may
go undetected at a given epoch not because it is inside the
IWA, but because it is imaged at an orbital phase not bright
enough for the contrast floor. This would limit our ability to use
non-detections as a constraint on the planet position for nearby
targets. For more-distant targets, the IWA will tend to consume
crescent-phase planets either way—we will have less leverage
on orbital phase constraints from brightness variations, and
missing planets because they are too faint will stop mattering.

Further, photometry brings with it other sources of noise
beyond astrometric precision, namely, distinguishing real
planets from speckles. This work implicitly assumes that a
given contrast floor (e.g., 10−10; LUVOIR Team 2018) already
accounts for the removal of speckles in post-processing.
Including photometry in our model may increase the number
of visits to achieve the same precision, although it would not
increase the required number of detections.
The question this work has asked is: how well can one locate

a planet in the HZ? Under the assumption of one planet per
star, we find that cadences of 180 and 270 days have the best
precision and accuracy. In a realistic mission, however, these
long cadences would likely be poor at resolving confusion
between multiple planets in the same system. A 90-day cadence
is a good compromise.
Even if the third image placed a planet in the HZ at 95%

confidence, we would still need more epochs to establish its
orbit before pursuing expensive spectroscopy. Yet the point is
that we could begin prioritizing targets after only one or two
epochs. This quantifies a key parameter in design reference
missions for future direct imaging concept missions HabEx and
LUVOIR. In the LUVOIR study, constraining orbits within
the HZ is the third step in identifying a habitable planet
after (1) establishing the target star list and (2) performing
multicolor point source photometry to rule out background
objects (LUVOIR Team 2018). Our work finds that the orbit-
constraining step can be done more efficiently than before,
reducing the minimum number of observations from six to
three. This extra time could be spent characterizing more
planets.

This work is supported by the McGill Space Institute, the
TEPS training program, and an NSERC Discovery Grant. The
authors wish to thank the HabEx AEIWG for their useful
conversations, especially Leslie Rogers, Eric Nielsen, and Scott
Gaudi. Comments from an anonymous reviewer also greatly

Figure 9. Constraints on the semimajor axis compared to HZs. Error bars show the 1σ sample error of the retrieved semimajor axesfor a sample of100planets, where
all planets are assigned a true semimajor axis of 1 au. The gray hatched area shows the region obscured by the coronagraph inner working angle (31 mas) for a target at
10 pc. Different conceptual HZs are superimposed. Left: colored swaths represent arbitrary HZs relative to the true semimajor axis. For a hypothetical HZ with 5%
width, three epochs can constrain an orbit to lie within, at 1σ. Right: colored horizontal lines indicate HZ limits from Kopparapu et al. (2013). At 1σ, constraining a
planet to lie within the wider recent Venus inner limit requires about one epoch.
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improved the quality of this manuscript. All research was
conducted on the territory of the Kanien’kehá:ka, the keepers
of the Eastern Door of the Haudenosaunee Confederacy.

Appendix
Forward Model

We assume that all planets are on bound Keplerian orbits.
If we hover with the planet’s orbital plane below us and our

right ears toward the +x reference direction, we will see an
ellipse. Its shape can be described parametrically as the first
two-dimensions of a three-dimensional matrix,
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where a is the semimajor axis, b a e1 2= - is the semiminor
axis, c a b2 2= - is an x-intercept, Mk is the mean anomaly
at the kth epoch, and the orbital plane is defined by x–y.

The ellipse we see in the detector plane, x¢–y¢, has been
rotated through three angles in the order Ω, i, ωp. There is a
Euclidean rotation matrix corresponding to this series of
rotations,
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where α=Ω, β=i, and γ=ωp.
The projected separation in the image plane is the Euclidean

distance, x y2 2¢ + ¢( ) ( ) .

A.1. Planets Move

Both the cadence, δt, and the walker’s current guesses of a
andM0 control the planet’s position at the kth epoch (i.e., set by
the instantaneous mean anomaly Mk):

M M
a

k t
86400 s

day
, 6k 0 3

m
d= + ( )

where a3m is the mean motion of the planet (in radians per
second) and μ is the standard gravitational parameter.

ORCID iDs

Claire Marie Guimond https://orcid.org/0000-0003-
1521-5461
Nicolas B. Cowan https://orcid.org/0000-0001-6129-5699

References

Abbot, D. S., Cowan, N. B., & Ciesla, F. J. 2012, ApJ, 756, 178
Bean, J. L., Abbot, D. S., & Kempton, E. M.-R. 2017, ApJL, 841, L24
Blunt, S., Nielsen, E. L., De Rosa, R. J., et al. 2017, AJ, 153, 229
Bolmont, E., Libert, A.-S., Leconte, J., & Selsis, F. 2016, A&A, 591, A106
Burke, C. J., Christiansen, J. L., Mullally, F., et al. 2015, ApJ, 809, 8
Christiansen, J. L., Clarke, B. D., Burke, C. J., et al. 2015, ApJ, 810, 95
de Bruijne, J. H. J., Rygl, K. L. J., & Antoja, T. 2014, EAS, 67, 23
De Rosa, R. J., Nielsen, E. L., Blunt, S. C., et al. 2015, ApJL, 814, L3
Dressing, C. D., Spiegel, D. S., Scharf, C. A., Menou, K., & Raymond, S. N.

2010, ApJ, 721, 1295
Fischer, D. A., Anglada-Escude, G., Arriagada, P., et al. 2016, PASP, 128,

066001
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Foreman-Mackey, D., Hogg, D. W., & Morton, T. D. 2014, ApJ, 795, 64
García Muñoz, A., Lavvas, P., & West, R. A. 2017, NatAs, 1, 0114
Guimond, C. M., & Cowan, N. B. 2018, AJ, 155, 230
HabEx Team 2018, arXiv:1809.09674
Hart, M. H. 1979, Icar, 37, 351
Kasting, J. F. 1988, Icar, 74, 472
Kasting, J. F., & Toon, O. B. 1989, in Origin and Evolution of Planetary and

Satellite Atmospheres, ed. S. K. Atreya, J. B. Pollack, & M. S. Matthews
(Tucson, AZ: Univ. Arizona Press), 423

Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icar, 101, 108
Kipping, D. M. 2013, MNRAS, 434, L51
Kopparapu, R. K., Hébrard, E., Belikov, R., et al. 2018, ApJ, 856, 122
Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, ApJ, 765, 131
Kosmo O’Neil, K., Martinez, G. D., Hees, A., et al. 2018, arXiv:1809.05490
LUVOIR Team 2018, arXiv:1809.09668
Mede, K., & Brandt, T. D. 2017, AJ, 153, 135
Nielsen, E. L., Close, L. M., Biller, B. A., Masciadri, E., & Lenzen, R. 2008,

ApJ, 674, 466
Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013, PNAS, 110, 19273
Pueyo, L., Soummer, R., Hoffmann, J., et al. 2015, ApJ, 803, 31
Rameau, J., Nielsen, E. L., De Rosa, R. J., et al. 2016, ApJL, 822, L29
Robinson, T. D., Meadows, V. S., & Crisp, D. 2010, ApJL, 721, L67
Ruffio, J.-B., Mawet, D., Czekala, I., et al. 2018, AJ, 156, 196
Silburt, A., Gaidos, E., & Wu, Y. 2015, ApJ, 799, 180
Stark, C. C., Bolcar, M., Fogarty, K., et al. 2018, LPICo, 2065, 2061
Stark, C. C., Roberge, A., Mandell, A., et al. 2015, ApJ, 808, 149
Stark, C. C., Roberge, A., Mandell, A., & Robinson, T. D. 2014, ApJ, 795, 122
Stark, C. C., Shaklan, S., Lisman, D., et al. 2016, JATIS, 2, 041204
Van Eylen, V., Albrecht, S., Huang, X., et al. 2019, AJ, 157, 61
Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, JGR, 86, 9776
Wang, J. J., Graham, J. R., Dawson, R., et al. 2018, AJ, 156, 192
Wang, J. J., Graham, J. R., Pueyo, L., et al. 2016, AJ, 152, 97
Williams, D. M., & Pollard, D. 2002, IJAsB, 1, 61
Zhu, W., Petrovich, C., Wu, Y., Dong, S., & Xie, J. 2018, ApJ, 860, 101

9

The Astronomical Journal, 157:188 (9pp), 2019 May Guimond & Cowan

https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0003-1521-5461
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://orcid.org/0000-0001-6129-5699
https://doi.org/10.1088/0004-637X/756/2/178
http://adsabs.harvard.edu/abs/2012ApJ...756..178A
https://doi.org/10.3847/2041-8213/aa738a
http://adsabs.harvard.edu/abs/2017ApJ...841L..24B
https://doi.org/10.3847/1538-3881/aa6930
http://adsabs.harvard.edu/abs/2017AJ....153..229B
https://doi.org/10.1051/0004-6361/201628073
http://adsabs.harvard.edu/abs/2016A&amp;A...591A.106B
https://doi.org/10.1088/0004-637X/809/1/8
http://adsabs.harvard.edu/abs/2015ApJ...809....8B
https://doi.org/10.1088/0004-637X/810/2/95
http://adsabs.harvard.edu/abs/2015ApJ...810...95C
https://doi.org/10.1051/eas/1567004
http://adsabs.harvard.edu/abs/2014EAS....67...23D
https://doi.org/10.1088/2041-8205/814/1/L3
http://adsabs.harvard.edu/abs/2015ApJ...814L...3D
https://doi.org/10.1088/0004-637X/721/2/1295
http://adsabs.harvard.edu/abs/2010ApJ...721.1295D
https://doi.org/10.1088/1538-3873/128/964/066001
http://adsabs.harvard.edu/abs/2016PASP..128f6001F
http://adsabs.harvard.edu/abs/2016PASP..128f6001F
https://doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
https://doi.org/10.1088/0004-637X/795/1/64
http://adsabs.harvard.edu/abs/2014ApJ...795...64F
https://doi.org/10.1038/s41550-017-0114
http://adsabs.harvard.edu/abs/2017NatAs...1E.114G
https://doi.org/10.3847/1538-3881/aabb02
http://adsabs.harvard.edu/abs/2018AJ....155..230G
http://arxiv.org/abs/1809.09674
https://doi.org/10.1016/0019-1035(79)90141-6
http://adsabs.harvard.edu/abs/1979Icar...37..351H
https://doi.org/10.1016/0019-1035(88)90116-9
http://adsabs.harvard.edu/abs/1988Icar...74..472K
http://adsabs.harvard.edu/abs/1989oeps.book..423K
https://doi.org/10.1006/icar.1993.1010
http://adsabs.harvard.edu/abs/1993Icar..101..108K
https://doi.org/10.1093/mnrasl/slt075
http://adsabs.harvard.edu/abs/2013MNRAS.434L..51K
https://doi.org/10.3847/1538-4357/aab205
http://adsabs.harvard.edu/abs/2018ApJ...856..122K
https://doi.org/10.1088/0004-637X/765/2/131
http://adsabs.harvard.edu/abs/2013ApJ...765..131K
http://arxiv.org/abs/1809.05490
http://arxiv.org/abs/1809.09668
https://doi.org/10.3847/1538-3881/aa5e4a
http://adsabs.harvard.edu/abs/2017AJ....153..135M
https://doi.org/10.1086/524344
http://adsabs.harvard.edu/abs/2008ApJ...674..466N
https://doi.org/10.1073/pnas.1319909110
http://adsabs.harvard.edu/abs/2013PNAS..11019273P
https://doi.org/10.1088/0004-637X/803/1/31
http://adsabs.harvard.edu/abs/2015ApJ...803...31P
https://doi.org/10.3847/2041-8205/822/2/L29
http://adsabs.harvard.edu/abs/2016ApJ...822L..29R
https://doi.org/10.1088/2041-8205/721/1/L67
http://adsabs.harvard.edu/abs/2010ApJ...721L..67R
https://doi.org/10.3847/1538-3881/aade95
http://adsabs.harvard.edu/abs/2018AJ....156..196R
https://doi.org/10.1088/0004-637X/799/2/180
http://adsabs.harvard.edu/abs/2015ApJ...799..180S
http://adsabs.harvard.edu/abs/2018LPICo2065.2061S
https://doi.org/10.1088/0004-637X/808/2/149
http://adsabs.harvard.edu/abs/2015ApJ...808..149S
https://doi.org/10.1088/0004-637X/795/2/122
http://adsabs.harvard.edu/abs/2014ApJ...795..122S
https://doi.org/10.1117/1.JATIS.2.4.041204
http://adsabs.harvard.edu/abs/2016JATIS...2d1204S
https://doi.org/10.3847/1538-3881/aaf22f
http://adsabs.harvard.edu/abs/2019AJ....157...61V
https://doi.org/10.1029/JC086iC10p09776
http://adsabs.harvard.edu/abs/1981JGR....86.9776W
https://doi.org/10.3847/1538-3881/aae150
http://adsabs.harvard.edu/abs/2018AJ....156..192W
https://doi.org/10.3847/0004-6256/152/4/97
http://adsabs.harvard.edu/abs/2016AJ....152...97W
https://doi.org/10.1017/S1473550402001064
http://adsabs.harvard.edu/abs/2002IJAsB...1...61W
https://doi.org/10.3847/1538-4357/aac6d5
http://adsabs.harvard.edu/abs/2018ApJ...860..101Z

	1. Introduction
	1.1. Images to Orbits
	1.2. A Note on Habitable Zones

	2. The Orbit-retrieval Model
	2.1. Likelihood Function for Detections
	2.2. Likelihood Function for Non-detections
	2.3. Posterior Probability for Less Than Three Detections
	2.4. Prior Distributions

	3. Results
	3.1. Semimajor Axis Retrieval under Different Eccentricity Scenarios
	3.2. Optimal Cadence
	3.3. Effects of Distance and Astrometric Precision

	4. Discussion
	4.1. Placing the Planet in the HZ
	4.2. Predicting the Future Location of a Planet
	4.3. Extension to FGK Stars
	4.4. Uncertainties on Stellar Distance
	4.5. Limitations of Using Astrometry Alone

	AppendixForward Model
	A.1. Planets Move

	References



