THE ASTROPHYSICAL JOURNAL, 830:5 (9pp), 2016 October 10

© 2016. The American Astronomical Society. All rights reserved.

SPIN-ORBIT MISALIGNMENT AS A DRIVER OF THE KEPLER DICHOTOMY

CHRISTOPHER SPALDING AND KONSTANTIN BATYGIN
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
Received 2016 June 6, revised 2016 July 12; accepted 2016 July 14; published 2016 September 30

ABSTRACT

During its five-year mission, the Kepler spacecraft has uncovered a diverse population of planetary systems with
orbital configurations ranging from single-transiting planets to systems of multiple planets co-transiting the parent
star. By comparing the relative occurrences of multiple to single-transiting systems, recent analyses have revealed a
significant over-abundance of singles. Dubbed the “Kepler Dichotomy,” this feature has been interpreted as
evidence for two separate populations of planetary systems: one where all orbits are confined to a single plane, and
a second where the constituent planetary orbits possess significant mutual inclinations, allowing only a single
member to be observed in transit at a given epoch. In this work, we demonstrate that stellar obliquity, excited
within the disk-hosting stage, can explain this dichotomy. Young stars rotate rapidly, generating a significant
quadrupole moment, which torques the planetary orbits, with inner planets influenced more strongly. Given
nominal parameters, this torque is sufficiently strong to excite significant mutual inclinations between planets,
enhancing the number of single-transiting planets, sometimes through a dynamical instability. Furthermore, as hot
stars appear to possess systematically higher obliquities, we predict that single-transiting systems should be
relatively more prevalent around more massive stars. We analyze the Kepler data and confirm this signal to be
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present.
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1. INTRODUCTION

In our solar system, the orbits of all eight confirmed planets
are confined to the same plane with an rms inclination of ~1°-
2°, inspiring the notion that planets arise from protoplanetary
disks (Kant 1755; Laplace 1796). By inference, one would
expect extrasolar planetary systems to form with a similarly
coplanar architecture. However, it is unknown whether such
low mutual inclinations typically persist over billion-year
timescales. Planetary systems are subject to many mechanisms
capable of perturbing coplanar orbits out of alignment,
including secular chaos (Laskar 1996; Lithkwick & Wu
2012), planet—planet scattering (Ford & Rasio 2008; Beaugé
& Nesvorny 2012), and Kozai interactions (Naoz et al. 2011).

Despite numerous attempts, mutual inclinations between
planets are notoriously difficult to measure directly (Winn &
Fabrycky 2015). In light of this, investigations have turned to
indirect methods. For example, by comparing the transit
durations of co-transiting planets, Fabrycky et al. (2014)
inferred generally low mutual inclinations (~1°0-292) within
closely packed Kepler systems. Additionally, within a subset of
systems (e.g., 47 Uma and 55 Cnc) stability arguments have
been used to limit mutual inclinations to <40° (Laughlin
et al. 2002; Veras & Armitage 2004; Nelson et al. 2014). On
the other hand, Dawson & Chiang (2014) have presented
indirect evidence of unseen, inclined companions based upon
peculiar apsidal alignments within known planetary orbits.
Obtaining a better handle on the distribution of planetary
orbital inclinations would lend vital clues to planet formation
and evolution.

Recent work has attempted to place better constraints upon
planet—planet inclinations at a population level, by comparing
the number of single- to multi-transiting systems within the
Kepler data set (Johansen et al. 2012; Ballard & Johnson 2016).
Owing to the nature of the transit technique, an intrinsically
multiple planet system might be observed as a single if the
planetary orbits are mutually inclined. An emerging picture is

that although a distribution of small ~5° mutual inclinations
can explain the relative numbers of double- and triple-
transiting systems, a striking feature of the planetary census
is a significant over-abundance of single-transiting systems.
Furthermore, the singles generally possess larger radii (more
with R, 2 4 Earth radii), drawing further contrast.

The problem outlined above has been dubbed the “Kepler
Dichotomy,” and is interpreted as representing at least two
separate populations; one with low mutual inclinations and
another with large mutual inclinations that are observed as
singles. The physical origin of this dichotomy remains
unresolved (Morton & Winn 2014; Becker & Adams 2016).
To this end, Johansen et al. (2012) proposed the explanation
that planetary systems with higher masses undergo dynamical
instability, leaving a separate population of larger, mutually
inclined planets, detected as single transits. While qualita-
tively attractive, this model has two primary shortcomings.
First, it cannot explain the excess of smaller single-transiting
planets. Second, unreasonably high-mass planets are needed
to induce instability within the required approximately
gigayear timescales. Accordingly, the dichotomy’s full expla-
nation requires a mechanism applicable to a more general
planetary mass range. In this paper, we propose such a
mechanism—the torque arising from the quadrupole moment
of a young, inclined star.

The past decade has seen a flurry of measurements of the
obliquities, or spin—orbit misalignments, of planet-hosting
stars (Winn et al. 2010; Albrecht et al. 2012; Huber
et al. 2013; Morton & Winn 2014; Mazeh et al. 2015; Li &
Winn 2016). A trend has emerged whereby hot stars
(Terr 2, 6200K) hosting hot Jupiters possess obliquities
ranging from 0° to 180°, as opposed to their more modestly
inclined, cooler (lower-mass) counterparts. Further invest-
igation has revealed a similar trend among stars hosting
lower-mass and multiple-transiting planets (Huber et al. 2013;
Mazeh et al. 2015). Most relevant to the Kepler Dichotomy,


http://dx.doi.org/10.3847/0004-637X/830/1/5
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/830/1/5&domain=pdf&date_stamp=2016-09-30
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/830/1/5&domain=pdf&date_stamp=2016-09-30

THE ASTROPHYSICAL JOURNAL, 830:5 (9pp), 2016 October 10

Morton & Winn (2014) concluded at 95% confidence that
single-transiting systems possess enhanced spin—orbit mis-
alignment compared to multi-transiting systems.

Precisely when these spin—orbit misalignments arose in each
system’s evolution is still debated (Albrecht et al. 2012;
Lai 2012; Storch et al. 2014; Spalding & Batygin 2016).
However, the presence of stellar obliquities within currently
coplanar, multi-planet systems hints at an origin during the
disk-hosting stage (Huber et al. 2013; Mazeh et al. 2015).
Indeed, many studies have demonstrated viable mechanisms
for the production of disk—star misalignments, including
turbulence within the protostellar core (Bate et al. 2010;
Spalding et al. 2014; Fielding et al. 2015) and torques arising
from stellar companions (Batygin 2012; Batygin & Adams
2013; Lai 2014; Spalding & Batygin 2014, 2015). Furthermore,
Spalding & Batygin (2016) proposed that differences in
magnetospheric topology between high and low-mass T Tauri
stars (Gregory et al. 2012) may naturally account for the
dependence of obliquities upon stellar (main sequence) Tegy.
Crucially, if the star is inclined relative to its planetary system
while young, fast-rotating, and expanded (Shu et al. 1987;
Bouvier 2013), its quadrupole moment can be large enough to
perturb a coplanar system of planets into a mutually inclined
configuration after disk dissipation.

In what follows, we analyze this process quantitatively. First,
we calculate the mutual inclination induced between two
planets as a function of stellar oblateness (J,), demonstrating a
proof-of-concept that stellar obliquity suffices as a mechanism
for over-producing single-transiting systems. Following this,
we use N-body simulations to subject the famed, six-transiting
system Kepler-11 to the quadrupole moment of a tilted, oblate
star. We show that not only are the planetary orbits mutually
inclined, but for nominal parameters the system itself can
undergo a dynamical instability, losing three to five of its
planets, with larger mass planets preferentially retained. In this
way, we naturally account for the slightly larger observed size
of singles (Johansen et al. 2012).

2. ANALYTICAL THEORY

In order to motivate the following discussion, consider two
planets orbiting in a shared plane around an inclined, oblate
(high J,) star. The effect of the stellar potential is to force a
precession of each planetary orbit about the stellar spin pole,
with the precession rate higher for the inner planet. If planet—
planet coupling is negligible, the subsequent evolution would
excite a mutual inclination between the planets of twice the
stellar inclination (assuming fixed stellar orientation and
negligible eccentricities). Alternatively, if planet—planet cou-
pling is very strong, they will retain approximate coplanarity.
Below, we analytically compute the system’s evolution
between these two extreme regimes (i.e., for general J,).

2.1. Assumptions

We restrict our analytic calculation to small mutual
inclinations between the planets and utilize Laplace-Lagrange
secular theory (Murray & Dermott 1999). This framework
assumes the planets to be far from mean motion resonances,
allowing one to average over the orbital motion. Consequently,
each planetary orbit becomes dynamically equivalent to a
massive wire, a concept that is due to Gauss (Murray &
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Dermott 1999; Morbidelli 2002). Furthermore, we set all
eccentricities to zero.'

The star’s orientation will be held fixed. The validity of this
assumption can be demonstrated by considering the ratio of
stellar spin to planetary orbital angular momenta:

J. _ LM.R}Q, W

A_p my,./GM,a,

where I, ~ 0.21 is the dimensionless moment of inertia
appropriate for a fully convective, polytropic star (Chandrase-
kar 1939), and the stellar rotation rate is 2, = 27/P,. Consider
a young, Sun-like star, possessing a rotation period of
P, = 10days (on the slower end of observations; Bou-
vier 2013) and a radius of roughly 2R, (Shu et al. 1987). A
10 Earth-mass object would need to orbit at over ~100 au in
order to possess the angular momentum of the star. Thus,
provided we deal with compact, relatively low-mass systems,
the stellar orientation can be safely fixed to zero.

A further assumption is that the dynamical influence of
stellar oblateness may be approximated using only the leading
order quadrupole terms, neglecting those of order O(J7).
Therefore, the disturbing part of the stellar potential (with
e =0) may be written as (Danby 1992)

2
Gm,M.
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where the second step has made the assumption of small
planetary inclination i, and defined a new variable
s, = sin(i,/2) (this definition is introduced to maintain
coherence with traditional notation in celestial mechanics,
e.g., Murray & Dermott 1999).

Finally, it is essential to define an initial configuration for the
planetary system. Both numerical and analytic modeling of
planet—disk interactions suggest that embedded protoplanets
have their inclinations and eccentricities damped to small
values within the disk-hosting stage (Tanaka & Ward 2004;
Cresswell et al. 2007; Kley & Nelson 2012). Furthermore, any
warping of the disk in response to a stellar companion is
expected to be small (Fragner & Nelson 2010; Batygin et al.
2011). Therefore, throughout this work, we assume that the
planets emerge from the disk with circular, coplanar orbits that
are inclined by some angle (3, relative to the star. Note that we
will always fix the stellar spin direction to be aligned with the
z axis, so (,, the stellar obliquity, constitutes the initial
inclination of the planetary orbits in our chosen frame.

2.2. Two-planet System

Incorporating the above assumptions, we may now write
down the Hamiltonian (H) that governs the dynamical
evolution of the planetary orbits. To second order in
inclinations (and dropping constant terms), we have (Murray

' This approximation is simply for ease of analytics and will be lifted in the
numerical analysis below.
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where the prefactors are
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Because we are using Hamiltonian mechanics, the dynamics
must be described in terms of canonical variables. Traditional
Keplerian orbital elements do not constitute a canonical set, so
we transform to Poincaré (or, modified Delauney; Murray &
Dermott 1999) variables, defined as

Zy, = mp,/GM,a, (1 — cos(ip)) zp = — €. (6)

Physically, Z, is the angular momentum of a circular orbit after
subtracting its component in the z-direction. Notice that in the
small angle limit,

Z, ~ %mp [GM. ayi} = %Apipz. (7

After substituting, we arrive at the governing Hamiltonian

H= S[é + L _, |4k cos(z — Zz)]
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where, for compactness, we define
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In order to complete the calculation, we define a complex
variable that represents the inclination of each planet

n,= jZ\—z (cos(zp) + 18in(zp))

~ %ip(cos(ﬂp) — 18in(2p)), (10)

where 1 = </ —1. The purpose is to cast Hamilton’s equations
into an eigenvector/eigenvalue problem. Specifically, in terms
of these new variables, we must solve

OH 1
n, =1——, (11)
P (91]: Ap
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in which “* denotes complex conjugation, yielding the matrix

equation
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where we have defined four frequencies as
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The equation above may be solved using standard methods,
whereby the solution is written as a sum of eigenmodes

2
N, = D M, eXpA;D). (13)
=1

Indeed, the problem may be easily extended to N planets,
though writing down all eigenvectors 7,; and eigenmodes )
rapidly becomes cumbersome.

2.2.1. Initial Conditions and Solution

A choice must be made for the initial conditions of the
problem. As already mentioned above, here we choose the
condition that both orbits are initially coplanar, having recently
emerged from their natal disk, with the star inclined by some
angle [, relative to them. Accordingly, all four boundary
conditions may be satisfied by requiring that

B
im0 = == (14)
Mpli=0 \/5
What we seek is the mutual planet—planet inclination
(denoted (). In the small angle approximation, we can
compute this quantity using the relation

(1 = cos(Bre) = mny + M1y — (04703 + M)
1
~ 2B (15)
After solving for eigenvalues, eigenvectors, and matching
the initial conditions, we arrive at the solution for the mutual
inclination of the two planets as a function of time, which takes
the rather compact form

[Bret (1) = 28, G(J)sin(wot/2), (16)

where we define the (semi-)amplitude of the oscillations
between planets

—1/2
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A convenient consequence of the aligned initial conditions is
that the oscillations are purely sinusoidal, evolving with half
the frequency

wo=[(B1 + B2)? + (11 — 1)
X (v — vy + 2(By — B) /2. (19)

One aspect to notice is that the amplitude is maximized when
the equality

v + ]CZB] =1 + ]CZBZ (20)

is satisfied, where C = (A + Ay)/(A; — Ay). The maximum
amplitude, scaled by (3,, can then be written as

26, — A+ Ay
JAA

The significance of this result is best seen upon considering
the outer planet to be a test particle, such that By = 0 and
A, — 0. In such a scenario, the maximum of the amplitude
Gmax — ©0. Such an unphysical result occurs as a consequence
of a secular resonance (Murray & Dermott 1999; Morbi-
delli 2002; Spalding & Batygin 2014; Batygin et al. 2016),
whereby the inner and outer bodies precess at similar rates. In
reality, our earlier approximation that mutual inclinations are
small breaks down in this regime and the inclusion of higher
order terms is required.

In principle, one may also set Ay — 0 and conclude that the
above resonance persists when the inner planet is a test particle.
However, the resonant criterion in terms of stellar oblateness

reads
2 2
1 a a ny
J2|res N = - -
6 R* an M*

bi)y(c) (A + Ay)?
A ) (A= A = a7

1)

(22)

which is negative when A; < A,. Accordingly, the condition
for secular resonance can only be satisfied when A; > A, i.e.,
when the inner planet possess more orbital angular momentum
than the outer planet.

As an illustration, we plot the semi-amplitude G in Figure 1
appropriate for a configuration where the two planetary orbits
are situated at 0.05 and 0.1 au, both orbiting a solar-mass star
with radius 0.01 au (about twice the Sun’s radius). Three cases
are shown: the red line depicts a 1 Earth-mass planet interior to
a 10 Earth-mass planet while the blue line has the planets
interchanged. The former configuration possesses a positive
Jlres, appearing as a maximum in the amplitude. The third
situation (the cyan line) represents a 100 Earth-mass planet
interior to a 1 Earth-mass body, illustrating that higher-mass
inner planets may more easily misalign their outer companion
(Equation (21)), but J|.s is correspondingly higher.

Figure 1 demonstrates that misalignments of the order twice
the stellar obliquity can be readily excited for reasonable values
of J,. By geometric arguments, the potential for such
misalignments to take one of the planets out of transit depends
upon the ratio R, /a. However, for the cases considered above,
only ~4° of stellar obliquity are required to remove the two
planets from a co-transiting configuration (less than the ~7°
present in the solar system; Lissauer et al. 2011). Conversely,
planets may remain co-transiting if the innermost planet is
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Figure 1. Amplitude of oscillations in mutual planet—planet inclinations
excited between two initially coplanar, circular planetary orbits ., scaled by
twice the stellar obliquity (,. The planets are situated at 0.05 and 0.1 au for
three different mass configurations: the red line has a 10 Earth-mass planet
outside a 1 Earth-mass planet, where blue has the planets switched. The cyan
line augments the inner planet to 100 Earth masses. Notice that any time the
inner planet has more angular momentum, there exists a peak in the
misalignments, representing resonance. In the limit of large J,, the planets
entirely decouple and reach mutual inclinations equal to twice the stellar
obliquity.

sufficiently distant, the planets are very massive and/or tightly
packed, or the stellar quadrupole moment is particularly low.

3. NUMERICAL ANALYSIS

Several crucial aspects of real systems were neglected in
order to obtain the analytic solution (16) above. Principally, we
included only two planets whose orbits were assumed to be
circular and only slightly mutually inclined. Additionally, in
averaging over short-term motion, our adopted secular
approach is unable to describe the full dynamics. A more
subtle aspect was that we considered a constant J,, when in
reality, stars are expected to spin down and shrink over time
until J, is essentially negligible (Irwin et al. 2008; Bouvier
2013; McQuillan et al. 2013).

In order to test our hypothesis within a more general
framework, we now turn to N-body simulations. To carry out
the calculations, we employed the well-tested Mercury6
symplectic integration software package (Chambers 1999).”
In addition to standard planet—planet interactions, we modified
the code to include the gravitational potential arising from a
tilted star of given J,, along with a term to produce general
relativistic precession (following Nobili & Roxburgh 1986).

For the sake of definiteness, the parameters of our modeled
system were based off of Kepler-11, a star around which
six transiting planets have been discovered (Lissauer et al.
2011). Detailed follow-up studies, using Transit Timing
Variations, have constrained the masses of the innermost
five planets and placed upper limits upon the mass of Kepler-
11g, the outermost planet,” making this system ideal for
dynamical investigation. Though choosing one system is not
exhaustive, our goal is to demonstrate the influence of a tilted
star upon a general coplanar system of planets. We follow
Lissauer et al. (2013) and use their best-fit mass of 8 Earth

2 hitp:/ /www.arm.ac.uk /~jec/home.html

The mass of Kepler-11g, is only loosely constrained; however, for the
purposes of this work, it is not particularly imperative to choose the
“real” mass.
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Table 1
The Parameters of the Kepler-11 System
Kepler-11
Property b c d e f g
Mass (Earth 1.9 29 73 8.0 2.0 8.0
masses)
Radius (Earth 1.80 2.87 3.12 4.19 2.49 3.33
radii)
a (au) 0.091 0.107 0.155 0.195 0.250 0.466

Period (days)  10.3 13.0 22.7 32.0 46.7 118.4

Note. The mass of Kepler-11g only has upper limits set upon it, but we follow
Lissauer et al. (2013) and choose a best-fit mass of 8 Earth masses here.

Masses for Kepler-11g, with the stellar mass given by 0.961M,
(see Table 1).

3.1. N-body Simulation

For our numerical runs, we choose 10 values of stellar
obliquity and 11 of initial stellar J, = J, ¢ (i.e., the oblateness
immediately as the disk dissipates). Once again, we fix the
stellar orientation aligned with the z axis, but choose the initial
planet—star misalignments:

B, € {5, 10, 20, 30, 40, 50, 60, 70, 80, 85}. (23)

The value of J, for a star deformed by its own rotation may be
related to its spin rate w, and Love number (twice the apsidal
motion constant) k, as follows (Sterne 1939):

1(QY
/) 3 (Qh) ko, 24)
where €, is the break-up spin frequency at the relevant epoch.
The Love number can be estimated by modeling the star as a
polytope with index x = 3/2 (i.e., fully convective; Chan-
drasekar 1939), which yields k, ~ 0.28. Observations constrain
the spin-periods of T-Tauri stars to lie within the range of
~1-10days (Bouvier 2013), while the break-up period is given

by

~1/2 3/2

5= 2"~ L[ M Re | days. (25)
Qb 3\ M, 2R

In our simulations below, we use the current mass of Kepler-
11 for the star, but suppose its radius to be somewhat inflated
relative to its current radius (R, = 2R,), reflecting the T Tauri
stage (Shu et al. 1987). With these parameters, we arrive at a
reasonable range of J, o of

104 S Do S 1072, (26)
within which we choose 11 values uniformly separated in log-
space:

b€ {1074, 10738 .. 1072}, 27

In all runs, rather than allowing both R, and J, to vary, we
simply left R, as a constant, letting J, decay exponentially over
a timescale of 7 = 1 Myr

h(t) = Jhye /D, (28)

The choice for 7 is essentially arbitrary, provided J, decays
over many precessional timescales, owing to the adiabatic
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Figure 2. Maximum number of transits detectable after 22 million years of
integrating Kepler-11 with a tilted, oblate star. The x-axis denotes the value of
J, immediately after disk dispersal (J,) and the y-axis represents the stellar
inclination. The runs where planets were lost through instability are outlined by
a dotted line, which corresponds closely to the region where only single transits
can be observed (the purple region).

nature of the dynamics (Lichtenberg & Lieberman 1992;
Morbidelli 2002). Our choice of 1 Myr roughly coincides with
a Kelvin—Helmbholtz timescale (Batygin & Adams 2013) but is
chosen also to save computational time.

For each case, our integrations span 22 million years,
beginning with the initial condition of a coplanar system
possessing the current semi-major axes of the Kepler-11
system, but with eccentricities set to zero (Lissauer et al. 2013).
In order to analyze the results, we sample the system six times
between 19 and 22 Myr, and at each step calculate the
maximum number of transiting planets that could be observed
from a single direction. The results at all six times were then
averaged.

The determination of the maximum number of transits was
accomplished as follows. We begin by checking whether all
possible pairs within the six planets mutually transit, where
the criterion for concluding a pair of planets to be non-
transiting is

sin(Br)| > sin(B) = = 4 22, (29)
a as

where in the above formula we used the current radius of
Kepler-11 (R, = 1.065R., as opposed to the inflated value
relevant to the T Tauri stage). If any single pair of planets was
non-transiting, we proceeded to choose each possible
combination of five out of the six and performed a similar
pairwise test to identify potentially observable five-transiting
systems. If no set of five passed the test, we chose all sets of
four, etc., until potentially finding that only one planet could
be seen transiting. We note that the criterion above neglects
the possibility of fortunate orbital configurations allowing two
mutually inclined orbits to intersect along the line of sight.
This complication, however, does not affect our qualitative
picture.

4. RESULTS

The numerical results are presented in Figure 2, where the x-
axis depicts the initial stellar J, = J, . The y-axis refers to the
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misalignment [, between the stellar spin axis and the initial
plane of the six planets. Each run has been given its own
rectangular box, within which the color represents the
maximum number of co-transiting planets that may be
observed around the star (as discussed above). The numerics
verify our analytic result, in that the observable multiplicity
may be significantly reduced solely as a consequence of stellar
obliquity.

As expected, higher values of J; o result in fewer transiting
planets, provided the star is tilted relative to the planetary
orbits. As with our analytic results, even small stellar
obliquities are sufficient to reduce the transit count, with 5°
of obliquity reducing the transit number to as little as
three (Figure 2). However, planet—planet mutual inclination
was not the only source of the reduction in transit number. A
crucial finding was that for large enough J,o and (3,, the
stellar quadrupole potential caused the system to go unstable,
casting three to five planets out of the system or into the
central body, with planet—planet collisions existing as an
additional possibility not captured in our simulations (Boley
et al. 2016).

The region of instability (i.e., where at least one planet was
lost) is outlined by a dotted line in Figure 2. Interestingly, the
areas of instability map closely onto the regions where only a
single transit remains. In other words, almost every single-
transiting system coming out of the integration had lost planets
through dynamical instability. Furthermore, each time instabil-
ity occurred, the two lowest mass members were lost: Kepler-
11b and f, with the next lowest mass body, Kepler-11c often
joining them. Such a preference for retaining more massive
planets is indeed reflected in the data as a slightly larger typical
radius for single-transiting systems (Johansen et al. 2012).
However, more testing is required to determine whether this
is a generic feature of our model.

We showed that for any given two-planet system, there
exists a resonant J, if the inner planet has more angular
momentum than the outer. However, the picture becomes much
more complicated in a multi-planet system, where each planet
introduces two additional secular modes (one for eccentricity
and one for inclination; Murray & Dermott 1999), increasing
the density of resonances in Fourier space. As the stellar J,
decays, its influence sweeps across each resonance, providing
ample opportunity to excite mutual inclinations. If the two
planets, Kepler-11d and f, were alone, they could become
resonant at J|.s ~ 10724, which coincides approximately with
the onset of instability in the low-inclination runs (Figure 2) but
not exactly, for the reasons mentioned above.

5. DISCUSSION

In recent years, the Kepler data set has grown sufficiently
comprehensive to facilitate statistically robust investigations
at a population level. Out of this data has emerged a so-called
“Kepler Dichotomy”; the notion that single-transiting sys-
tems are too common to be explained as resulting from a
simple distribution of mutual inclinations within systems of
higher multiplicity (Johansen et al. 2012; Ballard &
Johnson 2016).

In separate studies, significant misalignments have been
detected between the stellar spin axes and the planetary orbits
they host, particularly around stars with main sequence
T.ir 2 6200 K (Winn et al. 2010; Albrecht et al. 2012; Mazeh
et al. 2015; Li & Winn 2016). This trend initially became
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apparent within the hot-Jupiter data set and was consequently
often interpreted as evidence for a post-disk, hi§h-eccentricity
migration pathway for hot-Jupiter formation.” However, a
similar trend has now emerged within Kepler systems,
including the multi-transiting sub-population  (Huber
et al. 2013; Mazeh et al. 2015), with little evidence supporting
a tidal origin (Li & Winn 2016). These observations
cumulatively suggest that many of the misalignments origi-
nated from directly tilting the protoplanetary disk, thereby
inclining all planets in the system at once (Batygin 2012;
Lai 2014; Spalding & Batygin 2014, 2015; Fielding
et al. 2015).

A consequence of primordially generated spin—orbit mis-
alignments is that stellar obliquity would be present at the end
of the natal disk’s life, leaving the planetary orbital architecture
subject to the quadrupole moment of their young, rapidly
spinning, and expanded host star. This paper has demonstrated
that such a configuration naturally misaligns close-in systems
and, furthermore, provides a mechanism for dynamical
instability that by-passes the problem encountered in earlier
work that unreasonably large planets were required to induce
instability (Johansen et al. 2012).

The observable multiplicity of transiting systems can be
reduced either by inclining planetary orbits relative to each
other, or by intrinsically reducing the number of planets. Here,
we have shown that both can be at play, with modest J, and
stellar obliquity causing misalignments, whereas sufficiently
large values thereof lead to dynamical instability, shedding
planets. The origin of the instability is likely secular in nature,
and significant planet—planet inclinations have been shown to
reduce the inherent stability of planetary systems in numerous
previous works (Laughlin et al. 2002; Veras & Armitage 2004;
Nelson et al. 2014). In support of this interpretation, our
simulations resulted in planetary instability at much smaller J,
when obliquity was high >40°. Accordingly, we would expect
multiplicity (both transiting and intrinsic) to be lower around
hot stars, which tend to possess higher obliquities (Winn et al.
2010; see below).

5.1. Predictions

Imposing stellar obliquity as a source of the Kepler
Dichotomy leads to several predictions. Naturally, stars leaving
the disk-hosting stage with larger J, and obliquity are more
likely to end up observed as exhibiting single transits, either as
a result of dynamical instability or the excitation of mutual
planet—planet inclinations. As mentioned above, there is an
observed trend whereby stars with T = 6200 K exhibit
higher obliquity (Winn et al. 2010; Albrecht et al. 2012;
Mazeh et al. 2015) and so, on the face of it, one would expect a
higher relative incidence of singles around higher-mass stars.
The picture is, however, complicated by the universal feature of
stellar evolution models that more massive stars contract along
their Hayashi tracks faster (Siess et al. 2000). Accordingly, the
influence of J, in more massive stars may have decayed to a
greater extent than in lower-mass stars by the time their natal
disk dissipates, partly offsetting the impact of their larger
typical obliquities.

4 The dependence on host star temperature (and therefore mass) was

attributed to tidal dissipation within the convective regions of lower-mass
stars (Winn et al. 2010; Lai 2012).
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Figure 3. Fraction of systems exhibiting each number of transiting planets
from one to seven within the hot (Tey > 6200K, red bars) and cool
(Tetr < 6200 K, blue bars) sub-samples of planet-hosting Kepler stars. There
were 132 hot stars and 1504 cool stars in the data used, of which 83% and 73%,
respectively, exhibited single transits. Accordingly, transiting systems around
hot stars show a stronger tendency toward being single, in agreement with the
predictions of our presented model (see the text).

The above complications notwithstanding, both our analy-
tical and numerical analyses suggest a greater sensitivity of the
degree of misalignment to stellar obliquity than to stellar J,.
Consequently, we make the prediction that hot stars possess
more abundant single-transiting systems relative to cool stars.

Previous work has already suggested the existence of our
predicted trend. Specifically, both hotter stars and, indepen-
dently, single-transiting systems appear to exhibit higher
obliquities (Morton & Winn 2014; Mazeh et al. 2015). The
overlapping of these two findings implies at least a weak trend
toward more singles around hotter stars. In order to further test
this prediction, we carried out a simple statistical analysis of
confirmed Kepler planets, as we now describe.

5.2. Kepler Data

To obtain data on confirmed, Kepler systems, we down-
loaded the data from the “Confirmed Planets” list (as of 2016
July) on the NASA Exoplanet Archive website.” The systems
were filtered to include only those in the Kepler field, though
the conclusions that follow do not change qualitatively if non-
Kepler detections are included.

In Figure 3, we split the data into “hot” stars with
Tes > 6200K (132 in total) and“cool” stars, with
Terr < 6200 K (1504 in total). For each sub-population, we
illustrate the fraction of systems as a function of the number of
planets observed in transit. The hot stars clearly demonstrate a
larger fraction of singles and a smaller fraction of multiples for
each value of multiplicity, in agreement with the predictions of
our model. In order to quantify the significance of this
agreement, we carry out a statistical test that quantitatively
compares the two populations.

Using Bayes’ theorem, with a uniform prior, we generated a
binomial distribution for hot stars and cool stars separately that
illustrates the probability of the data, given an assumption
about what fraction of systems are single. Such an argument is
similar to determining the fairness of a coin flip, where heads

> http: //exoplanetarchive.ipac.caltech.edu
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Figure 4. Probability of the data, given an intrinsic fraction S of singles out of

systems with hot (red line) and cool (blue line) stars. The separation of the

peaks is roughly 2.90 (as defined in the text). Therefore, to a very high
confidence, hot stars possess relatively more singles, as our hypothesis predicts.

equates to a single system and tails a multi system.
Specifically, we plot

P({data}|S) = ASN (1 — S)N—N, (30)

where N; is the number of single systems within a population of
N, total stars and A is a normalization coefficient (Sivia 1996).
The variable S is the single bias weighting; the probabilistic
tendency for a population of planet-hosting stars to display
single transits as opposed to multiples. The quantity
P({data}|S) gives the probability of reproducing the data if
the underlying tendency is S. In the hot population, N; = 132
and Ny = 110, whereas the cool population had Ny = 1504 and
N, = 1098.

As can be seen from Figure 4, the two distributions are
visually distinct, with hotter stars possessing a stronger bias
toward singles, with a significance of 2.90.° More data are
needed to tease out this relationship further and to isolate the
influence of a tilted star versus other confounding factors, such
as the dependence upon stellar mass of the occurrence rate of
giant planets. For now, we conclude that the data supports our
general prediction, that hotter, more oblique stars possess a
relatively greater abundance of single-transiting planets.

A separate prediction relates to the distance of the planets
from the host star. Specifically, the quadrupole moment falls
off as R?/a?, whereas the coplanarity required for transit grows
as a/R,, and so the overall magnitude of our proposed
mechanism should become negligible within more distant
systems. In consequence, we predict that the “Kepler
Dichotomy” signal will weaken for systems at larger orbital
distances. As future missions, such as TESS collect more data,
this unique aspect of our model will become amenable to
observational tests.

A caveat to the above analysis is that the dichotomy appears
to persist within the population of planets around M-dwarfs
(Ballard & Johnson 2016). This is problematic as these stars are
expected to exhibit lower inclinations, being cooler on the main
sequence. We interpret this as stellar oblateness being effective
across all stellar masses, but being relatively more important
within the hotter, more inclined population. This is supported

5 Where o here is defined as the sum of the squares of the standard

deviations of each individual distribution.
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by our numerical simulations, where even small obliquities
reduced the transit number if oblateness was large enough
(Figure 2).

5.3. The Origin of Spin—Orbit Misalignments

Our work here essentially relies upon the assumption that
stellar obliquity is excited early on, in the disk-hosting stage.
This is not the only potential origin for spin—orbit misalign-
ments, with alternative pathways including secular chaos
(Lithkwick & Wu 2012), planet—planet scattering (Ford &
Rasio 2008), and Kozai interactions (Naoz et al. 2011;
Petrovich 2015). These mechanisms are traditionally insepar-
able from the idea that hot Jupiters migrate through a post-disk,
high-eccentricity pathway (Wu & Murray 2003; Petro-
vich 2015). Whereas it is likely that some hot Jupiters formed
in this way, it is unlikely to constitute the dominant pathway
(Dawson et al. 2014) and, furthermore, cannot explain the
spin—orbit misalignment distribution in Kepler systems (Mazeh
et al. 2015; Li & Winn 2016). Rather, disk-driven migration
constitutes a favorable mechanism that may retain multiple
planet systems within the same plane, and can account for the
observed spin—orbit misalignments if the disk itself becomes
misaligned with respect to the host star.

To that end, multiple studies have shown that a stellar
companion is dynamically capable of exciting star—disk
misalignments across the entire observed range of spin—orbit
misalignments (Batygin 2012; Lai 2014; Spalding & Batygin
2014). Specifically, the tidal potential of a companion star, or
even that of the star cluster itself, induces a precession of the
disk orientation, leading to significant star—disk misalignments,
usually by way of a secular resonance (Spalding & Baty-
gin 2014). Although observations of disk orientation in young
binary systems are elusive, there exists at least one known
example of a binary where each star has a disk with its plane
misaligned to that of the binary (Jensen & Akeson 2014), just
as in the aforementioned theoretical picture. Furthermore,
stellar multiplicity appears to be a nearly universal outcome of
star formation (Duchéne & Kraus 2013; Beuther et al. 2014).

Within the framework of primordial excitation of spin—orbit
misalignments, the dependence upon stellar mass (or T¢) has
been linked to the observed multipolar field topology of higher-
mass T Tauri stars compared to the more dipolar configuration
seen in lower-mass T Tauri stars (Gregory et al. 2012). The
weaker dipoles of higher-mass stars increase their magnetic
realignment timescales above that of their lower-mass counter-
parts, naturally explaining the observed trend in spin—orbit
misalignments with stellar 7.¢r, and therefore mass (Spalding &
Batygin 2016). Our work here has demonstrated an additional
consistency between observations and primordially excited
spin—orbit misalignments, namely that the Kepler Dichotomy
naturally arises from the dynamical response of multi-planet
systems to the potential of an oblate, tilted star.

6. CONCLUSIONS

This paper investigates the origin of the “Kepler Dichot-
omy,” within the context of primordially generated spin—orbit
misalignments. We have shown that the quadrupole moment of
such misaligned, young, fast-rotating stars is typically capable
of exciting significant mutual inclinations between the hosted
planetary orbits. In turn, the number of planets available for
observation through transit around such a star is reduced, either
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through dynamical instability or directly as a result of the
mutual inclinations, leaving behind an abundance of single-
transiting systems (Johansen et al. 2012). The outcome is an
apparent reduction in the multiplicity of tilted, hot stars, with
their observed singles being slightly larger, as a consequence of
many having undergone dynamical instabilities, in accordance
with observations.

Through the conclusions of this work, the origins of hot
Jupiters, of compact Kepler systems, the Kepler Dichotomy,
and spin—orbit misalignments, are all placed within a common
context.
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grant AST 1517936 and the NESSF Graduate Fellowship in
Earth and Planetary Sciences (C.S). We would like to thank
Erik Petigura, Henry Ngo, and Peter Gao for helpful
discussions, along with Fred Adams and Joe O’Rourke for
useful suggestions. We are grateful to the anonymous reviewer
for helpful comments that significantly improved the
manuscript.
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