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Abstract

We present a study of the M-dwarf exoplanetary systems forthcoming from NASA’s TESS mission. While the
mission’s footprint is too complex to be characterized by a single detection completeness, we extract ensemble
completeness functions that recover the planet detections from previous work for stars between 3200 and 4000 K.
We employ these completeness functions, together with a dual-population planet occurrence model that includes
compact multiple planetary systems, to infer anew the planet yield. We predict both the number of M-dwarf planets
likely from TESS and their system architectures. We report four main findings. First, TESS will likely detect more
planets orbiting M dwarfs that previously predicted. Around stars with effective temperatures between 3200 and
4000 K, we predict that TESS will find 1274±241 planets orbiting 1026±182 stars, a 1.2-fold increase over
previous predictions. Second, TESS will find two or more transiting planets around 20% of these host stars, a
number similar to the multiplicity yield of NASA’s Kepler mission. Third, TESS light curves in which one or more
planets are detected will often contain transits of additional planets below the detection threshold of TESS. Among
a typical set of 200 TESS hosts to one or more detected planets, 93±17 transiting planets will be missed. Transit
follow-up efforts with the photometric sensitivity to detect an Earth or larger around a mid-M dwarf, even with
very modest period completeness, will readily result in additional planet discoveries. Fourth, the strong preference
of TESS for systems of compact multiples indicates that TESS planets will be dynamically cooler on average than
Kepler planets, with 90% of TESS planets residing in orbits with e<0.15. We include both (1) a predicted sample
of planets detected by TESS orbiting stars between 3200 and 4000 K, including additional nontransiting planets, or
transiting and undetected planets orbiting the same star and (2) sample completeness functions for use by the
community.
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1. Introduction

NASA’s TESS mission (Ricker et al. 2014) will furnish the
vast majority of small, rocky planets for atmospheric study. A
typical TESS target star receives 27 days of continuous
observation, so the sensitivity of the mission strongly favors
short periods (Sullivan et al. 2015). A handful of transits of a
small planet will be detectable over this duration only if those
transits are individually large, which is why 75% of small
planets detected by TESS are expected to orbit M dwarfs
(Sullivan et al. 2015). In fact, it is likely that every small planet
discovered by TESS to reside in its star’s habitable zone will
orbit an M dwarf (Sullivan et al. 2015). Combining this
fact with the favorable signal-to-noise ratio of a planetary
transmission spectrum around a small star (Tarter et al. 2007),
M dwarfs will likely be the majority of sites for focused follow-
up atmospheric study in the next decade with the James Webb
Space Telescope (JWST; Gardner et al. 2006). The forthcoming
TESS sample of planets orbiting M dwarfs will likely contain
many targets of the first biosignature searches. The discovery
of planets with TESS has already begun, with only the second
published planet orbiting the M dwarf LHS 3844 (Vanderspek
et al. 2018).

The ensemble of planets orbiting M dwarfs has come into
focus from a combination of radial velocity, microlensing,
high-contrast imaging, and transit surveys (Johnson et al. 2010;
Bonfils et al. 2013; Dressing & Charbonneau 2013, 2015;
Montet et al. 2014; Morton & Swift 2014; Bowler et al. 2015;

Muirhead et al. 2015; Clanton & Gaudi 2016; for a detailed
summary, see Shields et al. 2016). In particular, the
photometric sensitivity of NASA’s Kepler mission illuminated
the population of planets smaller than 4 R⊕ in orbit around M
dwarfs, showing that they are more common around late
spectral types than around FGK dwarfs (Howard et al. 2012;
Mulders et al. 2015). They are so common, in fact, that Morton
& Swift (2014) found 2.00±0.45 planets per M dwarf, and
Dressing & Charbonneau (2015) reported a similar value of
2.5±0.2 planets per star.
Yet M-dwarf planetary systems resist a simple, one-

population explanation. An occurrence rate of two to three
planets per M dwarf (Morton & Swift 2014; Dressing &
Charbonneau 2015) recovers the raw number of planets
detected by the Kepler mission, but it furnishes only a fair fit
to the properties of those detected planets, like the number of
transiting planets per star (Ballard & Johnson 2016). The top
panels of Figure 1 show the result of using one mode of planet
occurrence, in comparison with the observed Kepler para-
meters. One explanation is that the model of two to three
planets per star, with the underlying period and radius
distribution in Dressing & Charbonneau (2015), is in fact an
average of two very different types of planetary systems.
Observations of orbital eccentricity and spin–orbit alignment
indicate that the systems with one transiting planet are
dynamically distinct from those with two or more transiting
planets. Planets in multiple-planet systems reside in more
circular orbits (Xie et al. 2016) and are more aligned with the
spins of their host stars (Morton & Winn 2014). The number of
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transiting planets per star from Kepler also indicates two
populations with different dynamical properties: one with at
least five planets coplanar to within 2° and the other with one to
two planets at larger orbital inclinations with respect to one
another (Ballard & Johnson 2016). This two-population model
removes the discrepancy in the top left panel of Figure 1, in
which the number of systems with only one transiting planet is
underestimated, and the number of systems with two transiting
planets is overestimated in equal measure. The two-population
model also furnishes a better fit to other observables, like
period, period ratio, and transit duration ratio (Dawson et al.
2016; Moriarty & Ballard 2016). While the so-called “Kepler
dichotomy” (Lissauer et al. 2011) explanation is not definitive,
nor is it the only one (Gaidos et al. 2016; Bovaird &
Lineweaver 2017), we employ it here as a useful phenomen-
ological descriptor of M-dwarf planetary systems.

This two-mode model is also consistent with the independent
measurement of the rate of “compact multiples.” These are
systems with at least two planets with orbital periods less than
10 days. Muirhead et al. (2015) showed that at least 20% of M
dwarfs host a compact multiple system, and that fraction
increases as stellar temperature decreases. Within the two-
population framework, these compact multiples are recogniz-
able as the systems with more than five planets per star interior
to 200 days. As we described above, compact multiples need to
be included in order to reproduce the Kepler yield (Ballard &
Johnson 2016). Similarly, their inclusion should also result in a
more realistic prediction of the TESS yield.

A sophisticated study of the likely TESS planet yield,
employing the 2 minute cadence mode, across the FGKM
spectral types by Sullivan et al. (2015) incorporated the
complicated TESS footprint, its instrumental limitations, the
range of noise budgets within the surveyed stellar population,
and false-positive likelihoods. We do not aim to replicate the

Sullivan et al. (2015) machinery in its complexity; because of
that study, we already have an excellent understanding of how
TESS will respond to incoming photons. Rather, we propose to
extend the analysis, specifically for the M dwarfs. First, we will
extract from Sullivan et al. (2015) the completeness function
for M dwarfs from 3200 to 4000 K as a function of orbital
period and planet radius. Then, we will apply that completeness
function, with a difference occurrence model, to predict anew
the TESS yield of planets orbiting M dwarfs. We undertake
these steps for the following reasons.
First, Sullivan et al. (2015) employed a one-mode model of

planet occurrence, one that does not include “compact multi-
ple” systems with at least two planets with orbital periods
<10 days. We hypothesize that a planet occurrence rate that
includes these systems will change the predicted yield in
important ways. Given the short, 27 day baseline of observa-
tions for most TESS stars, these types of systems will be much
more likely to furnish a transit within those 27 days. “Compact
multiples” are likelier to host multiple transiting planets too,
both because the transit probabilities are higher for each
individual planet in these close-in orbits and because these
systems are coplanar within 1°–2° as a rule (Fabrycky et al.
2012b). For these reasons, we hypothesize that a predicted
TESS yield that includes compact multiples will differ from the
Sullivan et al. (2015) sample as follows.

1. The sample will contain more planet detections.
2. It will find that TESS will detect two or more transiting

planets around a substantial number of stars.
3. It will find that the TESS light curves with a detected

planet will very often contain transits of additional
planets lurking below the noise.

Second, the TESS completeness function for planets orbiting
M dwarfs as a function of radius and period is useful in its own

Figure 1. Top panels: observed Kepler distributions (black) of detected planets in the number of transiting planets per star, period, transit duration ratio (ξ defined in
Fabrycky et al. 2012b), and period ratio. Overplotted in red is the best one-mode planet occurrence model, with 2.5 planets per star drawn from Dressing &
Charbonneau (2015). The delta function in ξ in the third panel is due to uniformly applying an orbital mutual inclination of 0°. Bottom panels: consistency in the
underlying distributions of the number of planets per star, periods, and radii of our one-mode model (blue) to the values used in Sullivan et al. (2015). The number of
planets per star is drawn from Table 6 of that work, and the planetary radii and period distributions are drawn from Figure 8 of Sullivan et al. (2015).
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right. This function is not included in the Sullivan et al. (2015)
study but is readily extractable from it. Transit occurrence rate
studies rely on completeness as a function of radius and period
(e.g., Howard et al. 2012; Berta et al. 2013; Dressing &
Charbonneau 2013; Petigura et al. 2013a). Providing the
approximate TESS M-dwarf completeness to the community
will enable occurrence rate science even with early TESS
detections. In addition, a comparison between this predicted
completeness function and the actual completeness function for
the mission will be illuminating. It will encode the differences
between predicted and actual sources of both instrumental and
stellar noise.

We organize this study as follows. In Section 2, we describe
our analysis, including the generation of synthetic planetary
systems (Section 2.1) and how we create a mixture model of
planetary systems (Section 2.2). Section 2.3 describes the
extraction of the M-dwarf completeness function for TESS, and
Section 2.4 describes how we apply it to the mixture model.
Section 3 contains the results of this exercise. We enumerate
the following goals for this study, which are addressed in the
indicated sections.

1. Repredict the number of planet detections among M
dwarfs observed by TESS (Section 3.1).

2. Determine how often TESS will detect a single transiting
planet and how often it will detect two or more planets
transiting the same M dwarf (Section 3.2).

3. Determine which additional planets, if any, will transit
known TESS M-dwarf planet host stars but elude
detection in TESS light curves (Section 3.3).

4. Predict the fraction of TESS-detected systems that will
have “compact multiple” architecture, as compared to the
underlying rate in nature (Section 3.4).

5. Predict the eccentricity distribution of the detected TESS
planets and compare it to that of Kepler M-dwarf planets
(Section 3.5).

6. Approximate the number of planets orbiting M dwarfs
that TESS will detect that will exhibit transit-timing
variations (TTVs) using the rate of TTV occurrence
measured by Kepler (Section 3.6).

7. Make a prediction for the bulk densities of planets
detected by TESS from planet formation theory and
compare these densities to the densities inferred for the
Kepler planets (Section 3.7.)

In Section 4, we summarize our findings and conclude.

2. Analysis

2.1. Generating Planetary Systems

To generate a realistic synthetic sample of planetary systems,
we take the following steps. We draw periods and radii for each
mock planetary system from the empirical distribution of
Dressing & Charbonneau (2015). We then employ the
distributions of Limbach & Turner (2015) to assign eccen-
tricity. We assign planetary masses with the relations of Zeng
& Jacobsen (2017) for R R1.5< Å and Wolfgang et al. (2016)
for R R1.5> Å. Rogers (2015) identified the cutoff between a
majority of rocky planets and a majority of icy/gaseous planets
at 1.5 R⊕, but these two relations also naturally overlap at
1.5 R⊕. We assess the stability of the system by ensuring that

planets satisfy the criterion defined in Fabrycky et al. (2012b),
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This criterion is applicable for circular orbits. For eccentric
orbits, we calculate the periapse and apoapse separation from
the host star for each planet. We assume the orbits are stable if
Equation (1) holds for the apoapse distance of the inner planet
and the periapse of the outer planet. For generating synthetic
TESS planetary systems orbiting M dwarfs, we employ four
different stellar masses corresponding to four different effective
temperature ranges (from Boyajian et al. 2012): 0.25 Me
(for stars 3200–3400 K), 0.41 Me (for stars 3400–3600 K),
0.50 Me (for stars 3600–3800 K), and 0.60 Me (for stars
3800–4000 K).
We then assign a Boolean TTV flag to each transiting planet.

Xie et al. (2014) showed that planets drawn from multi-
transiting systems are likelier to exhibit TTVs, with that
likeliness increasing as the number of transiting planets
increases. We assign the TTV probability per planet from that
work, as defined by their “Case 3” (the most generous TTV
occurrence rate): 3.5% for planets in singly transiting systems,
7% for planets in doubly transiting systems, 8% for planets in
triply transiting systems, and 10.4% for planets in systems with
four or more transiting planets.
Finally, we calculate and record an independent density for

each planet using only its mutual Hill spacing from neighbor-
ing planets. Dawson et al. (2016) predicted a theoretical
relationship between these parameters: ρ [g cm−3]= 22 6D( ) ,
where Δ is defined in Equation (1). The scaling of density with
mutual Hill separation provides a natural explanation, among
others, for the fluffier nature of planets whose masses were
measured with TTVs (Wolfgang et al. 2016; Mills &
Mazeh 2017).

2.2. Generating Mixture Models

In the simplified “Kepler dichotomy” model, stars host one
of two distinct types of planetary systems. Ballard & Johnson
(2016) showed that the Kepler M-dwarf planets are well
described by one population of stars hosting flat and manifold
systems of planets (with the number of planets per star N at
least five and orbital mutual inclinations σ between 1° and 3°),
with the other hosting one or two planets with high mutual
inclination (>8°). Throughout this work, we refer to the former
type of planetary system as “Population 1” or, more
descriptively, as a “compact multiple.” That work investigated
the mixture specifically among detected planet hosts: in reality,
the former type of planetary system is overly represented
among detected planet hosts. This is because the typical short
periods within the multiple systems make it likelier that at least
one planet will transit. The degree of this overrepresentation in
both Kepler and TESS is discussed in Section 3.4.
We define N as the number of planets per star and σ as the

width of the Rayleigh distribution from which we draw their
mutual inclinations. For a set of {N, σ}, we generate 104

planetary systems using the criteria established in Section 2.1,
employing the posterior distributions on these quantities from
Ballard & Johnson (2016). We then determine, based upon the
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assumption of random alignments for each planetary system
with the line of sight, which planets transit their host star. We
consider noninteger N as follows. If a “typical” planetary
system defined by N and σ hosts 3.5 planets, then 50% of stars
host three planets (with eccentricities drawn from the
cumulative distribution function (CDF) for three-planet sys-
tems) and 50% host four (with eccentricities drawn from the
CDF for four-planet systems).

The fraction f of stars in Population 1 in Ballard & Johnson
(2016) is the fraction of transiting systems in Population 1, not
the fraction of stars. For each f, we now calculate an få, the
fraction of stars in Population 1 necessary to recover a
contribution f to the total number of transiting systems. For
mixture models defined by the set {N N f, , , ,1 1 2 2 s s }, we
randomly select f104

· stars populated by {N ,1 1s } and 104 ·
(1-få) stars populated by {N ,2 2s }. We then draw properties
from the transiting planets among this final set of 104 stars. Of
course, the vast majority of these stars host zero transiting
planets.

2.3. Extracting the TESS Completeness Function

To determine what a transit mission will detect, it is useful to
know how often any given transiting planet will be detected,
typically as a function of radius and orbital period. This
quantity is the “completeness,” and it is, in principle, distinct
for every star the mission surveys. In the absence of real light
curves, Sullivan et al. (2015) used a signal-to-noise criterion to
evaluate whether injected planets would be “detected” by
TESS. The stare-and-step observation strategy of TESS means
that most stars in the mission footprint receive 27 days of
continuous photometry. However, overlap between observing
fields results in some stars residing for up to a year in the field
of view. Sullivan et al.’s (2015) study incorporated the full
complexity of the TESS footprint and its stellar sample. The
completeness of the survey to planets of a given size and period
is not included in the study but is derivable from it as follows.

Given the Sullivan et al. (2015) sample of injected planets
(which we can recreate from descriptions in that work) and the
sample of detected planets reported in their Table 6 (here
known as the “data”), we can recover the completeness
function that maps one to the other. We elect to fit this
completeness function at four points across the M spectral type:
for stars between 3200 and 3400, 3400 and 3600, 3600 and
3800, and 3800 and 4000 K. We hypothesize that the
completeness for 4000 K ought to not differ greatly from the
completeness at 3200 K from TESS. There is the advantage of a
deeper transit depth for smaller stars; a factor of 4 difference
between a 0.25 Re star and 0.5 Re star (bracketing the
approximate range of these temperatures per Boyajian et al.
2012) for the same size planet. However, this increased transit
depth for a 0.25 Me star is offset by a shorter transit duration
( 0.6~ ´ as long) and by the fact that it is, on average, dimmer
by 2 mag in the TESS sample. We anticipate that completeness
should be higher by about 20% for a given planet size for the
lowest-temperature bin as compared to the highest.

2.3.1. Replication of Sullivan Sample

We first create a sample of injected planets using the criteria
described in Sullivan et al. (2015). We employ the same
population of M dwarfs from 3200 to 4000 K shown in their
Figure 17, with stellar radius and mass assigned for each

temperature range from Boyajian et al. (2012), Equations (8)
and (10), respectively. This sample includes 27,000 stars
between 3200 and 3400 K (we employ a mass of 0.25Me and a
radius of 0.25 Re for these stars), 25,000 stars between 3400
and 3600 K (M=0.41 Me, R=0.39 Re), 10,000 stars
between 3600 and 3800 K (M M0.50= , R=0.49 Re), and
6000 stars between 3800 and 4000 K (M M0.6= , R=0.56
Re). For each of the four effective temperature ranges, we
assign planets to each star per Sullivan et al. (2015), with a
process similar to the one described in Section 2.1 for a single
mode of planet occurrence. However, the Sullivan et al. (2015)
process that we replicate here differs in that (1) they assign
more than one planet to a given star with independent
probability, rather than assigning the number of planets per star
a priori, and (2) they assume a mutual inclination between
orbits of zero. The sample of injected planets from Sullivan
et al. (2015) was generated at fixed resolution in both log
(period) and log(radius) (inherited from Youdin 2011; Howard
et al. 2012; Dressing & Charbonneau 2013, and others), with
an approximate spacing of 1 dex between adjacent log(period)
bins and 0.2 dex between adjacent log(radius) bins. Because we
cannot expect to extract information at a higher resolution than
these values, we adopt their spacing. In practice, the index i
spans periods from 0.8 to 320 days in 13 regular log intervals
of 1 dex, and the index j spans radii from 0.3 to 4 R⊕ in 17
regular log intervals of 0.2 dex.
In the bottom panels of Figure 1, we show consistency

between the sample we generated from the stated criteria and
the one employed in Sullivan et al. (2015; see their Figure 8).

2.3.2. Definition of Terms

From this sample of stars and planets generated in the same
way as Sullivan et al. (2015), we assume random orientation of
the mean orbital plane on the sky. We identify which of the
planets in this sample transit and call this injected sample of
planets Ni,j, where i is the index of the period bin and j is the
index of the radius bin. We treat each individual bin at this
resolution as a bucket that holds an integer number of planets.
We aim now to find the completeness function that winnows

this injected sample of transiting planets Ni,j to the detected
sample reported by Sullivan et al. (2015) in Table 6. Using the
same log spacing, we designate Di,j the number of detected
planets per bin. The actual surfaces of both Di,j and Ni,j are
shown in the top two panels of Figure 2 and individually as a
function of radius and period in Figure 3 (with injected
transiting planets N in black and detected planets D in red).
These two quantities are related by the completeness Ci,j(Θ),
some as yet unknown function that encodes the probability that
a given injected transiting planet–planet will be detected by
TESS. This completeness is defined by a set of parameters Θ. In
past studies, completeness is often evaluated in each bin
empirically from injection-and-recovery studies. This is
performed either in an average sense (e.g., Petigura et al.
2013b) or separately for each individual star in the sample
(Dressing & Charbonneau 2015; Christiansen et al. 2016). Here
we propose to use Bayesian forward modeling, assuming a
functional form for C. The advantages of Bayesian forward
modeling for completeness and occurrence rate studies are
enumerated in detail in Foreman-Mackey et al. (2014) and Hsu
et al. (2018). If we select a given completeness function and
wish to know its likelihood, we can produce a model
“detected” data set and compare it to the data set presented

4

The Astronomical Journal, 157:113 (15pp), 2019 March Ballard



in Sullivan et al. (2015). This model will be the number of
planets injected in each bin Ni,j, weighted by the probability of
detection Ci,j(Θ), and we designate it i j,m Q( ), our guess at the
number of planets in each bin that ought to be detected:

N C . 3i j i j i j, , ,m Q = Q( ) · ( ) ( )

Within a Bayesian framework,

P D , 4L pQ µ Q Q( ∣ ) ( ) ( ) ( )

where P DQ( ∣ ) is what we wish to know: the probability of a set
of model parameters Θ, given the observed data D. The
likelihood L Q( ) is the probability of the data D being

observed, given a set of model parameters Θ, while π(Θ)
represents our prior knowledge of Θ.
Poisson counting statistics describe integer numbers of

transiting planets, so we evaluate the likelihood of Θ with a
Poisson likelihood function. This likelihood is conditioned on
the “observed” number of planets detected in that bin, Di,j,

a e

D
, 5

i j

i j
D a

i j

,

,

i j i j, ,

L  
m

µ
m-( )

!
( )
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where i j i j, ,m m= Q( ), our model for the number of detected
planets in that bin, which depends upon the model parameter
Θ, defined in Equation (3).

2.3.3. Functional Form for Completeness

We experimented with various functional forms for the
completeness C. We adopt a smooth, analytic function for C,
which we evaluate at the same resolution in log(period) and log
(radius) to produce the completeness of each bin Ci,j. Trial
versions of C included a single-to-noise scaling, as well as
simple power laws in log period or radius. Neither of the two
functions for completeness, when applied to the injected
planets, correctly approximated the number of detected planets:
for example, while the predicted number of short-period planets
might match, long-period planets would be strongly under-
estimated. We elected to use a polynomial in log(radius) and
log(period) for C, with some constraints.
First, we require the completeness to be separable in period

and radius (that is, C P R C P C R, p p=( ) ( ) · ( ), similar to
Youdin 2011). We require that it be bounded between 0 and
1, and we require it to be monotonic (increasing with radius
and decreasing with period). We ultimately adopted a third-
degree polynomial in both log(radius) and log(period). For
example, the completeness with radius C Rp( ) is defined by

C R R R R . 6p p p p1 2 3
2

4
3= Q + Q + Q + Q( ) ( )

This results in a total of eight free parameters for Θ: four
coefficients for the completeness with orbital period C(P) and
four for the completeness with planet radius C Rp( ). There
exists a linear algebra solution for finding , , ,1 2 3 4Q Q Q Q[ ] for
each polynomial, a modified version of the singular value
decomposition adapted for monotonic polynomials that relies
upon Lagrange multipliers (Hawkins 1994; Murray et al.
2013). The MonoPoly package in R (Turlach & Murray 2016)
implements those tools, which we used as a first estimate for
the coefficients Θ: four for C(P) and four for C Rp( ). The third
panel of Figure 2 shows this first estimate of the completeness.

2.3.4. Evaluating Likelihood

We employ the Bayesian sampler MultiNest (Feroz &
Hobson 2008; Feroz et al. 2009, 2013, with Python
implementation by Buchner et al. 2014) to evaluate these
likelihoods and posterior distributions. In practice, MultiNest
calculates the log of the likelihood defined in Equation (5). We
use uniform priors for each of the polynomial coefficients,
allowing them to vary to within 200% of the least-squares
value. We enforce a monotonically decreasing polynomial in
log period and a monotonically increasing polynomial in log
radius by setting the log likelihood to an arbitrarily low value
otherwise (−10−30 in our case, in comparison to a typical log
likelihood of −300).

Figure 2. Top panel: detected planets Di,j from Sullivan et al. (2015). Middle
panel: injected transiting planets sample generated using the criteria from the
same, Ni,j. Bottom panel: typical polynomial completeness function evaluated
at each bin, Ci,j.
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Figure 3 summarizes the results of the completeness fit for
one bin, 3400–3600 K. The injected transiting planets Ni,j are
shown in black as a function of radius (top panel) and period
(bottom panel). The detected planets Di,j (Table 6 from Sullivan
et al. 2015) are shown in red. Blue shows the completeness
functions that best recover Di,j from Ni,j, which we draw from
the posterior distribution in the coefficients Θ. The right-hand
panels show the 1σ and 2σ confidence intervals on the model
number of detected planets μi,j in gray. We verify that the
extracted completeness is successful at recovering the number
of detected planets from the injected planets of Sullivan et al.
(2015). We note the large uncertainty of the completeness
function at long periods: at 100 days, for example, complete-
nesses of both 40% and 0% are consistent at 2σ confidence.
This is due to the inherent Poisson noisiness of only a few
(<10 planets) detections with which to constrain the
completeness.

We compare the completeness functions across the range of
stellar temperatures. For the 3200–3400 K (0.25Me) and
3800–4000 K (0.6Me) stars, Figure 4 shows the range of
completeness with radius drawn from the 1σconfidence
intervals in Θ. As predicted, there is about a 20% average
enhancement in completeness for the smallest stars as
compared to the largest. There is an exception for planets with
radii <1.0 R⊕: while the completeness is consistent with zero
for stars 3800–4000 K, it is 0.10±0.05 for stars
3200–3400 K.

We include a representative sample of completenesses drawn
from the posterior distributions for Θ with this manuscript from
each of the four stellar effective temperature ranges.

2.4. Applying Completeness to Occurrence Mixture Model

With a TESS completeness function in hand, we can apply it
to a new sample of simulated transiting planets, this time
employing the mixture model in Ballard & Johnson (2016). As
described in Section 2.1, we use the posteriors in the number of
planets in both systems N1 and N2, their average mutual
inclinations σ1 and σ2, and the fraction of host stars in the first
population f directly from that work. The coefficients are highly
correlated, so we cannot draw independently from their
posterior distributions anew to sample the completeness.
Rather, we save the completeness surface at each iteration of

Figure 3. Left panels: injected transiting planets N (black) and detected planets D (red) from Sullivan et al. (2015) as a function of radius and period. Model
completeness functions in radius and period are overplotted in dark (1σ) and light (2σ) blue; the right axis corresponds to completeness. Right panels: population of
detected Sullivan et al. (2015) planets, now with models μ for predicted planet detections overplotted in gray.

Figure 4. Comparison of completeness as a function of planet radius for
spectral types M2V (gray) and M0V (purple). Individual draws from the M2V
completeness posterior are shown in light gray, while the shaded regions depict
areas of 1σ confidence.
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the Markov chain Monte Carlo (MCMC) chain. We have
included these MCMC chains with this manuscript for use by
the community.

For each transiting planetary system, we draw randomly
from the sample of completeness surfaces Ci,j. For each
individual planet’s period and radius, we evaluate the detection
likelihood from the completeness value corresponding to that
bin. We take one additional step to enforce consistency for
planets orbiting the same star, if both planets have orbital
periods less than the 27 day observational baseline. A joint
random draw of detection probabilities for multiple planets can
occasionally result in the nonsensical scenario of less-likely
planets being detected while more “detectable” planets are
missed. We take as an example a system of two transiting
planets: Planet 1 with a period and radius assigning it a 50%
detection probability and Planet 2 with a radius and period
assigning it a 5% detection probability. Out of 200 draws for a
set of two random numbers between 0 and 1, there will be five
instances in which Planet 2 is detected and Planet 1 is missed.
This is a sensible scenario for an ensemble of stars, but for
planets orbiting the same star, we consider the signal-to-noise
ratios of the two planets (assume the same noise budget for
both), and if the missed planet has a higher signal-to-noise ratio
than the detected planet, we switch the former to “detected.”
This criterion moved 70 planets, on average, from “missed” to
detected, out of a total of 3000 transiting planets in the sample
as a whole.

We record the properties of each “detected” transiting planet,
as well as its provenance (whether from a dynamically hot or
cool configuration). For the sake of comparison, we repeat the
exercise with the completeness function of Kepler (Dressing &
Charbonneau 2015), so that we we can directly compare Kepler
observables to those predicted for TESS. To generate synthetic
Kepler systems, we employ a stellar mass Må=0.50Me.

3. Results

We revisit the goals enumerated in Section 1.

3.1. Summary of Planet Detections

In Figures 5 and 7, we show the resulting distribution of
properties for the M dwarfs observed by the Kepler (gray) and
TESS missions (blue, with the actual Kepler observables shown
in red). The transit duration ratio, here denoted as ξ, is the one
defined by Fabrycky et al. (2012a). For each parameter, we
show the mean contribution to the total distribution from the
dynamically cooler Population 1 (green) and dynamically
hotter Population 2 (orange). The first immediately noticeable
difference is in the period and radius distributions, where the
effects of the TESS completeness are clear. TESS will skew
heavily toward detecting larger planets than Kepler and at
shorter orbital periods. We note that the mutual Hill spacing
distribution shown in the second panel of Figure 7 is the true
mutual spacing, not the (wider) spacing that would be
measured only between detected planets.

In addition to the shapes of these distributions, it is useful to
note the raw number of expected host stars and host planets.
From the posterior distributions in the modeled number of
detections μi,j, we estimate that the TESS mission will find
1274±241 planets orbiting 1026±182 early-to-mid
M-dwarf host stars. Unsurprisingly, given their strong
representation among detected systems, the largest contribution

to the uncertainty budget on the number of planets is the
uncertainty on the fraction of planetary systems in compact
multiples (see Section 3.4). We report in Table 1 how these
total planet detections are distributed among the four stellar
effective temperature ranges (defined in Section 2.3.1). In
Figure 6, we show how the stars in each effective temperature
range contribute to the total number of detections as a function
of radius and period. We have superposed the 1σ confidence
interval on the total number of detections with a dashed line to
give a sense of the uncertainty on the number of detections as a
function of period and radius. Table 2 contains a typical sample
of “detected” planets, including the additional nontransiting or
transiting but undetected planets orbiting the same star.
We note that the errors on the number of detected planets for

individual stellar effective temperature bins do not sum in
quadrature to the error on the total number of planets. This is
because the numbers of detected planets in each effective
temperature bin are highly correlated. If we employ a higher
“compact multiple” fraction, it applies across all temperatures
and corresponds to higher yields for all stars. Said a different
way, the covariance between the numbers of detected planets in
the different stellar temperature bins is nonzero: off-diagonal
entries in the covariance matrix contribute half the total
covariance.
We also investigate the subset of small, cool planets likely to

be prioritized for follow-up with JWST. We define “small” here
to be radii R2< Å and “cool” to be periods 20days <P<40
days (approximating the habitable zone of an M3V dwarf).
Among the 1274±241 planets detected by TESS, 27±3
meet these criteria. Critically for transit follow-up, an
additional 28±15 planets in this radius and period range are
undetected but orbit stars for which TESS detected another
planet. For the likeliest rocky planets with radii R1.25< Å in the
same period range, TESS will detect 4 2

3
-
+ (consistent with the

three planets with radii R1.5< Å and orbital periods >20 days in
the sample published in Sullivan et al. 2015). In even starker
contrast with slightly larger planets, 21±7 such planets will
orbit known TESS hosts but elude detection by TESS proper. In
the hypothetical situation where each known TESS M-dwarf
host received 40 days of uninterrupted follow-up observation,
the yield in newly uncovered temperate Earths would be triple
or more that of TESS itself. It stands to reason that follow-up
efforts with even moderate sensitivity at longer periods will
uncover one or two of these, comparable to the number found
in the mission data alone. We describe the follow-up
implications in greater detail in Section 3.3.

3.2. Multiple Transiting Systems

Among these estimated 1,026,182 M-dwarf planet hosts
identified by TESS, the mission will detect at least two planets
around 189±66 stars. The approximately 20% contribution of
multis to the host star budget is similar to that of Kepler (see top
panel of Figure 5). Even with the steepness of its completeness
function with period, we predict that the mission will detect
45±22 systems with three more or transiting planets, a number
that makes intuitive sense given the fact that 20% of mid-M
dwarfs host two or more planets interior to 10 days, and the
average TESS star will receive 27 days of coverage.
Figure 8 shows a representative sample of TESS singles and

multis, with a random selection of 20 systems from each
population. Black circles, scaled to planet size, depict
detections, while red circles are missed planets. The steep
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TESS radius completeness is especially visually evident here.
We have indicated with blue circles the planets that exhibit
TTVs, assigned from the Xie et al. (2014) occurrence rates as
described in Section 2.1. The much higher rate of TTVs among
multitransiting systems (even if only one planet was detected)

is visually apparent: indeed, with a 3% occurrence of TTVs
among singly transiting systems, none ought to appear in such
a small representative sample. We note for clarity that we have
shown 20 representative singly transiting and 20 representative
multiply transiting systems as seen by TESS for a sense of their

Figure 5. Resulting posterior distributions predicted for the Kepler mission at left (gray) and TESS mission at right. In order from top to bottom: number of detected
transiting planets per star, periods of detected planets, period ratio between adjacent observed transiting planets, velocity-normalized transit duration ratio between
adjacent planets, and planetary radius. All distributions have been normalized to compare to the shape of the actual observed Kepler distributions in red.
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architectures. However, 50:50 is not representative of their
relative contributions to the total TESS yield as we describe
above.

3.3. Implications for Transit Follow-up

The best-fit ensemble completeness function for TESS in the
top left panel of Figure 3 has a critical implication specific to
transit follow-up. As a whole, TESS will detect the transit of a
1.5 R⊕ planet orbiting an M dwarf 20% of the time (though the
exact completeness depends on the period of the planet, as well
as the spectral type). Comparing this modest likelihood with
the occurrence rates of both Morton & Swift (2014) and
Dressing & Charbonneau (2015; both of which show planets
peaking in occurrence at 1–1.5 R⊕), it is clear that the majority
of planets orbiting M dwarfs will lurk below the detection
threshold. Yet the majority of stars around which TESS finds a
planet will host a compact multiple system (primarily because
of the steep period completeness function). For systems of
three or more transiting planets, 40% of the time, TESS will
detect only one planet, typically the very largest. This means

that missed planets orbiting known TESS hosts will be
remarkably common. We quantify this result in Figure 9,
showing the number of missed planets per 200 TESS host stars
(that is, stars for which TESS detected one or more planets).
Among 200 TESS host stars, typically 250 planets will be
detectable in the mission light curves themselves. But, on
average, half that number lurk below the mission sensitivity:
93 17

17
-
+ planets per 200 host stars. This is also visibly apparent in

Figure 8, where missed (red) planets are common among their
detected (black) neighbors.
Therefore, follow-up efforts sensitive to planets <1.5 R⊕,

even those with very modest period completeness, will readily
find additional planets. For example, a hypothetical survey of
200 TESS hosts sensitive to 1 R⊕ planets with 100%
completeness out to only 2.2 days will find an average of 11
additional planets (at least six, and as many as 16, within the
68% confidence interval). Especially promising for transit
follow-up efforts: there are enough missed planets that surveys
with 25% completeness at 40 days can expect to find at least
one rocky (1–1.5 R⊕) planet in the habitable zone (for an M4V
dwarf).
We point out the subtle but important distinction between the

number of planets missed per 200 host stars and the number of
those stars that host at least one missed planet. Among 200
hosts to at least one transiting planet, on average, 120 host only
that transiting planet. Among the remaining 80 hosts, 50 host
one missed planet, 20 host two, and 10 host three or more. The
odds are statistically distinct for hosts to one TESS-detected
planet versus multiple detected planets, as well as hosts to
planets with detected TTVs. For the sake of illustration, among
a sample of 200 systems where TESS detected at least two
transiting planets, now, on average, 95 host at least one
additional transiting planet. And, among a sample of 200
systems with a TESS-detected planet that also exhibits TTVs,
the odds are yet more favorable: 112 hosts out of 200 will have
additional unseen planets among them.

3.4. Underlying Occurrence Rate

We have employed the posterior distribution in f from
Ballard & Johnson (2016), where f in that work is the fraction
of transiting systems in the compact multiple configuration.
However, because selection bias favors the detection of these
systems, they are overrepresented among the Kepler host star
sample compared to their true underlying fraction among stars.
We aim to test for consistency with occurrence rate for compact
multiples orbiting M dwarfs derived by Muirhead et al. (2015),
though we approach the problem in different ways. First, the

Table 1
Summary of Planet Detections

Teff Må Rå Spectral Typea Nstars Nhosts Ndetected Nmissed Detections Reported
(K) (Me) (Re) (Stars) (Planets) (Planets) in S15

3200–3400 0.25 0.25 M3V, M4V 27,300 318±98 383±156 130±77 328
3400–3600 0.41 0.39 M2V 25,000 393±98 490±134 191±75 405
3600–3800 0.50 0.49 M1V 10,300 183±43 231±78 95±32 158
3800–4000 0.60 0.56 M0V 6300 134±40 170±49 70±33 113

All 68,900 1026±182 1274±241 484±172 1024

Notes. Estimated TESS yields from this work for stars 3200–4000 K. Folding compact multiples into the planet occurrence rate increases the expected yield by 20% as
compared to Sullivan et al. (2015; rightmost column). Here Nmissed refers to the number of additional transiting planets orbiting the star either below the detection
threshold or not transiting during the observational baseline.
a Approximate spectral types assigned from temperature from Boyajian et al. (2012), Table 12.

Figure 6. Detected planets for each spectral type as a function of planet radius
(top panel) and orbital period (bottom panel). The 1σ confidence interval for
the number of detections for the combined sample is shown with dashed lines.
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Table 2
Mock Sample of Full Systems in Which TESS Detected at Least One Transiting Planet

Star ID Planet ID Teff Vmag Kmag Distance R.A. Decl. Period a R i Mass Radius Ω Eccentricity Hill Δ Transit Detected
(K) (pc) (days) (deg) (M⊕) (R⊕) (deg)

1 1 3620 14.2 10.2 66.07 1.31 −24.9 2.01 11.7 2.46 12.1 3.2 48.3 0.103 11.13 1 1
1 2 3620 14.2 10.2 66.07 1.31 −24.9 3.56 17.1 1.76 3.3 1.4 161.6 0.014 13.53 1 1
1 3 3620 14.2 10.2 66.07 1.31 −24.9 6.37 25.2 1.47 2.2 1.3 11.1 0.047 21.88 1 0
1 4 3620 14.2 10.2 66.07 1.31 −24.9 16.51 47.6 2.53 2.1 1.2 297.9 0.044 22.14 0 −100
1 5 3620 14.2 10.2 66.07 1.31 −24.9 32.86 75.3 1.09 6.1 1.9 256.6 0.101 13.83 0 −100
1 6 3620 14.2 10.2 66.07 1.31 −24.9 56.94 108.6 1.99 7.4 2.2 59.1 0.025 15.38 0 −100
1 7 3620 14.2 10.2 66.07 1.31 −24.9 132.51 190.7 1.54 1.4 1.1 225.8 0.073 15.24 0 −100
1 8 3620 14.2 10.2 66.07 1.31 −24.9 184.97 238.2 0.11 2.0 1.2 294.5 0.033 10.92 1 0
2 1 3440 15.3 11.0 70.79 1.78 −71.9 2.44 14.9 0.91 9.8 2.7 137.1 0.067 51.32 1 1
2 2 3440 15.3 11.0 70.79 1.78 −71.9 87.01 161.7 0.24 0.4 0.8 215.4 0.454 51.32 0 −100
3 1 3230 15.1 10.4 23.44 1.79 −9.14 0.92 14.7 −3.06 9.3 2.6 200.8 0.071 18.01 1 1
3 2 3230 15.1 10.4 23.44 1.79 −9.14 2.42 28.0 −4.64 1.0 1.0 353.7 0.030 33.83 0 −100
3 3 3230 15.1 10.4 23.44 1.79 −9.14 8.68 65.5 −4.96 0.09 0.5 49.2 0.025 34.32 0 −100
3 4 3230 15.1 10.4 23.44 1.79 −9.14 16.43 100.2 −5.17 2.6 1.3 322.8 0.040 19.39 0 −100
3 5 3230 15.1 10.4 23.44 1.79 −9.14 37.43 173.4 −7.21 2.4 1.3 248.4 0.029 23.85 0 −100
3 6 3230 15.1 10.4 23.44 1.79 −9.14 109.09 353.9 −2.70 1.3 1.1 252.4 0.083 19.36 0 −100
3 7 3230 15.1 10.4 23.44 1.79 −9.14 188.22 509.0 −4.77 7.9 2.3 248.0 0.058 10.80 0 −100
4 1 3230 15.1 10.4 23.44 2.79 −8.14 2.53 28.8 0.14 5.9 1.8 341.8 0.141 16.39 1 1
4 2 3230 15.1 10.4 23.44 2.79 −8.14 6.88 56.1 −8.45 9.1 2.5 168.0 0.014 19.02 0 −100
4 3 3230 15.1 10.4 23.44 2.79 −8.14 34.32 163.7 −17.7 14.0 3.5 181.9 0.050 18.60 0 −100
4 4 3230 15.1 10.4 23.44 2.79 −8.14 95.38 323.6 −2.96 4.8 1.5 135.6 0.182 15.54 0 −100
5 1 3300 15.0 10.4 33.88 4.07 9.51 2.07 19.4 −5.61 4.0 1.5 336.0 0.090 20.53 0 −100
5 2 3300 15.0 10.4 33.88 4.07 9.51 6.36 41.1 12.43 6.6 2.0 118.7 0.209 19.65 0 −100
5 3 3300 15.0 10.4 33.88 4.07 9.51 21.05 91.3 0.24 9.9 2.7 344.4 0.206 20.70 1 1
5 4 3300 15.0 10.4 33.88 4.07 9.51 90.84 242.0 4.03 6.1 1.9 38.7 0.040 22.62 0 −100
6 1 3280 15.9 11.4 50.12 4.79 78.63 2.25 20.6 0.22 3.2 1.4 301.5 0.033 11.14 1 1
6 2 3280 15.9 11.4 50.12 4.79 78.63 4.00 30.2 2.05 6.6 2.0 72.4 0.076 14.86 0 −100
6 3 3280 15.9 11.4 50.12 4.79 78.63 9.92 55.3 2.77 1.3 1.1 260.5 0.011 14.21 0 −100
6 4 3280 15.9 11.4 50.12 4.79 78.63 15.33 73.9 0.17 5.0 1.6 139.0 0.053 12.19 1 0
6 5 3280 15.9 11.4 50.12 4.79 78.63 34.65 127.3 2.32 7.1 2.1 94.7 0.029 11.85 0 −100
6 6 3280 15.9 11.4 50.12 4.79 78.63 60.20 184.0 2.14 8.7 2.5 334.2 0.023 9.277 0 −100
6 7 3280 15.9 11.4 50.12 4.79 78.63 103.61 264.2 1.66 5.1 1.6 46.5 0.069 11.40 0 −100
6 8 3280 15.9 11.4 50.12 4.79 78.63 190.07 395.9 1.15 1.5 1.1 318.2 0.031 13.40 0 −100
7 1 3300 15.0 10.4 33.88 5.07 10.51 3.03 25.1 9.33 3.6 1.4 214.3 0.072 13.92 0 −100
7 2 3300 15.0 10.4 33.88 5.07 10.51 6.12 40.1 6.17 5.4 1.7 344.5 0.135 14.29 0 −100
7 3 3300 15.0 10.4 33.88 5.07 10.51 13.96 69.5 −0.69 6.8 2.0 350.9 0.061 12.35 1 1
7 4 3300 15.0 10.4 33.88 5.07 10.51 22.76 96.2 9.63 1.6 1.1 80.8 0.016 10.03 0 −100

Note. Typical yield of detected planets orbiting stars between 3200 and 4000 K observed by TESS in 2 minute cadence. We have also included additional planets orbiting the same star, both transiting (undetected) and
nontransiting. The Hill spacing quantity Δ is defined in Equation (1).

(This table is available in its entirety in machine-readable form.)

10

T
h
e
A
stro

n
o
m
ica

l
Jo
u
rn

a
l,

157:113
(15pp),

2019
M
arch

B
allard



definition of “compact multiple” in Muirhead et al. (2015) is
two or more planets interior to a 10 day orbit. Practically
speaking, if planets are spaced equally in log semimajor axis,
on average 5 M⊕, and dynamically stable, this corresponds to
systems with seven or more planets interior to 200 days. This
value is safely within the posterior distribution of number of
planets per star N1 found by Ballard & Johnson (2016): 40% of
the distribution lies at seven planets per star or greater. Second,
Muirhead et al. (2015) employed inverse detection efficiency
machinery and compared the number of stars hosting two or
more planets to the number hosting no planets. In comparison,
in Ballard & Johnson (2016), we ignored entirely systems
hosting no transiting planets. We employed forward modeling
to compare models to a different observable altogether: the
shape of the distribution in the number of transiting planets per
star. We invert the posterior in f to få as follows.

For each 104 planetary systems we generate from the
posterior on f (described in Section 2.2), we solve empirically
for the fraction of stars få in Population 1. We make the

assumption that every M dwarf in the sample hosts a planetary
system of some kind, whether in Population 1 or 2, so that the
fractions sum to 1. This assumption brings consistency between
the mean number of planets per star of 2.0–2.5 determined by
Morton & Swift (2014) and Dressing & Charbonneau (2015)
and our planetary mixture model in which some stars host five
planets and others host one, as we described in Ballard &
Johnson (2016). We record this fraction få at each step of the
MCMC chain. The lower panel of Figure 10 shows the
resulting distribution in få, as compared to results from
Muirhead et al. (2015). While compact multiples make up
45%±10% of the transiting systems found by Kepler, they
are only 15%±5% of all planetary systems orbiting early-M
dwarfs. This is consistent with the 15.9%±1.5% found by
Muirhead et al. (2015) for early-M dwarfs.
We compare in Figure 10 the resulting distributions in få

between the Kepler and TESS missions. The selection bias that
favored the detection of compact multiples from the Kepler
mission is still greater for NASA’s TESS mission. In the top

Figure 7. Resulting posterior distributions predicted for the Kepler mission at left (gray) and the TESS mission at right. In order from top to bottom: orbital eccentricity
of detected planets, mutual Hill spacing from neighboring planets, predicted density from Hill spacing per Dawson et al. (2016), and periods of planets showing TTVs.
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panel of Figure 10, we show the fraction of compact multis
within the sample of planet hosts for both Kepler and TESS.
Now the fraction f is 68%±12%, showing that the steep
period completeness for TESS will likely result in 5× the rate
of compact multiples among TESS hosts than the underlying
rate in nature.

3.5. Implications for Ensemble Eccentricity

Orbital eccentricity in M-dwarf planetary systems has
complicated implications for habitability. For the smallest stars,
even a modest eccentricity can induce a sterilizing “runaway
greenhouse” effect (Barnes et al. 2013). On the other hand,
modest eccentricity may be sufficient to induce plate tectonics in
the absence of radiogenic heating (Jackson et al. 2008). The

eccentricity of a planet also shapes how we interpret its
atmospheric signature (for a detailed summary, see Shields
et al. 2016).
TESS’s strong selection bias for shorter periods favors the

discovery of compact and generally dynamically cooler
systems, which we quantify in the previous section. This is
particularly true for the multiple-planet systems uncovered by
TESS, whose membership is almost certainly in this popula-
tion. Figure 11 summarizes this result, showing the cumulative
eccentricity distributions for both the single and multiple
transiting systems. A comparison between the TESS and Kepler
distributions shows the predicted lower eccentricity for TESS
planetary systems on average. This effect is strongest for the
multitransit systems from TESS, for which 80% of planets have

Figure 8. Left panel: representative sample of M-dwarf planetary systems in which TESS detected a single transiting planet. We depict only the transiting planets
orbiting each star. Black indicates TESS-detected planets, while red indicates planets that were missed. Planet radii are shown by the relative sizes of the circles, while
planets exhibiting TTVs are ringed in blue. Left panel: simple sample of systems in which TESS detected two or more transiting planets.
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orbital eccentricities less than 0.1. We overplot the empirical
result of Xie et al. (2016) for the Kepler singles and multiples,
measured from photometry. The eccentricities inferred for
Kepler singles from this study are lower than the average
measurement from Xie et al. (2016). However, we consider
here the subset of M dwarfs rather than the full Kepler sample
examined by Xie et al. (2016).
For the sake of comparison, we overplot an eccentricity

associated with runaway tidal heating on late-M dwarfs from
Barnes et al. (2013). There exists a range of cutoff eccentricities
for this effect, depending upon bulk planet composition,
atmospheric composition, and assumptions about exactly how
the dynamical heating occurs. For this reason, the cutoff shown
here is illustrative rather than definitive. We have depicted the
cutoff eccentricity of 0.15 for the sake of comparison with the
cumulative eccentricity distributions. For higher orbital eccen-
tricities, planets 1 M⊕ and larger in the habitable zone of 0.25
Me stars are predicted to experience a runaway Venus effect
(Barnes et al. 2013). We note that TESS planets are safer from
this effect, on average, with the planets in multiplanet systems
safest (with only 10% possessing orbital eccentricities greater
than 0.15).

3.6. TTVs

While TESS itself may only rarely have the observational
baseline to observe TTVs, we can predict their frequency
among TESS-detected planets. Employing the empirical TTV
likelihood as a function of the number of transiting planets
from Xie et al. (2014), we predict the TTV likelihood among
the TESS transiting planets. Figure 12 shows a comparison of
the TTV fraction for both missions. In the Kepler sample, the
overall rate of 5% reflects the mixture of planetary systems to
which compact multis contribute only half. We show the TTV
occurrence fraction from both populations in green (dynami-
cally cool) and orange (dynamically hot), where the height of
the histogram reflects the contribution of that population to the
total number of planets. The TESS completeness, in contrast,
heavily favors the types of compact multiples that exhibit
TTVs. For TESS, these types of planetary systems will

Figure 9. Top panel: for every 200 TESS host stars, the number of transiting
planets below TESS’s detection threshold as a function of planetary radius and
period. Bottom panels: Poisson distributions in number of missed planets per
200 host stars for two example bins, indicted by (a) and (b) in the top panel.

Figure 10. Top panel: fraction of “compact multiple”-type planetary systems in
the underlying population, in the Kepler yield of detected planetary systems,
and in the predicted TESS yield of detected planetary systems. Bottom panel:
comparison between the underlying fraction of “compact multiple”-type
planetary systems inferred from this work and from Muirhead et al. (2015).

Figure 11. Predicted cumulative eccentricity distribution for both TESS (blue)
and Kepler (red) missions, where planets in a system with a single detected
planet (solid line) are shown separately from planets in systems with multiple
detected planets (dashed line). We have overplotted in gray the empirical
eccentricities measured for Keplerʼs singles (dashed) and multis (solids) from
Xie et al. (2016) for comparison.
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comprise a likely 70% of the yield, as we describe in the
previous section. The fact that the final TTV rate is similar to
Kepler’s is due to a subtlety. Though compact multis are
favored for detection by TESS, only one or two planets are
typically detected in these systems, even if three or four transit.
In comparison, consider the three and four transiting planet
systems detected by Kepler. With the higher TTV probability
per planet, the fact that there are three or four planets each with
this higher probability (as opposed to one or two) skews the
overall TTV likelihood higher. The trade-off between these two
phenomena results in a TTV fraction similar to Keplerʼs,
despite TESS’s strong preference for compact multiples in
which TTVs are more common.

3.7. Planet Bulk Density

The third panel of Figure 7 shows the posterior distribution
in theoretical density assigned from mutual Hill spacing per
Dawson et al. (2016). Only planets in systems for which Hill
spacing is applicable (those with two or more planets)
contribute to this distribution. We have indicated with cross-
hatching the densities that are too high or low to be included in
the Dawson et al. (2016) metric. The higher fraction of compact

multiples within TESS and their accompanying close orbital
spacing map to a predicted lower density, on average. Drawing
from the entire predicted TESS yield for M-dwarf systems with
two or more planets, we find 0.3 0.1

0.3r = -
+¯ , which is likely 70%

of the TESS planetary systems. The corresponding mean
density for Kepler systems with two or more planets is

0.9 0.4
0.6r = -

+¯ . This prediction for the average fluffiness of TESS
planets will ultimately be tested with radial velocity follow-up
and transmission spectroscopy; we leave the specific implica-
tions for those follow-up efforts for future work.

4. Summary and Conclusions

Using the injected and detected samples published by
Sullivan et al. (2015), we have extracted a completeness
function with planet radius and orbital period for TESS M
dwarfs. We first demonstrate that the application of this
completeness function to the Sullivan et al. (2015) injected
planet sample correctly recovers the planet detections from that
work. We then reapply the completeness function, assuming a
different planet occurrence rate. Rather than assuming two to
three planets per star, we assume a mixture model with two
types of planetary systems. One type contains more than five
closely aligned planets (around 20% of stars, per Section 3.4),
and one contains one planet or two planets with high mutual
inclination respective to one another. We return to our
enumerated list of goals from Section 1 to summarize our
findings on each.

1. We predict that TESS will uncover 1274±241 planets
orbiting 1026±182 stars between 3200 and 4000 K, a
factor of 1.2 more than predicted in Sullivan et al. (2015;
Section 3.1). The error budget on the number of
detections is dominated by uncertainty on the underlying
fraction of compact multiples in nature.

2. Even given the typical duration of 27 days per star, we
predict that TESS will detect two or more planets around
189±66 stars among the hosts above. The approxi-
mately 20% contribution of multis to the total host star
budget is similar to Kepler M dwarfs. The high rate of
compact multiples indicates that TESS will even detect
three or more planets around 45±22 stars (Section 3.2).

3. Among 200 typical TESS M-dwarf host stars, an average
of 250 planets will be detectable in the mission data
themselves. We predict that half that number lurk below
the mission sensitivity: 93±17 planets per 200 host
stars. Many of these planets will be readily detectable
from ground-based surveys and space-based campaigns
(Section 3.3)

4. We confirm the compact multiple rate (defined as two or
more planets with orbital periods <10 days) among M
dwarfs measured previously in the literature. We find this
rate to be 15%±5% among early-M dwarfs, as
compared to 15.9%±1.5% (Muirhead et al. 2015) using
a different technique. While compact multiple hosts are
not the majority in nature, the relative ease of their
detection makes them overrepresented in transit surveys:
they are 45%±10% of Kepler-detected planet hosts, and
we predict that they will be 68%±12% of TESS-
detected planet hosts.

5. By virtue of the lower average eccentricities of planets in
multiple-planet systems, we predict that the average
orbital eccentricity of planets detected by TESS will be

Figure 12. Top panel: posterior distribution for the fraction of Kepler planets
(black) exhibiting TTVs, as defined by “Case 3” in Xie et al. (2014). The
separate distributions for the dynamically cool (green) and dynamically hot
(orange) populations have been scaled to reflect their relative contributions to
the number of planets. Bottom panel: same distributions predicted for the TESS
sample.
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correspondingly lower than the average for Kepler. For
systems in which TESS detects two or more transiting
planets, 80% of planets will have orbital eccentricities
less than 0.1.

6. Despite the higher fraction of compact multiples in the
TESS yield, the number of planets detected by TESS that
exhibit TTVs (as defined by Xie et al. 2014) will be
similar to the overall 5% observed for Kepler. These
TTVs will not be detectable by TESS itself as for Kepler,
but we predict that the underlying rate among detected
planets will be similar.

7. Employing the planet formation theory of Dawson et al.
(2016) linking adjacent planet spacing to planet bulk
density, we predict that TESS planets will be fluffier, on
average. We apply this metric to systems with at least two
planets to find 0.3 0.1

0.3r = -
+¯ among TESS planets, as

compared to 0.9 0.4
0.6r = -

+¯ for Kepler planets (Section 3.7.)

We conclude by reemphasizing the ground- and space-based
opportunity for photometric follow-up specific to planet
discovery. Around stars for which TESS detects one or more
planets, we predict a wealth of additional transiting planets
present but undetectable in the TESS light curves (Section 3.3).
We take as an example a hypothetical survey of 200 TESS host
stars sensitive to 1 R⊕ planets and with 100% completeness out
to only 2.2 days. Such a study will detect 11±5 additional
planets. The odds improve yet more if TESS has detected two
or more planets around the star or if one of the planets exhibits
TTVs. An extended Spitzer mission (as detailed by Yee et al.
2017) would have the photometric sensitivity time baseline to
be sensitive to rocky planets, even in the habitable zone of
TESS hosts. While we predict that TESS itself will detect 4 2

3
-
+

planets <1.25 R⊕ with orbital periods 20days <P<40 days,
an additional 21±7 such planets will orbit known TESS hosts
to another transiting planet but elude detection by TESS proper.
An extended Spitzer mission may be singularly suited for their
discovery.

The soon-to-be-launched CHaracterising ExOPlanet Satel-
lite (CHEOPS; Fortier et al. 2014) will gather high-precision
transit observations to constrain (among many objectives)
planetary atmospheres and formation. The telescope, in a
geocentric orbit, will continuously point at a single target for
typically 6–12 hr; however, it can achieve stares of a few
weeks’ duration (Broeg et al. 2013) and, in principle, could also
readily detect additional planets. Additionally, ground-based
photometric surveys such as MEarth (Nutzman & Charbonneau
2008) and TRAPPIST (Gillon et al. 2011) have already
demonstrated the ability to detect planets <2 R⊕ orbiting M
dwarfs (Charbonneau et al. 2009; Berta-Thompson et al. 2015;
Dittmann et al. 2017; Gillon et al. 2017). The forthcoming
wealth of TESS planets portends a strong synergy with follow-
up efforts.

We thank Philip Muirhead, Joshua Winn, and particularly
John Johnson for discussions that immeasurably improved this
manuscript. S.B. is funded by the MIT Torres Fellowship for
Exoplanet Science.
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