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ABSTRACT

In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm
signal measured by interferometers. The technique, which we call H I Expectation–Maximization Independent
Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed
for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological
signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps
and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the
statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm
signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component,
without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to
mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental
effects. We also discuss the impact when the noise properties are not known completely. As a first step toward
solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the
commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique
provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward
manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be
extended to single-dish observations as well.

Key words: cosmology: observations – diffuse radiation – instrumentation: interferometers –
methods: data analysis – methods: statistical

1. INTRODUCTION

One of the main goals of modern cosmology is to measure
the large-scale structure (LSS) of the universe, which encodes
crucial information about cosmological processes. Measuring
these large-scale fluctuations is the primary tool for under-
standing cosmological and astrophysical phenomena and
determining the related parameters. Observations(Smoot
et al. 1992; Hinshaw et al. 2013; Ade et al. 2014) of the
cosmic microwave background (CMB) precisely probe fluctua-
tions induced by primordial matter density perturbations from
the last scattering surface at a redshift of z∼1100 to constrain
models of inflation(Peiris et al. 2003; Kinney et al. 2006).
Spectroscopic galaxy redshift surveys such as the 2dF Galaxy
Redshift Survey(Colless et al. 2003), the WiggleZ Dark
Energy Survey(Drinkwater et al. 2010), the Sloan Digital Sky
Survey(York et al. 2000), LAMOST(Wang et al. 2009), and
the Baryon Oscillation Spectroscopic Survey(Anderson
et al. 2013) have attempted to map out the three-dimensional
(3D) structure of galaxies in the universe, providing an even
more precise measurement of cosmological parameters.

Neutral hydrogen (H I) tomography may provide a powerful
alternative to galaxy surveys. The redshifted 21 cm hyperfine
transition line allows for direct measurement of the redshift

(distance) of a source. Using H I tomography through red-
shifted 21 cm emission could be a relatively inexpensive tool to
probe LSS over enormous volumes of our universe, from
redshift 0 to ultimately as high as ∼200, potentially collecting
orders of magnitude more information than either CMB or
galaxy surveys can provide. Cosmological parameters could be
determined with far greater precision(Mao et al. 2008), and the
properties of dark matter, dark energy, neutrinos(Loeb &
Wyithe 2008; Morales & Wyithe 2010; Pritchard & Loeb
2012), and non-Gaussianity(Maldacena 2003; Loeb & Zal-
darriaga 2004; Xu et al. 2015) from inflation could be tightly
constrained. Twenty-one centimeter emission may be the only
way to explore the dark ages and the epoch of reionization
(Madau et al. 1997; Chen & Miralda-Escude 2004; Furlanetto
et al. 2006; McQuinn et al. 2006).
In particular, it is possible to trace the dynamics of the

expansion of the universe and study the evolution of the dark
energy by mapping the large-scale structure of the universe in
three dimensions(Seo & Eisenstein 2003). Several authors
(Peterson et al. 2006; Chang et al. 2008; Loeb & Wyithe 2008;
Wyithe et al. 2008; Morales & Wyithe 2010) have proposed a
new technique, the so-called “21 cm intensity mapping,” for
the observation of baryon acoustic oscillations (BAOs) in the
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large-scale structure. By mapping the 21 cm intensity field with
an angular resolution of ∼10 arcmin across the redshift range
from 0 to 3, it may be possible to determine precisely the dark
energy equation of state (Bull et al. 2015). This technique has
been tested with existing telescopes such as the Green Bank
Telescope(Chang et al. 2010; Masui et al. 2013; Switzer
et al. 2013) and the Parkes Radio Telescope(Pen et al. 2009).
However, to obtain the sensitivity and angular resolution
necessary to resolve BAO peaks, dedicated radio telescopes
with large numbers of receivers and apertures of the order of
100 m are required. Dedicated single-aperture telescopes (e.g.,
FAST, Nan et al. 2011) are prohibitively expensive. Instead,
interferometers provide an economical way to observe large
volumes of the sky and efficiently measure the BAO features.
Additionally, interferometry is well-suited to EoR and BAO
measurements: visibility naturally measures the Fourier modes
of the intensity distribution on the sky, which is directly related
to the power spectrum of statistical fluctuations in the H I

distribution. Radio interferometric arrays are already being
designed and constructed. Currently, there are several dedi-
cated H I interferometers that plan to detect the redshifted
21 cm EoR signal: LOFAR11, MWA12, 21 cmA13, and
PAPER.14 GMRT15 is also currently attempting to detect the
21 cm signal from reionization. Furthermore, several 21 cm
BAO experiments to conduct low-redshift surveys have been
proposed (including BAOBAB, Pober et al. 2013a; BAORadio,
Ansari et al. 2012b) or constructed (CHIME16 and TianLai,
Chen 2012). Next-generation experiments such as SKA17 will
enable revolutionary progress in 21 cm tomography.

However, H I tomography is extremely challenging because
astrophysical foreground contamination is expected to be at
least four orders of magnitude brighter than the 21 cm signal.
The success of the statistical detection of the signal relies on
robust foreground removal, which has been extensively
explored over the past decade. Different methods have different
advantages and biases in providing signal estimates. Fortu-
nately, foregrounds are expected to have smooth continuum
spectra that vary slowly with frequency, while the 21 cm signal
is expected to oscillate dramatically over a short frequency
range and to become uncorrelated beyond frequency separa-
tions of about 1 MHz(Santos et al. 2005). In principle, one can
remove slowly varying components to extract the H I signal
from the contaminants, although this process will always leave
some residual contamination. The early ideas use a multi-
frequency angular cross-correlation power spectrum to separate
foreground from the 21 cm signal(Di Matteo et al. 2002, 2004;
Oh & Mack 2003; Cooray & Furlanetto 2004; Zaldarriaga
et al. 2004; Santos et al. 2005). An alternative approach is to
subtract foreground along each line of sight in the sky or in the
uv plane by fitting the frequency dependence with a particular
smooth function (e.g., a polynomial) and then using the
residuals to determine the 21 cm power spectrum(Santos
et al. 2005; Bowman et al. 2006, 2009; McQuinn et al. 2006;
Wang et al. 2006; Gleser et al. 2008; Jelić et al. 2008; Harker
et al. 2009a, 2010; Liu et al. 2009a; Petrovic & Oh 2011).

Higher-order statistics, like skewness, are also employed to
clean foregrounds(Harker et al. 2009b). In addition, Liu et al.
(2009b), Trott et al. (2012), and Morales et al. (2006) examined
the impact of point-source subtraction residuals on 21 cm
fluctuations, and Morales & Hewitt (2004) developed a
removal approach based on some symmetries in the 3D Fourier
representation of radio interferometric data. More recently,
simulations and observations have shown that even if sky
foregrounds are spectrally smooth, the chromatic synthesized
beam of an interferometer interacting with smooth spectrum
foregrounds can still imprint unsmooth spectral features on
measured foregrounds, contaminating a “wedge”-like region
(the so-called “mode-mixing”) in cylindrical k k,( )^  Fourier
space(Datta et al. 2010; Morales et al. 2012; Parsons
et al. 2012; Trott et al. 2012; Vedantham et al. 2012; Dillon
et al. 2013; Pober et al. 2013a, 2013b, 2014; Liu
et al. 2014a, 2014b).
In order to subtract foregrounds with minimal prior

assumptions on the angular distribution or frequency depen-
dence of foreground components, some blind (non-parametric)
methods have been extensively studied in the literature. By
using only data, those methods can automatically find the
correlated features and separate them out into distinct
components. A commonly used data analysis technique known
as Principal Component Analysis (PCA) has been applied to
foreground removal and has been successfully tested on
simulated data and real observations(de Oliveira-Costa et al.
2008; Chang et al. 2010; Masui et al. 2013; Switzer
et al. 2013). Other non-parametric methods, including the
FASTICA algorithm(Hyvärinen 1999; Hyvärinen & Oja 2000;
Chapman et al. 2012; Wolz et al. 2014) based on independent
component analysis (ICA) and singular value decomposition
together with an analysis based on the Karhunen–Loève
transform(Shaw et al. 2014), provide encouraging results.
The FASTICA algorithm is based on the maximization of non-
Gaussianity (neg-entropy), a measure of the deviation of a
mixture of signals from a Gaussian distribution. However, the
disadvantage of this approach is that the noise leakage into the
reconstructed signal is, in principle, difficult to estimate since
the signal and noise essentially have the same statistical
distribution, which is completely uncorrelated across frequen-
cies. Other methods, such as the Correlated Component
Analysis (CCA; Bonaldi & Brown 2015) method, can be
referred to as “semi-blind” since they require some prior
knowledge. By using second-order statistics, CCA also
provides a promising way to separate the 21 cm reionization
signal from foreground contamination for SKA measurements.
Recently, Vansyngel et al. (2014) provided a unified approach
for semi-blind foreground cleaning from multi-frequency
CMB data.
In this study, we describe HIEMICA, the H I Expectation–

Maximization Independent Component Analysis algorithm, a
Bayesian framework to infer power spectra and maps of the H I

signal and foregrounds from “dirty” data cubes. This technique
extends the Spectral Matching ICA (SMICA; Delabrouille et al.
2003; Cardoso et al. 2008; Planck Collaboration et al. 2014)
approach from two-dimensional (2D) CMB maps to the three-
dimensional (3D) 21 cm cosmological signal and can be
considered a semi-blind source separation method. The
statistical isotropy of the cosmological Gaussian random fields
in 3D Fourier space provides a characteristic and unique
signature to distinguish them from the statistically non-

11 http://www.lofar.org
12 http://www.mwatelescope.org
13 http://21 cma.bao.ac.cn
14 http://astro.berkeley.edu/~dbacker/eor/
15 http://gmrt.ncra.tifr.res.in
16 http://chime.phas.ubc.ca
17 http://www.skatelescope.org
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isotropic foregrounds; in the frequency (redshift, or radial)
direction, astrophysical foreground sources contain only
spectral information, which has no connection with their
spatial distributions in the transverse direction.

The purpose of this work is to take a first step toward
building a new framework for 21 cm data analysis. Our paper
provides a complete description of the mathematical formalism
and numerical techniques, which in principle can be applied to
any realistic array design. Here, we test the approach for an
idealized array; we propose dedicating a future paper to
systematic tests of arrays with realistic instrumental effects.

This paper is organized as follows. Section 2 describes the
HIEMICA semi-blind component separation algorithm. Sec-
tion 3 summarizes the details of our performed simulations.
Section 4 presents the application of HIEMICA to simulated
sky maps and shows the main results. Finally, Section 5
provides our discussion and concluding remarks.

2. THE HIEMICA METHOD

2.1. Radio Interferometric Measurements

For a multichannel interferometric array, the fundamental
observable is the visibility, uV ,( )n , which is the angular
Fourier mode of the intensity fluctuations on the sky measured
by a baseline u in a frequency channel ν. In the flat-sky
approximation, the complex visibility can be written simply as
the 2D Fourier transform of the beam-modulated sky intensity:

uV d A T e, , , , 1ui2 2( ) ( ) ( ) ( )·ò q q qn n n= qp-

where q denotes the angular sky position, T ,( )q n is the sky
temperature, A ,( )q n is the primary beam pattern, which
determines the observed area of the sky, and the baseline vector
u is on the uv-plane perpendicular to the direction of the
incoming signals and measures the separation between the two
antenna pairs in units of wavelength, i.e., u=ν/cΔr. As the
physical separation Δr of each pair of antennas is assumed to
be fixed, each frequency channel thus gives an independent set
of visibility samplings in the uv-plane with frequency-
dependent baseline vectors.

In practice, especially for 21 cm tomography, one discretizes
the 3D sky into voxels so as to efficiently estimate the intensity
distribution T ,( )q n and associated power spectrum using FFT-
based algorithms. If we assume n⊥ pixels per 2D image (real or
Fourier space) with even spacings in the θx and θy directions
(i.e., two transverse directions), and an instrument with nP
frequency channels of an equal spectral resolution Δν to probe
the sky signal in a radial direction, then we have a 3D uniform
Cartesian grid of size n⊥nP. Throughtout this paper, the
symbols ⊥ and P denote the two transverse directions and the
radial direction, respectively.

Following Sutter et al. (2012), the radio interferometric
measurement equation of Equation (1) at the frequency νi, for
i=1, 2,L, nP, can be recast into a discrete operator formalism
by

y I F A F n , 2i i i i i
1[ ] [ ] [ ] ˜ [ ] [ ] ( )yn n n n n= +^ ^ ^

-
^ ^

where y y u y u, , , ,i i n i
T

1[ ] ( [ ] [ ])n n n=^ ^ and i
˜ [ ]y n =^

u u, , , ,i n i
T

1( ˜ [ ] ˜ [ ])y n y n^ denote, respectively, the discretized
visibilities in the uv-plane and the 2D Fourier “image” of the
true angular sky ( i[ ]y n^ ) of 21 cm and foregrounds at the ith

channel. The vector n n u n u, , , ,i i n i
T

1[ ] ( [ ] [ ])n n n=^ ^ denotes
the instrumental noise at the ith channel for all of the uv points.
Hereafter, bold, upper and lower case letters denote a matrix
and a vector, respectively, and the symbol ~ is used for
Fourier components. F⊥ represents the 2D Fourier transform
operator performed in the transverse direction, converting from
the real-space domain into the uv-space domain (of course, F 1

^
-

is its inverse), and A i[ ]n represents the primary beam pattern of
the interferometer measured at the frequency νi and implicitly
is a n⊥× n⊥ diagonal matrix. The operator I i[ ]n specifies the
visibility sampling function determined by the distribution of
baselines and can also be represented by an n⊥× n⊥ diagonal
matrix that has 1s and 0s on the diagonal to indicate whether a
given pixel in uv-space has been observed or not.
It is convenient to introduce a vector form for numerical

operations. By stacking each vector i
˜ [ ]y n^ as

, ,
T T

n
T

1
˜ [ ˜ [ ] ˜ [ ]]y y yn n=^ ^ ^  , Equation (2) can account for all
of the frequency channels when rewritten as

y n,
0

0
, 3

n

1
˜ ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Fy F

F

F
= + =^ 



I F A Fwith ,i i i
1[ ] [ ]F n n= ^ ^

-

where ỹ̂ is a vector with length n⊥nP and F is a block
diagonal matrix, while y y y, ,T T

n
T

1[ [ ] [ ]]n n= ^ ^  and n =

n n, ,T T
n

T
1[ [ ] [ ]]n n^ ^  each collect vectors for all frequencies

into an n⊥nP-element vector.
Note that Equation (3) is presented on a uniform grid in

order to enable the FFT operation. Realistic observations from
radio interferometers do not sample visibility data on a uniform
grid in uv-space. Therefore, analyzing the data on a uniform
grid requires an additional process, “gridding,” to map raw
visibilities from specified uv points to grids with even spacing.
However, the gridding process can distort the signal estimate,
especially for small 21 cm signals. Alternatively, one can use
the Non-uniform Discrete Fourier Transform (NuDFT; Fessler
& Sutton 2003) to directly calculate visibility data at
continuous coordinates so as to avoid “gridding” effects. We
leave an investigation of the gridding effects and a possible
solution by NuDFT to future work.

2.2. Linear Mixture Model

The 21 cm signal along the line of sight for each individual
pixel is not a smooth function of frequency, while most
astrophysical contaminants should have smooth power-law
spectral structures. If we assume that the total foreground
emission contributing to the observed data in a given frequency
channel can be expressed as a linear superposition of a few
components and the spectral behavior of each component does
not vary across the sky, the true sky temperature in pixel θk, for
k=1, 2, L, n⊥, in the ith channel can then be modeled as

s M f, , , 4i k i k
j

n

ij j k
1

c

[ ] [ ] [ ] ( )åy n q n q q= +
=

where νi is the frequency, θk is the pixel position, nc is the
assumed total number of foreground components, s ,i k[ ]n q is
the 21 cm signal, and fj k[ ]q is the jth foreground component.
Mij reflects the contribution of the jth foreground component to

3
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the ith frequency channel and is assumed to be constant and
independent of θk, and thus the matrix M is commonly called
the “mixing matrix” with dimensions of nP×nc. Each
column of M encodes the frequency dependence of each
foreground component.

As the Fourier modes of the isotropic 21 cm signal s ,( )qn
are expected to be mutually independent, expressing its
temperature in the Fourier coordinates u,( )h is particularly
useful. By taking the 3D Fourier transform along the frequency
axis and two angular directions, one has

us s e d d, , , 5ui2˜( ) ( ) ( )( · )ò q qh n n= qp nh- +

where η is the Fourier dual of the frequency variable ν. Note
that here we perform the “true” Fourier transform of the sky
temperature along the line-of-sight direction that is perpendi-
cular to the uv-plane, rather than a “delay transform.” The
delay transform is the Fourier transform in the frequency of the
spectrum measured by a single baseline, which varies with
frequency (i.e., u is a function of ν in Equation (5)) and which
leads to the “mode-mixing” phenomenon (see Liu et al. 2014a
for details).

The foreground components can also be expressed in terms
of their 2D Fourier modes. For the jth component, one has

uf f e d j n1, , . 6u
j j

i
c

2˜ ( ) ( ) ( ) ( )·ò q q= =qp- 

According to the above equations, by performing the angular
Fourier transform on Equation (4) and expressing the 21 cm
signal in terms of its 3D Fourier modes, Equation (4) can be
rewritten in a discretized version as

u F i m s u M f u, , , , 7i k
m

n

m k
j

n

ij j k
1

1

1

c

˜ [ ] [ ] ˜[ ] ˜ [ ] ( )å åy n h= +
=

-

=




where i denotes the frequency channel number, k denotes the
pixel position in the uv-plane, and we have introduced the
operator (matrix) F 1-

 , with its elements given by Fourier

coefficients F i m i n m n, 1, , ; 1, ,1[ ] ( )= =-     , to repre-
sent the one-dimensional inverse Fourier transform converting
the η domain to the frequency domain.

Using matrix multiplications, we can rewrite the linear
system above as the following matrix equation:

F S MF, 81˜ ˜ ˜ ( )Y = +-


where u,i k
˜ [ ]y n is the i k,( )th entry of the matrix Ỹ , s u,m k˜[ ]h is

the m k,( )th entry of the matrix S̃, and f uj k
˜ [ ] is the j k,( )th

entry of the matrix F̃. Applying a “vectorization” operator
(vec[·]) that converts the matrix into a column vector by
stacking the columns into a long column vector, one can
express ỹ̂ in Equation (3) with TỸ by

F S MFvec vec vec . 9T T T1˜ [ ˜ ] [( ˜) ] [( ˜ ) ] ( )y Y= = +^
-


Substituting Equation (9) into Equation (3), and using the
identity PQ Q I Pvec vecT

m[ ] ( ) [ ]= Ä for any matrices Pm n´

and Qn p´ , where ⊗ denotes the Kronecker product and Im is an
(m×m) identity matrix, yields

B I x B F M, , 10n
1( )˜ ( ) ( )y = Ä =^

-
^ 

where x s f,T T T(˜ ˜ )= with s S f Fvec , vecT T˜ [ ˜ ] ˜ [ ˜ ]= = , In̂ is
the n⊥× n⊥ identity matrix, and B is a partitioned matrix with
dimensions of n n nc( )´ +  . Explicitly, s̃ and f̃ are vectors of
lengths n⊥nP and n⊥nc, respectively. They are constructed by
stacking s m˜[ ]h and fj̃ as s s s, ,T T

n
T

1˜ (˜ [ ] ˜ [ ])h h= 


and

f f f, ,
T

n
T T

1 c

˜ ( ˜ ˜ )=  , where the vectors s m˜[ ]h and fj̃, each with
length n⊥, denote an image of the 3D Fourier modes of the 21
cm signal at ηm and an image of the 2D Fourier modes of the jth
foreground component, respectively, i.e., s m˜[ ]h =
s u s u, , , ,m n m1( ˜[ ] ˜[ ])h h^ and f f u f u, ,j j j n1

˜ ( ˜ [ ] ˜ [ ])= ^ .
By inserting Equation (10) into Equation (3), the measure-

ment equation finally can be expressed as

y Hx n H B I, . 11n( ) ( )F= + = Ä ^

2.3. ICA Assumption

The ICA assumption is that the data can be considered as a
linear mixture of a set of statistically mutually independent
components (ICs). The cosmological 21 cm signal is expected
to be well approximated by an isotropic Gaussian random field
and uncorrelated with foregrounds. If we also assume that the
diffuse foregrounds consist of several statistically ICs, each of
them also being an isotropic Gaussian random field with zero
mean, as defined in Equation (10), the covariance matrix of x
then becomes a diagonal matrix, namely,

C xx
ss

f f

0

0
. 12

˜ ˜
˜ ˜ ( )†

†

†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= á ñ =

á ñ

á ñ

The unknown diagonal matrices ss˜ ˜†á ñ and f f˜ ˜†á ñ are to be
estimated from the observed data. They determine the 3D
power spectrum of the H I signal and the angular power spectra
of the ICs, defined through

s u s u P u, , , 13k m k m k m kk mmH I˜[ ] ˜ [ ] ( ) ( )*h h h d dá ñ =¢ ¢ ¢ ¢

uf u f u C ℓ 2 , 14j k j k jj kk f
j˜ ( ) ˜ ( ) ( ∣ ∣) ( )* d d pá ñ = =¢ ¢ ¢ ¢

where P u ,k mH I ( )h denotes the 3D power spectrum of the 21
cm signal as a function of u and η, and C ℓf

j ( ) denotes the
angular power spectrum of the jth foreground component as a
function of the multipole ℓ. The relation uℓ 2 ∣ ∣p= , where u is
determined by the pixel position uk, has been used in the flat-
sky approximation. Note that physical sources such as the
Galactic synchrotron and free–free emissions actually do have
a non-zero cross-correlation and their spatial distributions
clearly appear to be non-isotropic. Nevertheless, as we will
demonstrate, the ICA assumption can be regarded as an
effective decomposition of sources and does not appear to
affect our ability to remove foregrounds.

2.3.1. Noise

We also assume that the instrument noise is an uncorrelated
Gaussian distribution and can be obtained from a reasonable
noise model through

n u n u P u, , , . 15k i k i k i kk iiN˜( ) ˜ ( ) ( ) ( )*n n n d dá ñ =¢ ¢ ¢ ¢

The covariance matrix thus has the form of a known block
diagonal matrix (with n defined in Equation (3)), where each

4
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block is also diagonal:

N nn
N

N

0

0
. 16

n

1

( )†
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= á ñ = 


Here, N i denotes the n⊥× n⊥ covariance matrix of the noise
map in the uv-plane at the ith frequency channel, which is also
diagonal.

2.4. The Expectation–Maximization (EM) Algorithm

The goal of our analysis is to identify and separate the
components from visibility data that contains mixtures of
foregrounds and signal. Using the Bayesian framework
proposed by Snoussi et al. (2002) for CMB data, we will
show that, without any assumption on priors, by performing a
semi-blind ICA for which only the noise covariance matrix N
is well known, one can successfully separate the components
by jointly estimating the covariance matrix C and the mixing
matrix M , and can accurately estimate the power spectrum of
the H I signal.

In Bayesian inference, information about unknown para-
meters q that we want to estimate from the data y is expressed
in the form of a posterior probability distribution. Using Bayes’
theorem, it can be computed as y yp p( ∣ ) ( ∣ ) ( )q q qµ , where

y( ∣ ) q is the likelihood and p ( )q is the prior distribution of ;q
C M,( )q = in our case. If we assume flat priors for the mixing

matrix and the power spectra of all of the sources, and assume
that they are uncorrelated and independent, then the prior
reduces to C MP P P 1( ) ( ) ( )q = µ . Thus, exploring the
observed data posterior yp ( ∣ )q is equivalent to exploring the
likelihood. Following Snoussi et al. (2002), given the data
model in Equation (11), y H nx= + , the mixing matrix
M and the covariance matrix C can be estimated by
maximizing the likelihood function. For independent and
Gaussian sources, the likelihood can be expressed as

y HCH N

HCH N yy

2 ln ln

Tr . 171

( ∣ ) ∣ ∣
[( ) ] ( )

†

† †
 q- µ +

+ + -

Unfortunately, in general, such a likelihood evaluation is
computationally intractable when applied to large data sets with
realistic interferometric observations. However, in the analo-
gous case of CMB imaging observations18, this likelihood can
be approximated by the SMICA-likelihood(Delabrouille et al.
2003) to measure a “spectral mismatch” in the Fourier domain
between the empirical covariance matrices of the data and their
ensemble averages, which depend on the estimated parameters.
In practice, minimization of the spectral mismatch is equivalent
to maximizing the likelihood and can be achieved with the EM
algorithm. The EM algorithm has been applied to estimate the
CMB power spectrum and reconstruct the CMB map from
multi-frequency microwave maps(Delabrouille et al. 2003).
The EM algorithm is an elaborate technique to find the
maximum-likelihood estimate of the parameters when it is
intractable to directly evaluating the likelihood function. The
calculation is simplified by assuming the existence of
additional, missing parameters. It is an iterative algorithm to

repeatedly solve a tractable complete-data problem instead of
solving a difficult incomplete-data problem.
Here, we briefly summarize the EM algorithm when applied

to our model. The likelihood yp ( ∣ )q first can be obtained by
marginalizing the joint distribution y xp ,( ∣ )q over the missing
data x as

y y x xp p d, . 18( ∣ ) ( ∣ ) ( )òq q=

The key idea is that the EM algorithm does not maximize
yp ( ∣ )q directly; instead, it maximizes the so-called EM-

functional as follows:

y x y

y x x y x

Q E p

p p d

ln , ,

ln , , , 19

n n

n

( ∣ ) [ ( ∣ )∣ ]

( ∣ ) ( ∣ ) ( )ò
q q q q

q q

=

=

which is the expected value of the complete-data log-likelihood
with respect to the missing data x given the observed data y
and the current parameter estimates nq . The evaluation of this
expectation is called the Expectation (E)-step of the algorithm.
In our model, the prior distribution of the complex Fourier

modes x is assumed to be Gaussian with zero mean,

x C x C xp exp
1

2
, 201( ∣ ) ( )†⎜ ⎟⎛

⎝
⎞
⎠µ - -

where the diagonal covariance matrix C is defined in
Equation (12). Within a Bayesian framework, the joint
posterior distribution y xp ,( ∣ )q can be expressed by

y x y x xp p p, ,( ∣ ) ( ∣ ) ( ∣ )q q q= , yielding

y x N y Hx N y Hx

C x C x

p2 ln , ln

ln cst. 21

1

1

( ∣ ) ∣ ∣ ( ) ( )
∣ ∣ ( )

†

†
q- = + - -

+ + +

-

-

Using Bayes’ rule, the conditional probability distribution
function x yp , n( ∣ )q for the signal given the data is also the
Gaussian,

x y x x x xp , exp
1

2
, 22n 1( ∣ ) ( ˆ ) ( ˆ ) ( )†⎜ ⎟⎛

⎝
⎞
⎠q µ - - S --

where

x H N H C H N y, 231 1 1 1ˆ [ ] ( )† †= +- - - -

H N H C , 241 1 1( ) ( )†S = +- - -

where x̂ is the so-called Wiener-Filtered (WF) map and S is
the corresponding covariance x x x x( ˆ)( ˆ)†S = á - - ñ. The
solution for x̂ is the general map-making problem in
cosmology. This WF map can be computed efficiently by
implementing a preconditioned conjugate-gradient method that
allows one to iteratively reach the solution in a tractable
amount of computation time.
Using Equations (21) and (22), we integrate out x to derive

the expression of Equation (19), given by

N C C R
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18 The convolution with a frequency-dependent beam response in real space
becomes a simple product in Fourier space.
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where

R yy R yx R xx, , . 26yy yx xxˆ ˆ ˆ ( )† † †S= = = +  

Note here that R R,yy yx  , and Rxx only depend on nq rather
than q.

The second step, called the Maximization (M)-step, updates
the parameters by maximizing the expectation we computed in
the previous E-step. These two steps are repeated as necessary.
This procedure is guaranteed to increase the likelihood yp ( ∣ )q
monotonically with successive iterations. In order to obtain the
parameter n 1q + at iteration n+1, we solve the gradient
equation with respect to M and C to maximize the functional
Q. To do so, let us first introduce some notations that allow us
to express the derivative simply.

Let x̂ and S be partitioned as follows:

x s f, , 27T T
Tˆ (˜̂ ˜̂ ) ( )=

with

s s s f f f, , , , , . 28
T T
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T

n
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1 1 c
˜̂ ( ˜̂ [ ] ˜̂ [ ]) ˜̂ ( ˜̂ ˜̂ ) ( )h h= =^ ^ 



Here, x̂ is equally divided into n nc( )+ subvectors, each with
length n⊥, s iˆ [ ]h^ denotes the WF map of the 21 cm signal at ηi,

and fĵ denotes the WF map of the jth foreground component.
Similarly,
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where

s s s s , 31ij
ss

i i j j(˜[ ] ˜̂ [ ])(˜[ ] ˜̂ [ ]) ( )˜ ˜ †S h h h h= á - - ñ

s s f f , 32ij
s f
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each with dimensions of n⊥× n⊥.
The gradient equation then reads

C
C C R C

Q
0 34xx
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where the derivative of the last term can be well approximated
by
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where I F A Fi i i
1[ ] [ ]F n n= ^ ^

- , as defined in Equation (2), and
we have neglected the terms that include sf˜ ˜S and ss˜ ˜S ,
although the complete expression can be obtained in a
straightforward manner. This is an excellent approximation
for 21 cm foregrounds since they are several orders of
magnitude brighter than the 21 cm signal.19 By making this
approximation, we are able to dramatically speed up the
computation. According to Equations (34), (35), and (37), one
can establish the update scheme as follows:
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where M i,: denotes the ith row of the mixing matrix, and

N f fk j, Re Tr 39i
f f

i i kj
f f

k j i
1[ ] { [ ( ˜̂ ˜̂ ) ]} ( )˜ ˜ ˜ ˜ † †F S Fr = +-

N f yj Re Tr . 40i
f y

i i j i
1[ ] { [ ˜̂ ]} ( )˜ †Fr = -

One can verify that by setting iF as an identity matrix, for
i=1, 2, L, nP, such that no instrumental effects are present,
this is in complete agreement with the structure of the
expression for the mixing matrix in the literature (Snoussi
et al. 2002; Delabrouille et al. 2003).
The problem here is evaluating the matrixS from its inverse

as given by Equation (24) in order to obtain the covariance
matrix C from Equation (38). Since the matrix S has
dimensions of n n n n n nc c( ) ( )+ ´ +^ ^  , which are typically
of the order of 106×106 in a 21 cm survey, such matrix
inversion is completely computationally prohibitive. However,
since the power spectrum is only determined by the diagonal
components of S , not by the off-diagonals, by using the same
trick presented in the Gibbs sampling techniques(Jewell et al.
2004; Wandelt et al. 2004) for CMB data analysis, one can
verify that the ensemble-averaged solution for the following
linear equation has the desired covariance. By solving

H N H C z H N z C z , 411 1 1 2
1

1 2
2[ ] ( )† †+ = +- - - -

where the real vectors z1 and z2 are of lengths n⊥nP and
n n nc( )+^  , respectively, with elements drawn from a standard
normal distribution, one can find that zz†S = á ñ, where ·á ñ
represents the average over all of the solutions for a large
number of realizations of z1 and z2. This algorithm can rapidly

19 Note that in the case of CMB, the evaluation of the mixing matrix not only
depends on CMB foregrounds but also on the CMB signal itself since they are
roughly comparable.
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provide accurate approximate solutions in massively parallel
computers. Therefore one can obtain the diagonal components
of Rxx in Equation (38) efficiently by R z xxx ii i i

2 2( ) ∣ ∣ ∣ ˆ ∣= á ñ + ,
where i runs over all of the elements. In the same way as in x̂,
the vector z with length n n nc( )+ ^ can also be equally split
into n nc( )+ subvectors, each with length n⊥, as

z z z z z, , , , ,s T
n
s T f T

n
f T T

1 1 c
(( ) ( ) ( ) ( ) )˜ ˜ ˜ ˜=  


, corresponding to con-

tributions from the 21 cm signal, denoted by zi
s̃ for i=1,

L,n⊥, and the ICs, denoted by zi
f̃ for i=1,L,nc. Note that,

in general, the noise could be correlated, resulting in non-zero
off-diagonal components in the noise covariance matrix, N .
Solving Equation (41) will require multiplication by a dense
n⊥nP×n⊥nP inverse noise covariance matrix, with a computa-
tional scaling of n n2 2( ) ^  . In the most general case, inverting N
is a significant computational challenge. However, the inverse
noise covariance matrix needs only to be computed once and
stored, and then can be used many times to compute
Equations (39)–(41).

Using the above-mentioned trick, the trace term in
Equation (39) can be computed simply by the ensemble-
averaged dot products of two vectors as

N f f

z N z f N f

Tr

, 42
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where the vectors zj
f̃ and zk

f̃ represent the subvectors of z
solved by Equation (41). The above equation also applies to the
case of correlated noise.

Moreover, in each EM iteration, we fix the magnitude of each
column of M to unity and adjust the corresponding power spectra
of the ICs accordingly, similar to Delabrouille et al. (2003), to
break the degeneracy and keep the scale-invariant product

M M f u f u M M C u
j ij i j j k j k j ij i j f

j
k

˜ [ ] ˜ [ ] [ ]*å åá ñ =¢ ¢ unchanged for
an arbitrary pixel uk at any frequency channels i and i′, as seen
from Equation (7).

After updating M and C, since the quantities ℓ Cℓ
i2 for the ICs

and k k P2
H I^ for the H I signal are expected to vary more slowly

than Cℓ
i and PH I themselves, it is more appropriate to perform

bin averages after each iteration and update the associated
elements in C while ensuring that the number of observations is
smaller than the number of estimated parameters in C and M .
The simulation shows that using band-averaged spectra can
significantly increase the convergence speed and obtain much
more stable spectra with high accuracy in iterations. According
to Equation (13), the bin averages then yield the following
estimates:
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where Dq is the set of u values contributing to bin q and Dz is
the set of η values contributing to bin z. Alternatively, if the 21
cm signal is expected to be highly isotropic, then it is also

appropriate to perform bin averages by averaging over
spherical shells of constant k∣ ∣ to obtain the spherically
averaged H I power spectrum. The bin-averaging schemes
mentioned above are especially necessary at the beginning of
iterations with a poor initial guess since bin averaging can
smooth out any unreasonable values and highly suppress
foreground contamination that is expected to significantly
increase in strength toward low kP and would result in a
substantial overestimate of the H I power spectrum. One has to
keep using the bin-averaging process until the derived
amplitude of the H I signal in each bin converges to a
reasonable range.
In addition, although the bin widths can be chosen

arbitrarily, an appropriate choice can reduce the correlation
between the band-power estimates while retaining accurate
detection of the structure of the power spectrum. The minimum
bin width can be approximated by the typical correlation length
in Fourier space. For an interferometer, one may choose a bin
width of perpendicular modes, Δu, greater than the character-
istic width of the Fourier transformed primary beam pattern

xA ( ), and a bin width of parallel modes, Δη, roughly greater
than the inverse of the bandwidth.
The EM algorithm iterates until there is no significant change

in the likelihood. The stopping criterion of the iterative process
is here set in terms of the relative change of the bin-averaged
H I power spectrum in the last iterations, i.e.,
P P P 10n n n

H
1

H H
3

I I I∣ ∣ ∣ ∣- <+ - for all of the bins, and a typical
number of iterations is a few hundred.

2.5. The Initial Guess

Since the EM algorithm is a hill-climbing approach, the
searching procedure may fail to reach a global maximum and
instead converge on a local maximum if the likelihood
functions are not convex. In this study, we adapt a commonly
used strategy to solve this problem. We try many different
initial values varied in reasonable ranges and choose the
solution that has the highest converged likelihood value. After
a careful investigation, we chose the following algorithm for
initialization. For the initial value of M , we perform PCA
analysis (de Oliveira-Costa et al. 2008) to obtain the nc
eigenvectors associated with the largest eigenvalues for the
frequency–frequency covariance matrix estimated by averaging
over all of the pixels of the data, and use those vectors as the nc
columns of the mixing matrix M . After the mixing matrix is
initialized, the power spectra Cf

j are chosen to be the
corresponding diagonal elements in x xˆ ( ˆ)†, which is solved
using Equation (23) and setting C 01 =- such that there is no
prior information about C; Equation (23) reduces to a standard
map-making equation. After initializing M and Cf

j, we assume
as prior information about the H i signal a flat power spectrum
with an amplitude comparable to the noise level. The
simulations show that the H I signal reconstruction is quite
insensitive to the initial guess for its power spectrum as long as
it is not unreasonably large.

3. SIMULATIONS

We perform simulations to generate dirty sky map data
cubes. These data cubes include realistic models for the
cosmological 21 cm signal, several diffuse foreground
components, and instrumental noise. As this is just the first
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test of HIEMICA, we assume for simplicity that the primary
beam is unity for all frequency channels and assume complete
uv coverage. We leave detailed investigations about more
realistic observations to future work.

Because an interferometer only measures temperature
fluctuations around the mean and is insensitive to the mean
value of the brightness temperature, we set the mean of the 3D
H I signal and the means of the foreground and noise maps at
each frequency channel to zero.

The 3D dirty sky map is simulated in a box with 643 pixels
(i.e., 64 pixels per side), covering a 30°×30° sky patch and
spanning over 780–880MHz at intervals of 1.59MHz,
corresponding to redshifts between 0.82 and 0.61. In comoving
coordinates, this box corresponds to about
1341×1341×606Mpc3 and the size of each pixel is about
21×21×9.5 Mpc3. The code was run using the best-fit
cosmological parameters from the Planck measurements(Ade
et al. 2014).

3.1. H I Signal

In cosmology, the power spectrum is typically represented in
k k,( )^  comoving coordinates. If the observed frequency band
is small enough (i.e., probing a small range in redshifts) and
one uses the flat-sky approximation, then there is a linear
mapping between these variables:

u
k D z c z

H E z
k

2
;

1

2
, 45c

2

0 21

( ) ( )
( )

( )
p

h
p n

= »
+^



where E z z1m
3( ) ( )º W + + WL , ν21 is the rest frequency of

the 21 cm line, Dc is the transverse comoving distance, z is the
redshift of the observation, H0 is the Hubble parameter, c is the
speed of light, and Ωm and ΩΛ are the normalized matter and
dark energy density, respectively. The angular wavenumber k⊥

and the parallel wavenumber kP are the components of the
wavenumber k perpendicular and parallel to the line-of-sight
direction, respectively. Therefore, by inserting Equation (45)
into Equation (13), we obtain the relation of the power
spectrum defined under different coordinates:

k uP k
c z

H E z
P,

1
, . 46H

2

0 21
HI I( ) ( )

( )
( ) ( )

n
h=

+
^ 

The 21 cm brightness temperature and the corresponding 3D
power spectrum can be written as

P k T z b k z D z P k, 47H H
2 2 2

cdmI I( ) ( ¯ ( )) ( ) ( ) ( ) ( )=

T z
z

E z

f z
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, 48B

21

2
H I¯ ( ) ( )

( )
( )

( )+ W

where b k z,( ) is the bias parameter and Pcdm is the cold dark
matter power spectrum at the present day. ΩB is the baryon
density fraction. D z( ) is the growth factor for dark matter
perturbations defined such that D 0 1( ) = . For the purpose of
this paper, we assume b=1 over redshift and scale. For
simplicity, we also neglect the effects of redshift-space
distortions caused by the peculiar velocities of H I clouds and
galaxies in the H I power spectrum since the ICA-based
approach is insensitive to the detailed shape of the power
spectrum. The H I mass fraction is expected to increase with
redshift and we assume a linear dependence:
f z z0.008 1H I ( ) ( )= + . The matter power spectrum Pcdm with

the BAO can be parametrized according to the following
simple empirical formula:

P k k

P k k
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where k k k2 2= +^  , and the parameters A, α, and τ are
adjusted according to the formula presented in Eisenstein & Hu
(1998). P kref ( ) is the smooth “no-wiggles” power spectrum at
z=0, which can be computed from the fitting formula given
by Eisenstein & Hu (1998).
The parameters kBAO^ and kBAO are the sinusodial scales in the

radial and transverse directions in k space. We choose the following
values for these parameters used in this paper: A = 1.0, τ =
0.1 hMpc−1, α = 1.4, and k k h0.060 MpcBAO BAO

1= =^
-

 .

3.2. Foregrounds

We model the foregrounds as isotropic random Gaussian
fields described by angular power spectra C ,ℓ ( )n n¢ based on
Santos et al. (2005). In this paper, we assume that bright
resolved point sources have been removed accurately and
consider four dominant diffuse components: Galactic synchro-
tron emission, Galactic and extragalactic free–free emission,
and extragalactic radio point sources. The angular power
spectrum of each source takes the following generic form:

C ℓ A
ℓ
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1000
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, 51f

f
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2
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nn
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x
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¢
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where νf is the reference frequency with νf=130MHz. We
list the parameters of the foreground models used in this paper
in Table 1. Based on such models, Figure 1 shows the angular
power spectrum of each foreground contribution for one
realization. The corresponding maps are shown in Figure 2.
Following Davies et al. (2006), the frequency index α of

real-world foregrounds varies slightly across the sky. For
example, in the case of synchrotron emission, the direction-
dependent spectral index reflects variations of the relativistic
electron density and Galactic magnetic field. In this paper, for
each foreground component, we assume the indices in different
directions to be Gaussian distributed with a mean of α and an
rms of Δα as shown in Table 1, consistent with model
parameters chosen in Liu & Tegmark (2012).

3.3. Noise

For each frequency channel, we assume Gaussian noise in
the uv-plane with zero mean and that the noise maps at two

Table 1
Foreground Model Parameters for the Angular Power Spectrum C ,ℓ ( )n n ¢

Used in Equation (51)

A mK2( ) β α ξ Δ α

Extragalactic point sources 57.0 1.1 2.07 1.0 0.2
Extragalactic free–free 0.014 1.0 2.10 35 0.03
Galactic synchrotron 700 2.4 2.80 4.0 0.15
Galactic free–free 0.088 3.0 2.15 35 0.03
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different frequencies are uncorrelated. We make noise realiza-
tions in the uv-plane for a given noise power spectrum for each
frequency. The thermal noise of the measurement in units of
brightness temperature is given by(McQuinn et al. 2006;
Ansari et al. 2012a)

u uP n
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where zν is the corresponding redshift of the frequency ν, Tsys is
the system temperature, nb is the total number of redundant
baselines within that uk pixel with integration time Δt for each
baseline, Δν is the width of the frequency channel, and Ae is
the effective area of each individual antenna in the array.

In order to keep the results as general as possible, we do
not consider a specific configuration of the array; the main
goal in this paper is not to discuss instrumental effects in 21
cm power spectrum measurements. Instead, we consider two
simple scenarios in our simulation to illustrate the effective-
ness of the presented foreground-cleaning approach. One
scenario assumes a currently achievable noise level of

P 1 10N
3´ - mK for each pixel of the uv-plane, and

the other one assumes a noise level of about 2.2×10−4 mK
for future measurements. The former has an averaged signal-
to-noise ratio (S/N) over the whole data cube of about 1
while the latter is about 5.

4. APPLICATIONS TO SIMULATED DATA

In this section, we show our results obtained by applying the
HIEMICA algorithm to the simulated data. There are two main
findings, namely, the map reconstruction and the power
spectrum recovery. As the fluctuations of the cosmological
21 cm signal are expected to be isotropic, we focus on the
recovery of the averaged 3D power spectrum in spherical shells
of constant k∣ ∣. However, redshift-space distortions will slightly
break the spherical symmetry, and we will investigate the
consequences of this in a future work. The estimated power
spectra are obtained by averaging over the results from 10
independent realizations of the simulated data cubes and the
associated statistical errors are obtained from their dispersions.
Each data cube is for a fixed sky patch that includes the same
simulated foregrounds combined with independent realizations
of the instrumental noise and the H I signal.

4.1. The Independent Components

Figure 3 shows the four WF ICs at ν=830MHz found by
HIEMICA. The WF components are calculated by Equa-
tion (23), and the corresponding map of the ith component at
the frequency bin ν is obtained by multiplying such a
component by the i,( )n th entry of the mixing matrix, M i,n .
As can be seen based on Figures 2–4, we find that only the first
component is compatible with the input Galactic synchrotron
contribution, while the others have no corresponding physical
foregrounds and have unphysical spectral and spatial beha-
viors. These unphysical behaviors are essentially due to the fact
that the realistic astrophysical components have significant
cross-correlations while our ICA assumes mutual independence
among the source signals. Thus, each separated component is
just a mixture of all of the source signals, but the sum of these
ICs is essentially the same as the total astrophysical signal, as
seen in Figures 5(a) and (b). Meanwhile, the WF maps of the
21 cm signal (bottom panel of Figure 5) show the encouraging
result that the 21 cm signal, even in the case of S/N=1, is
nearly perfectly recovered across the map by HIEMICA.
There is a slight difference between the low- and high-S/N

cases (Figures 5(d) and (e)) at small scales, but we find no
apparent difference at large scales. The recovered amplitudes of
the fluctuations for S/N=1 are smaller than those for
S/N=5 by several tens of percent, which is essentially due
to the noise suppression in WF maps, that is, ∝S/(S+N),
where S/N tends to be low for high-k modes. However, the
large-scale fluctuations of the 21 cm signal in both cases are
much larger than the noise amplitudes, resulting in almost
identical large-scale fluctuations.

4.2. Determination of the Number of ICs

When analyzing data with HIEMICA, we have to choose the
number of Independent foreground Components (ICs) to be
estimated. Our statistical framework for ICA can provide a
rigorous determination of this number by using an empirical
statistical approach, the Likelihood Ratio Test (LRT). The LRT
provides an objective criterion for selecting between possible
models by using the ratio of the likelihoods on the data.
Although in practice evaluating likelihood functions is a hard
task, we can instead apply HIEMICA several times with
successively increasing Nc until the recovered power spectra
are essentially unchanged when more components are added
into the analysis.

Figure 1. Angular power spectra derived from the simulated maps of the 21 cm
signal (blackthick) and foregrounds at z=0.71 (ν=830 MHz) with a
bandwidth of Δν=1.59 MHz. The foreground components include Galactic
synchrotron radiation (red-solid), extragalactic point sources (blue-dashed), and
Galactic free–free (green-dotted) and extragalactic free–free (brown long-
dashed).
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The LRT statistic is given by LRT 2 ln 2 lns c = - , in
which ln s and ln c denote the logs of the likelihood
functions for a relatively simpler model s (the so-called null
hypothesis) with fewer parameters and a more complex model
c (alternative hypothesis), respectively. Asymptotically, the
LRT statistic follows a χ2 distribution with degrees of freedom
equal to the difference in the number of free parameters
between the two models. In our case, in the analysis of the data
with 64 frequency channels and 30ℓ-bins, adding an additional
foreground component would increase the degrees of freedom
by 64+30=94.

The comparison of the fitting model between the models for
nc=1 and 2 (i.e., labeled as 1 2 ICs in Table 2) and nc=2
and 3 (as 2 3 ICs) shows that, from the values of LRT, Lln
increases significantly as the number of ICs increased up to 3.
The significance values (p;0) for S/N of 1 and 5 indicate
that only one or two foreground components would result in an
unsuccessful fit and the data strongly prefer three foreground
components. Moreover, especially in the case of high S/N,
there is no statistically significant difference when using more
components, given the larger p values (p>0.01). Here, all of
the values of LRT and p are the median over 10 independent
simulations. Therefore, we recommend using three components
in the reconstructed foreground model for our specific
simulation parameters in Table 1. It is worth noting that, as
mentioned by Alonso et al. (2015), the optimal number of ICs
in fact strongly depends on the spectral smoothness of true
foregrounds, characterized by a frequency correlation length ξ
as defined in Equation (51). In fact, a longer coherence length
implies a smoother frequency spectrum for a physical fore-
ground component. Consequently, a smaller value of ξ may

require more ICs to successfully model such physical
components and remove them accordingly.

4.3. 3D Power Spectrum Results

Figure 6 shows the rapid convergence of the resulting H I

power spectrum when successively increasing the number of
ICs. It can be seen that the recovered power spectrum for an IC
number of 2 is slightly different from those for IC numbers of 3
and 4, but the 3 and 4 components result in almost the same
power spectrum, which is consistent with the varying trend in
the LRT. This can also be confirmed by comparing the
reconstructed WF ICs in Figure 3. As the amplitude of the
fluctuations of the second component (see Figure 3(b)) is
indeed about 20 times larger than the input 21 cm signal (see
Figure 5(c)), the removal of the second component is therefore
necessary. Furthermore, since the averaged amplitude of the
fluctuations of the third component (see Figures 3(c) and 4) is
about 10 times smaller than the 21 cm signal, the effects of
such a component in signal recovery are expected to be less
important but can still lead to notable improvements at large
scales as the corresponding 3D Fourier modes are not
significantly smaller than those of the H I signal. Moreover,
the amplitude of fluctuations of the fourth component (see
Figure 3(d)) is about two times smaller than the third one,
leading to rather small effects in signal reconstruction.
In the comparison between the estimated signal power

spectra for S/N=1 and 5 in Figure 6, we note that for
k0.2 Mpc−1 over which the averaged S/N>1 for both
cases, the impact of noise at these scales tends to be negligibly
small since the recovered power spectra follow the true
spectrum very closely and there are no apparent differences

Figure 2. Simulated diffuse foreground components for a 30°×30° patch of sky at ν=830 MHz. We have subtracted the mean value (i.e., DC mode) to reflect an
interferometric observation.
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between the two cases. On the other hand, the recovered power
spectrum for S/N=1 begins gradually to overestimate the
true one at k>0.2 Mpc−1 by up to 12%, but for S/N=5 the
recovered spectrum is almost same as the true one with only
2% deviation. The additional power in the former case is
primarily because the large noise level causes a slight
underestimate of the true foreground contributions. The “excess
power” is barely significant; the simulation truth is still
contained in the 1σ error bars.
In Figures 6(c) and (d), we zoom in on the region with BAO

features to illustrate clearly the dependence of the power
spectrum estimate on the number of ICs as well as on the noise
amplitude. We can see that too few components, such as
nc=2 in both cases of S/N=1 and 5, result in an
overestimate of the power spectrum at scales of
0.1k0.2 Mpc−1, since those two components cannot
completely describe the spectral and spatial properties of the
foreground. As the number of ICs increases to 3 and 4, the
resulting power spectra decrease and both rapidly converge to
the true values. As the S/N drops by a factor of 5, the
measurement errors become larger since such errors can be
approximately estimated by k P k P kH NI( ) ( ) ( )s µ + . More
importantly, one can see that if nc=3 or 4, the recovered H I

spectrum is well within the 2σ error bars of the estimates.
Note that we have applied a correction to convert the

prediction intervals on the underlying power spectrum into
error bars that approximate Bayesian power spectrum inference
in the limit of low noise and small numbers of modes. The
resulting upper and lower error bars are asymmetric. The
detailed analytical estimates of such a correction are presented
in the appendix. As a consequence, compared with the

Figure 3. Wiener-filtered maps of independent components (ICs) reconstructed by applying HIEMICA to the simulated data cube with S/N=5 for the same sky
patch and frequency as in Figure 2. Note that we do not expect the recovered maps to explicitly correspond to the input maps since these ICs are assumed to be
mutually independent while the true physical components may have correlations.

Figure 4. Top panel: HIEMICA-derived coefficients of each column of the
mixing matrix, representing the frequency dependence of the ICs, where the
solid red line is for the first component, the dotted blue is for the second, the
dashed green is for the third, and the long-dashed brown is for the fourth.
When applying HIEMICA to simulated data cubes, we have assumed nc=4
and S/N=5. Middle panel: the rms brightness temperatures of ICs
calculated from the derived mixing matrix and their angular power spectra.
Bottom panel: the rms brightness temperatures of the input physical foreground
components including Galactic synchrotron radiation (solid red), extragalactic
point sources (dashed blue), Galactic free–free (dotted green), and extragalactic
free–free (long-dashedbrown). As mentioned in Figure 3, the temperature
fluctuations of the ICs are not necessarily the same as the physical components.
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uncorrected errors, the upper error bars increased by about
60%, 40%, and 20%, respectively, in the lowest three k-bins
and the associated lower error bars decreased by about 40%,
15%, and 10%. The differences are less than a few percent in
the higher k-bins due to the large number of modes contained
within those bins.

We can also see that the recovered cosmological signal
decreases approximately monotonically with increasing num-
ber of ICs, especially for the low-k modes (k0.1 Mpc−1).
This result may be interpreted as follows: (1) since each
recovered foreground component is a mixture of all the source
signals, including the cosmological signal, a small amount of
cosmological signal can leak into the reconstructed ICs,
strongly biasing and reducing the amplitude of the derived
cosmological signal; (2) the angular power spectrum of the
dominant foreground component, Galactic synchrotron emis-
sion, has the largest amplitude for small ℓ (see Figure 1),

resulting in a strong contamination in the cosmological signal
at large scales in the transverse direction while increasing the
risk of leakage; (3) the performance of the ICs-based
reconstruction also depends on the number of measured
Fourier modes in each k-bin and, in the simulated data, the
lowest and the second lowest k-bins contain about 500 and 50
times fewer modes than those in the high-k bins, respectively.
As discussed before, using the LRT, the three-component

foreground model used in HIEMICA gives rise to the
successful recovery of the H I power spectrum. In order to
evaluate the recovery performance, we present the derived
power spectrum in Figure 7 compared with that from the
existing commonly used PCA technique. We can see that after
applying PCA to subtract the three dominant foreground
components from the data cube, the residual apparently
underestimates the H I power spectrum at large scales, which
seems to be an over-subtraction of the foregrounds. Compared
with the input ones, the amplitudes in the first two k-bins are
smaller by factors of 14.1 and 3.7 if S/N=1, and by factors of
16.1 and 4.1 if S/N=5, respectively, whereas the ratios of the
HIEMICA-derived power spectra and the input spectra in those
two bins are only about 91%–92% if S/N=1 and 91%–94%
if S/N=5, respectively. In addition, the recovered amplitudes
in those two k-bins are consistent with the input values within
2σ. The HIEMICA method thus does a much better job at
foreground removal and cosmological signal recovery at large
scales.
More promisingly, we find that the HIEMICA approach

provides an unbiased estimate of the H I power spectrum for
the high-k modes with k0.1 Mpc−1 where S/N tends to be
low, whereas the power spectrum of the PCA-derived residual

Figure 5. Same as Figure 3, but for the total foregrounds and the 21 cm signal to clearly illustrate that a successful separation was achieved by the HIEMICA-cleaning
process. There is an underestimate of the 21 cm signal in the case of S/N=1, which is caused by noise contamination as a Wiener-filtered map ∝S/(S+N). An
almost perfect recovery occurs over all scales for S/N=5.

Table 2
Comparison of Models by the Likelihood Ratio Test (LRT) for the Number of

Independent Foreground Components

Model Δ dof

LRT
(S/

N=1)

LRT
(S/

N=5)
p-value

(S/N=1)
p-value

(S/N=5)

1 2 ICs 94 17558 20872 0a 0a

2 3 ICs 94 196 280 <10−6a <10−6a

3 4 ICs 94 120 125 0.036 0.018
4 5 ICs 94 96 108 0.42 0.15

Note.
a p<0.01, typically used to assess the significance of LRT.
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in the noise-dominant regime seems to deviate strongly from
the true signal, resulting in an overestimate of H I

measurements.
Since the isotropic H I signal has the same statistical property

as that of the assumed instrumental noise, commonly used
ICA-based approaches have trouble breaking the degeneracy,
leaving residuals consisting of the reconstructed 21 cm signal,
noise, and fitting errors. As proposed in Chapman et al. (2012)

and Bonaldi & Brown (2015), after foreground cleaning by
CCA or FASTICA, one has to manually subtract the noise
power spectrum from that of the residual data cube and obtain a
comparable amplitude with the true signal. However, those
previous studies show that such a scheme can cause an
overfitting problem and lead to some negative or zero-closed
amplitudes of the residual power spectrum in noise-dominated
k modes, implying that a leakage of H I signal into the

Figure 6. Dependence of the 21 cm signal recovery on the number of independent components, for data with S/N=1 (left) and 5 (right). Upper panels: we show the
spherically averaged three-dimensional power spectra of the simulated 21 cm signal (black), noise (dotted black), reconstructed 21 cm signal for the HIEMICA
algorithm run with the assumption of nc=2 (dotted red), 3 (dashed green), and 4 (long-dashed blue), respectively. Vertical bars indicate the 1σ errors estimated from
10 realizations and the horizontal bars the bin width of Δk=0.0129. The statistical uncertainties are typically smaller than the symbol sizes and are mostly invisible.
Lower panels: same as upper panels, but showing the H I power spectrum divided by a smoothed spectrum without baryon acoustic oscillations to single out those
oscillations.
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subtracted foreground components is likely to be serious in
regions with low S/N. Some other schemes, such as weighting
maps with inverse noise variance to build the frequency
covariance used in PCA(Alonso et al. 2015), could mitigate
such noise contamination.

In contrast to the above-mentioned standard PCA- and ICA-
based approaches, the proposed HIEMICA method in fact
provides an unbiased and efficient estimate of Gaussian
components, derived from the maximum-likelihood principle.
If the noise covariance matrix N is exactly known, then this
method can optimally estimate the underlying 21 cm signal and
foreground covariance matrices. It avoids any artificial effects
that can occur when manually subtracting the noise power
spectrum from the residuals after the foreground-cleaning
processes. Our simulations confirm this, showing that the
ensemble-averaged recovered H I power spectrum converges to
the true value even in low S/N regions where the noise is about
an order of magnitude higher.

We note that our semi-blind approach requires exact
knowledge of the noise in order to infer the 21 cm power
spectrum accurately; an incorrect noise covariance matrix can
bias the signal estimate. However, a relatively lower accuracy
in modeling the noise covariance matrix may be sufficient for
the power spectrum estimation if the uncertainty in the noise
level is not greater than the signal. In general, the correspond-
ing impacts on the estimated parameters can be evaluated by a
Monte-Carlo (MC) approach. But qualitatively, the level of the
uncertainty in the estimated 21 cm power spectrum is about of
the same order of magnitude as that of the noise. A simple way
to understand this is to consider that in the absence of

instrumental effects, if the noise is assumed to be uncorrelated,
the value of PH I which maximizes the likelihood function can
be approximately estimated by PH I≈PD−PF−PN, where
PD, PF, and PN are the power spectra of the data points, the
foreground, and noise, respectively. As the total amplitude of
the foreground fluctuations is significantly larger than that of
the noise fluctuations, one can expect that the estimate of the
foreground power spectrum roughly remains unchanged when
slightly varying the input noise amplitude. Thus assuming an
input noise with an amplitude either greater or smaller than the
true one would lead to either an underestimate or an
overestimate of the 21 cm power spectrum, i.e.,
ΔPH I≈−ΔPN. In order to check the above estimate, we test
the effect of using an input noise power spectrum with 10%–

50% larger or smaller amplitudes than the true one and find that
the resulting changes ΔPH I are indeed consistent with our
expected variations (−ΔPN) within a factor of 2 over all scales.
In addition, incorrect noise estimates would also bias the
estimate for the PCA method, since the debiasing MC
simulations would give the wrong results if the noise level
were misspecified.
In more realistic cases, an experiment may exhibit a low

level of cross-correlated Gaussian or non-Gaussian noise, both
of which are unknown. In the former case, similar to the above
qualitative estimate, we expect that the small level of
correlation will slightly bias the signal estimate but not
significantly affect it. This is because, as mentioned above,
(1) the H I power spectrum is approximately determined by the
difference among the diagonal components of the data point,
the foreground, and noise model, not by their off-diagonal

Figure 7. Same as Figure 6, but for a comparison of 21 cm power spectrum recovery based on the PCA technique (dotted magenta) and the HIEMICA approach (long-
dashed gren), for the data with S/N=1 (left) and S/N=5 (right). The spherically averaged three-dimensional power spectra of the simulated 21 cm signal (solid
black), noise (dotted black), HIEMICA-derived (assumed nc=3) 21 cm signal, and PCA-derived residuals from projecting out the first three dominant eigen
components based on the frequency–frequency covariance of data.
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ones, and (2) the estimate of the foreground is unchanged or
insensitive to the noise model. In the latter case, as the variance
of the non-Gaussian noise is non-negative, the H I power
spectrum is thus likely to be slightly overestimated. We will
investigate the impact of noise misspecification in a
future work.

Also, this blind component separation algorithm makes no
assumptions about the spectral information of the foreground
and can naturally include all of the instrumental effects so as to
be able to coherently estimate all of the source components and
the associated errors. More detailed comparisons between
HIEMICA and other approaches for data in the presence of
realistic instrumental effects will be performed in future work.

5. CONCLUSIONS

In this paper, we present a non-parametric source separation
algorithm, HIEMICA, which is an extension to the 3D version
of the SMICA method proposed by Snoussi et al. (2002) and
Delabrouille et al. (2003) for source identification in noisy
mixtures of CMB maps. The HIEMICA algorithm is a fully
Bayesian framework used to infer the 3D power spectrum and
maps of the underlying H I signal and the spatial power spectra
and the frequency dependence (i.e., mixing matrix) of
uncorrelated foreground components. We adapt the EM
algorithm to efficiently maximize the likelihood function for
unknown parameter estimates. As the statistical properties of
the cosmological signal are significantly different from those of
each astrophysical source, the spectral matching method can, in
principle, blindly separate the H I signal from highly fore-
ground-contaminated maps.

The simulations show that HIEMICA is able to successfully
reconstruct the H I 3D power spectrum across all scales and is
much more robust than the PCA approach, which removes
some of the 21 cm signal at large scales (k0.1 Mpc−1) and
overestimates the H I power spectrum in the noise-dominated
regions where noise leaks into the estimated signal. To evaluate
the impact of the number of ICs in signal recovery, we adapt
the LRT method to rigorously assess the likelihood fit so as to
determine the optimal number of foreground components used
in the HIEMICA analysis. We find for the number of ICs
higher than 3, a number comparable to that of the simulated
astrophysical components, the reconstruction does not gain
significant improvements and converges toward a stable result
consistent with the input H I power spectrum.

Although our results are quite promising, the simulated
observations in this study are idealized with no instrumental
effects. As instrument effects such as the frequency-dependent
uv sampling and primary beam can significantly complicate the
foreground removal and bias the signal estimate, it is important
to test HIEMICA in more detail in the context of specific
experiment set-ups in future work.
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1216525. P.M.S. is supported by the INFN IS PD51 “Indark.”
We thank an anonymous referee for valuable suggestions
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APPENDIX

Here, we present a derivation of an approximate expression
for the posterior distribution of the signal power spectrum in
terms of the sampling distribution of the estimator so as to
calculate Bayesian credible intervals of the inferred parameter.
The sampling distribution of the estimator in our case can be
derived from an MC distribution of the Maximum Likelihood
Estimator (MLE) of the signal power spectrum P.
The power spectrum is simply the variance of the Fourier

mode coefficients. For simplicity, if we assume that all of the
Fourier modes are independent and the variance of all the
Fourier mode coefficients within the bin is the same, the
posterior distribution of P given data di for i=1, L, n can be
expressed in an ideal noise-free case as
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If we want to construct an approximate Bayesian posterior
from MC samples from the sampling density of the MLE P̂ and
the effective number of degrees of freedom is unknown, then
we can determine it from the mean and variance of P̂ using
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Assuming that noise is subdominant, inserting Equation (56)
into Equation (53), we can use P̂ and the effective number of
degrees ñ of freedom to approximate the posterior for P as
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from which the asymmetric credible interval can be derived.
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