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Abstract

We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet
systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and
eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo
simulations based on N-body integration, and an analytic fitting approach. Mass measurements of 49 planets,
including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and
radius measurements, we infer the masses of planets’ gaseous envelopes for both our TTV sample and transiting
planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent
degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are
generally small, typically a few percent, but in many instances are nonzero.
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1. Introduction

The Kepler mission’s census of exoplanetary systems has
provided us with a statistical picture of the properties of
planetary systems (Borucki et al. 2010). Small planets with
radii in the range R R1 4p = Å– on short-period orbits, P 100<
days, are among the most abundant, occurring around roughly
half of Sun-like stars (e.g., Fressin et al. 2013; Petigura et al.
2013). The distributions of planet sizes and periods measured
by Kepler provide important constraints for theories of planet
formation and evolution. Mass measurements, which constrain
planets’ compositions, and eccentricity measurements, which
reveal the current dynamical states of planetary systems, are
also essential clues for understanding formation and evolution
processes.

The radial velocity (RV) method has provided the majority of
exoplanet mass and eccentricity measurements to date (e.g.,
exoplanets.org; Wright et al. 2011). Mass measurements of
transiting super-Earth and sub-Neptune planets are of particular
interest given the ubiquity of such planets and their absence from
our own solar system. Many sub-Jovian transiting planets have
had their masses measured through RV follow-up (e.g., Bakos
et al. 2010; Bordé et al. 2010; Borucki et al. 2010; Hartman
et al. 2011; Gautier et al. 2012; Gilliland et al. 2013; Pepe et al.
2013; Alonso et al. 2014; Barros et al. 2014; Dumusque
et al. 2014; Kostov et al. 2014; Marcy et al. 2014; Moutou et al.
2014; Dressing et al. 2015; Esteves et al. 2015; Gettel
et al. 2016; Sinukoff et al. 2016). These efforts have yielded
important constraints on the mass–radius relationship of super-
Earth and sub-Neptune planets: Weiss & Marcy (2014) infer a
mass–radius relationship of planets smaller than R4 Å using
available RV mass determinations, supplemented with a handful
of masses determined from transit timing. Rogers (2015) uses
the sample of Kepler planets with Keck HIRES RV follow-up to
infer that planets transition from mainly rocky to volatile-rich
compositions above a size of R1.6 Å. However, the RV method
is of limited applicability to Keplerʼs many sub-Neptune planets
since the RVs induced by such planets often require intense
follow-up efforts to detect. With a handful of exceptions, RV

mass determinations of sub-Neptunes have been limited to
planets with orbital periods shorter than 20 days.
The limitations of RV are even more acute for measuring

sub-Neptunes’ eccentricities since high signal-to-noise ratios
are required to accurately infer eccentricities with RV (Shen &
Turner 2008; Zakamska et al. 2011). Eccentricities of transiting
planets can also be measured by modeling transit light curves.
However, light-curve modeling yields useful constraints only
in special circumstances: giant planets with large eccentricities
(Dawson & Johnson 2012), planets with occultation detections
(Shabram et al. 2016), or host stars with strong density
constraints from asteroseismology (Kipping 2014). Statistical
analyses of the transit durations of planets around well-
characterized host stars have been used to constrain planet
samples’ overall eccentricity distributions (Van Eylen &
Albrecht 2015; Xie et al. 2016), but inferring the eccentricities
of individual sub-Neptune planets from light-curve modeling
remains difficult.
Transit timing variations (TTVs) are a powerful tool for

measuring masses and eccentricities in multiple-transiting
systems (Agol et al. 2005; Holman 2005). The large TTV
amplitudes induced in planets near mean motion resonances
(MMRs) can probe the masses and eccentricities of small
planets at relatively long orbital periods, which would
otherwise be difficult or impossible to measure via the RV
method. However, inverting TTVs to infer planet properties
poses a difficult parameter inference problem: it requires fitting
a large number of parameters, often with strong degeneracies,
to noisy data. Statistical analyses of samples of TTV systems
can overcome some of these difficulties (Wu & Lithwick 2013;
Hadden & Lithwick 2014). Alternatively, the parameter
inference challenge can be addressed with Markov chain
Monte Carlo (MCMC) simulations when fitting TTVs of
individual systems. MCMC is well suited for high-dimensional
parameter inference problems and has been used frequently in
TTV studies (e.g., Sanchis-Ojeda et al. 2012; Huber et al. 2013;
Masuda et al. 2013; Schmitt et al. 2014; Jontof-Hutter et al.
2015, 2016; Hadden & Lithwick 2016; Mills et al. 2016).
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While MCMC can efficiently sample planet masses and
orbits consistent with TTV observations, interpreting MCMC
results is often complicated by strong parameter correlations
and sensitivity to priors. Analytic TTV formulae identify
degeneracies inherent to inverting TTVs and aid the inter-
pretation of N-body MCMC results. Components of the TTV
signal responsible for mass and eccentricity constraints can be
identified with analytic formulae and lend support to the
robustness of N-body results to different prior assumptions.

In this paper we compute MCMC fits to the TTVs of 55
Kepler multiplanet systems exhibiting significant TTVs, 33 of
which do not have N-body TTV fits reported previously in the
literature. In addition, our work provides a uniform treatment of
TTV systems that have previously been analyzed elsewhere. We
complement our MCMC fits, which rely on N-body integrations,
with an analytic approach to TTV modeling. The paper is
organized as follows: We review analytic TTV formulae in
Section 2 and describe our fitting methods in Section 3. Results
of our fits are described in Section 4: Section 4.1 presents our
mass and eccentricity measurements, and in Section 4.2 we
provide a comparison with past results. We discuss our results in
Section 5: in Section 5.1 we use planet radii and masses derived
from our TTV fits to infer the masses of planets’ gaseous
envelopes, and in Section 5.2 we briefly discuss implications of
the eccentricities inferred from TTVs. We conclude in Section 6.

2. Analytic TTV

2.1. The Analytic TTV Formula

A number of authors have derived analytic formulae to
approximate TTVs using perturbative methods (e.g., Agol
et al. 2005; Nesvorný & Morbidelli 2008; Nesvorný 2009;
Lithwick et al. 2012; Deck&Agol 2015, 2016; Agol &Deck 2016;
Hadden & Lithwick 2016; Nesvorný & Vokrouhlický 2016).
Analytic formulae aid the interpretation of N-body fitting results
by elucidating degeneracies and identifying TTV features that
constrain planet masses and eccentricities. In this paper we apply
the analytic formulae derived in Hadden & Lithwick (2016,
hereafter Paper I) as part of our analysis of each system’s TTVs.
The main features of these formulae are summarized below.

For clarity, we focus our discussion on a planet near a j:j−1
first-order MMR with an exterior perturber. Other configura-
tions are discussed in Section 2.3 The analytic formulae
express a planet’s TTV as a sum of harmonic terms:
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where the three successive terms are called “fundamental,”
“second-harmonic,” and “chopping” TTVs, and “c.c.” denotes
complex conjugate. The frequencies of the harmonics are
expressed in terms of the “super-period,” Psup, and synodic
period, Psyn. These depend only on the period of the planet and
its perturber and hence may be considered to be “known” for
transiting planets. The dependence on masses and eccentricities
is contained entirely in the amplitudes tdˆ , tdˆ , and tdˆ . Since
the first two of these are complex numbers and the third is real,
there are in total five observables that can be used to infer
masses and eccentricities. (The coefficients Ck depend only on
the period ratio of the two planets.) The fundamental TTV is

typically the dominant component. Its complex amplitude
depends on mass and eccentricity and is given by

t A B , 2*d m= ¢ +ˆ ( ) ( )

where A and B are coefficients that depend only on the planets’
periods, m¢ is the perturber’s planet–star mass ratio, and
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where z and z¢ are the free complex eccentricities3 of the inner
and outer planet, and the fi are coefficients that depend only on
the planets’ period ratio (see Paper I).

2.2. Degeneracies

In attempting to extract planet parameters from the dominant
(fundamental) harmonic of the TTV, there are at least two kinds
of degeneracies (Lithwick et al. 2012). The first is between the
two planets’ individual complex eccentricities—the eccentricity–
eccentricity degeneracy. Since the fundamental TTV depends on
the planets’ eccentricities only through the single linear
combination  , the z and z¢ of each planet are not separately
measurable. This degeneracy persists even with the inclusion of
the chopping and second-harmonic terms.
The second degeneracy is between m¢ and ∣ ∣, which we call

the mass–eccentricity degeneracy: a smaller m¢ can be
compensated for by a larger ∣ ∣ (Equation (2)). A modest
uncertainty in ∣ ∣ will often result in a large uncertainty in m¢
because typically B A in Equation (2).
The mass–eccentricity degeneracy can be broken if the

chopping component can be resolved in the TTV signal
(Nesvorný & Vokrouhlický 2014; Deck & Agol 2015). The
chopping TTV is insensitive to eccentricities and provides a
measurement of the perturbing planet’s mass. In fact, the
chopping TTV amplitude can simply be equated to the
perturber’s planet–star mass ratio,

t , 5d m= ¢ˆ ( )

with appropriate choice of scaling for the Ck coefficients in
Equation (1). If a perturbing planet’s mass can be measured
from the chopping TTV, then the fundamental TTV amplitude
gives the planets’ combined eccentricity (Equation (2)).
The mass–eccentricity degeneracy may alternatively be

broken by detecting the second-harmonic component, the
amplitude of which is given by

t D E , 62* * d m= ¢ +ˆ ( ) ( )

with coefficients D and E depending only on planet periods.4

Measuring both a planet’s fundamental and second-harmonic

3 A planet’s total complex eccentricity, eeiv, is the sum of its free eccentricity
plus a forced component induced by the forcing of perturbing companions.
Forced components of the total eccentricity are typically much smaller than the
free eccentricities we infer, so that the difference between free and total
complex eccentricities is usually negligible.
4 As shown in the Appendix of Paper I, the fact that Equation (6) depends on
z and z¢ only through the combination  is an approximation, albeit an
excellent one. The approximation breaks down in the case of planets near the
2:1 MMR, allowing second-harmonic TTVs to constrain individual
eccentricities.
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TTV can break the degeneracy between mass and eccentricity
since the functional dependence of each component on  is
different. Most of the TTV systems analyzed in this paper have
small eccentricities so that we typically infer upper limits on
combined eccentricity from the lack of substantial second-
harmonic TTVs.

2.3. Other Configurations

With minor modifications, Equation (1) also describes the
TTVs of planets subject to an interior perturber. Thus, breaking
the mass–eccentricity degeneracy for one planet determines the
pair’s  and thereby automatically breaks the degeneracy for
both planets.

Equation (1) without the fundamental TTV term also
describes the TTVs of planets near a j:j−2 second-order
MMR. Proximity to a second-order resonance enhances the tdˆ
term in Equation (1), which in this context we refer to as the
“second-order resonance” component rather than a second-
harmonic component. TTVs near second-order MMRs exhibit

essentially the same mass–eccentricity and eccentricity–eccen-
tricity degeneracies as planets near first-order MMRs, and the
mass–eccentricity degeneracy can be broken by measuring a
chopping component in either planet’s TTV.
We find that, in practice, measuring (only) fundamental

TTVs of three or more planets generally does not resolve any
of the degeneracies inherent to the two-planet case.

3. TTV Fit Methods

We analyze TTVs of 145 planets from 55 different Kepler
systems. Figure 1 shows the TTV systems fit in this paper. Our
analysis is based on transit times computed by Rowe et al.
(2015) from long-cadence Kepler data spanning Quarters 1–17.
Each system is fit with both N-body MCMC simulations and
the analytic TTV formulae. Systems are discussed individually
in the Appendix. Results for their masses and eccentricities are
summarized in Tables 1 and 2.
Our MCMC simulations sample the most likely planet

masses and orbital elements of a multiple-transiting system
given the planets’ transit times by using N-body integrations.

Figure 1.Multiplanet TTV systems fit in this paper. Planets in each system are plotted along the vertical axis according to their periods. The (outer) radii of the plotted
circles are proportional to observed radii. The radii of planets with robust masses greater than M1 Å and radii R R8p < Å are shown decomposed into an Earth-
composition core (orange) and H/He envelope (blue) using the results of Section 5.1. Planets larger than R R8p > Å with robust masses are shown in blue without a
core, and planets with robust masses smaller than M1 Å are entirely orange. Planets that do not have robustly constrained masses are shown in gray.
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Specifically, for a system of N planets our MCMC samples the
posterior distribution of each planet’s planet-to-star mass ratio,

im , eccentricity vector components h e cosi i ivº ( ) and
k e sini i ivº ( ), initial osculating period Pi, and time of first
transit Ti, where i N1, 2, ,= ¼ . The complete details of our
MCMC implementation are given in Paper I.

As in Paper I, in order to assess how robustly planet properties
are constrained by the TTVs, we run two MCMC simulations for
each system we fit with two different priors for masses and
eccentricities. Our first (default) prior is logarithmic in planet
masses (dP dM M 1µ - ) and uniform in eccentricities
(dP de const.µ ). Our second (high-mass) prior is uniform in
planet masses (dP dM const.µ ) and logarithmic in eccentricity
(dP de e 1µ - ). (Uniform sampling in the variables e cos v( )
and e sin v( ) results in dP de eµ , so the default and high-mass
prior probabilities are implemented by including a factor of e1
and e1 2, respectively, when computing the prior probability.)
We will refer to the posterior distributions computed with the
respective priors as the default and high-mass posteriors. Inferred
planet masses are classified as “robust” if the 1σ credible region

of the default posterior excludes 0m = and includes the peak of
the high-mass posterior. Masses of 49 of the 145 planets are
classified as robust. Twelve planets with robust masses do not
have N-body fits previously reported in the literature.
We have chosen our two MCMC priors to weight toward

opposite extremes of the mass–eccentricity degeneracy in order to
assess the significance of this degeneracy in each system.
Additionally, both priors are chosen to be “uninformative” or
broad and do not rely on any theoretical predictions for planet
compositions or eccentricities. Aside from these considerations,
our adopted priors are arbitrary, and any number of other priors
could be reasonably advocated.5 It is possible that a different
choice of priors could affect the inferred masses and eccentricities
significantly. Instead of exploring a wide variety of priors with

Table 1
Masses from TTVs

Planet Period Radius Star Mass Mass Density Mass Density Reference
(Default) (Default) (High Mass) (High Mass)

(days) (RÅ) (M) (MÅ) (g cm 3- ) (MÅ) (g cm 3- )

Kepler-9 b* 19.243 8.2 0.7
1.0

-
+ 1.0 0.1

0.1
-
+ 43.5 3.3

2.7
-
+ 0.4 0.1

0.1
-
+ 43.4 3.2

2.7
-
+ 0.4 0.1

0.1
-
+ Ho10, Dr14, Bo14

Kepler-9 c* 38.969 8.3 0.9
0.8

-
+ ... 29.9 2.3

1.8
-
+ 0.3 0.1

0.1
-
+ 29.9 2.2

1.9
-
+ 0.3 0.1

0.1
-
+ Ho10, Dr14, Bo14

Kepler-11 b 10.304 1.9 0.1
0.1

-
+ 0.9 0.1

0.1
-
+ 0.7 0.2

0.3
-
+ 0.6 0.2

0.3
-
+ 1.2 0.5

0.6
-
+ 1.0 0.5

0.5
-
+ Li11, M12, Li13, Bo14

Kepler-11 c 13.025 3.0 0.2
0.2

-
+ ... 1.8 0.5

0.9
-
+ 0.4 0.1

0.2
-
+ 3.4 1.5

1.4
-
+ 0.7 0.3

0.4
-
+ Li11, M12, Li13, Bo14

Kepler-11 d* 22.687 3.3 0.2
0.2

-
+ ... 6.8 0.8

0.7
-
+ 1.0 0.2

0.2
-
+ 6.9 0.8

0.8
-
+ 1.0 0.2

0.3
-
+ Li11, M12, Li13, Bo14

Kepler-11 e* 31.995 4.0 0.3
0.2

-
+ ... 6.7 1.0

1.2
-
+ 0.6 0.1

0.2
-
+ 7.2 1.0

1.1
-
+ 0.7 0.1

0.1
-
+ Li11, M12, Li13; Bo14

Kepler-11 f* 46.686 2.6 0.2
0.2

-
+ ... 1.7 0.4

0.5
-
+ 0.5 0.2

0.2
-
+ 1.9 0.4

0.5
-
+ 0.6 0.2

0.2
-
+ Li11, M12, Li13, Bo14

Kepler-18 c 7.642 5.0 0.3
0.3

-
+ 0.9 0.02

0.1
-
+ 12.9 6.6

5.6
-
+ 0.5 0.3

0.3
-
+ 21.6 4.0

3.2
-
+ 1.0 0.3

0.2
-
+ Co11

Kepler-18 d* 14.859 6.0 0.4
0.4

-
+ ... 14.9 4.2

1.8
-
+ 0.3 0.1

0.1
-
+ 16.2 1.5

1.3
-
+ 0.4 0.1

0.1
-
+ Co11

Kepler-23 b 7.107 1.8 0.1
0.1

-
+ 1.0 0.1

0.1
-
+ 1.3 0.5

1.3
-
+ 1.2 0.5

1.4
-
+ 4.7 1.9

1.9
-
+ 4.2 1.6

2.3
-
+ L

Kepler-23 c 10.742 3.2 0.2
0.2

-
+ ... 2.2 0.9

2.8
-
+ 0.3 0.1

0.5
-
+ 9.1 3.9

3.4
-
+ 1.3 0.4

0.8
-
+ L

Kepler-23 d 15.274 2.3 0.1
0.1

-
+ ... <2.4 <1.1 4.9 3.5

3.6
-
+ 2.1 1.5

1.8
-
+ L

Notes. Values and uncertainties reflect the peak posterior probabilities and 68.3% credible regions. The peak posterior probabilities are computed by finding the
maximum likelihood of a kernel density estimate computed from the posterior sample. Credible regions are so-called “highest posterior density intervals”: the smallest
parameter range containing 68.3% of the posterior sample. In columns (5)–(8), 68.3% upper limits are listed for planets with masses that are consistent with 0. Planets
with robustly inferred masses are indicated with a “

*
” (see Section 3). References are listed in column (9) for planets with masses previously inferred from N-body

TTV fits or RV observations. Planet radii, masses, and densities in columns (3), (5), (6), and (7) incorporate the following: planet–star mass ratios sampled from our
MCMC posteriors, planet–star radius ratios from the light-curve fit posteriors of Rowe et al. (2015), and randomly generated samples of host star properties. For the
latter, samples of host star radii, masses, and densities are generated based on values reported in the Kepler stellar Q1–17 data release DR25, hosted on the exoplanet
archive. For each Kepler system, random samples of stellar mass, radius, and density are drawn from skew-normal distributions (Azzalini 1985), with scale and shape
parameters chosen to match the reported 1s error bars. For some planets, the Rowe et al. (2015) light-curve fit posteriors are missing or contain a large number of
points with impact parameters b 1> and are clearly pathological. The radii of these planets are computed using planet–star radius ratios from other sources as
indicated.
a Planet–star radius ratio from Borucki et al. (2011).
b Planet–star radius ratio from Fabrycky et al. (2012).
c Planet–star radius ratio from Masuda (2014).
d Planet–star radius ratio from Steffen et al. (2013).
e Planet–star radius ratio from Mills et al. (2016).
f Planet–star radius ratio from Rowe et al. (2014).
g Planet–star radius ratio from Kepler KOI Q1–17 data release DR24, hosted on the Exoplanet Archive.

(This table is available in its entirety in machine-readable form.)

5 The interested reader can easily explore other priors via weighted
resampling of the posterior samples. As a possible extension to this work,
the posterior samples can be incorporated in the hierarchical modeling
approach described by Hogg et al. (2010) to infer a prior (see also
Rogers 2015). Together, the default and high-mass posteriors provide samples
over a broad range of parameter space, as required by this method. Our
posterior samples are available online (doi:10.5281/zenodo.162965).
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Table 2
Combined Eccentricities of Adjacent TTV Planet Pairs

Planet Pair Resonance Δ ∣ ∣ proj ∣ ∣ proj
(Default) (Default) (High Mass) (High Mass)

Kepler-9 b/c 2:1 0.0126 0.083 0.001
0.001

-
+ 0.083 0.001

0.001
-
+ 0.083 0.001

0.001
-
+ 0.083 0.001

0.001
-
+

Kepler-11 b/c 5:4 0.0113 0.028 0.01
0.006

-
+ 0.028 0.01

0.006
-
+ 0.01 0.004

0.008
-
+ 0.01 0.004

0.008
-
+

Kepler-11 c/d 5:3 0.0451 0.013 0.009
0.015

-
+ 0.001 0.008

0.023
-
+ 0.001 0.001

0.008
-
+ 0.00 0.002

0.009
-
+

Kepler-11 d/e 7:5 0.0074 0.009 0.001
0.001

-
+ 0.009 0.002

0.001
-
+ 0.009 0.001

0.001
-
+ 0.009 0.001

0.002
-
+

Kepler-11 e/f 3:2 −0.0272 0.018 0.004
0.005

-
+ 0.018 0.004

0.006
-
+ 0.016 0.004

0.005
-
+ 0.016 0.004

0.004
-
+

Kepler-18 c/d 2:1 −0.0278 0.001 0.001
0.005

-
+ 0.001 0.002

0.006
-
+ 0.002 0.001

0.0004
-
+ 0.002 0.001

0.001
-
+

Kepler-23 b/c 3:2 0.0077 0.017 0.006
0.026

-
+ 0.025 0.013

0.018
-
+ 0.011 0.003

0.005
-
+ 0.011 0.003

0.005
-
+

Kepler-23 c/d 7:5 0.0156 0.021 0.014
0.013

-
+ 0.002 0.018

0.022
-
+ 0.009 0.009

0.003
-
+ 0.009 0.011

0.004
-
+

Kepler-24 b/c 3:2 0.0095 0.035 0.014
0.025

-
+ 0.035 0.014

0.025
-
+ 0.014 0.004

0.006
-
+ 0.014 0.004

0.006
-
+

Kepler-24 c/e 3:2 0.0269 0.038 0.018
0.014

-
+ 0.037 0.024

0.013
-
+ 0.006 0.006

0.006
-
+ 0.001 0.001

0.011
-
+

Kepler-25 b/c 2:1 0.0195 0.009 0.008
0.043

-
+ 0.009 0.008

0.044
-
+ 0.002 0.001

0.005
-
+ 0.003 0.003

0.004
-
+

Kepler-26 b/c 7:5 0.0032 0.013 0.001
0.001

-
+ 0.013 0.001

0.001
-
+ 0.01 0.001

0.001
-
+ 0.01 0.001

0.001
-
+

Kepler-27 03/b 2:1 0.1713 0.009 0.008
0.082

-
+ 0.006 0.033

0.071- -
+ 0.006 0.002

0.003
-
+ 0.005 0.003

0.003
-
+

Kepler-27 b/c 2:1 0.0215 0.034 0.013
0.022

-
+ 0.034 0.012

0.022
-
+ 0.019 0.005

0.007
-
+ 0.02 0.005

0.007
-
+

Kepler-28 b/c 3:2 0.0132 0.038 0.019
0.017

-
+ 0.038 0.018

0.018
-
+ 0.005 0.001

0.012
-
+ 0.008 0.005

0.009
-
+

Kepler-29 b/c 9:7 −0.0005 0.014 0.003
0.014

-
+ 0.013 0.003

0.014
-
+ 0.012 0.001

0.002
-
+ 0.012 0.001

0.002
-
+

Kepler-30 b/c 2:1 0.0287 0.039 0.0003
0.0003

-
+ 0.039 0.0003

0.0003
-
+ 0.039 0.0003

0.0003
-
+ 0.039 0.0003

0.0003
-
+

Kepler-31 b/c 2:1 0.0219 0.008 0.005
0.082

-
+ 0.01 0.009

0.08
-
+ 0.005 0.001

0.004
-
+ 0.005 0.002

0.003
-
+

Kepler-31 c/d 2:1 0.0279 0.007 0.005
0.024

-
+ 0.004 0.005

0.024
-
+ 0.001 0.001

0.003
-
+ 0.001 0.001

0.003
-
+

Kepler-32 b/c 3:2 −0.0113 0.096 0.043
0.011

-
+ 0.094 0.044

0.01
-
+ 0.004 0.001

0.004
-
+ 0.004 0.001

0.004
-
+

Kepler-33 c/d 5:3 −0.0084 0.029 0.015
0.014

-
+ 0.024 0.018

0.021
-
+ 0.016 0.008

0.009
-
+ 0.016 0.01

0.009
-
+

Kepler-33 d/e 3:2 −0.0269 0.008 0.004
0.004

-
+ 0.007 0.003

0.005
-
+ 0.009 0.004

0.003
-
+ 0.008 0.004

0.004
-
+

Kepler-33 e/f 9:7 0.004 0.006 0.002
0.002

-
+ 0.006 0.002

0.002
-
+ 0.006 0.002

0.002
-
+ 0.006 0.003

0.002
-
+

Kepler-36 b/c 7:6 0.0048 0.02 0.0005
0.0004

-
+ 0.02 0.0004

0.0005
-
+ 0.02 0.0003

0.0003
-
+ 0.02 0.0004

0.0003
-
+

Kepler-48 b/c 2:1 0.0123 0.003 0.003
0.16

-
+ 0.08 0.082

0.074
-
+ 0.001 0.001

0.001
-
+ 0.0004 0.0005

0.0005
-
+

Kepler-49 b/c 3:2 0.0099 0.003 0.0004
0.001

-
+ 0.003 0.001

0.001
-
+ 0.004 0.0004

0.0004
-
+ 0.004 0.001

0.0004
-
+

Kepler-51 b/c 2:1 −0.0553 0.041 0.011
0.014

-
+ 0.041 0.011

0.014
-
+ 0.033 0.009

0.012
-
+ 0.033 0.009

0.012
-
+

Kepler-51 c/d 3:2 0.0172 0.004 0.001
0.002

-
+ 0.004 0.002

0.002
-
+ 0.004 0.002

0.001
-
+ 0.004 0.002

0.001
-
+

Kepler-52 b/c 2:1 0.04 0.151 0.053
0.091

-
+ 0.154 0.056

0.084
-
+ 0.066 0.019

0.029
-
+ 0.066 0.019

0.029
-
+

Kepler-52 c/d 2:1 0.1122 0.129 0.052
0.051

-
+ 0.115 0.043

0.06
-
+ 0.056 0.026

0.026
-
+ 0.052 0.025

0.028
-
+

Kepler-53 b/c 2:1 0.0338 0.133 0.062
0.042

-
+ 0.123 0.055

0.049
-
+ 0.017 0.005

0.009
-
+ 0.018 0.006

0.007
-
+

Kepler-53 d/b 2:1 −0.0438 0.055 0.039
0.052

-
+ 0.043 0.073

0.046
-
+ 0.007 0.005

0.008
-
+ 0.005 0.005

0.007
-
+

Kepler-54 b/c 3:2 0.0046 0.016 0.005
0.019

-
+ 0.016 0.005

0.019
-
+ 0.011 0.002

0.005
-
+ 0.011 0.002

0.005
-
+

Kepler-55 b/c 3:2 0.005 0.036 0.023
0.02

-
+ 0.037 0.024

0.019
-
+ 0.002 0.001

0.007
-
+ 0.005 0.005

0.006
-
+

Kepler-56 b/c 2:1 0.0192 0.03 0.004
0.008

-
+ 0.03 0.005

0.008
-
+ 0.028 0.003

0.004
-
+ 0.028 0.003

0.004
-
+

Kepler-57 b/c 2:1 0.0131 0.024 0.012
0.076

-
+ 0.023 0.015

0.075
-
+ 0.016 0.004

0.009
-
+ 0.016 0.004

0.008
-
+

Kepler-58 b/c 3:2 0.016 0.067 0.027
0.023

-
+ 0.066 0.027

0.023
-
+ 0.009 0.003

0.011
-
+ 0.009 0.003

0.011
-
+

Kepler-60 b/c 5:4 0.0003 0.03 0.003
0.004

-
+ 0.03 0.004

0.004
-
+ 0.026 0.002

0.002
-
+ 0.026 0.002

0.002
-
+

Kepler-60 c/d 4:3 0.0006 0.072 0.007
0.008

-
+ 0.072 0.007

0.008
-
+ 0.007 0.002

0.002
-
+ 0.007 0.002

0.002
-
+

Kepler-79 b/c 2:1 0.0161 0.007 0.003
0.008

-
+ 0.008 0.005

0.007
-
+ 0.002 0.0005

0.002
-
+ 0.003 0.001

0.002
-
+

Kepler-79 c/d 2:1 −0.0495 0.02 0.012
0.015

-
+ 0.018 0.011

0.016
-
+ 0.005 0.003

0.005
-
+ 0.005 0.004

0.005
-
+

Kepler-79 d/e 3:2 0.0375 0.013 0.005
0.007

-
+ 0.013 0.006

0.007
-
+ 0.009 0.004

0.005
-
+ 0.009 0.004

0.005
-
+

Kepler-80 b/c 4:3 0.0124 0.009 0.005
0.009

-
+ 0.008 0.005

0.009
-
+ 0.004 0.002

0.004
-
+ 0.004 0.002

0.004
-
+

Kepler-80 d/e 3:2 0.0081 0.004 0.001
0.002

-
+ 0.004 0.002

0.002
-
+ 0.004 0.002

0.001
-
+ 0.004 0.002

0.001
-
+

Kepler-80 e/b 3:2 0.0123 0.002 0.001
0.003

-
+ 0.001 0.002

0.004
-
+ 0.002 0.001

0.002
-
+ 0.002 0.001

0.002
-
+

Kepler-81 b/c 2:1 0.0109 0.007 0.005
0.135

-
+ 0.004 0.005

0.124
-
+ 0.004 0.001

0.002
-
+ 0.004 0.001

0.002
-
+

Kepler-84 b/c 3:2 −0.0157 0.008 0.006
0.029

-
+ 0.008 0.007

0.028
-
+ 0.003 0.002

0.004
-
+ 0.003 0.003

0.004
-
+

Kepler-84 c/e 2:1 0.0648 0.019 0.015
0.036

-
+ 0.018 0.019

0.034
-
+ 0.009 0.005

0.007
-
+ 0.009 0.004

0.007
-
+

Kepler-84 d/b 2:1 0.0328 0.005 0.005
0.011

-
+ 0.0002 0.005

0.013- -
+ 0.001 0.001

0.005
-
+ 0.001 0.002

0.006- -
+

Kepler-84 e/f 5:3 −0.0257 0.01 0.008
0.015

-
+ 0.005 0.017

0.017
-
+ 0.002 0.001

0.007
-
+ 0.001 0.003

0.007
-
+

Kepler-85 b/c 3:2 0.0045 0.002 0.001
0.014

-
+ 0.002 0.002

0.014
-
+ 0.001 0.0004

0.001
-
+ 0.001 0.001

0.001
-
+

Kepler-85 c/d 7:5 0.0225 0.016 0.011
0.013

-
+ 0.005 0.008

0.02
-
+ 0.006 0.004

0.004
-
+ 0.006 0.006

0.003
-
+

Kepler-85 d/e 7:5 0.0054 0.016 0.012
0.018

-
+ 0.001 0.01

0.03
-
+ 0.001 0.001

0.009
-
+ 0.0002 0.003

0.007
-
+

Kepler-89 c/d 2:1 0.0717 0.015 0.003
0.005

-
+ 0.015 0.003

0.005
-
+ 0.014 0.002

0.003
-
+ 0.014 0.002

0.003
-
+

Kepler-105 03/b 3:2 0.0501 0.035 0.02
0.018

-
+ 0.027 0.015

0.016
-
+ 0.011 0.007

0.011
-
+ 0.008 0.005

0.011
-
+

Kepler-105 b/c 4:3 −0.0125 0.01 0.002
0.002

-
+ 0.01 0.002

0.003
-
+ 0.01 0.001

0.002
-
+ 0.01 0.001

0.002
-
+

Kepler-114 b/c 3:2 0.0332 0.011 0.009
0.03

-
+ 0.007 0.014

0.03
-
+ 0.001 0.001

0.005
-
+ 0.001 0.003

0.004
-
+
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N-body MCMC, which is not computationally feasible, we
complement MCMC simulations with fits using the analytic
formulae. The analytic fits convert the amplitudes tdˆ , tdˆ , and
tdˆ measured from TTVs to constraints in the m¢-∣ ∣ plane.
Constraints derived from our analytic fits are compared to the
results of the N-body MCMC simulations for each system in the
Appendix. The analytic fits lend further confidence to the
robustness of MCMC results by showing the degree to which
various components of each planet’s TTVs constrain planet
parameters.

TTVs do not probe planet masses directly, but rather planet–
star mass ratios. Therefore, we will often find it convenient to
give planet masses in units of

M M
M

M
, 7*

*º ´Å Å


⎛
⎝⎜

⎞
⎠⎟ ( )

where M M*  is the ratio of host star mass to solar mass.
Employing M *Å as the unit highlights mass uncertainties
inherent to the TTVs separately from those arising from
uncertain stellar properties.
Figure 2 compares planet masses inferred using our default

versus high-mass priors. Many mass inferences are seen to
depend sensitively on the assumed prior, reflecting the
degeneracies often inherent to inverting TTV observations.

4. Results

4.1. Masses and Eccentricities

Figure 3 shows inferred TTV planet masses on a mass–
radius plot. A sample of transiting planets with RV-measured
masses are shown as well for comparison. Most of the planets
are less massive than M10 Å and exhibit a wide diversity of

Table 2
(Continued)

Planet Pair Resonance Δ ∣ ∣ proj ∣ ∣ proj
(Default) (Default) (High Mass) (High Mass)

Kepler-114 c/d 3:2 −0.0237 0.015 0.009
0.02

-
+ 0.015 0.01

0.019
-
+ 0.002 0.002

0.004
-
+ 0.0001 0.001

0.005
-
+

Kepler-122 e/f 3:2 −0.0129 0.033 0.018
0.015

-
+ 0.028 0.012

0.023
-
+ 0.017 0.005

0.009
-
+ 0.017 0.005

0.009
-
+

Kepler-127 b/c 2:1 0.0181 0.027 0.012
0.038

-
+ 0.027 0.011

0.037
-
+ 0.017 0.006

0.007
-
+ 0.017 0.006

0.007
-
+

Kepler-127 c/d 5:3 −0.0073 0.023 0.005
0.008

-
+ 0.023 0.004

0.008
-
+ 0.02 0.002

0.003
-
+ 0.02 0.003

0.003
-
+

Kepler-128 b/c 3:2 0.0075 0.084 0.033
0.031

-
+ 0.088 0.037

0.025
-
+ 0.008 0.003

0.014
-
+ 0.008 0.003

0.014
-
+

Kepler-138 b/c 4:3 0.0022 0.006 0.004
0.004

-
+ 0.006 0.004

0.004
-
+ 0.001 0.0003

0.001
-
+ 0.001 0.001

0.001
-
+

Kepler-138 c/d 5:3 0.0052 0.08 0.021
0.022

-
+ 0.084 0.023

0.02
-
+ 0.035 0.008

0.011
-
+ 0.035 0.009

0.011
-
+

Kepler-176 c/d 2:1 0.0092 0.13 0.125
0.113

-
+ 0.018 0.014

0.215
-
+ 0.004 0.002

0.004
-
+ 0.004 0.002

0.004
-
+

Kepler-177 b/c 4:3 0.0056 0.002 0.0003
0.0002

-
+ 0.002 0.0003

0.0002
-
+ 0.002 0.0002

0.0002
-
+ 0.002 0.0002

0.0002
-
+

Kepler-223 b/c 4:3 0.0002 0.073 0.014
0.014

-
+ 0.072 0.013

0.015
-
+ 0.071 0.013

0.016
-
+ 0.071 0.013

0.016
-
+

Kepler-223 c/d 3:2 0.001 0.003 0.002
0.004

-
+ 0.002 0.003

0.003
-
+ 0.005 0.003

0.006
-
+ 0.005 0.005

0.006
-
+

Kepler-223 d/e 4:3 0.0005 0.021 0.008
0.01

-
+ 0.021 0.01

0.01
-
+ 0.023 0.005

0.007
-
+ 0.022 0.005

0.008
-
+

Kepler-238 c/d 2:1 0.0749 0.012 0.012
0.061

-
+ 0.003 0.028

0.068
-
+ 0.012 0.012

0.014
-
+ 0.01 0.012

0.016
-
+

Kepler-238 d/e 5:3 0.0724 0.037 0.027
0.025

-
+ 0.013 0.024

0.041
-
+ 0.001 0.001

0.015
-
+ 0.0001 0.007

0.011
-
+

Kepler-238 e/f 2:1 0.0663 0.007 0.007
0.032

-
+ 0.013 0.022

0.029
-
+ 0.001 0.001

0.006
-
+ 0.0003 0.004

0.006
-
+

Kepler-277 b/c 2:1 −0.0474 0.259 0.173
0.06

-
+ 0.118 0.053

0.179
-
+ 0.006 0.005

0.006
-
+ 0.002 0.005

0.009
-
+

Kepler-279 c/d 3:2 0.0151 0.056 0.009
0.009

-
+ 0.056 0.009

0.009
-
+ 0.051 0.01

0.008
-
+ 0.051 0.009

0.008
-
+

Kepler-305 03/b 5:3 0.0271 0.015 0.012
0.027

-
+ 0.003 0.019

0.025
-
+ 0.002 0.002

0.007
-
+ 0.002 0.007

0.004
-
+

Kepler-305 b/c 3:2 0.0073 0.006 0.003
0.006

-
+ 0.006 0.003

0.006
-
+ 0.003 0.001

0.002
-
+ 0.003 0.001

0.002
-
+

Kepler-305 c/d 2:1 0.0095 0.006 0.002
0.003

-
+ 0.005 0.002

0.004
-
+ 0.007 0.002

0.002
-
+ 0.008 0.003

0.002
-
+

Kepler-307 b/c 5:4 0.005 0.003 0.0002
0.0002

-
+ 0.003 0.0002

0.0002
-
+ 0.003 0.0001

0.0001
-
+ 0.003 0.0001

0.0001
-
+

Kepler-310 c/d 5:3 −0.0133 0.026 0.014
0.008

-
+ 0.026 0.035

0.006
-
+ 0.017 0.008

0.012
-
+ 0.008 0.005

0.005
-
+

Kepler-324 03/c 3:2 0.0097 0.019 0.008
0.019

-
+ 0.019 0.009

0.02
-
+ 0.009 0.002

0.006
-
+ 0.009 0.002

0.006
-
+

Kepler-345 b/c 5:4 0.0127 0.024 0.005
0.005

-
+ 0.025 0.005

0.004
-
+ 0.007 0.002

0.016
-
+ 0.007 0.002

0.016
-
+

Kepler-359 c/d 4:3 0.0021 0.007 0.004
0.011

-
+ 0.005 0.005

0.007
-
+ 0.006 0.003

0.005
-
+ 0.006 0.006

0.004
-
+

Kepler-396 b/c 2:1 0.0293 0.229 0.072
0.113

-
+ 0.244 0.087

0.097
-
+ 0.088 0.029

0.045
-
+ 0.089 0.025

0.049
-
+

Kepler-444 b/c 5:4 0.0102 0.003 0.002
0.008

-
+ 0.00 0.003

0.009
-
+ 0.001 0.001

0.003
-
+ 0.00 0.002

0.003
-
+

Kepler-444 c/d 4:3 0.0212 0.003 0.002
0.011

-
+ 0.0004 0.007

0.009
-
+ 0.002 0.002

0.002
-
+ 0.001 0.003

0.002
-
+

Kepler-444 d/e 5:4 0.0009 0.001 0.0002
0.0004

-
+ 0.001 0.0002

0.0005
-
+ 0.001 0.0002

0.0002
-
+ 0.001 0.0002

0.0002
-
+

Kepler-444 e/f 5:4 0.0063 0.003 0.002
0.003

-
+ 0.002 0.004

0.003
-
+ 0.003 0.002

0.001
-
+ 0.002 0.002

0.002
-
+

Kepler-526 b/02 5:4 0.0064 0.036 0.013
0.007

-
+ 0.036 0.014

0.006
-
+ 0.008 0.003

0.006
-
+ 0.008 0.003

0.006
-
+

Kepler-549 01/b 5:3 0.0469 0.015 0.007
0.006

-
+ 0.013 0.009

0.006
-
+ 0.001 0.001

0.012
-
+ 0.0002 0.001

0.012- -
+

Kepler-1126 b/02 2:1 −0.0807 0.071 0.055
0.11

-
+ 0.07 0.11

0.124
-
+ 0.062 0.025

0.011
-
+ 0.057 0.02

0.016
-
+

Note. Column (2) lists each planet pair’s nearest first- or second-order MMR. Column (3) lists planet pairs’ normalized distance to resonance,
j k P jP 1D = - ¢ -( ) ( ) , where P and P¢ are the periods of the inner and outer planet, respectively, and k=1 or 2 as appropriate for a first- or second-order

resonance. Values and uncertainties reflect the peak posterior probabilities and 68.3% credible regions, computed as described in the caption of Table 1. Our  is
defined in terms of free eccentricities (Equation (3)), whereas the MCMC outputs total (free+forced) eccentricity; we convert to free eccentricity for this table by
subtracting off the analytically calculated forced components.

(This table is available in machine-readable form.)
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radii. Many of the planets are less dense than a hypothetical
pure water-composition planet, necessitating the presence of
substantial gaseous envelopes to explain their low densities.

Compared to small transiting planets with RV mass
measurements, our TTV sample typically finds lower-density
planets, as illustrated by Figure 4. Although this trend has
been noted before (e.g., Weiss & Marcy 2014; Dai
et al. 2015), it is sometimes suggested that this discrepancy
is due to mass errors in either the TTV or RV measurements.
But Figure 4 demonstrates that much of the discrepancy can
be explained if planets farther from the star tend to be less
dense—perhaps because they are less affected by photo-
evaporation. One should note, however, that the distribution
of planets in Figure 4 is also affected by a variety of selection
effects. For example, the lack of dense planets at long orbital
periods could reflect the decreased transit detectability of
small planets with long periods (e.g., Gaidos & Mann 2012).
Also, differences between RV and TTV populations could
reflect the different dependence of the two techniques on
planet mass and radius (e.g., Steffen 2016). Nonetheless, both
TTVs and RVs find planets of similar density between periods
of P3 days 20 days< < , where there is significant overlap
between the two samples. A simple two-sample Kolmogorov–
Smirnov test comparing all densities measured with the
two methods gives a probability of p 2 10 4= ´ - that they
are drawn from the same underlying distribution, while
the probability increases to p=0.26 if both samples are
restricted to the period range P3 days 20 days< < .

We turn now to the planets’ eccentricities. As discussed in
Section 2, although TTV observations do not strongly constrain
individual planet eccentricities, they can constrain the combi-
nation z z 2 » ¢ -( ) . This combination may be considered
as a surrogate for the individual planets’ complex eccentricities
unless planets have z z» ¢, that is, comparable eccentricities
and aligned orbits. We expect that planets’ complex eccentri-
cities have random relative orientations (see discussion in
Paper I) so that, overall, ∣ ∣ values are a reliable surrogate for
eccentricities. The inferred values of ∣ ∣ are summarized in
Figure 5. The majority of eccentricities are inferred to be small:
the median of all the posterior samples shown in Figure 5 is

0.025 =∣ ∣ . While many planet pairs’ combined eccentricities
are small, they are frequently inconsistent with zero.

Table 2 lists combined eccentricities for individual planet
pairs. In addition to ∣ ∣, it is of interest to know which planets
are consistent with 0; = such planets might have experi-
enced significant damping by tides or other effects. Credible
regions in ∣ ∣ cannot be used to address this question because
∣ ∣ must be non-negative. Therefore, following Zakamska et al.
(2011), we define the signed quantity, proj , which is the
projection of the s from the MCMC posterior onto the median
of their distribution. More precisely, we define the median

med , by computing the median real and imaginary components
of  . Then, given  , the value of proj is defined as

, 8proj
med

med

*





=
∣ ∣

( )

where the “
*
” indicates complex conjugate. Zakamska et al.

(2011) show that an analogous quantity is useful for recovering
e=0 solutions in the analysis of RV data generated from
circular orbits. Of the 90 adjacent planet pairs in our TTV
sample, more than 60% have sproj inconsistent with 0 at 2σ
confidence for both the default and high-mass posteriors.
All planet pairs with at least one robustly measured mass

have a robust proj value as well, meaning that the default
posterior 1σ credible region in proj contains the high-mass
posterior peak likelihood value. There are additional planet
pairs with robust proj values in which neither planet has a
robust mass value. These pairs tend to have robust sproj
because the default posterior gives large error bars and not
because proj is particularly well constrained by the data.
Therefore, we do not label robust and nonrobust sproj in
Table 2.

4.2. Comparison with Past Work

Here we briefly review how our inferred masses compare
with past TTV and RV studies (see the Appendix for discussion
of individual systems). Among the 55 planetary systems
considered in this work, 24 have appeared in previous TTV or
RV analyses. Our results show good agreement with past TTV
analyses: the most significant disagreements are between the
Mills et al. (2016) derived mass of Kepler-223 c (a 2.4s
disagreement) and the Sanchis-Ojeda et al. (2012) mass of
Kepler-30 b (a 1.8s disagreement). All other robustly inferred
planet–star mass ratios are within roughly 1σ of previously
reported TTV results.
Some previously reported TTV masses do not meet our

requirement for classification as robust. This does not
necessarily imply disagreement: for example, Lissauer et al.
(2013) report an uncertainty range for Kepler-11 c’s mass,
which we classify as not robust, that encompasses the range
spanned by both the default and high-mass posteriors’ 1s
credible regions. In other instances, though, past studies may
not have fully explored the sensitivity of their mass measure-
ments to modeling assumptions. For example, Jontof-Hutter
et al. (2014) report a mass for Kepler-79 c that agrees well with
the default posterior value but disagrees with the high-mass
posterior value at 2.5s~ significance.
A handful of planets in our systems also have RV

observations: Kepler-9, Kepler-18, Kepler-25, Kepler-48,
Kepler-56, and Kepler-89. Agreement between our TTV
constraints and RV mass determinations is mixed, giving
consistent results in roughly half of cases and inconsistent

Figure 2. Comparison of planet masses inferred using the high-mass vs. default
priors. The dashed line indicates equal mass for both priors. Inferred masses
that agree within 1σ (2σ) are shown as black (gray) points. Error bars show 1σ
uncertainties. Inferred masses that disagree at 2s> are shown as open circles,
with error bars omitted for clarity.
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constraints in the other half. It is unclear whether the TTV or
RV mass measurements are incorrect (see Appendix).

Libration in MMR is rare among multiplanet Kepler systems
(Lissauer et al. 2011b; Fabrycky et al. 2014), and this is
generally true of our TTV sample as well. A handful of systems
in our TTV sample are strongly affected by resonances: Kepler-
29, Kepler-60, Kepler-80, and Kepler-223. Dynamical analyses
of each of these systems have appeared elsewhere in the
literature, and we find similar conclusions to these past works.

5. Discussion

5.1. Gaseous Envelopes

Many of the planets shown in Figure 3 have such low densities
that they must have massive gaseous envelopes. Such massive
envelopes were likely accreted when the protoplanetary disk was

Figure 3. Planet radius vs. mass. Masses from TTVs fit in the Appendix for planets classified as robust as defined in Section 3 are plotted as black circles. Also shown
as gray circles are planets whose masses under the two posteriors differ by up to 2σ (“semi-robust”). Error bars indicate the 1σ credible regions from the default
posteriors. Planets with RV mass measurements, listed in Table 3, are shown as pink squares. For planets with masses that are consistent with zero, 1σ upper bounds
from the high-mass posterior are indicated with an arrow. Planet masses have been converted to units of MÅ by multiplying stellar mass and planet–star mass ratios
and accounting for stellar mass uncertainties (see Table 1 note for details). Theoretical mass–radius relationships for pure ice, rock, and iron compositions from
Fortney et al. (2007) are plotted as colored curves. Mass–radius relationships for planets with Earth-composition cores and H/He envelopes that make up 1%, 10%,
and 20% of the total planet mass are plotted as black curves, which are interpolated from Tables 2 and 3 of Lopez & Fortney (2014) assuming an age of 5 Gyr and an
incident stellar flux 100 times greater than that of Earth.

Figure 4. Planet densities vs. orbital period for planets with masses measured
via TTV (black circles) and RV (pink squares). TTV planet densities are from
the “robust” sample, with default posteriors.

Figure 5. Top panel: posterior probability distributions of combined
eccentricities, ∣ ∣, for all adjacent planet pairs (both robust and otherwise)
from N-body MCMC fits. The probability distributions are computed
by applying a Gaussian kernel density estimate to the N-body MCMC
default posterior samples. Kernel bandwidths, h, are chosen using the
“Silverman rule,” h N1.06 1 5s= - , where σ is the sample variance and N
is the number of samples (Silverman 1986). Combined eccentricities
are shown only for adjacent planet pairs; combined eccentricities of
nonadjacent planets are typically poorly constrained. Bottom panel:
smoothed histogram computed by combining all posterior samples
shown in the top panel, using a bandwidth h=0.003. The resulting
“distribution” illustrates the typical magnitudes of combined eccentricities
shown in the top panel, though it does not represent a true probability
distribution.
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still present; outgassing can only produce envelopes less massive
than ∼2% of a planet’s total mass (Rogers et al. 2011). Here we
convert observed masses and radii to envelope masses by
interpolating the tables of Lopez & Fortney (2014). Those
authors simulate envelopes on top of Earth-composition cores; as
time proceeds, their envelopes cool, while being irradiated by the
star. Thus, the masses and radii of their envelopes are essentially

related by the fact that the cooling time should be comparable to
the age. Although there are multiple unknowns that will affect the
predicted envelope mass (especially atmospheric opacity and
composition and, to a lesser extent, the core composition and
heating/cooling; see, e.g., Rogers et al. 2011; Howe et al. 2014;
Lopez & Fortney 2014), the results of their simulations are
adequate for our purposes.
Inferred envelope mass fractions, M Mpenv , are plotted in

Figure 6 for planets more massive than M1 Å and smaller than
R8 Å with either RV or robust TTV mass measurements. Lopez

& Fortney (2014) find that the radii of planets with envelope
mass fractions 1% are quite insensitive to core mass.
Therefore, the diversity of gas fractions in Figure 6 reflects
the diversity of radii seen in Figure 3. On the other hand,
inferred envelope mass fractions 1% are likely sensitive to
our assumption of Earth-composition cores, and some of the
envelope mass fractions in Figure 6 may actually reflect a
diversity of core compositions.
How do the inferred envelopes shown in Figure 6 compare to

theoretical predictions of gas envelope accretion? A number of
studies have examined envelope accretion by planetary cores
embedded in a gaseous protoplanetary disk (e.g., Ikoma &
Hori 2012; Bodenheimer & Lissauer 2014; Ginzburg et al. 2016;
Lee & Chiang 2016). These studies find that super-Earth cores
readily accrete envelopes between a few to tens of percent of their
total mass over the lifetime of a protoplanetary disk, similar to
those shown in Figure 6. Planets in Figure 6 that are consistent
with having no envelope generally receive higher fluxes than
similar-mass planets covered by significant envelopes. This trend
could result from photoevaporation removing the envelopes
initially accreted by planets close to their stars (e.g., Lopez
et al. 2012; Owen & Wu 2013). Especially low-mass, low-
density “super-puff” planets are of particular interest from a
formation standpoint. We identify five planets with robust mass
measurements and gas fractions above 10% at 1s> confidence:
Kepler-18 d (29%± 4%), Kepler-51 c (35 %14

20
-
+ ), Kepler-177 c

(50%± 10%), Kepler-279 b (23 %9
10

-
+ ), and Kepler-359 c

(18 %7
8

-
+ ). Explaining how such planets manage to accrete and

retain such large gaseous envelopes while avoiding runaway gas
accretion presents an interesting theoretical challenge (e.g., Lee &
Chiang 2016). Among planets that do have significant envelopes,
there is no obvious trend in envelope fraction with planet mass.
This suggests a wide diversity of factors that influence envelope
accretion and retention.

5.2. Eccentricities

Overall, our results show that most planets have relatively
small eccentricities of a few percent. This is consistent with the
results of past TTV studies (Wu & Lithwick 2013; Hadden &
Lithwick 2014) and transit duration analyses (Van Eylen &
Albrecht 2015; Xie et al. 2016) of multiplanet systems. These
studies infer the overall eccentricity distribution of their
samples by fitting Rayleigh distributions: Wu & Lithwick
(2013) find a mean eccentricity e 0.01~¯ for a sample of 44
planets, Hadden & Lithwick (2014) find e0.02 0.03< <¯ for a
sample of 139 planets, Van Eylen & Albrecht (2015) find

e0.05 0.08< <¯ for a sample of 74 planets, and Xie et al.
(2016) find e 0.07<¯ for a sample of 330 planets. In contrast to
these population-level studies, we are able to measure the
combined eccentricities of individual planet pairs, often with
uncertainties on the order of a percent or better. Both Van
Eylen & Albrecht (2015) and Xie et al. (2016) suggest that

Table 3
Transiting RV Planets

Name Period Mass Radius Reference
(days) MÅ( ) RÅ( )

Kepler-4 b 3.21 24.5 3.8
3.8

-
+ 4.0 0.2

0.2
-
+ Borucki et al. (2010)

CoRoT-7 b 0.85 5.7 0.9
0.9

-
+ 1.6 0.1

0.1
-
+ Barros et al. (2014)

CoRoT-8 b 6.21 69.9 9.5
9.5

-
+ 6.4 0.2

0.2
-
+ Bordé et al. (2010)

Kepler-10 b 0.84 4.6 1.5
1.3

-
+ 1.5 0.03

0.05
-
+ Esteves et al. (2015)

Kepler-10 c 45.29 17.2 1.9
1.9

-
+ 2.4 0.04

0.1
-
+ Dumusque et al. (2014)

HAT-P-11 b 4.89 25.7 2.9
2.9

-
+ 4.7 0.2

0.2
-
+ Bakos et al. (2010)

Kepler-20 b 3.70 8.7 2.2
2.1

-
+ 1.9 0.2

0.1
-
+ Gautier et al. (2012)

Kepler-20 c 10.85 16.1 3.7
3.3

-
+ 3.1 0.3

0.2
-
+ Gautier et al. (2012)

CoRoT-22 b 9.76 12.2 8.8
14.

-
+ 4.9 0.4

0.2
-
+ Moutou et al. (2014)

CoRoT-24 c 11.76 28.0 11.
11.

-
+ 5.0 0.5

0.5
-
+ Alonso et al. (2014)

HAT-P-26 b 4.23 18.8 2.2
2.2

-
+ 6.3 0.4

0.8
-
+ Hartman et al. (2011)

Kepler-48 d 42.90 7.9 4.6
4.6

-
+ 2.0 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-68 b 5.40 8.3 2.4
2.2

-
+ 2.3 0.1

0.1
-
+ Gilliland et al. (2013)

Kepler-68 c 9.61 4.8 3.6
2.5

-
+ 1.0 0.04

0.04
-
+ Gilliland et al. (2013)

Kepler-78 b 0.36 1.9 0.2
0.4

-
+ 1.2 0.1

0.2
-
+ Pepe et al. (2013)

Kepler-93 b 4.73 4.0 0.7
0.7

-
+ 1.5 0.02

0.02
-
+ Dressing et al. (2015)

Kepler-94 b 2.51 10.8 1.4
1.4

-
+ 3.5 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-95 b 11.52 13.0 2.9
2.9

-
+ 3.4 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-96 b 16.24 8.5 3.4
3.4

-
+ 2.7 0.2

0.2
-
+ Marcy et al. (2014)

Kepler-97 b 2.59 3.5 1.9
1.9

-
+ 1.5 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-98 b 1.54 3.5 1.6
1.6

-
+ 2.0 0.2

0.2
-
+ Marcy et al. (2014)

Kepler-99 b 4.60 6.2 1.3
1.3

-
+ 1.5 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-100 b 6.89 7.3 3.2
3.2

-
+ 1.3 0.04

0.04
-
+ Marcy et al. (2014)

Kepler-102 d 10.31 3.8 1.8
1.8

-
+ 1.2 0.04

0.04
-
+ Marcy et al. (2014)

Kepler-102 e 16.15 8.9 2.
2.

-
+ 2.2 0.1

0.1
-
+ Marcy et al. (2014)

Kepler-106 c 13.57 10.4 3.2
3.2

-
+ 2.5 0.3

0.3
-
+ Marcy et al. (2014)

Kepler-106 e 43.84 11.2 5.8
5.8

-
+ 2.6 0.3

0.3
-
+ Marcy et al. (2014)

Kepler-113 b 4.75 11.7 4.2
4.2

-
+ 1.8 0.05

0.05
-
+ Marcy et al. (2014)

Kepler-131 b 16.09 16.1 3.5
3.5

-
+ 2.4 0.2

0.2
-
+ Marcy et al. (2014)

Kepler-131 c 25.52 8.2 5.9
5.9

-
+ 0.8 0.1

0.1
-
+ Marcy et al. (2014)

KOI-142 b 10.95 8.7 2.5
2.5

-
+ 3.8 0.4

0.4
-
+ Nesvorný et al. (2013)

Kepler-406 b 2.43 6.3 1.4
1.4

-
+ 1.4 0.03

0.03
-
+ Marcy et al. (2014)

Kepler-406 c 4.62 2.7 1.8
1.8

-
+ 0.8 0.03

0.03
-
+ Marcy et al. (2014)

Kepler-413 b 66.26 67.0 21.
22.

-
+ 4.3 0.1

0.1
-
+ Kostov et al. (2014)

Kepler-454 b 10.57 6.8 1.4
1.4

-
+ 2.4 0.1

0.1
-
+ Gettel et al. (2016)

GJ 1132 b 1.63 1.6 0.6
0.6

-
+ 1.2 0.1

0.1
-
+ Berta-Thompson

et al. (2015)
GJ 1214 b 1.58 6.3 0.9

0.9
-
+ 2.8 0.2

0.2
-
+ Harpsøe et al. (2013)

HIP 116454 b 9.12 11.8 1.3
1.3

-
+ 2.5 0.2

0.2
-
+ Vanderburg et al. (2015)

K2-38 b 4.02 12.0 2.9
2.9

-
+ 1.6 0.2

0.2
-
+ Sinukoff et al. (2016)

K2-38 c 10.56 9.9 4.6
4.6

-
+ 2.4 0.3

0.3
-
+ Sinukoff et al. (2016)

BD+20 594 b 41.69 16.3 6.1
6.

-
+ 2.2 0.1

0.1
-
+ Espinoza et al. (2016)

Note. Periods, masses, and radii of transiting RV planets smaller than R8 Å. All
planets have been selected from the exoplanet archive. Only planets with 1s
mass uncertainties inconsistent with 0 are included. We exclude RV
measurements of planets from the Kepler-18, 25, 48, and 89 systems since
they are also in our TTV sample.

(This table is available in machine-readable form.)
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TTV systems’ proximity to resonance may imply eccentricities
that are distinct from the larger population of multiplanet
systems. While it is true that TTV systems are preferentially
closer to resonance, they are not as radically distinct from the
larger multiplanet population in their proximity to resonance as
is often suggested (see Figure 8 in the Appendix).

As noted above, a majority of the objects in our TTV sample
(roughly 60%) have eccentricities that are nonzero at 2σ
confidence. This seemingly contradicts the inference that the
planets were born in a disk of gas, which would presumably
damp eccentricities. The nonzero eccentricities suggest that
planets may have accreted their envelopes from a depleted disk
in which gas damping was ineffective (Lee & Chiang 2016).

Some of the planets in Table 1 orbit their host star at close
enough separations that their eccentricities may be affected by
tidal dissipation. Tidal dissipation depends steeply on planet
period, and the shortest-period planets are expected to have
experienced significant tidal damping. Figure 7 plots proj
(Equation (8)) versus the periods of planet pairs’ inner planets.
All but one of the seven shortest-period planets within P 5
days have combined eccentricities consistent with 0, suggesting
circularization by tides. The shortest-period planet, Kepler-80
d, has a small but nonzero proj . Beyond periods of 5 days there
is a mixture of combined eccentricities that are consistent with
0 or very nearly so, as well as combined eccentricities that are
definitively nonzero.

6. Summary and Conclusion

We have presented a uniform analysis of the TTVs of 55
multiplanet systems in order to infer planet masses and
eccentricities. We employ both N-body and analytic fitting in
a complementary approach in order to identify the degeneracies
inherent to TTV inversion and understand when and how they
are broken by components of the TTV signal. We use two sets
of MCMC simulations for each system, each of which uses a
prior weighted to opposite extremes of the mass–eccentricity

degeneracy predicted by the analytic formulae, in order to
classify inferred planet masses as robust or not.
Low-mass ( M10 Å) planets exhibit a wide diversity of sizes,

with many of these planets less dense than a hypothetical pure
ice composition planet, indicating the presence of significant
gaseous envelopes. The wide diversity of planet sizes can be
attributed to a diversity of planet envelope mass fractions. We
use our TTV fits, together with the evolutionary models of
Lopez & Fortney (2014), to convert planet masses and radii to
envelope mass fractions. We plan to use our sample of TTV-
characterized planets in a future work examining planets’
accretion and retention of gas envelopes during and after
dispersal of the protoplanetary disk.
With guidance from the analytic TTV model, we have

focused on planets’ combined eccentricities,  , rather than
individual eccentricities, which are largely unconstrained by
TTVs. We find that planets typically have eccentricities of a

Figure 6. Envelope mass fraction vs. planet mass. TTV planets and RV planets are shown with filled and open symbols, respectively. Planets’ incident fluxes are
indicated by color scale. Envelope mass fractions are computed assuming an age of 5 Gyr from Tables 2 and 3 in Lopez & Fortney (2014) via interpolation. Error bars
show 1σ uncertainties. Error bars extending below M M 10penv

4< - are indicated with arrows. Points with error bars entirely below M M 10penv
4< - are indicated

with dashed arrows, and mass error bars are omitted for clarity.

Figure 7. Signed combined eccentricities, proj (Equation (8)), vs. period for
adjacent planet pairs. Error bars indicate 1σ credible regions computed with the
default prior. proj values that are consistent with 0 at the 1σ level are
emphasized as red points. Only combined eccentricities that are robustly
measured, meaning that the default posterior 1σ credible region contains the
high-mass posterior peak likelihood value, are plotted. We have also excluded
points with 1σ credible regions larger than 0.05 for clarity.
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few percent or less, in agreement with past statistical studies of
multiplanet systems (Wu & Lithwick 2013; Hadden &
Lithwick 2014; Van Eylen & Albrecht 2015; Xie
et al. 2016). The shortest-period planets have eccentricities
consistent with 0 and thus may have experienced significant
tidal eccentricity damping. Detailed modeling of individual
TTV systems can potentially shed light on how dynamical
processes such as migration and eccentricity damping may
have shaped the systems we observe today.

We measure a number of planet masses for planets in the
super-Earth/mini-Neptune size range where there is great
theoretical interest in understanding the mass–radius relation-
ship. The observational biases of our TTV sample are difficult
to assess given the TTV signal’s complicated dependence on
periods and eccentricities. We see incorporating TTV non-
detections and quantifying selection effects as important
directions for future work in understanding the mass–radius
relationship.

We thank Lauren Weiss for helpful discussion and the
anonymous referee for helpful comments. We are grateful to
the Kepler team for acquiring and publicly releasing such
spectacular results. This research has made use of the NASA
Exoplanet Archive, which is operated by the California
Institute of Technology, under contract with the National
Aeronautics and Space Administration under the Exoplanet
Exploration Program. S.H. acknowledges support from the
NASA Earth and Space Science Fellowship program, grant no.
NNX15AT51H. Y.L. acknowledges grants AST-1109776 and
AST-1352369 from NSF and NNX14AD21G from NASA.

Appendix
Description of Individual Systems

Our initial selection of systems is made from TTVs identified
in the Q1–17 catalog of Holczer et al. (2016). We limit our
selection to multiplanet systems hosting at least one planet pair
with a period ratio smaller than P P 2.2¢ < . After selecting
systems on the basis of period ratios, we identify planets with
significant TTVs as follows.

1. Each planet’s transit times are fit with two linear models:
the first is a simple linear trend corresponding to a
constant orbital period, and the second fits each planet’s
transit times as a linear trend plus a TTV induced by the
other planets in the system. The TTV is assumed to be
described by Equation (1) and parameterized by the
amplitudes tdˆ , tdˆ , and tdˆ . Since Psup and Psyn in
Equation (1) are defined in terms of “average” orbital
periods that differ from the orbital period fit without
accounting for TTVs, fits are iterated to achieve
convergence in average orbital periods.

2. We compute the Bayesian Information Criterion (BIC;
Schwarz 1978), defined as

k NBIC ln 92
trans.c= + ( ) ( )

for both linear fits of a planet’s transit times, where 2c has
the standard definition, k is the number of fit parameters,
and Ntrans. is the number of transit times that are fit. We
select TTVs for which the sinusoidal fit improves the BIC
by >10 relative to the simple linear trend model,
indicating very strong evidence for the analytic TTV

model over the simple linear trend (Kass &
Raftery 2012).

3. Finally, we remove a handful of systems after visual
inspection of the analytic fit (KOI-0295, KOI-0571, KOI-
1873, KOI-2029) or because we are unable to find a
satisfactory initial N-body fit (KOI-262, KOI-880, KOI-
1426, KOI-2693), potentially because of nontransiting
perturbers.

In systems with three or more planets, any planets that are
separated from the next adjacent planet by a period ratio greater
than P P 2.2¢ > are ignored by our analysis.6 Figure 8
compares our selected sample to all confirmed Kepler planet
pairs with P P 2.2¢ < , showing both period ratios and
normalized distance to the nearest first- or second-order MMR,

j k

j

P

P
1, 10D =

- ¢
- ( )

with k 1, 2= or as appropriate for first- or second-order
MMRs. The TTV sample is biased toward closer period ratios
compared to the complete multiplanet sample, largely because
it lacks planets between the 3:2 and 2:1 MMRs. It is often
claimed that because TTV systems contain planets close to
MMRs they may have unique formation channels not shared
with the broader population of multiplanet systems. The
proximity to resonance of our sample, as measured by Δ, is
compared to the full sample of multiplanet systems in Figure 8.
Pairs with 0.05D >∣ ∣ , which constitute ∼30% of the total
sample, are essentially absent from the TTV sample. Other-
wise, the TTV sample is not radically distinct in its proximity
to resonance.
Our MCMC fits the transit times computed by Rowe et al.

(2015) from long-cadence Kepler data. We assume Gaussian
transit time uncertainties and remove 4s> outliers after an
initial least-squares fit, as described in Paper I. At least one
observing quarter of short-cadence data is available for every
system in our TTV sample except Kepler-1126. In future work,
short-cadence data could yield improved constraints on planet
properties. However, it is unclear how much improvement
short-cadence data offer: Jontof-Hutter et al. (2016) fit transit
times computed with all available short-cadence data for eight
systems in our TTV sample, and they measure masses with
roughly the same precision as those reported here.
The MCMC results do not include dynamical stability

considerations, which can rule out planet parameters that
produce rapid dynamical instability. We investigate dynamical
stability by running 500 N-body integrations of each system
with initial conditions drawn randomly from the MCMC
posterior distributions. Each integration is run for 106 orbits of
the innermost planet using the REBOUND code’s WHFast
integrator (Rein & Tamayo 2015). Five of the 55 TTV systems
are unstable in more than 10% of the integrations initialized
from the default posteriors: Kepler-24, Kepler-60, Kepler-122,
Kepler-223, and Kepler-1126. With the exception of Kepler-
60, stability considerations do not have a significant influence
on inferred planet parameters in these systems (see discussions
of individual systems below), so we do not attempt to adjust
our reported masses and combined eccentricities for these

6 Two exceptions to this cut, Kepler-52 d and Kepler-27.03, were included in
our fits before we arrived at our final selection criteria. These planets are
included in our posterior data, though neither contributes useful constraints.
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systems. Integrations initialized from the high-mass posteriors
never produce instability in more than a few instances with the
exception of Kepler-223, for which 38/500 integrations are
unstable.

The posterior samples from our MCMC fits, along with plots
showing the TTVs of each system, are available online
(10.5281/zenodo.162965). Each system is discussed below
(see Paper I for discussion of the Kepler-26, Kepler-33, Kepler-
128, and Kepler-307 systems). Systems have been categorized
into four groups based on the analytic fits.

1. Chopping systems are presented in Appendix A.1. These
systems host at least one planet with a chopping signal
that allows the mass–eccentricity degeneracy to be
broken, resulting in constraints on planet masses and
combined eccentricities. The chopping signal constrains
the mass of a perturbing companion. With the perturber’s
mass constrained, the TTV signal component caused by a
first- or second-order MMR uniquely determines the
planets’ combined eccentricity. Some systems where a
lack of chopping places a strong upper bound on planet
masses are also included in this category.

2. Second-harmonic systems are presented in Appendix A.2.
This group is composed of systems with a pair of planets
near a first-order MMR. The second-harmonic TTV of at
least one of the planets helps break the mass–eccentricity
degeneracy. The second-harmonic TTV often does not
provide as strong a constraint on planet mass as the
chopping TTV. In most cases, the second-harmonic TTV
sets an upper limit to the combined eccentricity, or
equivalently, a lower limit on planet masses.

3. Resonant and massive systems include systems that have
planets either extremely close to or librating in resonance
or systems with especially massive planets. The analytic
formulae are not expected to provide accurate approx-
imations of the TTVs of such planets.

4. Degenerate systems do not have significant chopping or
second-harmonic signals and show a strong degeneracy
between masses or eccentricities. These systems are
summarized in Appendix A.4.

Below, analytic fits are compared to N-body results in a
series of “analytic constraint plots.” To generate these plots, we

convert the 1σ uncertainties in tdˆ , tdˆ , and tdˆ obtained from
least-squares fitting to 1σ uncertainty bands in the m¢-∣ ∣ plane.7
The details of this procedure are described in Paper I. Planets
with robustly inferred masses, as defined in Section 3, are
indicated with an asterisk.

A.1. Chopping Systems

Kepler-11 b, c, d*, e*, f* (Figure9): The inner five planets of
Kepler-11 are near a series of first- and second-order MMRs.
The TTVs robustly constrain the masses of planets d, e, and f.
The bottom left panel of Figure 9 shows that the masses of
planets d and e are strongly constrained by their mutual
chopping TTVs. The bottom right panel of Figure 9 sum-
marizes the constraints from the interaction of planets e and f.
Since the mass of planet e is already constrained by its
interaction with planet d, planet f’s fundamental TTV
constrains the e/f pair’s combined eccentricity. The combina-
tion of planet e’s fundamental and chopping TTV constrains
the mass of planet f.
The masses of the innermost pair, b and c, are less robust to

the choice of priors. The top left panel of Figure 9 shows that
their inferred properties are consistent with their fundamental
TTVs and that their lack of chopping TTVs imposes upper
bounds on their masses.
The upper right panel of Figure 9 shows that planet c’s

chopping TTV gives a weak constraint on planet d’s mass, and
the lack of chopping in planet d’s TTV gives an upper limit to
the mass of planet c. Planets c and d are not close to any first or
second-order MMRs, so there is little correlation between their
masses and combined eccentricity.

Figure 8. Comparison of our selected TTV sample to all Kepler multiple-transiting planets. The “All Multi” sample contains all confirmed pairs of planets with period
ratios less than P P 2.2¢ < taken from the Exoplanet Archive on 2016 November 4. Left panel: histogram of the period ratios of adjacent planet pairs. Right panel:
histogram of distances to the nearest first- or second-order resonance, Δ, defined in Equation (10).

7 Chopping amplitude constraints are computed by incorporating the prior
assumption that masses are non-negative. This constraint affects the 1σ upper
limits computed for tdˆ values that are consistent with negative masses. The
analytic model is formulated in terms of free eccentricities, whereas the MCMC
outputs total (free+forced) eccentricity. While the distinction is usually
negligible, there are some instances below where planets’ forced and free
eccentricities are of comparable magnitude. In these instances, we correct the
N-body MCMC results shown in the constraint plots by subtracting off forced
eccentricity components. The forced components are computed analytically as
the eccentricities induced by the nearest three first-order MMRs (see, e.g.,
Equation (13) of Lithwick et al. 2012); other nonresonant contributions to the
forced eccentricity are negligible. We note explicitly in figure captions when
such a correction has been applied.
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TTV analyses of the Kepler-11 system have been conducted
by number of authors (Lissauer et al. 2011a; Migaszewski
et al. 2012; Lissauer et al. 2013; Borsato et al. 2014), and our
results agree well with previous work. We omit the outermost
planet of the system, Kepler-11 g, from our analysis since it
does significantly influence the TTVs of the other planets
(Lissauer et al. 2011a).

Kepler-18 c, d* Figure 9.5): Planet d’s inferred mass agrees
well with the analytic chopping constraint. The chopping
amplitude measurement has a fractional uncertainty of ∼50%,
so there is still a large degree of mass–eccentricity degeneracy.
Consequently, planet c’s mass does not meet our standard for
classification as robust.

Kepler-18 was previously analyzed by Cochran et al. (2011),
who fit both RV and TTV observations of Kepler-18 spanning
Quarters 0–6. They find planet masses of m m, 17.3c d = [ ] [

M1.9, 16.4 1.4 Å] using a combination of RV and TTV data.
Their results are consistent with our N-body MCMC fits.

Kepler-18 hosts an additional planet, b, interior to planet c.
The TTVs of planet b appear flat, and we find that including it in
our N-body MCMC fitting does not yield a strong constraint on
its properties or affect the inferred properties of planets c and d.

Kepler-49 b*,c* (Figure 9.6): Planet b’s chopping TTV
breaks the mass–eccentricity degeneracy for this planet pair,
resulting in two robustly inferred masses. Jontof-Hutter et al.
(2016) fit masses m m M, 9.2 , 5.9b c 3.5

3.7
2.3
2.7= -

+
-
+

Å[ ] [ ] analyzing
Q1–17 transit times of Kepler-49 b and c, in good agreement
with the default prior MCMC results, m m, 8.1 ,b c 1.8

1.8= -
+[ ] [

M5.8 1.4
1.5

-
+

Å] .
Kepler-51 b*, c*, d* (Figures 9.7–9.8): The masses of planets c

and d are well constrained by their mutual chopping TTVs. The

combined eccentricity of planets b and c is constrained by the
fundamental TTV of planet b since the mass of planet c is already
constrained by its effect on planet d. Masuda (2014) previously
conducted an MCMC analysis of the Kepler-51 system’s TTVs
using Kepler data spanning Quarters 1–16 and fit masses
m m m, ,b c d[ ] = 2.1 0.8

1.5
-
+[ , M4.0 0.4, 7.6 1.1  Å] . The masses

found by Masuda (2014) agree well with our default prior results:
m m m, ,b c d[ ] = 2.4 1.6

1.7
-
+[ , 3.8 0.7

0.9
-
+ , M6.2 1.5

1.6
-
+

Å] .
Kepler-58 b, c (Figure 9.9): Kepler-58 b’s and c’s lack of

chopping place upper bounds on the planets’ masses that agree
well with the upper limits inferred from the high-mass prior N-
body MCMC results.
Kepler-79 b, c, d, e* (Figures 9.10–9.12): The planets of the

Kepler-79 system are near a succession of first-order MMRs:
2:1 (b/c), 2:1 (c/d), and 3:2 (d/e). Planet e’s mass is robustly
constrained and shows fair agreement with the analytic
chopping constraint. Jontof-Hutter et al. (2014) also analyze
the TTVs of the Kepler-79 system using Q1–14 short-cadence
data. Their results agree with ours for the robustly measured
mass of planet e.
Kepler-84 d, b, c, e, f (Figures 9.13–9.16): Kepler-84 hosts

five planets near a series of first- and second-order MMRs.
Planet f’s chopping TTV favors a planet e mass of
m M40e *~ Å , though the default prior’s weighting toward
low masses results in a posterior that is consistent with
me=0. The other planets suffer strong mass–eccentricity
degeneracies or have weak mass upper bounds from the
nondetection of TTVs.
Kepler-85 b, c, d, e* (Figures 9.17–9.20): Kepler-85 c’s, d’s,

and e’s lack of strong chopping TTVs places upper bounds on
planet c’s and d’s masses. Planets b and c have significant

Figure 9. Constraint plots for the Kepler-11 system. Each panel summarizes the constraints derived from the interactions of a particular planet pair. Specifically, the
constraints placed by the TTV of the outer planet on the mass of the inner planet plus the combined eccentricity are shown in the bottom left panel, and the constraints of the
inner planet’s TTV on the outer planet’s properties are shown in the bottom middle panel. Posterior samples from the default prior MCMC are plotted as gray points, with
black lines indicating the 68% (solid) and 95% (dashed) credible regions. Histograms show the marginalized mass and combined eccentricity posterior distributions from
the default prior (solid) and high-mass prior (dotted) N-body MCMCs. The 1σ constraints from fundamental TTVs are shown in blue, chopping TTVs in orange, and
second-harmonic/second-order resonance TTVs in red. Note that planet masses are plotted relative to the host star mass in units of M *Å defined in Equation (7).

(The complete figure set (83 images) is available.)
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fundamental TTVs from their near 3:2 commensurability. Planet
b’s and c’s TTVs are subject to the mass–eccentricity
degeneracy. Planet e’s mass is robust based on the MCMC
results, though it is not clear from the analytic constraints shown
in Figures 9.19 and 9.20 why this is the case. An analytic
MCMC fit to Kepler-85ʼs TTVs yields m M2.8e 2.0

1.6
*= -

+
Å ,

consistent with, though more uncertain than, the N-body MCMC
results. We are unable to fully account for Kepler-85 e’s well-
constrained mass with the analytic model.

Kepler-105 03, b, c* (Figures 9.21–9.22): Planet c’s mass is
robustly constrained by chopping. KOI-115.03 and Kepler-105
b do not induce significant variations in each other’s transit
times, imposing an upper limit that agrees well with the high-
mass prior N-body results. Jontof-Hutter et al. (2016) measure
planet c’s mass to be m M4.6 0.9c *=  Å from an analysis of
Q1–17 transit times, consistent with our inferred value,
m M2.9 1.5c *=  Å at roughly 1σ confidence.

Kepler-127 b, c, d (Figures 9.23–9.24): Figure 9.24 shows
that planet d’s mass is constrained by chopping. Consequently,
the combined eccentricity of c and d is well constrained by
their 5:3 MMR TTVs. Planet c’s mass is inferred to be slightly
lower than the chopping constraint, though its inferred mass is
not robust to the choice of priors. The 2:1 fundamental TTVs of
planets b and c suffer a strong mass–eccentricity degeneracy.

Kepler-138 b, c, d (Figures 9.25–9.26): Planet d’s chopping
and second-order resonance TTV together constrain the mass
of planet c and the pair’s combined eccentricity, though the
chopping TTV amplitude has a large uncertainty, with

M m M1 8c* * Å Å at 1σ confidence. Consequently, the
inferred masses are quite sensitive to the assumed priors.

Jontof-Hutter et al. (2015) measure masses m m m, ,b c d =[ ]
M0.13 , 3.85 , 1.280.08

0.12
2.30
3.77

0.78
1.36

*-
+

-
+

-
+

Å[ ] from MCMC analysis of
transit data up to Quarter 14. Our default priors result in lower
planet masses (Table 1) than inferred by Jontof-Hutter et al.
(2015), who adopt priors that are uniform in planet masses and
eccentricities. Our high-mass priors give close agreement with
the masses found by Jontof-Hutter et al. (2015).

Kepler-177 b*, c* (Figure 9.27): Kepler-177 b’s and c’s mutual
fundamental and chopping TTVs constrain the masses and
combined eccentricity of the planet pair. Jontof-Hutter et al.
(2016) analyze the TTVs of Kepler-177 b and c and find planet
masses m m M, 5.7 0.8, 14.6b c 2.5

2.7
*=  -

+
Å[ ] [ ] , which agree

well with our results: m m M, 5.4 0.8, 13.3b c 2.7
2.4

*=  -
+

Å[ ] [ ] .
Jontof-Hutter et al. (2016) perform a second fit using an alternate
set of transit times and find masses that are larger by more than 1σ
for both planets.

Kepler-310 c, d* (Figure 9.28): Planet c’s chopping and
second-order resonance TTVs combine to constrain the mass of
planet d and the pair’s combined eccentricity. The nondetection
of chopping in planet d’s TTV gives an upper limit on planet
c’s mass that agrees well with the N-body results.

Kepler-345 b*, c* (Figure 9.29): The absence of chopping in
Kepler-345 b’s and c’s TTVs places upper limits on their
masses. Kepler-345 b and c are very near the fourth-order
19:15 MMR, with P P15 19 1 6 10c b

4- = ´ -∣ ∣ . We fit
Kepler-345 b’s and c’s TTVs with an analytic MCMC fit that,
in addition to the fundamental, second-harmonic, and chopping
TTVs, includes the effects of the 19:15 MMR on each planet’s
TTV.8 By comparing the results of analytic MCMC fits with

and without the effects of 19:15 MMR terms included, we find
that these terms are crucial for constraining the maximum value
of the planet pairs’ combined eccentricity.
Kepler-359 c*, d* (Figure 9.30): Kepler-359 c’s and d’s

mutual chopping TTVs constrain both planets’ masses. The
best-fit periods place the planet pair quite near the 4:3 MMR
( 0.002D = - ). Because of Kepler-359 c’s and d’s proximity to
resonance, their transit time observations cover a relatively
short portion of the super-period of their fundamental TTVs.
As a result, there is a strong covariance between the planets’
precise periods and their fundamental TTV amplitudes, which
complicates the application of our analytic formulae. Con-
straints from the fundamental TTV have been omitted in
Figure 9.30.
Kepler-444 b, c, d*, e*, f (Figures 9.31–9.34): Kepler-444 is

a compact five-planet system with each adjacent pair of planets
near a first-order mean MMR. Campante et al. (2015) validate
the planetary nature of the system and measure a precise stellar
age of 11.2±1.0 Gyr via astroseismology. Planets b/c are
near a 5:4 MMR, c/d are near a 4:3 MMR, d/e are near or in a
5:4 MMR, and e/f are near a 5:4 MMR. None of the planets’
TTVs show large variations. The planets’ lack of chopping
TTVs place stringent upper limits on their masses. The masses
of planets d and e are robust to the choice of priors. Their
masses and combined eccentricity are consistent with the
fundamental and chopping constraints, though no upper bound
on their eccentricity is apparent from the analytic constraints.
The planet pair is very near resonance ( 0.001D = ), where the
assumptions of the analytic model start to break down. Their
extreme proximity to resonance likely plays a role in limiting
the maximum combined eccentricity consistent with
their TTVs.
Kepler-526 b, 02 (Figure 9.35): Kepler-526 b and 02 are near

a 5:4 MMR. Planet b does not induce any detectable TTV in
Kepler-526.02. Lack of chopping TTVs provides upper limits
on the masses of Kepler-526 b and 02.
Kepler-549 01, b* (Figure 9.36): The masses of Kepler-

549.01 and b are constrained by their mutual chopping
components, especially planet b’s mass. The planets lack of
TTV from the nearby 5:3 MMR ( 0.047D = ) places a loose
upper bound on their combined eccentricity (not shown in
Figure 9.36). The N-body posterior shown in Figure 9.36 is
confined to significantly smaller combined eccentricities than
the upper bound derived from the lack of a 5:3 MMR signal.
Kepler-549 01/b are very near the third-order 7:4 MMR
( 0.003D = - ), and this likely plays a role in further
constraining the eccentricities of the planet pair.

A.2. Second Harmomic Systems

Kepler-23 b, c, d (Figures 9.37–9.38): Kepler-23 b and c are
near the 3:2 MMR and have strong fundamental TTVs. The
constraints from their mutual interactions are summarized in
Figure 9.37. The planet’s second-harmonic TTV constraints
appear to be in tension with each other: the constraint in the
right panel (planet b’s TTV) favors large ∣ ∣ values that are
ruled out by the left panel constraint (planet c’s TTV). The
right-hand panel second-harmonic TTV constraint is consistent
with 0 at the 1.5σ level. We use an analytic MCMC fit to
further investigate the discrepancy between the two constraints.
The analytic MCMC combines the constraints of both planets’
TTVs simultaneously so that the stronger of the two conflicting
second-harmonic TTV constraints will dictate the inferred

8 Terms in the analytic TTV formulae accounting for the fourth-order 19:15
MMR are derived by a straightforward extension of the derivation in Paper I
(see also Deck & Agol 2016).
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solution. The analytic MCMC results in Figure 9.37 demon-
strate that the combination of both planets’ TTV constraints
gives good agreement with the N-body results.

The constraints from planet c’s and d’s mutual TTVs are
summarized in Figure 9.38. Planets c and d are near the 7:5
MMR but do not induce significant second-order resonance
TTVs in each other. Planet c’s mass inferred with the default
prior MCMC is somewhat smaller than the mass inferred from
the chopping constraint, indicating that the higher prior
probability assigned to lower masses by the default prior
outweighs the likelihood contribution of the chopping TTV.

Kepler-24 b, c, e (Figures 9.39–9.40): Constraints from
planet b’s and c’s interactions are summarized in Figure 9.39.
The second-harmonic TTV constraint in the bottom left panel
(from planet c’s TTV) sets a lower limit on ∣ ∣. The planet
masses are not strongly constrained, and their inferred masses
are sensitive to the assumed priors. Planet e does not induce
any detectable TTV in planet c, and the interactions of planet c
and e are not very constraining.

Kepler-24 hosts an additional planet, d, with a radius of
R1.7 Å on a 4.2-day orbit somewhat near the 2:1 MMR with

planet c. Planet d shows no significant TTV. We conducted N-
body MCMC fits including planet d and find no significant
difference in the posterior distributions of the parameters of
planets b, c, and e. Our stability tests find that 10%~ of the
initial conditions (53/500) drawn from the default posterior for
Kepler-24 are unstable. The unstable posterior points are shown
in Figures 9.39 and 9.40. The unstable points have slightly
higher combined eccentricities relative to the overall posterior
distribution, but given their modest difference and relatively
low occurrence, we do not attempt to correct our posteriors to
account for stability.

Kepler-27 03, b, c (Figure 9.41): In addition to large
fundamental TTVs, planets b and c have nonzero second-
harmonic TTVs at 1σ significance. The constraints from the
second-harmonic TTV cannot easily be plotted in the m - ∣ ∣
plane because of the indirect terms in the analytic formulae for
planets near the 2:1 MMR (see Paper I). Instead, we illustrate
the contribution of the second-harmonic TTV to constraining
planet parameters by including in Figure 9.41 the results of an
MCMC fit using the analytic formulae. The analytic MCMC
shows fair agreement, though it favors slightly larger
eccentricities and smaller masses than the full N-body fit.
The Kepler-27 system hosts an additional (candidate) planet,
KOI-0841.03, interior to planets b and c that does not lie near
any low-order resonances or exhibit any significant TTVs. We
include KOI-0841.03 in our N-body MCMC fits but find that
its properties are largely unconstrained.

Kepler-28 b, c (Figure 9.42): Neither Kepler-28 b nor c has a
significant second-harmonic TTV. The absence of second-
harmonic TTVs imposes an upper bound of 0.1 ∣ ∣ on their
combined eccentricity. A lack of chopping places a 1σ upper
bound m M7c * Å on the mass of planet c.

Kepler-54 b, c (Figure 9.43): Kepler-54 b and c show strong
fundamental TTVs caused by their proximity to the 3:2 MMR.
Figure 9.43 indicates that the two planets’ second-harmonic
TTVs give conflicting constraints. To determine which of the
conflicting constraints more strongly influences the likelihood
of inferred planet parameters, we fit the TTVs of both planets
simultaneously with an analytic MCMC. Analytic MCMC
results, shown in purple in Figure 9.43, demonstrate that

simultaneous fitting of both TTVs gives good agreement with
the N-body results.
Kepler-56 b*, c* (Figure 9.44): Kepler-56 b and c are near a

2:1 MMR. Planet b’s second-harmonic TTV amplitude is
nonzero at 2s> significance. As with Kepler-27 above, we
include results from an analytic MCMC fit to illustrate the
constraints contributed by the second-harmonic TTV. The
analytic MCMC shows good agreement with the N-body
results.
Huber et al. (2013) previously analyzed the Kepler-56

system, fitting 10 RV measurements plus a full “photodyna-
mical” model fit directly to the Kepler light curve. Huber et al.
(2013) measure masses m m M, 22.1 , 181b c 3.6

3.9
19
21= -

+
-
+

Å[ ] [ ] ,
consistent with our MCMC results in Table 1.
Kepler-89 c*, d* (Figure 9.45): Both Kepler-89 c and d have

nonzero second-harmonic TTVs at >1σ significance. Figure
9.45 shows the constraints from the planets’ fundamental TTVs
along with the results of an analytic MCMC that includes
second-harmonic TTV terms. The analytic MCMC shows good
agreement with the N-body posteriors, demonstrating that the
second-harmonic signals break the mass/eccentricity degen-
eracy for this system. Kepler-89 hosts two additional planets, b
and e, excluded from our analysis because their periods place
them well away from any low-order MMRs with planets c
and d.
Kepler-89 c and d are among the few planets for which both

RV and TTV mass measurements have been reported, with RV
mass measurements reported by both Hirano et al. (2012) and
Weiss et al. (2013) and a previous TTV measurement reported
by Masuda et al. (2013). The masses fit by both Masuda et al.
(2013) and Hirano et al. (2012) (who measure the mass of
planet d only) agree well with the results of our TTV analysis.
Weiss et al. (2013) find m M106 11d =  Å , in tension with
our determination of planet d’s mass even if we adopt their
best-fit stellar mass, M M1.3* = .
Kepler-114 b, c, d (9.46–9.47): Kepler-114 is a three planet

system with both the inner pair (b/c) and outer pair (c/d) of
planets near 3:2 MMRs. Interactions between b and c,
summarized in Figure 9.46, do not provide strong constraints.
Figure 9.47 summarizes the interactions of the c/d pair.

Planet c does not induce any significant TTV in planet d. The
bottom left panel shows a strong fundamental TTV constraint
(from planet d’s TTV), but the chopping and second-harmonic
TTV amplitudes are consistent with zero at the 1σ level.
Results of an analytic MCMC are included in Figure 9.47. We
find, by turning on and off the contribution of the chopping and
second-harmonic TTVs separately in the analytic MCMC, that
both components help constrain planet c’s mass.
Kepler-122 e, f (Figure 9.48): Planet e’s second-harmonic

TTV and lack of chopping help break some of the mass–
eccentricity degeneracy, constraining 0.1 ∣ ∣ and
m M6f * Å . Our stability tests find 69 out of 500 of the
N-body integrations initialized from the default posterior
sample to be unstable. Figure 9.48 shows that the unstable
initial conditions are distributed randomly throughout the full
posterior, and dynamical stability considerations should not
influence the inferred planet masses and combined
eccentricities.
Kepler-279 c*, d* (Figure 9.49): Kepler-279 c and d both have

significant ( 3s> ) nonzero second-harmonic TTVs, and the
combined constraints of the planets’ fundamental and second-
harmonic TTVs break the mass–eccentricity degeneracy. The
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inferred masses and combined eccentricity are not strongly
affected by the choice of priors. Kepler-279 hosts a third planet,
b, interior to planets c and d with a period of 12.3 days. Planet b’s
period places it far from planets c and d, and it is not expected to
have an appreciable influence on either c’s or d’s TTV.

Kepler-396 b, c (Figure 9.50): Kepler-396 b’s second-
harmonic TTV amplitude is nonzero with 2s> confidence. We
include the results of an analytic MCMC in Figure 9.50 since
second-harmonic TTV constraints cannot be visualized in the

m - ∣ ∣ plane for planets near the 2:1 MMR. The analytic
MCMC fit agrees well with the N-body results. Lack of
chopping gives a 1σ upper bound of m M6c * Å on planet
c’s mass.

A.3. Resonant and Massive Systems

Kepler-9 b*, c* (Figure 9.51): Kepler-9 b and c are a pair of
Saturn-sized planets near a 2:1 MMR. Both planets’ masses
and their combined eccentricity are measured quite precisely.
Fits of Kepler-9 b’s and c’s TTV with the analytic formulae

underpredict the masses found by N-body fitting by M10 *~ Å
for both planets. The analytic formulae fail to accurately
recover the mass of Kepler-9 b and c because the formulae
break down for planet pairs in or too near an MMR. The width
of a first-order MMR, as measured in terms of Δ, scales as 2 3m
(e.g., Henrard & Lemaitre 1983), and Kepler-9 b’s and c’s large
masses place them quite close to being in the 2:1 resonance.
We find via N-body integrations that while the resonant angles
2 c b bl l v- - and 2 c b cl l v- - circulate for the best-fit
masses of Kepler-9 b and c, increasing the masses by only
∼30% causes the angles to transition from circulation to
libration.
Kepler-9 has been studied previously by multiple authors

(Holman et al. 2010; Borsato et al. 2014; Dreizler & Ofir
2014). Both Borsato et al. (2014) and Dreizler & Ofir (2014) fit
masses from TTV analysis that are ∼60% smaller than those
found by Holman et al. (2010), who base their planet masses
primarily on six RV observations.9 The masses and eccentri-
cities that we fit agree well with those determined by Borsato
et al. (2014) and Dreizler & Ofir (2014). The source of
disagreement between the TTV- and RV-derived masses is
unclear, though, as the authors of both previous TTV studies
note, the RV observation spans a short time baseline, less than
an entire orbit of planet c, and follow-up RV observations
could shed light on the discrepancy.
Kepler-29 b, c (Figure 9.52): Our N-body fits indicate that

Kepler-29 b and c’s are librating in the 9:7 MMR. The N-body
MCMC results agree well with analytic constraints derived form
the second-order resonance TTV despite the fact that the pair’s
libration in resonance violates the assumptions of the formulae’s
derivation (see Paper I). We confirm that Kepler-29 b and c are
in the 9:7 MMR with a set of 100 N-body integrations using
initial conditions drawn randomly from the MCMC posteriors.
The N-body integrations are done with the REBOUND code’s
WHFast integrator (Rein & Tamayo 2015). Confirming that the
planet pair is in resonance requires testing resonant angle(s) for

Figure 10. Top panel: time evolution of the Kepler-29 b/c 9:7 resonant angle
for 100 random initial conditions drawn from the default posteriors. The
resonant angle is defined as the complex phase of Equation (11). The resonant
angles librate or alternate intermittently between libration and circulation.
Alternating behavior is indicative of chaotic orbits. Note that the vertical axis
extends beyond p to account for windings of resonant angles that circulate.
Bottom panel: same as the top panel, but with initial conditions drawn from the
high-mass posteriors.

Figure 11. N-body MCMC posteriors for Kepler-36 b and c eccentricity
components. The posterior distributions of e cosi iv( ) (red) and e sini iv( ) (blue)
for i b c,= are plotted with 68% and 95% credible regions indicated by dark
and light shading, respectively. The dashed line shows the expected correlation
slope, f f 0.927 31- » , for a constant value of  (Equation (3)). The posterior
shows a strong correlation in the direction expected from the analytic TTV
formulae.

9 Holman et al. (2010) also include a limited number of TTV observations
spanning only ∼250 days in their fitting. They find that their TTV observations
alone do not strongly constrain the planet masses.
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libration. There are three resonant angles associated with a 9:7
MMR: 9 7 2c b bl l v- - , 9 7c b b cl l v v- - - , and
9 7 2c b cl l v- - , each of which appears as a cosine term in
the Laplacian expansion of the planets’ disturbing function
(Murray & Dermott 2000). The sum of the cosine terms can be
written, to lowest order in eccentricities, in terms of the planets’
complex eccentricities as

f z f z f z z e
1

2
c.c., 11b c b c

i
45

2
53

2
49

9 7c b* * * *+ + +l l-( ) ( )( )

where the fi combinations of Laplace coefficients are as defined
in Appendix B of Murray & Dermott (2000), the asterisk
indicates complex conjugation, and “c.c.” denotes the complex
conjugate of the preceding term. Instead of testing each of the
three possibly resonant angles separately, we plot the complex
phase of the term preceding “c.c.” in Equation (11) in
Figure 10. Libration of this complex phase implies libration
of at least one of the 9:7 MMR angles enumerated above.

Figure 10 shows the time evolution of the resonant angle from
N-body integrations drawn from both the default and high-mass
posteriors. For all initial conditions, the resonant angle either
librates or chaotically alternates between libration and
circulation.10

Jontof-Hutter et al. (2016) and Migaszewski et al. (2017) also
conduct an MCMC analysis of Kepler-29 b’s and c’s Q1–17
transit times. Our high-mass priors yield masses and error bars
similar to theirs. Yet despite that, we do not consider this system
as robust because the default and high-mass priors disagree.
Kepler-30 b*, c* (Figure 9.53): Kepler-30 b and c are near a

2:1 MMR. The analytic TTV formulae are not expected to be
accurate given Kepler-30 c’s large mass (m M550c *» Å ).
Sanchis-Ojeda et al. (2012) fit masses m m, 11.3 1.4,b c = [ ] [

Figure 12. Resonant angle time evolution for the Kepler-60 system for 100 simulations with initial conditions randomly drawn from the high-mass MCMC posterior.
Vertical axes are extended beyond p to account for windings of resonant angles that circulate.

10 We confirm the chaotic nature of the initial conditions that produce
alternating evolution with the MEGNO chaos indicator (Cincotta et al. 2003)
implemented in the REBOUND code.
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M640 50 * Å] based on a TTV analysis of 2.5 yr of transit
data. We find somewhat smaller masses than Sanchis-Ojeda et al.
(2012), though our results are consistent within 2 s. Our TTV
analysis of Kepler-30 is based on the transit times computed by
Holczer et al. (2016), who note that the transit times computed by
Rowe et al. (2015) for Kepler-30 b are erroneous.

Kepler-36 b*, c* (Figure 9.54): Kepler-36 b and c are near a 7:6
MMR ( 0.005D = ). We omit any analysis of this system with the
analytic formulae because they provide poor approximations to
the planets’ TTVs, due to both their extreme proximity and their
small Δ. Despite the analytic model’s poor performance, the
planets’ eccentricity vector components are still strongly corre-
lated, as predicted by the analytic model. Figure 11 compares the
eccentricity vector posteriors to the correlation predicted by the
analytic model. Kepler-36 b’s and c’s eccentricities are poorly
constrained by the TTVs, and only their combination,  , is
measured accurately. Our analysis agrees with the previous TTV
mass measurements of Kepler-36 b and c by Carter et al. (2012).

Kepler-60 b*, c*, d* (Figures 9.55–9.56): The Kepler-60
planets are in a chain of MMRs. The inner b/c pair is in a 5:4
MMR, and the outer c/d pair is in a 4:3 MMR.11 This

configuration placed the b/d pair near a 5:3 MMR. Furthermore,
the planets are in or near a three-body resonance satisfying
n n n2 0b c d- + »∣ ∣ . Figures 9.55 and 9.56 show that the
default and high-mass posterior samples occupy disjoint regions
of parameter spaces. This indicates that the likelihood function
defined by the TTV observations has multiple local maxima of
similar likelihood, and each prior weights more toward a
different maximum. Nearly all (489/500) of the Kepler-60
default posterior points integrated in our stability tests are
unstable. We therefore conclude that the high-mass posteriors
more accurately reflect the true planet properties. For Kepler-60
only, we use the high-mass posteriors instead of the default
posteriors to compute the masses, densities, and envelope
fractions plotted of the figures in the body of the paper, though
we still report default posterior results in Tables 1 and 2.
Figure 12 examines the time evolution of the resonant angles

of each first-order MMR and the three-body resonance. For
each planet pair near a j:j−1 MMRs, Figure 12 plots the
resonant angles

j j 1 arg , 12res. f l l= ¢ - - -( ) ( ) ( )

where λ and l¢ are the mean anomalies of the inner and outer
planet, respectively. The dynamics of a first-order resonance
can be shown to depend only on this single resonant angle
(e.g., Batygin & Morbidelli 2013). We plot resonant angle

Figure 13. Resonant angle time evolution for the Kepler-80 system. The left panels show 100 random simulations with initial conditions drawn from the default
posterior. The right panels show the same angles with initial conditions drawn from the high-mass posteriors.

11 The resonant angles of Kepler-60 b/c and c/d undergo libration. Strictly
speaking, “in resonance” also implies the existence of a separatrix in phase
space (e.g., Henrard & Lemaitre 1983). Deducing the existence of a separatrix
requires a more detailed dynamical analysis, beyond the scope of this work.
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Figure 14. Resonant angle time evolution for the Kepler-223 system. The top two rows show the time evolution for initial conditions drawn from the default posterior.
The bottom two rows show the time evolution of the same angles for initial conditions drawn form the high-mass posterior. Vertical axes are extended beyond p to
account for windings of resonant angles that circulate.
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evolution for initial conditions drawn from the high-mass
posteriors only, since the default posteriors produce rapidly
unstable configurations.

The high-mass prior MCMC results (Table 1) agree well
with the masses measured by the two previous studies of
Goździewski et al. (2016) and Jontof-Hutter et al. (2016). Both
Goździewski et al. (2016) and Jontof-Hutter et al. (2016) find
similar values for the masses of the Kepler-60 system. We find
that the three-body resonance angle, 2b c dl l l- + , librates
for all initial conditions drawn from the MCMC posterior
computed with the high-mass prior. Jontof-Hutter et al. (2016)
find that 20% of the posterior samples they test have a three-
body resonance angle that circulates while the system remains
stable for at least 1 Myr.

Kepler-80 d*, e*, b, c (Figures 9.57–9.60): The planets of
Kepler-80 are arranged in a complex chain of resonances. Each
adjacent pair is near a first-order MMR, starting with the d/e
pair near a 3:2 MMR, followed by the e/b pair near a 3:2
MMR, and finally the b/c pair near a 4:3 MMR. Additionally,
the second and fourth planets, e and c, are near a 2:1 MMR.
Based on N-body integrations initialized from our MCMC
posteriors, all the resonant angles associated with these first-
order MMRs circulate. Three-body resonances occur when
the frequencies of two two-body resonance angles are equal
and the circulation rates of each two-body resonant angle in
the Kepler-80 system are nearly equal, i.e., n n3 2e d- »
n n n n3 2 4 3b e c b- » - . The two three-body resonance angles,

5 2 3 , 13e d b e d b, ,f l l l= - - ( )

3 2 , 14b e c b e c, ,f l l l= - - ( )

librate in the Kepler-80 system. Figure 13 plots the time
evolution of the resonant angles, Equations (13) and (14),
computed by N-body integrations initialized from the MCMC

posterior distributions. Each angle librates for every initial
condition that we integrate.
Because of the three-body resonances, planets e, b, and c

have multiple fundamental TTVs with the same super-period.
Planet e, for example, has fundamental TTVs induced by its
proximity to the 3:2 MMRs with both planet d and b, both with
super-periods of ∼192 days. Multiple fundamental TTVs with
the same frequency inhibit our linear fitting procedure for
generating constraint plots since the sinusoidal basis functions
used to fit fundamental TTVs are not independent. To illustrate
the constraints of the analytic model in Figures 9.57–9.60, we
perform an MCMC that uses the analytic formulae to fit the
planets’ TTVs directly, as opposed to fitting amplitudes
measured by a least-squares fit. The results of the analytic
MCMC in Figures 9.57–9.60 show fair agreement for planets b
and c but suggest that planet d’s and e’s masses are consistent
with 0, at odds with the N-body results.
Least-squares fits to the transit times of planets b and c (and

to a lesser extent planet e) are significantly improved by
allowing for a quadratic trend in the TTVs. We suspect that this
long-term quadratic trend arises from the dynamical influence
of the three-body resonances on the TTVs and contributes to
the robust constraints for planet d’s and e’s masses found via
N-body MCMC.
MacDonald et al. (2016) recently conducted a TTV analysis

of the Kepler-80 system. Their mass determinations for the
robustly constrained planets d and e are consistent with ours
within 1σ uncertainties after accounting for their use of a
somewhat larger stellar mass of M M0.73 0.02* =   com-
pared to our M M0.6 0.03* =  .
Kepler-223 b*, c*, d*, e (Figures 9.61–9.63): The periods of

the Kepler-223 planets place each successive adjacent pair of
planets in or near a first-order MMR with a 4:3 MMR between
b and c, a 3:2 MMR between c and d, and a 4:3 MMR between
d and e. We test for resonant angle librations in the Kepler-223
system with N-body integrations. The top row of Figure 14
plots the resonant angles of each adjacent planet pair. The
resonant angles of the pairs b/c and c/d librate over the entire
400 yr integration. The d/e resonant angle librates for 23 of the
50 simulations, while in the other 27 simulations it alternates
chaotically between libration and circulation. The left two
panels of the bottom row show the 2:1 MMR resonance for
planets b/d and c/e, respectively, both of which circulate.
Finally, the bottom right panel of Figure 14 shows that the
three-body resonant angle 2 c b dl l l- - librates about π for
all initial conditions. We do not apply the analytic TTV
formulae to the Kepler-223 system since they are not expected
to accurately represent the TTVs of planets librating in
resonance.
A sizable number (164/500) of the stability test N-

integrations initialized from the default posterior sample are
found to be unstable on a short timescale. These unstable
posterior samples are plotted in Figures 9.61–9.63 as red
points. The distribution of unstable initial conditions is not
obviously distinct from the overall posterior distribution in
terms of combined eccentricities and planet masses. Therefore,
we do not attempt to account for stability considerations in our
reported mass and combined eccentricity measurements for the
Kepler-223 system.
Mills et al. (2016) infer masses m m m m, , ,b c d e =[ ]

M7.4 , 5.1 , 8.0 , 4.81.1
1.3

1.1
1.7

1.3
1.5

1.2
1.4

-
+

-
+

-
+

-
+

Å[ ] from a TTV analysis of
the Kepler-223 system’s Q1–17 transit times. Their results

Figure 15. TTVs of the outer three planets of the Kepler-305 system. The
observed data are shown as black points. The best-fit N-body and analytic
solutions are shown in red and blue, respectively, and are plotted beyond the
time baseline covered by the observed data. The N-body solution shows a long-
term variability not captured by the best-fit analytic solution.
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roughly agree with ours; the measurement of mc is the most in
tension (2.4s). Furthermore, our TTV fit gives only an upper
bound for me, but the upper limit from the high-mass prior fit is
consistent with the me fit by Mills et al. (2016).

Kepler-305 03, b, c*, d* (Figures 9.64–9.66): Kepler-305 b
and c are near a 3:2 MMR, and planets c and d are near a 2:1
MMR. The inferred masses and eccentricities agree well with
the constraints of the measured fundamental TTVs of planets b,
c, and d. The masses of planets c and d are classified as robust
based on the N-body MCMC results, though the analytic
constraints shown in Figure 9.66 do not reveal what is
responsible for breaking the mass–eccentricity degeneracy.
Figure 15 shows that the N-body TTV solution exhibits a clear
long-term variability not captured by the analytic model. We
are unable to identify the origin of this variability after
searching unsuccessfully for higher-order MMRs and three-
body resonances among the planets. Both the b/c and c/d pairs
are fairly close to resonance ( 0.007D = and 0.009D = ,
respectively), and the variability could possibly be caused by
resonance effects not captured in the analytic model. We
speculate that the dynamical origin of the long-term variability
breaks the mass–eccentricity degeneracy for this system.

A.4. Degenerate Systems

A number of the TTV systems we analyze exhibit strong mass–
eccentricity degeneracy. The constraint plots are shown for each
degenerate system: Kepler-25, Kepler-31, Kepler-32, Kepler-48,
Kepler-52, Kepler-53, Kepler-57, Kepler-176, Kepler-238,
Kepler-277, Kepler-324, and Kepler-1126 in Figures 9.67–9.83.
Our stability tests find a somewhat significant fraction of unstable
initial conditions in the default posterior samples of Kepler-1126
(50/500). Figure 9.83 shows that the unstable initial conditions
are distributed roughly randomly throughout the full posterior.

Therefore, dynamical stability considerations should not influence
the inferred planet masses and combined eccentricities.
Jontof-Hutter et al. (2016) also analyze the TTVs of Kepler-

57 b and c and similarly find that the planets’ masses and
eccentricities are poorly constrained by the TTVs.
Marcy et al. (2014) measure RV planet masses for two of the

degenerate systems, Kepler-25 b and c ( m m,b c[ ] =
M9.6 4.2, 24.6 5.7  Å[ ] ) and Kepler-48 b and c ( m m,b c[ ]

= M3.9 2.1, 14.6 2.3  Å[ ] ). The Marcy et al. (2014) mass
measurements are inconsistent with the TTVs of both the
Kepler-25 and Kepler-48 systems. Despite the fact that the
TTVs suffer strong mass–eccentricity degeneracies, the funda-
mental TTVs constrain the planets’ mass ratios in both systems.
Figure 16 compares the RV mass measurements of Marcy et al.
(2014) with the N-body MCMC posteriors for Kepler-25 and
Kepler-48 systems. In both systems, Marcy et al. (2014) find
outer planet masses that are larger than the TTV observations
support. It is unclear which mass constraints are correct: it is
possible that unmodeled effects, such as additional planets,
contaminate the TTV, but it is also possible that the RV
measurements are in error. Marcy et al. (2014) report additional
planets at distant orbital separations in both the Kepler-25 and
Kepler-48 systems. Kepler-25 hosts a nontransiting M90~ Å
planet with a period of 123 days, and Kepler-48 hosts an
additional transiting M8~ Å planet on a ∼43-day orbit, as well
as a nontransiting M2 J~ planet on a ∼1000-day orbit. We
confirm via N-body calculations that these additional planets
have negligible effects on the TTVs of Kepler-25 b/c and
Kepler-48 b/c, as expected given their large orbital separations.
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