
PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION,
PHOTOMETRY, AND HYPOTHESIS TESTING

Barak Zackay, Eran O. Ofek, and Avishay Gal-Yam
Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel; bzackay@gmail.com, eran.ofek@weizmann.ac.il

Received 2016 January 11; revised 2016 May 23; accepted 2016 June 15; published 2016 October 4

ABSTRACT

Transient detection and flux measurement via image subtraction stand at the base of time domain astronomy. Due
to the varying seeing conditions, the image subtraction process is non-trivial, and existing solutions suffer from a
variety of problems. Starting from basic statistical principles, we develop the optimal statistic for transient
detection, flux measurement, and any image-difference hypothesis testing. We derive a closed-form statistic that:
(1) is mathematically proven to be the optimal transient detection statistic in the limit of background-dominated
noise,(2) is numerically stable,(3) for accurately registered, adequately sampled images, doesnot leave
subtraction or deconvolution artifacts, (4) allows automatic transient detection to the theoretical sensitivity limit by
providing credible detection significance,(5) has uncorrelated white noise,(6) is a sufficient statistic for any
further statistical test on the difference image, and, in particular, allows us to distinguish particle hits and other
image artifacts from real transients,(7) is symmetric to the exchange of the new and reference images,(8) is at
least an order of magnitude faster to compute than some popular methods,and (9) is straightforward to implement.
Furthermore, we present extensions of this method that make it resilient to registration errors, color-refraction
errors, and any noise source that can be modeled. In addition, we show that the optimal way to prepare a reference
image is the proper image coaddition presented in Zackay & Ofek. We demonstrate this method on simulated data
and real observations from the PTF data release 2. We provide an implementation of this algorithm in MATLAB
and Python.

Key words: gravitational lensing: micro – methods: data analysis – methods: statistical – surveys – techniques:
image processing – techniques: photometric

1. INTRODUCTION

Detection of previously unknown transient sources is at the
base of many fields of astronomy. Examples includethe
searches for supernovae, microlensing events and light echos.
To remove a constant complex background, it is useful to
perform digital image subtraction, a problem that has proven to
be hard to tackle, with several suggested solutions (e.g.,
Phillips & Davis 1995; Alard & Lupton 1998; Bramich 2008;
Gal-Yam et al. 2008; Yuan & Akerlof 2008). Probably the
most popular algorithms are by Alard & Lupton (1998) and
Bramich (2008).

Current methods have several problems and limitations. An
important difficulty in image subtraction is that the point-
spread function (PSF) of images taken from the ground is
varying.1 In some cases, the subtraction is based on a
numerically unstable process (deconvolution) that may gen-
erate subtraction artifacts. Combined with ill-defined error
propagation2, it is difficult to decide if a transient candidate is
real or rather due to a subtraction artifact. Finally, there is no
proof that any of the methods we are currently using
areoptimal. As we will show in this paper, none of these
algorithms areoptimal. One hint for this is that some of these
methods are not symmetric to exchange of the reference image
and the new image, while the problem is symmetric. Another
hint is that none of the methods definethe matched filter that

one should use in order to detect transients in the difference
image.
In the Alard & Lupton (1998) and Bramich (2008) class of

solutions, a complex inversion problem needs to be solved.
This inversion problem can be regarded as a regularization
effort (e.g., Becker et al. 2012) on the partial deconvolution
done by Phillips & Davis (1995). Apart from being
computationally slow, this inversion problem is in itself an
effective deconvolution, and the numerical instability of the
deconvolution process cannot be swept under the rug. These
algorithms explore the trade-off between ringing artifacts in the
subtraction image, that are due to the effective division in the
Fourier plane, and residuals from the constant-in-time sky that
are due to a failure of equalizing the PSFs of the reference and
the new images. For example, if the PSF of the new image is
sharper than the PSF of the reference in some axes, then these
methods find no good solutions leading to multiple image
artifacts.
These artifacts, along with residuals caused by registration

errors, appear as false positive signals that hinder the automatic
detection of transients. The current state of the art solution to
this problem is to train a machine-learning algorithm (e.g.,
Bloom et al. 2012; Goldstein et al. 2015; Wright et al. 2015) to
filter most of the artifacts and reduce the number of false
positives to the minimum. However, this solution is partial and
human scanners are required to sift through all remaining
candidate detections and decide which is real and which is not
(e.g., Gal-Yam et al. 2011; Smith et al. 2011).
This elaborate process can undermine the successful

operation of transient searches in many ways. First, employing
many human scanners can be cumbersome and expensive.
Current surveys are spending considerable manpower on
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1 Sometimes this is relevant also for space-based observation.
2 There are several reasons why the current methods propagate the errors
incorrectly. One reason is that convolution generates correlated noise, which is
typically ignored. Second is that usually the errors in the reference image are
not projected correctly.
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candidate sifting (e.g., Palomar Transient Factory;PTF).
Without further dramatic improvement, this use of human
scanners is unscalable, and is unfeasible for future surveys like
ZTF (Bellm et al. 2015) and LSST (Ivezic et al. 2008). Second,
having humans in the loop introduces a time delay in the
transient detection. This can compromise science cases in
which it is of utmost importance to make rapid follow-up
observations of new transients (e.g., Cenko et al. 2013, 2015;
Gal-Yam et al. 2014). Moreover, our experience is that at least
some machine-learning algorithms throw away real obvious
transients. Furthermore, the human scanning step makes it
difficult to estimate the completeness of transient surveys as
human scanners are difficult to properly simulate. Another
problem is that even human scanners can be unsure if a
transient is real or an artifact, and many surveys adopt the
methodology of accepting only candidates that are persistent in
two or more consecutive observations3 (e.g., Gal-Yam
et al. 2011; Baltay et al. 2013). This methodology trades the
survey speed with the increased credibility of the candidates,
and causes an additional time delay in transient detection. Last,
human scanning makes it difficult to detect transients at the
faintest limit becauseit is hard for humans to objectively
quantify the false alarm probability.

In this paper, we present a closed-form solution for image
subtraction in general, and transient detection in particular.
Starting with the most basic statistical principles, we solve the
problem of transient detection under the assumption that both
the reference and the new images have white Gaussian noise
(e.g., the background-noise- or read-noise-dominated limit).
We then characterize the statistical behavior of our closed-form
transient detection statistic under the influence of source noise
and astrometric errors. Based on this analysis, we then
construct a correction term to the transient detection statistic
that prevents false positive detections in the vicinity of bright
objects and due to registration errors. Our solution is always
numerically stable, is trivial to implement and analyze, and is
significantly faster computationally than the popular algorithms
(e.g., Alard & Lupton 1998; Bramich 2008). We extend the
transient detection statistic to the situation of multiple
references, and show that the optimal reference image for
image subtraction is the proper coaddition image given in
Zackay & Ofek (2015b). Finally, we show that the transient
detection statistic is the maximal signal-to-noise ratio (S/N)
estimator for transient flux measurement in the background-
dominated noise limit.

We further develop the optimal transient detection statistic
into a difference image statistic that has white noise. Then, we
show that any statistical measurement or decision on the data
can be performed optimally and intuitively on this difference
image, which we call the proper image subtraction statistic.
This image has many good qualities, for instance,in the case of
no difference between the reference and the new image, it has
expectancy zero everywhere and uncorrelated additive Gaus-
sian noise. It has an effective PSF that, by match filtering4,
reproduces the optimal transient detection statistic. Using this
image, it is possible to detect and filter out particle hits in both
the reference image and the new image, separating these
artifacts from real transients. Another potential use of this
image is the optimal detection of photometric variability and

the astrometric motion of stars, that works in arbitrarily dense
environments.
We demonstrate the efficacy of our algorithm on simulated

and real images that are part of the PTF (Law et al. 2009), data
release 2.
The outline of the paper is as follows.In Section 2, we

review the state of the art image subtraction methods, while in
Section 3 we derive our optimal transient detection and image
subtraction algorithm. In Section 4, we discuss the properties of
the derived image subtraction statistic. A step by step summary
of the image subtraction process is presented in Section 5. In
Section 6, we present tests on simulated and real data, while in
Section 7 we describe our code, which is available online. In
Section 8, we discuss the implementation details, and we
conclude in Section 9.

2. BRIEF OVERVIEW AND ANALYSIS OF EXISTING
METHODS FOR IMAGE SUBTRACTION

Previously suggested solutions for image subtraction can be
divided into two variants. The first, and more popular variant,
can be referred to as regularized partial deconvolution.
Solutions we include in this family are Phillips & Davis
(1995), Alard & Lupton (1998), and Bramich (2008). Gal-Yam
et al. (2008) suggested a second variant, which we call cross
filtering, while Yuan & Akerlof (2008) advocated for a mix of
the two methods.
Denoting the new image by N and its PSF by PN, the

reference image by R and its PSF by PR, the first approach
attempts to find a convolution kernel k such that

- Ä @N k R 0. 1( )

Here, ⊗ represents convolution.
The first solution for finding the kernel k was given by

Phillips & Davis (1995). They suggested to perform a
deconvolution solution in Fourier space:

= @
 




k
P

P

N

R
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r
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were  represents Fourier transform. However, this solution is
numerically unstable becausethe deconvolution operation can
(and many times does) involve division by small numbers. This
problem is apparent from Equation (2), where the denominator
might approach zero as fast or faster than the numerator. Given
that any measurement process contains noise, this division
operation amplifies the noise in Fourier space, which in turn
generates correlated noise in real space. The extreme cases of
this correlated noise are the characteristic ringing and sinusoidal
artifacts that deconvolved images suffer from.
Alard & Lupton (1998) suggested a practical way to mitigate

the numerical instability problem. Restricting k to a small
stamp and representing it as a set of basis functions, and noting
that Equation (1) is linear, they suggested to solve for k using
linear least squares. Alard & Lupton (1998) suggested theuse
ofa set of basis functions, which are linear combinations of
Gaussians multiplied by low degree polynomials. Later on,
Bramich (2008) suggested to solve for the values of a pixelized
kernel. All of the above methods can be viewed as
regularizations of the deconvolution method of Phillips &
Davis (1995)—i.e., restricting the solutions for the kernel k to
finite size and to some set of logical solutions. Even though the
numerical stability of these algorithms is much better than that

3 This step is also required for unknown minor planet identification.
4 Also called cross-correlation of the images with its PSF. See, e.g., Zackay &
Ofek (2015a) for a derivation of the matched filter solution.
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of Equation (2), they still have several problems. First, the
division by zero problem is still there and it can become
especially pronounced when the new image has a narrower PSF
(including a PSF that is narrower in any single axis) compared
to the reference image. It is interesting to note that these
methods are not symmetric to the exchange of the new and
reference image, while the problem is symmetric to this
exchange. Second, although these methods are intuitive, they
lack statistical justification, there is no rigorous proof they
cause no information loss, and it is unclear what further image
processing should be applied. For example, do we need to apply
another matched filter to the subtracted image in order to detect
transients? If so, which filter should we use? Third, using these
methods the resulting pixel noise is correlated and there is no
simple analytic prescription on how to set a detection threshold
for transient search.5 Therefore, it is hard to decide if a detected
source is real or an artifact, or to quantify the probability of it
being a false positive. In addition,
in the effort of suppressing the deconvolution artifacts, these
solutions sacrifice the cancellation of the constant-in-time image.
This will cause large and pronounced subtraction artifacts, that
will prevent identification of transients that are substantially
fainter than their hosting environment. Finally, using inversion
methods for image subtraction (i.e., linear least squares) makes
the subtraction process slow, compared with, e.g., the Fourier
space solution of Phillips & Davis (1995).

The cross-filtering solution suggested by Gal-Yam et al.
(2008) is to convolve the new image with the PSF of the
reference image and to convolve the reference image with the
PSF of the new image:

= Ä - ÄS P N P R. 3r nGY08 ( )

This solution is always numerically stableand leaves no
subtraction artifacts. The problem with this solution is, again,
the lack of statistical justification, and that the matched filter for
source detection is not specified.

Yuan & Akerlof (2008) suggested to apply kernels for both
R and N, both chosen from a family of PSFs determined by few
parameters, and to drive the solution toward spatially small
kernels by adding the effective PSF area to the loss function.

It is worthwhile to note that the problem of subtracting two
images, and minimizing the resulting difference image in the
least square sense has an infinite number of solutions (see also
Yuan & Akerlof 2008). For example, the linear equation

Ä - Ä @K R K N 0, 4r n ( )

where Kr and Kn are arbitrary kernels, has an infinite number of
solutions. This is because for any Kr, we can find Kn that
satisfies Equation (4) in the least squares sense. It is clear from
this simple analysis that all subtraction methods mentioned are
focused on making the PSF of the two images identical, with
very little attention to the maximization of the S/N of a
transient source that appears in one of the images. In a sense,
these methods donot solve the transient detection problem, but
a different problem, which is how to make two images as
similar as possible using convolution. In this paper, we
rigorously derive a method that cancels the constant-in-time
image and maximizes the S/N of a transient source at the same
time. We note that there are several ways to derive this method.

Here we will derive it from first principles via modeling the
transient detection with simple hypothesis testing and using the
lemma of Neyman & Pearson (1933). Additional derivations
are given in the appendices.

3. STATISTICAL DERIVATION

Given the numerous problems with existing image subtrac-
tion methods, we would like to place the transient detection
problem on firm statistical grounds. In Section 3.1, we outline
the derivation and formulae of our image subtraction statistics.
Given that the full derivation is tedious, we defer it to
Appendix A. In Section 3.2, we show that the best way to build
a reference image, for the purpose of image subtraction, is to
use the image coaddition algorithm of Zackay & Ofek (2015b).
Our derivation in Section 3.1 assumes that the images are
background-noise dominated (i.e., the objects we care about
have source noise that is lower than the background noise).
This causes an underestimation of the noise near bright sources.
In Section 3.3, we present a simple correction to the image
subtraction formulae that takes care of the source noise and
other errors, like registration noise. In Section 3.4 we present
an accurate treatment of astrometric shifts, noise,and color-
refraction errors. In Section 3.5, we outline a possible method
to equalize the flux zero points of the new and reference
images. In Section 3.6, we provide an algorithm for optimal
PSF photometry in the subtraction image, while in Section 3.7
we describe how this method can be used for cosmic-ray, bad
pixel, and reflection-ghost identification.

3.1. Transient Source Detection Using
Image Subtraction

Here we derive, from first principles, an optimal method for
transient source detection, under the assumptions that the
images are background-noise dominated, and the noise is
Gaussian and independent.6

R and Narethe background-subtracted reference image and
the background-subtracted new image, respectively. Deno-
tedby Tisthe background-subtracted true constant sky image.
Denotedby Pr and Pnarethe PSFs of the reference image and
the new image, respectively. Pr and Pn are normalized to have
unit sum. We assume that Pn, Pr, and the flux-based zero
points7 of the new image (Fn) and reference image (Fr) are
known. We present a method for finding Fn and Fr in
Section 3.5, and the PSF measurements are discussed in
Section 8.2. The expression for the reference image is

= Ä +R F T P , 5r r r ( )

where r is the additive noise component of the image R.
Given the null hypothesis, 0, that states there are no new

sources in the new image we can write

 = Ä +N F T P . 6n n n0 ( )∣

Given the alternative hypothesis, aq,1( ), that states there is a
new point source at position q with flux α in the new image, we

5 One method to estimate the noise level is using Bootstrap simulations (e.g.,
Ofek et al. 2014).

6 In practice, the pixels maybe slightly correlated due to charge repulsion and
charge diffusion in a CCD.
7 Following Zackay & Ofek (2015a, 2015b),this factor represents the product
of atmospheric transparency, telescope, and detector transmission and
integration time.
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can write

 a d= Ä + Ä +aN F T P F q P , 7q n n n n n,1 ( ) ( )∣ ( )

where d q( ) denotes a two-dimensional image with one at
position q, and zero otherwise. We assume that the dominant
source of noise is the background noise, r and n both satisfy
that all pairs of pixels are uncorrelated—i.e., that for all pairs of
pixels x x,1 2 for which ¹x x1 2:

   = =x x x xCov , 0, Cov , 0, 8r r n n1 2 1 2( [ ] [ ]) ( [ ] [ ]) ( )

and that all pixels have spatially uniform variance8:

 s s= =V x V x, . 9r r n n
2 2( [ ]) ( [ ]) ( )

Because both hypotheses are simple9, we can use the
Neyman–Pearson lemma (Neyman & Pearson 1933), which
states that the most powerful10 statistic for deciding between
two simple hypotheses is the likelihood ratio test:


 

 
a

a
=q

N R

N R q
,

,

, ,
, 100

1
( ) ( ∣ )

( ∣ ( ))
( )

where  denotes probability. A critical point is that we do not
have any prior information or assumptions on T. Therefore, we
cannot calculate the probabilities  N R, 0( ∣ ) and
  aN R q, ,1( ∣ ( )) directly. However, we can calculate their
ratio by developing the expression using the law of conditional
probabilities


   
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a

a a
=q

N R R

N R q R q
,
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. 110 0
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( ∣ ( )) ( ∣ ( ))
( )

Next,we can use the fact that 0 and 1 predict the same
likelihood to the reference and cancel out the last multiplicative
terms in the numerator and denominator.

After some algebra, which is detailed in Appendix A, we can
find the optimal statistic for source detection


a s s

º =
-

+

 


 


 
S

F F P P N F F P P R

F P F P

1
log , 12n r n r r n r n

r n n n r r

2 2 2 2

2 2 2 2 2 2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )

where the over-line symbol denotes the complex conjugate
operation. We note that by putting the over-line sign above the
hat sign,we mean that the complex conjugate operation
follows the Fourier transform operation. This statistic (or score
image) is simply the log-likelihood ratio test between the two
hypotheses. This score is calculated simultanously for all
values of α, while each pixel in the score image refers to a
different q position. It is important to note that Equation (12) is
a matched filter image and no further filtering is required. In
order to find transients all we need to do isidentify local
maxima (or minima) in S. The significance of a local
maximum, in units of sigmas, is given by its value divided
by the standard deviation of the image S.

Since Equation (12) is a matched filter image, its pixels are
correlated, and any hypothesis testing or measurement, other

than transient detection and photometry (see Section 3.6),
requires a knowledge of the covariance between the pixels. An
example for such hypothesis testing is cosmic-ray identification
via image subtraction, or searching for variable nebulosity
(e.g., light echos). In order to have an image subtraction
method that is optimal for all purposes and easy to use, we need
to identify an image whose pixel noise is uncorrelated, and
that cross-correlating this image with its own PSF returns
Equation (12). In Appendix A, we identify such an image as

s s
=

-

+








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D

F P N F P R

F P F P
. 13r r n n

n r r r n n
2 2 2 2 2 2∣ ∣ ∣ ∣

( )

The PSF of this image, normalized to have unit sum, is given
by

s s
=

+








P F F P P

F F P F P
, 14D

r n r n

D n r r r n n
2 2 2 2 2 2∣ ∣ ∣ ∣

( )

where FD is the flux-based zero point of the subtraction image,
which is given by

s s
=

+
F

F F

F F
. 15D

r n

n r r n
2 2 2 2

( )

Indeed, using this difference image D and its PSF, we can
verify that the cross-correlation of D with PD returns

= Ä
¬¾

S F D P , 16D D ( )

where the backward arrow sign denotes coordinate reversal

(i.e.,
¬

= - -P x y P x y, ,( ) ( )). Alternatively, in Fourier space

= S F DP . 17D D ( )

It is important to note that, in the background-dominated noise
limit, D is a proper image, and hence we call it the proper
subtraction image. As in Zackay & Ofek (2015b), we define a
proper image to be an image whose noise is independent and
identically11 distributed (i.i.d). This means that D can be used for
any hypothesis testing or measurement, without the need for the
covariance between the pixels. Furthermore, in Appendix E, we
present a proof that D and PD are in fact sufficient statistics12 for
any hypothesis testing or measurement.
Equation (13) and its PSF (Equation (14)) are adequate for

thedetection of objects whose original shape was convolved
with the telescope and atmosphere PSF. However, particle hit
events donot share this PSF. In Appendix E, we derive the
PSF in the difference image D, of a δ-function in N or R. The
PSF in the difference image D of a δ-function in N is

s s
=

+



 
P F P

F F P F P
, 18D

r r

D n r r r n n
2 2 2 2 2 2

N

n ∣ ∣ ∣ ∣
( )

8 As the convolution is a local operation, this assumption can be relaxed (see
thediscussion in Zackay & Ofek 2015a).
9 A simple hypothesis has no unknown parameters. We are applying the
hypothesis testing to each value of α and q separately. See additional
discussion in Appendix A.
10 The power of a binary hypothesis test is the probability that the test correctly
rejects the null hypothesis when the alternative hypothesis is true.

11 In practice, the noise levels need to be identical only locally (on scales that
are twice the PSF size) becausethe convolution is a local operation. In the
vicinity of bright stars, D is not proper.
12 In statistics, a statistic is sufficient with respect to a statistical model and its
associated unknown parameterif no other statistic that can be calculated from
the same sampleprovides any additional information as to the value of the
parameter.
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while the PSF in the difference image D of a δ-function in R is

s s
=

+




P F P

F F P F P
. 19D

n n

D n r r r n n
2 2 2 2 2 2

R
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( )

These PSFs are also accompanied by the corresponding zero
points, F F,D DN R that can be found in Appendix E.

These equations are useful if one would like to search for
events that are similar to a delta function (e.g., bad pixels). We
note thatPDN andPDR

in many cases can be approximated by a
delta function.

To summarize, in order to find a transient source in either the
reference or the new image, we can calculate D (Equation (13))
and cross-correlate it with its PSF (Equation (14)). Alterna-
tively, we can calculate directly the statistic S (Equation (12)).

3.2. Construction of the Reference Image

Typically, the reference image is built by coadding multiple
images. Here we will show that the best way to produce a
reference image for subtraction is using the method described
in Zackay & Ofek (2015b).

In the case of multiple reference images, we need to replace
Equation (5) with the model for the jth reference image:

= Ä +R F P T . 20j j j j ( )

Here Fj is the flux-based zero point of the jth reference image,
Pj is the PSF of the jth reference image, and  j is the noise of
the jth reference image.

As before, the model for N, assuming the null hypothesis,
0, is given by Equation (6), while if the first hypothesis,1, is
true then N is given by Equation (7).

As in the previous section, we would like to decide between
two simple hypotheses. Therefore, the optimal test statistic is
the likelihood ratio test (Neyman & Pearson 1933)


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As before, we can use the law of conditional probabilities, and
the fact that 0 and 1 predict the same likelihood for all
references. The full derivation is presented in Appendix B, and
after some algebra we find that the optimal reference image is
given by

å
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The PSF (normalized to have unit sum) of the reference image
is given by
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where Fr is the flux-based zero point of the reference

å
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. 24r
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( )

Not surprising, this is identical to the optimal coaddition
method derived in Zackay & Ofek (2015b). We note that the

reason R preserves all the information from the individual
references is because, in the computation of each frequency in
R, we add random variables scaled by their (conjugate)
expectation, divided by the variance. We can identify this
operation as the maximal S/N addition of random variables
(see Appendix A of Zackay & Ofek 2015a). The reader should
refer to Zackay & Ofek (2015b) for analysis and proof of
sufficiency of this so-called proper coaddition method.

3.3. Simple, Suboptimal Correction for Source Noise,
Astrometric Noise, and Color-refraction Noise

Equation (12) ignores the source noise, and hence the noise
level is underestimated in the vicinity of bright stars. The
outcome of this will be that bright sources may be flagged as
possible transients or variables. Furthermore, this equation
ignores any additional important sources of noise like
astrometric noise, astrometric scintillation noise, color-refrac-
tion noise, flux scintillation noise, and position-dependent flat-
fielding errors.
A simple correction to this problem, albeit suboptimal, is to

divide S by a correction factor that takes into account the local
estimated variance of the extra noise. Derivation of this
correction factor is presented in Appendix C. In the image
space, the expression for the corrected S is

=
+ + + +

S
S

V S V S V S V S ...
. 25

N R N R
corr

ast ast( ) ( ) ( ) ( )
( )

Here the terms in the denominator may include any position-
dependent contribution to the variance, that is not included in
the sn

2 and sr
2 factors.

In this example, we list two specific contributions from the
source noise and from astrometric noise. The first two terms in
the denominator are the variance from the source noise in the
new and reference images, respectively, while the next two
terms are the variance due to astrometric noise. Other sources
of noise like color refraction can be added in a similar manner.
Here V SN( ) is the variance of the part of S containing N

given by

= ÄV S V k , 26N n n
2( ) ( ) ( ) ( )

andV SR( ) is the variance of the part of S containing R given by

= ÄV S V k , 27R r r
2( ) ( ) ( ) ( )

and the Fourier transform of kr is given by

s s
=

+




 
k
F F P P

F P F P
, 28r

r n r n

r n n n r r

2 2

2 2 2 2 2 2

∣ ∣
∣ ∣ ∣ ∣

( )

while the Fourier transform of kn is

s s
=

+







k F F P P

F P F P
. 29n

n r n r

r n n n r r

2 2

2 2 2 2 2 2

∣ ∣
∣ ∣ ∣ ∣

( )

The variance of n and r are simply the variance images. For a
single image, the variance map, V n( ), is simply the number of
electrons in each pixel (including the background), added with
the readout noise squared. However, in the case of multiple
images, the correct way to construct V SR( ) is to calculate kr,
V r( ), and V SR( ) for each reference image and to sum all the

individual V SR( ) values up (see Appendix B). However, in
many cases, a reasonable approximation is to calculate kr from
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the properly coadded image, and calculate V r( ) using a simple
addition of all the images (in units of electrons) from which the
reference was constructed (i.e., the number of electrons in each
pixel including the background) added with the total read noise
squared.

Next, the astrometric variance terms are given by

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟s s= +V S

dS

dx

dS

dy
, 30N x

N
y

N
ast

2
2

2
2

( ) ( )

where sx and sy are the astrometric registration noise in the x

and y axes, respectively, while dS

dx
N and dS

dy
N are the gradients of

SN in the x and y directions, respectively. Here, the Fourier
transform of SN is given by

=  S k N . 31N n ( )

In a similar manner

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟s s= +V S

dS

dx

dS

dy
. 32R x

R
y

R
ast

2
2

2
2

( ) ( )

Here the Fourier transform of SR is given by

=  S k R . 33R r ( )

The origin of these terms is that astrometric noise causes shifts
in individual PSFs. The noise induced by these shifts is
proportional to the difference between neighboring pixels (i.e.,
the gradient).

We note that in practice the astrometric registration noise is
the rms of the registration fitting process. This term include
both registration errors and the astrometric scintillation noise.
In some cases, the quality of the registration is position
dependent. In this case, it is possible to replace the scalars sX
and sY by matrices of the position-dependent noise. In
Section 3.4,we suggest a more accurate treatment of the
astrometric noise component.

3.4. Accurate Treatment of Astrometric Noise
and Flux Variability

Astrometric errors and shifts are a major problem for image
subtraction. For example, for a bright source with 104 electrons
and full-width at half maximum (FWHM) of 2 pixels, the
astrometric error induced by the Poisson noise will be about a
few tens of milli-pixels. This is equivalent to the typical
astrometric scintillation noise induced by the Earth turbulent
atmosphere (see Section 8.5). Therefore, even in the case of
high quality registration, we expect that all bright stars will
have subtraction residuals due to astrometric scintillation noise.

Fortunately, due to the closed form and numerical stability of
our method, the shape of the subtraction residuals is fully
predictable, given the astrometric shift and the flux difference
between the star as it appears in the reference and as it appears
in the new image. Therefore, we can use this to measure the
astrometric shift and flux variability for each star.

For adequately13 sampled images, this proposed mechanism
is accurate, and it allows us to measure astrometric shifts and
variability in very crowded fields. The details of this method

will be presented in a future publication, but here we provide a
brief outline: the astrometric shift and photometric variability
kernel is

a a a aD D = - P x y s P, , , . 34S n r r n D( ) ( ) ( )

Here, an is the flux of the source in N, ar is its flux in R, ands
is the shift operator (including sub-pixel shifts) in Fourier
space. This operator is a function of the shifts Dx and Dy.
Using Equation (34), we can treat residuals detected in S more
carefully than we did in Section 3.3. Specifically, we can
now perform hypothesis testing to decide between, e.g.,
0(changes are consistent with stationary and non-variable
source),or 1(the star moved or its flux changed). This
scheme can be applied to any part of D, for which we identify a
significant peak in S (e.g., above 3σ). Apart from using this to
eliminate false positives, we can now use this to detect and
measure new kinds of signals. For example, we can use it to
search for moving objects blindly, even in the presence of
complex, constant in time, structure in the background.

3.5. Matching the Local Zero Points, Background Flux,
and Astrometric Shift

Our solution so far assumed that the values of the flux-based
zero points (Fr and Fn), the background levels, (Bn and Br), and
the relative astrometric shift (Dx and Dy) are known. Careful
analysis of Equation (13) shows that, in practice, we only care
about the flux zero points ratio

b º F F , 35n r ( )

the background difference,

g º -B B , 36n r ( )

and the translation (Dx, Dy).
There are several ways to estimate β and γ (e.g., via relative

photometry, Ofek et al. 2011), and here we provide yet another
method. By substituting Equations (35) and (36) into D
(Equation (13)), and introducing the shift operator,we can get
the desired expression we need to minimize in order to find β,
γ, Dx, and Dy. This can be done either locally (in small
sections of the image), or globally. For simplicity, and since we
already discussed astrometric shifts in Section 3.4, here we
neglect translations, but toward the end we will mention how
this can be incorporated.
In order to find β and γ, we need to compare the two parts of
D :

b
s b s

=
+



 
 
D

P N

P P
, 37n

r

n r r n
2 2 2 2 2

( )
∣ ∣ ∣ ∣

( )

and

b
s b s

=
+




 
D

P R

P P
. 38r

n

n r r n
2 2 2 2 2

( )
∣ ∣ ∣ ∣

( )

Note that we replaced Fn and Fr by β. All we need to do is to
inverse Fourier transformDn andDr and to solve the following
nonlinear equation for β and g¢ (and optionally Dx and Dy):

b b b g= + ¢D D 39n r( ) ( ) ( )
13 By adequately sampled images, we mean that the PSF width is sampled by
at least two pixels. This can be referred to as the Nyquist sampling of the PSF
by the camera.
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where

g
g

s b s
¢ =

+
. 40

n r
2 2 2

( )

Note that the solution should be performed in the image
domain. If we are interested in solving also for small
translations, we need to multiply Dr and g¢ with the shift
operator. If we trust that the images were background
subtracted and aligned correctly, then we can set g = 0,
D =x 0,D =y 0 and use the same expression to solve only for
the value of β.

Equation (39) is nonlinear in β. Therefore, iterative solutions
are required. For example, in the first iteration weset b = 1
and solve for the new value of β, and use it in the next iteration
to find a new value of β, until convergence.14 Furthermore, it is
important to note that one must use robust fitting methods in
order to solve Equation (39). The reason is that there may be
bad pixels, particle hits, astrometric noise, and saturated pixels
in the images. It is also recomended to remove the images-edge
pixels prior to fitting β.

3.6. PSF Photometry in the Difference Image

In this section, we present a statistic for measuring the PSF
photometry15 of a source in the difference image. This
measurement statistic is unbiased and has maximal S/N among
all estimators, which are linear combinations of the input
images. In addition, this measurement statistic is also the
maximum likelihood estimate for the flux of point-source
transients. However, this statistic is optimal only for the
background-dominated-noise limit. A full derivation of this
statistic is presented in Appendix D.

The best linear estimator for the PSF photometry of a source
at position q is

a =
~

q
S q

F
. 41

S
( ) ( ) ( )

Here FS is the flux normalization of S:

å
s s

=
+





F

F P F P

F P F P
, 42S

f

n n r r

r n n n r r

2 2 2 2

2 2 2 2 2 2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )

where f indicates spatial frequencies. The standard deviation of
this estimator is

s =
+

a~
V S V S

F
, 43q

N R

S

( ) ( )
( )( )

where V SN( ) and V SR( ) are defined in Equations (26)–(27).
Note that Equation (41) can be used to measure the PSF flux of
all the transients in the image simultanously.

3.7. Cosmic-ray, Bad Pixel, and GhostIdentification

The image subtraction statistic D can be used to identify
cosmic rays and bad pixels. A major advantage of using the
proper image subtraction over otherimage differencing techni-
ques is that its pixelnoise is uncorrelated and usually it roughly
preserves the shape of sources that are similar to δ-functions.
This means that in most cases one can identify particle hits by

applying edge-detection algorithms (e.g., van Dokkum 2001),
without any modifications, directly on D.
An alternative approach is to use a rough model for the

shapes of particle hits and bad pixels, and to perform a
composite hypothesis testing. The log-likelihood of observing
D, if an object at position q is a point-source transient (ps
hypothesis) with flux α, is given by

  å a d- = -
¬¾

ÄD q D F P qlog , 44
x

D Dps
2( ( ∣ ( ))) ∣∣ ( )∣∣ ( )

while the log-likelihood of D if the object at position q is a
cosmic ray with flux α and with shape Pcr in N, (cr

hypothesis) is

  å a d- = - Ä
¬¾

ÄD q D P P qlog .

45
x

Dcr cr
2

N( ( ∣ ( ))) ∣∣ ( )∣∣

( )

Here, x is the subset of pixels that contains the source of
interest (e.g., an area with a width twice that of the PSF around
the source). The difference between Equations (44) and (45)
(using appropriate priors, such as the probability of seeing a
transient at a certain magnitude and the probability of seeing a
cosmic ray with this flux) is a statistic that can be indicative
(after setting the appropriate threshold) for deciding whether
the detected transient is a cosmic ray or an astronomical
transient. We note that in this case the flux of the sourceand
the intensity and shape of the cosmic rayare free parameters of
the model. Therefore, this is a classic case of composite
hypothesis testing.
The same approach can be used to identify internal-reflection

ghosts. In this case, we need to replace the shape Pcr with the
shape of a reflection ghost, for example, an extended kernel
(e.g., top hat filter) that is wider than the stellar PSF.

4. PROPERTIES OF THE NEW IMAGE
SUBTRACTION METHOD

Now that we have an optimal solution for the subtraction
problem, we can analyze its properties and compare it to other
methods, seeking an intuitive understanding.

4.1. Optimality

Our image subtraction and transient detection formulae were
derived using the lemma of Neyman & Pearson (1933). This
ensures that whenever our assumptions are correct our method
is optimal. Our assumptions are thatthe images are registered,
dominated by uncorrelated Gaussian background noise, and
that the PSFs, background, variance,and flux-based zero points
are known.

4.2. The Constant-in-time Image T Cancels

For perfectly registered images, both the optimal proper
difference image (D) and transient detection image (S) are free
of subtraction residuals from the constant-in-time image. This
is because the constant-in-time image T algebraically vanishes.
This is not the case in the subtraction methods suggested by

Alard & Lupton (1998) and Bramich (2008). In these methods,
an optimum for the trade-off between magnifying the image
noise and minimizing the constant-in-time residuals of T was
explored.

14 We found that usually β converges in two to three iterations.
15 PSF photometry refers to (effectively) fitting the source with a PSF.
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4.3. Numerical Stability

Inspecting Equations (12)–(14), it is apparent that if the
denominator is approaching zero, then the numerator is
approaching zero even faster. Therefore, our image subtraction
method is numerically stable for all combinations of PSFs for
the new and reference images.

We note that the Alard & Lupton (1998) and Bramich (2008)
methods are numerically unstable in the general case because
these methods effectively perform deconvolution. It is true that
if the PSF of the reference image is narrower, in all axes, than
the PSF of the new image, then the Alard & Lupton (1998)
family of methods are stable. However, even in this case the
solution found by these methods is suboptimal (i.e., it does
not maximize the S/N of the transients). Furthermore,
Equations (12)–(14) are numerically stable even if the PSFs
used have large (even order ofunity) errors compared to their
true values. Therefore, no special accuracy is required in
measuring the PSFs because of the division in theFourier
plane. We further demonstrate these points in Section 6.

4.4. Locality

When computing S and D, the only operations performed are
convolutions of R and N with small kernels. Therefore, S and D
could be calculated independently for every small image patch,
(up to a few times the PSF size). This allows the used PSFs for
subtraction to vary smoothly across the image. In addition,
local artifacts such as bad pixels, particle hits, or saturated stars
will affect only their close vicinity.

4.5. The Proper Image Subtraction DHas White Noise

In the expression for D (Equation (13)), in the background-
noise dominated limit, the variance of the numerator is equal to
the square of the denominator, i.e.,

s s- = +  V F P N F P R F P F P , 46r r n n r n n n r r
2 2 2 2 2 2[ ] ∣ ∣ ∣ ∣ ( )

which means that all the spatial frequencies of D have equal
variance. Furthermore, since we assume that the images have
white noise, their Fourier transform has white noise. This
means that the spatial frequencies of D , as a linear combination
of  R N, , has uncorrelated noise. Together, both properties mean
that D has white noise, which means that Dalso haswhite
noise. In other words, the difference image is a proper image (as
defined in Zackay & Ofek 2015b). This property is violated by
all the other methods for image subtraction.

We note that in the vicinity of bright stars, where the source
noise variance is dominant, the proper subtraction image D
exhibits correlated noise. Our simulations suggest that if the
source variance is at least an order of magnitude higher than the
background variance, then correlated noise is detectable by eye
in the vicinity of such sources. However, as we stated before,
using our method, the source noise is controllable via variance
corrections.

4.6. D and PD are Sufficient for Any Measurement or Decision
on the Difference Between the Images

In Appendix E, we provide proof that D and PD constitute a
sufficient statistic for any measurement or hypothesis testing on
the difference between the images. The key ingredients for this
proof are that any likelihood calculation for any generative

model for the difference between the images can be computed
by using only these quantities, and the use of the Fisher–
Neyman factorization theorem (Fisher 1922; Neyman 1935).
We note that there are an infinite number of sufficient statistics
with respect to the image subtraction problem (see some
examples in Zackay & Ofek 2015bin the context of
coaddition). Here we prefer the proper subtraction image D
(rather than e.g., S) due to its useful properties.
The sufficiency property has important practical conse-

quences. It means that, in the background-noise-dominated
limit, D and PD contain all the information one needs for
any further measurement or hypothesis testing related to the
difference between the images. There is no need for other types
of difference images for other applications. Examples ofprac-
tical applications include the identification and removal of
particle hits on the detector (see Section 3.7); optimal search for
proper motion, astrometric shifts (Section 3.4), and asteroid
streaks.

4.7. Symmetry Between the New Image
and the Reference Image

The problem of image subtraction is symmetric to the
exchange of the reference and the new image (up to
thenegation of the flux of the transient). Therefore, it is not
surprising that the optimal image subtraction statistics (D or S)
are symmetric to the exchange of R and N (up to a minus sign).
This property is violated by the solutions proposed by Phillips
& Davis (1995), Alard & Lupton (1998), and Bramich (2008).
We note that the Gal-Yam et al. (2008) method preserves this
symmetry. Interestingly, the Gal-Yam et al. (2008) method is
identical to the numerator of the proper image subtraction
statistic (D).

4.8. The Limit of theNoiseless Reference Image

In the limit of s  0r ,Equation (12) becomes

s
=

-
s 

 


  
S

F F P P N F F P P R

F P
lim 47n r n r r n r n

n r r0

2 2 2 2

2 2 2
r

∣ ∣ ∣ ∣
∣ ∣

( )

⎛
⎝⎜

⎞
⎠⎟s

= - 
  F P

N
F P

F P
R . 48n n

n

n n

r r
2

( )

The term P Pn r can be identified as the convolution kernel
solved for by the methods of Phillips & Davis (1995), Alard &
Lupton (1998), and Bramich (2008). Therefore, in this limit, S
converges to the Alard & Lupton (1998) family of methods
followed by filtering each of the images with the PSF of the
new image.
This simple analysis demonstrates that the Alard & Lupton

(1998) family of methods, if followed by the correct matched
filtering, is a special case of our solution S. Furthermore,
Equation (48) provides the prescription for the correct matched
filter (only) in the limit of s  0r .
To emphasize the importance of correctly accounting for the

noise in the reference image R, we want to substitute some
numbers into the formulas. For a very good reference images,
s s~ 0.1r n (which represents a reference image composed of

the coaddition of ∼100 images). Because the ratio 
P
P

n

r
can be

much larger than s
s

n

r
(for example, if Pn is narrower than Pr, in

the high spatial frequencies this ratio can easily get to 106), sr is
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never small enough to be negligible. This means that the Alard
& Lupton (1998) family of solutions isqualitatively close to

the correct statistic only if s
s


P
P

n

r

n

r

∣ ∣
∣ ∣

. In any other case, these
solutions will produce either deconvolution artifacts, or fail to
cancel the constant in time image T.

4.9. The PSF of the Difference Image

The PSF, PD, of the proper subtraction image is a
combination of Pn and Pr. In Figure 1, we present Pn, Pr,

and the corresponding PD for three cases, of symmetric
Gaussians, asymmetric Gaussians, and speckle images.

4.10. Knowledge of the PSFs

An apparent drawback of our method is that one needs to
know the PSFs of the images, while in the Alard & Lupton
(1998) family of methods one simply solves for the convolu-
tion kernel P Pn r without measuring the PSFs.

However, one can write the expression for (a slightly
changed) D with P Pn r , allowing oneto incorporate relative
knowledge of the PSFs.

s s
=

-

+


 






D

N R
. 49

F P

F P

n r
F P

F P

ratio
2 2

n n

r r

n n

r r

2 2

2 2

( )
∣ ∣
∣ ∣

In this case, Dratio has the following PSF:

s s
=

+






P
F F P

F
. 50D

r n n

D n r
F P

F P
2 2 n n

r r

ratio 2 2

2 2

( )
∣ ∣
∣ ∣

Inspecting these slightly modified definitions of D and PD still

yields = Ä
¬ ¾¾

S D PDratio ratio , and is thus equivalent to the

original definition (Equation (13)). It is important to note, that
while we are still requiring the estimation of PDratio (and thus,
effectively that of Pn and Pr) for performing transient detection,
the required precision in estimating PDratio is much less
demanding than the required precision in estimation of the
PSF ratio. In fact, even crude estimation of the general form of
PDratio as a two-dimensional Gaussian may result only in a
negligible sensitivity loss. Therefore, if the individual PSFs
cannot be estimated from the images, but their ratio can be (for
example, if only extended, or complex sources are present in
the field of view), it is still possible to optimally subtract the
images and detect transients with maximal sensitivity. There-
fore, our requirement for the knowledge of the PSFs should not
be considered as a drawback, as it could be bypassed. We note

that another drawback of solving for 
P
P

n

r
is that astrometric

scintillation noise shuffles the relative position of sources in the

new and reference images, biasing the solution for 
P
P

n

r
to be

wider, and thus less accurate. This effect may degrade the
cancellation quality of T, and thus may reduce the achievable
contrast between T and the detectable transients. This effect is
avoided when estimating Pr and Pn separately because
astrometric noise is locally coherent, allowing the approach
presented in Section 3.4.

4.11. Registration and Color-refraction Errors

Image subtraction relies on many steps taken prior to the
differencing process. Any noise introduced by the pre-
processing steps will be propagated into the final subtraction
image. Examples for such problems includeregistration errors,
color-refraction systematic errors, and small-scale flat-fielding
errors.
Here we suggest two types of treatments for such noise.(1)

It is straightforward to introduce these extra sources of noise
into the variance image of S and use it to calculate Scorr (see
Section 6.1 for examples). This correction is suboptimal, but it
is resilient to pre-processing errors.(2) An accurate treatment
of the problem is to fit any astrometric shift and flux variation
for each detected artifact in the difference image D (see
Section 3.4). Albeit this is computationally expensive, this kind
of solution is very common in astronomy (e.g., DAOPHOT,
Stetson 1987; DOPHOT, Schechter et al. 1993).

4.12. Free Parameters

In principle, our method doesnot have any free parameters
that the user needs to set. We note that the Alard & Lupton
(1998), Bramich (2008), and Yuan & Akerlof (2008) methods
do have internal degrees of freedom that the user needs to
define and that may influence the final outcome. For example,
the Bramich (2008) method may be sensitive to the kernel size,
while the Alard & Lupton (1998) method depends on the basis
functions one chooses to represent the convolution kernel (see,
e.g., Becker et al. 2012 and Bramich et al. 2015).

4.13. Computational Complexity

In terms of computational complexity, our subtraction
method is fast, as the most demanding operation in our image
subtraction method is the FFT operation (or alternatively
convolution with a small kernel). Tests indicate that our

Figure 1. Pn (left column), Pr (middle column), and the corresponding PD

(right column) for three cases. The first row is for the case of symmetric
Gaussian PSFs withsigma-widths of 2 and 3 pix for the new and reference,
respectively. The second row is for the case of asymmetric Gaussian PSFs with
sigma-widths of 2 by 4 pix and 4 by 2 pix for the new and reference,
respectively. In the third row, Pn and Pr are simulated speckle images (using
the tools in Ofek 2014). In the speckle simulations, we set D rtel 0=20, where
Dtel is the telescope diameter and r0 is the Fried length.
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algorithm is at least an order of magnitude faster than the
inversion algorithms by Alard & Lupton (1998) and Bramich
(2008) becausethey are essentially solving a linear least square
problem with a large number of equations and tens to hundreds
of unknowns.

5. SUMMARY OF THEALGORITHM

We recommend to perform the subtraction on small image
patches in order to minimize residual astrometric shifts,
inhomogeneous transparency, and background. In addition, it
allows to use position-dependent PSFs. The image patches
should be overlapping by at least two PSF lengths, in each
dimension, in order to avoid edge effects of the convolution
process. A step-by-step outline of our algorithm is as follows.

INPUT ARGUMENTS

N Background-subtracted new image (regis-
tered to R).

R Background-subtracted reference image.

Nb New image including background in electron
units.

Rb Reference image including background in
electron units.

Pn PSF of new image normalized to have
unit sum.

Pr PSF of reference image normalized to have
unit sum.

sn std of the background of the new image.

sr std of the background of the reference image.

rn Read noise of new image in electrons.

rr Read noise of reference image in electrons.

sx rms (in pixels) of the astrometric registration
solution in the X-axis. This is either a scalar
or a matrix.

sy
rms (in pixels) of the astrometric registration
solution in the Y-axis. This is either a scalar
or a matrix.

OUTPUT

D The proper difference image.

PD The PSF of the proper difference image.

Scorr The matched filter difference image corrected
for source noise and astrometric noise.

PDn
The PSF of a delta function in N as it appears
in D.

PDr
The PSF of a delta function in R as it appears
in D.

ALGORITHM.

1. Optionally construct a reference image (R; Equation (22)),
its PSF (Pr; Equation (23)), and flux (Fr; Equation (24))
using the Zackay & Ofek (2015b) proper coaddition
method.

2. Solve Equation (39) for the best-fit value of β and
optionally γ,Dx, andDy (need to use Equations (37) and

(38)). Since this Equation is nonlinear in βuse iterations.
Set b = 1 in the first iteration, update the value of β and
continue until convergence. Use robust fitting.16 Alter-
natively, find β using other methods (e.g., relative
photometry).

3. If applicable, calculate γ (Equation (40)) and subtract γ
from N.

4. If applicable, shift Pn by Dx and Dy.
5. Set =F 1r and b=Fn .
6. Calculate D (Equation (13)).
7. Calculate PD (Equation(14)).
8. Calculate = S P DD .
9. Calculate PDn (Equations (18) and (130)).

10. Calculate PDr
(Equations (19) and (134)).

11. Calculate kr (Equation (28)).
12. Calculate kn (Equation (29)).
13. Set  = +V N rn b n

2( ) and calculateV SN( ) (Equation (26)).
14. Set  = +V R rr b r

2( ) and calculateV SR( ) (Equation (27)).
If R is composed of multiple images, it is better to sum up
the V SRj( ) of the individual reference images (see
Appendix C and Equation (101)).

15. Calculate V SNast ( ) (Equations (30) and (31)).
16. Calculate V SRast ( ) (Equations (32) and (33)).
17. Calculate Scorr (Equation (25)). As a sanity check, the

(robust) std of Scorr should be »1.
18. Search for local maxima in Scorr. The peak value

corresponds to the significance of the transient in units
of sigmas.

19. As an alternative to steps 15 and 16, we can search all
locations in D that correspond to statistically significant
sources in Scorr (without astrometric contributions) for
moving point sources using PS (Equation (34)), measure
their flux and astrometric variability and subtract them.

20. Select remaining sources with significance larger than
some threshold, determined from the desired false alarm
probability.

21. Calculate the flux of the transient candidates using
Equations (41)–(43).

We note that all Fourier transforms in the paper are circular,
and any statistic we compute should be regarded only on
positions sufficiently far from the borders of the image (i.e.,
typically a few times the PSF width).

6. TESTS

There are several important challenges in testing any image
differencing algorithm. Image subtraction in general is affected
by many factors. Therefore, it is desirable to separate between
external problems (e.g., non-perfect registration) and issues
related to the subtraction itself (e.g., numerical stability).
Therefore, we are using both simulations and real data to test
our image differencing algorithm.
It is worthwhile to compare the new algorithm with existing

methods. However, such a comparison is problematic, as other
methods donot specify the matched filter for source detection.
Furthermore, some of these methods depend on the selection of
basis functions and kernel size. In addition, there are several
ways to solve a system of linear equations (e.g., SVD) and

16 Robust fitting is less sensitive to outliers. An example for a robust fitter is
the robustfit.m function in MATLAB.
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these may influence the final outcome. Therefore, here our
comparison with other methods is limited.

In Section 6.1, we present tests based on simulated data,
while in Section 6.2 we discuss real images. The code we use is
available as part of the Astronomy and Astrophysics package
for MATLAB (Ofek 2014)described in Section 7.

6.1. Simulations

An important feature of our algorithm is its numerical
stability. The best way to test this is on simulations because the
input is fully controlled.

We simulated images of 512 by 512 pixels size, with a
background level of 300 electrons, with Poisson noise. In each
image, we simulated 100 stars with integrated flux taken from a
flat distribution between 0 to 105 electrons and Poisson noise.
In addition, we added to the new image nine transient sources
with position and flux as listed in Table 1. In the first set of
simulated images, the PSF of the sources in the images are
symmetric Gaussians with sigma-widths of 2 and 3 pixels, for
the reference and new images, respectively. Figure 2 shows,
left to right (top),new image, the reference image, the proper
subtraction image (D); (bottom) the matched-filtered image (S)
threshold above 5σ, the Alard & Lupton (1998) subtraction of
new minus reference, and the Alard & Lupton (1998)
subtraction of reference minus new. The Alard & Lupton
(1998) subtractions are based on the ISIS software (Alard &
Lupton 1998). This figure demonstrates that while our image
subtraction method is symmetric, the Alard & Lupton (1998)
algorithm is not symmetric. In this case, it is working well in
one direction, but subtraction artifacts are clearly visible
(ringing due to deconvolution) in the other direction.
Furthermore, thresholding our matched filter image above 5σ
reveals only the simulated transients.

Next, we simulated images with the same parameters as in
Figure 2, with asymmetric Gaussian PSF with sigma-widths of
2 by 4 pix in the new image and 4 by 2 pix in the reference
image. Figure 3, is the same as Figure 2, but for these images.
Again, the asymmetry of the Alard & Lupton (1998) family of
methods is seen. Furthermore, in this case, the ringing due to
deconvolution is seen in both the N−R and R−N
subtractions.

One of the most important practical features of our new
method is the ability to incorporate other types of noise into the
detection process (e.g., source noise, astrometric noise, color-
refraction noise). To demonstrate this, we repeated the first

simulation (Figure 2), but this time with normally distributed
astrometric noise with astandard deviation of 0.3 pix. Figure 4
shows, left to right (top), the new image, the reference image,
the proper subtraction image (D); (bottom): the matched-
filtered image (S) thresholded above 5σ, the source noise
corrected and astrometric noise corrected matched-filtered
image (Scorr) thresholded above 5σ, and the Alard & Lupton
(1998) subtraction of the new minus reference. In this case, the
subtraction contains a large number of positive–negative
residuals, but our Scorr image deals well with this astrometric
noise, and only the simulated transients are detected.

6.2. Tests on Real Images

We tested the new method on imaging data available from
the PTF17 (Law et al. 2009; Rau et al. 2009) data release 2. The
image processing is described in Laher et al. (2014) while the
photometric calibration is discussed in Ofek et al. (2012).
Table 1 lists the various images on which we tested our

algorithm. Registration, background subtraction and PSF
estimation were performed using the code described in
Section 7.
Figure 5 presents the image subtraction results of test 1. The

top panels fromleft to right arethe new image, the reference
image, and the proper difference image D. The bottom
panelsfromleft to right arethe matched filter corrected image
(Scorr) thresholded at 5σ, the Alard & Lupton (1998) subtraction
of the N−R, and the Alard & Lupton (1998) subtraction of the
R−N. Figure 5 also demonstrates that the Alard & Lupton
(1998) subtraction is not symmetric to the exchange of R and
N, while our method is. Specifically, the R−N image of the
Alard & Lupton (1998) has strong,and high amplitude,corre-
lated noise.
On first glance, the Alard & Lupton (1998) N−R image

looks cosmetically good. However, on closer inspection we can
see that this image has subtraction residuals with large
amplitude. For example, Figure 6 shows a profile cut, at the
location of the red line in Figure 5, in the proper subtraction
image D and the Alard & Lupton (1998) subtraction (N− R).
The images are normalized such that the standard deviation of
the images is one. This figure clearly shows that while our
algorithm behaves very well in the presence of stars, the Alard
& Lupton (1998) subtraction has very large fluctuations. We
note that the fact that the Alard & Lupton (1998) subtraction
image is partially filtered is seen by eye (i.e., smoother noise)
Figure 7 is the same as Figure 5, but for the subtraction of

images of test 2.
These images contain the bright galaxy M51, and

SN 2011dh (Arcavi et al. 2011). We note that in D we clearly
see residuals due to themis-alignment of the images. However,
these residuals are gone when we present Scorr, which takes the
source noise and astrometric noise (about 0. 2 rms) into
account. We further note that the astrometric residuals are less
pronounced in the Alard & Lupton (1998) subtraction simply
because these images are partially filtered, and therefore
smoother. The transient candidate detected in the Scorr image
above the5σ threshold are SN 2011dh, cosmic rays,and bad
pixels. S and Scorr are presented in Figure 8, just to give an
impression ofthe importance of correcting S before detecting
transients. Note that S and Scorr contain correlated noiseand
may mislead the human eye.

Table 1
Simulated Transients in the New Image

X Y Flux
(pix) (pix) (electrons)

100 100 1500
120 120 1600
140 140 1800
160 160 2000
180 180 2200
200 200 2400
220 220 2600
240 240 2800
260 260 3000

Note. The position and mean flux of simulated transient sources in the new
images in Figures 2–4.

17 http://www.ptf.caltech.edu/iptf
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7. CODE

We present two sets of codes based on MATLAB and
Python. The MATLAB code contains functions to deal with all
the image processing steps, including the registration and PSF
estimation. The MATLAB code is available as part of the
MATLAB Astronomy and Astrophysics package18 (Ofek
2014). This code is under development and we expect that
improved versions will be available in the future. The Python
code19 contains only a simple implementation of our algorithm
that requires as input: fully registered images, as well as their
PSF, background images, and variance images.

The main high-level MATLAB functions required for image
subtraction are described with the online code. Some of these
functions are discussed in Zackay & Ofek (2015a, 2015b). The
implementation details related to some of these utilities are
further discussed in Section 8.

8. IMPLEMENTATION DETAILS

Given background-subtracted images, their variance, PSF,
and flux-based zero points ratio, our image subtraction method
is presented using aclosed-form formula. Therefore, the
implementation of this method is simple and rigorous, and
doesnot require special attention. However, like any other
method for image subtraction, this technique is sensitive to the

steps taken prior to the image subtraction (e.g., registration;
flux matching).
Here we discuss some of the details that can greatly influence

the successful application of any image subtraction algorithm.

8.1. Background and Variance Estimation

The background and variance in real wide-field-of-view
astronomical images cannot be treated as constants over the
entire field of view. Therefore, we suggest to estimate them
locally and interpolate. To estimate the background and
variance, one needs to make sure that the estimators are not
biased by stars or galaxies. Following Zackay & Ofek
(2015a, 2015b), we suggest to fit a Gaussian to the histogram
of the image pixels in small regions20, and to reject from the
fitting process pixels with high values (e.g., the upper 10% of
pixel values). Regions containing large galaxies or complex
background may require special treatment.

8.2. PSF Estimation and Spatial Variations

We note that Equations (12) and (13) are roughly linear to
perturbations in the PSF, compared with the real PSF. Among
the complications that may affect the PSF measurement are
pixelization, interpolation and the resampling grid. Further-
more, the PSF is likely not constant spatially and it also may
change with intensity due to charge self repulsion. This

Figure 2. Subtraction of simulated images with symmetric Gaussian PSF with sigma-width of 2 and 3 pixels, for the reference and new images, respectively. Left to
right (top): the new image, the reference image, the proper subtraction image (D); (bottom) the matched-filtered image (S) with 5σ threshold, the Alard & Lupton
(1998) subtraction of new minus reference, and the Alard & Lupton (1998) subtraction of reference minus new. The position of the simulated transient sources in the
thresholded matched-filtered image are marked by red circles. All the images are presented with inverted grayscale map.

18 http://webhome.weizmann.ac.il/home/eofek/matlab/
19 https://sites.google.com/site/barakzackayhomepage/ 20 We are currently using 256×256 arcsec2 blocks.
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specifically may lead to the brighter-fatter effect (e.g.,
Walter 2015).

In some cases, the PSF may vary over the field of view. The
simplest approach is to divide the image to smaller images in
which the PSF is approximately constant. These sub-images
can be as small as four times the PSF size. Since the
convolution operation is local, it is straightforward to
incorporate a spatially variable PSF into any subtraction
method (e.g., Alard 2000).

8.3. Interpolation

The registration step requires usto interpolate one of the
images into a new coordinategrid. If the PSF is Nyquist
sampled (band limited), then one can use the Whittaker-
Shannon interpolation formula (sometimes called sinc inter-
polation) without losing information due to the interpolation
process. In practice images contain under-sampled radiation
hits. Whittaker-Shannon (sinc) interpolation of such images
will generate artifacts over the entire image. Therefore, a more
practical approach is to use the Lanczos interpolation.

However, if the PSF is undersampled, interpolation will lead
to variation in the PSF shape, which depends on the position of
the source within the pixel (pixel phase). Such an effect may
cause severe problems to any subtraction method. One simple
way to deal with this problem is to add a noise term to the
denominator of Scorr (Equation (25)) that takes into account the
extra noise induced by the pixel-phase dependent PSF
variations.

8.4. Registration

Registration is a critical step for any image differencing
technique. Any leftover registration imperfection residuals
between the new and reference image will lead to improper
subtraction, subtraction artifacts,and eventually to false
detections. In Sections 3.3 and 3.4, we discuss how registration
errors, color refraction, and astrometric scintillations can be
treated. However, it is still desirable to minimize any
registration errors prior to subtraction.
In many cases, affine transformations are not enough to map

between the two images. The main reasons includedifferential

Figure 3. Same as Figure 2, but for the subtraction of simulated images with asymmetric Gaussian PSF with sigma-widths of 2 by 4 pix in the new image and 4 by
2 pix in the reference image.

Table 2
List of Tests on Real Images

Test Field/CCD Size N R FWHMN FWHMR

(pix) (arcsec) (arcsec)

1 100031/04 560×560 2012-12-20.4134 proper 5.4 2.9
2 100031/11 1000×1000 2011-08-08.1839 2011-04-12.1865 2.5 2.9

Note. List of tests on real images. “proper” indicates a reference image that was constructed using proper coaddition (Zackay & Ofek 2015b).
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atmospheric refraction, differential aberration of light, and
high-order optical distortions.

Usually,when images are taken with the same system and
the same on-sky pointing, optical distortions will not play an
important role becausetheir effect on the two images is almost
identical.

The amplitude of differential atmospheric refraction can be
as high as 8 deg−1. Figure 9 shows the amplitude of
differential atmospheric refraction as a function of altitude.
Since the direction of the atmospheric refraction is known very
well, the best way to with the distortions caused by the
atmosphere is to add to the affine transformation terms that fit
the atmospheric refraction amplitude with its known direction
(i.e., the parallactic angle). Unfortunately, most astrometric and
registration packages donot support distortions of this form,
and instead they absorb the refraction correction into high-
order polynomials. Furthermore, the current WCS header
keywords donot support this kind of transformation. Our code
described in Section 7 does support this transformation.

We note that atmospheric refraction distortions are detect-
able even on small angular scales. For example, this effect can
reach 0 1 arcmin−1 at analtitude of 20 deg. In any case, in
order to minimize any higher order distortions, it is
recommended to divide the image to small sections (say 10
by 10 arcmin).

The typical amplitude of differential aberration of light (due
to the Earth motion) is of the order of ∼0 2 deg−1. This is
small enough to be ignored in some cases. However, since the

effect of aberration is fully predictable it is straightforward to
incorporate it into the transformation. As far as we know
popular image registration (and astrometric) packages ignore
the aberration of light.

8.5. Astrometric Scintillations

Astrometric registration of ground-based imaging is typically
limited by astrometric scintillation induced by the Earth
atmosphere. An order of magnitude estimate for the amplitude
of astrometric scintillation is

s ~
t t

FWHM
, 51scint

int scint

( )

where FWHM is the PSF FWHM, tint is the integration time,
and tscint is the correlation timescale of the tip/tilt term of the
atmospheric scintillations. For example, assuming =FWHM
2 , =t 60 sint , and =t 0.03 sscint , we get s ~ 40scint mas. This
can be an order of magnitude larger than the astrometric noise
induced by the Poisson noise of bright stars. In practice,
this noise depends on the angular scale (see e.g., Lindegren
1980; Shao & Colavita 1992).
This kind of astrometric noise is hard to remove, and

therefore we expect that bright stars will always have some
leftover residuals in the subtraction process. However, we
presented two methods to solve this problem in Sections 3.3
and 3.4.

Figure 4. Subtraction of simulated images with 0.3 pix (rms) astrometric noise and symmetric Gaussian PSF with sigma-width of 2 and 3 pixels, for the reference and
new images, respectively. Left to right (top): the new image, the reference image, and the proper subtraction image (D). Left to right (bottom): the matched-filtered
image (S) threshold above 5σ, the source noise corrected and astrometric noise corrected matched-filtered image (Scorr) threshold above 5-σ, and the Alard & Lupton
(1998) subtraction of the new minus reference. The position of the simulated transient sources in the thresholded matched-filtered image are marked by red circles.
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8.6. Color Refraction

The atmospheric refraction is color dependent and hence
sources with different spectra will suffer different refraction at
the same airmass. Figure 10 presents the relative amplitude of
color refraction, in different bands, between an O5V star and an
M5V star and between an A0V star and an M5V star, as a
function of altitude.
We suggest three solutions to this issue.(1) Construct reference

images for several airmass ranges. Since color refraction is
symmetric around the meridian, one needs to construct such
reference images separately for observations conducted east and
west of the meridian.(2) Calculate the variance induced by this
effect and introduce it as an extra termin the denominator of Scorr
(Equation (25)).(3) Fit the astrometric shift for each residual in D
using the scheme presented in Section 3.4. The last option is likely
the best approach.

8.7. Additional Sources of Noise

There may be additional sources of noise that can influence
image subtraction. An example for a rare problem we
encountered in our simulations and real images is that if a
binary star has uncorrelated astrometric noise21 this may affect

Figure 5. Image subtraction results for test 1 (Table 2). Left to right (top): the new image, the reference image, and the proper subtraction image D; (bottom) the
matched filter corrected difference image (Scorr) filtered at 5σ, the Alard & Lupton (1998) ISIS subtraction of the new minus the reference, and the ISIS subtraction of
the reference minus the new. All the images are presented with the inverted grayscale map. The red line (in the new panel) indicates the position of the profile cut we
present in Figure 6. In the >S 5corr map, CR1–CR5 indicate the position of cosmic rays detected by our algorithm, while the two bright residuals on the right part of
the image are due to saturated stars. The residual at the top left has a significance of 5.7-σ and it is at the interface between two bright stars. The mechanism that
generate this particular residual is discussed in Section 8.7.

Figure 6. Profile cut, at the position of the red line in Figure 5, in the proper
subtraction image D (black line) and the Alard & Lupton (1998) subtraction
( -N R; gray line). The images are normalized such that the standard deviation
of the images is unity. This demonstrates that in the presence of bright stars, the
fluctuations in our subtraction image are modest, while the residuals in the
Alard & Lupton (1998) subtractions are large. We note that the D image is not
filtered, while the Alard & Lupton (1998) subtraction is partially filtered.
Therefore, the noise properties of D, relative to the Alard & Lupton (1998)
subtraction, are even better than indicated from this plot.

21 In reality, this is rare as both registration errors and astrometric scintillation
noise (but not the Poisson noise) are correlated on short angular scales.
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the calculation of the gradient image (Equations (30)–(32); see
Figure 5 for example). In principle, such problems can be
accounted for in Scorr; however, one needs to identify these

issues. Therefore, successful implementation of this method
requires large-scale tests on real data. Such tests are underway,
and this may be further discussed in future publications.

Figure 7. Same as Figure 5, but for the test 2 images, containing the bright galaxy M51 and SN 2011dh. The detected sources in >S 5corr are SN 2011dh, particle
hits,and bad pixels.

Figure 8. Score map S (left image) and the corrected score map Scorr (right image) corresponding to the subtraction shown in Figure 7. Note that albeit a substantial
registration error (that could have been done better), the corrected image does not contain false alarms. Also note that in S it is very difficult to distinguish between an
image artifact to a real source, while in D it is almost trivial. We note that S and Scorr are images with correlated noise. Detecting sources in S and Scorr should be done
by searching for local maxima and reading their value. The value of the local maxima divided by the (local) standard deviation corresponds to the detection
significance in units of sigmas (or more formally to the false alarm probability via the survival function of the normal distribution). Images grayscale is between −7 to
+7 standard deviations of the images. With the exception of SN 2011dh (see Figure 7), all the significant residuals are due to cosmic rays and bad pixels.
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9. SUMMARY

Current popular image subtraction methods have several
important limitations, includingnon-optimality, numerical
instability in some cases, some of the methods use amatrix
inversion, which is slow to calculate. Most importantly, these
methods donot provide a closed-form formula for thecalcula-
tion of the significance of a transient candidate. Moreover, in
some cases, due to thenumerical instability of some of the
methods it is not possible to calculate, even numerically, the
significance of a transient candidate. This undermines any
automatic transient detection and classification, and may be a
considerable obstacle for future surveys.

We present closed-form transient detection and image
subtraction statistics that potentially solve all of the above
problemsand have the following properties.

1. The transient detection statistic is mathematically proven
to be optimal in the background-dominated noise limit.

2. Both statistics are numerically stable for any pair of input
images.

3. For accurately registered, adequately sampled images,
these statistics donot leave any subtraction residuals or
deconvolution artifacts.

4. It is possible to correct the transient detection statistic to
be resilient to registration errors, color-refraction errors,
and any noise for which a model can be constructed.

5. We can assign credible detection significance for newly
found transients.

6. The proper subtraction image has white noise in the
background-dominated-noise limit. This makes it attrac-
tive for more complex measurements and visualization.

7. The proper subtraction statistic is a sufficient statistic for
any further statistical test on the difference image. In
particular, it allows to distinguish particle hits and other
image artifacts from real transients.

8. Both statistics are symmetric to the exchange of the new
and reference images.

9. Both statistics are fast to calculate—at least an order of
magnitude faster to compute than popular methods.

10. Both statistics are given in closed form and they are
straightforward to implement.

11. The proper subtraction statistic allows usto search for
small astrometric changes between the new and reference
images, even in arbitrarily crowded regions.

12. The same statistics are also optimal for flux measure-
ments in the background-noise dominated limit.

13. We show that the optimal way to prepare a reference
image is the proper image coaddition statistic presented in
Zackay & Ofek (2015b).

We demonstrate this method on simulated data and real
observations from the Palomar Transient Factory data release 2.
A summary of the algorithm and equations are presented in
Section 5, while a discussion regarding the implementation is
in Section 8. We briefly describe our MATLAB and Python
code that implement this method and are available online.
We conclude that this image differencing algorithm has the

potential to solve most of the challenges of astronomical image
subtraction. However, testing if this method is indeed capable
of completely removing the need for post-subtraction proces-
sing (e.g., human scanners) requires aconsiderable research
effort and tests on large datasets. Such tests are underway.
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Figure 9. Differential atmospheric refraction (in the altitude direction), in units
of arcsec per deg. Calculated using the code in Ofek (2014) and formulae
provided in Filippenko et al. (1982), for a wavelength of 5000 Å, temperature
of 15◦ C, pressure of 760 mm Hg and partial water vapor pressure of 8 mm Hg.

Figure 10. Solid lines represent the difference in color refraction (in the
altitude direction) in arcsec, as a function of altitude, between an O5V star and
M5V star. The various colors correspond to different filters (see the legend).
The dashed lines show the same, but for the difference between an A0V star
and M5V star. The calculation includes the atmospheric extinction (at Kitt
Peak), and uses stellar spectra (adopted from Pickles 1998). Atmospheric
conditions are the same as in Figure 9.
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APPENDIX A
FULL DERIVATION OF THE IMAGE

SUBTRACTION STATISTICS

Let R and N be the background-subtracted reference image
and background-subtracted new image, respectively. Deno-
teby T the background-subtracted true constant sky image.
Denote by Pr and Pn the PSFs of the reference image and the
new image, respectively. Pr and Pn are normalized to have
unit sum.

Writing the expression for the reference image

= Ä +R F T P , 52r r r ( )

where r is the additive noise component of the image R. Given
the null hypothesis, 0, that states there are no new sources in
the new image we can write

 = Ä +N F T P . 53n n n0 ( )∣

Given the alternative hypothesis,  aq,1( ), which states that
there is a new point source at position q with flux α, we can
write

 ad= Ä + Ä +aN F T P F q P , 54q n n n n n,1 ( ) ( )∣ ( )

where d q( ) denotes a two-dimensional image with one at
position q, and zero otherwise. Assuming that the images are
background subtracted, and that the dominant source of noise is
the background noise, r and n both satisfy that all pairs of
pixels are uncorrelated—i.e., that for all pairs of pixels x x,1 2

for which ¹x x1 2:

   = =x x x xCov , 0, Cov , 0, 55r r n n1 2 1 2( [ ] [ ]) ( [ ] [ ]) ( )

and that all pixels have spatially uniform variance22:

 s s= =V x V x, . 56r r n n
2 2( [ ]) ( [ ]) ( )

Because both hypotheses are simple, we can use the
Neyman–Pearson lemma (Neyman & Pearson 1933), that
states that the most powerful statistic for deciding between two
simple hypotheses is the likelihood ratio test:


 

 
a

a
=q

N R

N R q
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( ) ( ∣ )
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where  denotes probability. A critical point is that we do not
have any prior information or assumptions on T. Therefore, we
cannot calculate the probabilities  N R, 0( ∣ ) and
  aN R q, ,1( ∣ ( )) directly. However, we can calculate their
ratio by developing the expression using the law of conditional

probabilities


   

   
a

a a
=q

N R R

N R q R q
,

,

, , ,
. 580 0

1 1
( ) ( ∣ ) ( ∣ )

( ∣ ( )) ( ∣ ( ))
( )

Using the fact that both 0 and  aq,1( ) state the same
probabilistic model for R (and therefore will assign the same
likelihood for observing R), we can further simplify:


 

 
a

a
=q

N R

N R q
,

,

, ,
. 590

1
( ) ( ∣ )

( ∣ ( ))
( )

To calculate  N R, 0( ∣ ), we examine the statistical
behavior of the Fourier transforms of N and R given both
hypotheses, and assume that the images are background-noise
dominated. Using the fact that the Fourier transform of white
noise is itself a white noise, we know the exact noise properties
of the Fourier transform of both R N, given both hypotheses:

 = + N F TP , 60n n n0 ( )∣

 ad= + +a  N F T q P , 61q n n n,1 ( ( )) ( )∣ ( )

 = = +a   R R F TP , 62q r r r,0 1 ( )∣ ∣ ( )

where the accent denotes Fourier transform and both n and
r are complex white Gaussian noise.23

Using the fact that R is measured, we can invert its
probabilistic model to obtain a model for T:


= - 

  
T

R

F P F P
. 63

r r

r

r r

( )

We note that the model for T̂ is not calculated, and will be used
only as a substitution step. This step is valid if ¹P 0r∣ ˆ ∣ . In
practice, this can be verified either by making sure that the
model for Pr does not containabsolute zeros, or by adding a
small number (i.e., the computer precision) to the denominator
of Equation (13).
Using this expression for T , we can write a probabilistic

model for N given R and 0:

 = - +  
  N

R

F P
F P

F P
F P . 64R

r r
n n

r

r r
n n n ( )∣

Given this model for T and assuming the noise is Gaussian, we
can calculate the probability to observe N (this is the c2 up to a
factor of two):


 


å=

- -

+














N R

N

V
log ,

2
, 65

f

F P R

F P

n
F P

F P

0

2
n n

r r

n n r

r r
( )( [ ∣ ]) ( )

Using the linearity and scalar multiplication properties of the
variance and simplifying we get

  å
s s

=
- -

+







  
N R

F P N F P R

F P F P
log ,

1

2
, 66

f

r r n n

n r r r n n
0

2

2 2 2 2 2 2
( [ ∣ ]) ∣ ∣

∣ ∣ ∣ ∣
( )

Similarly, given 1,we can write

  aN R qlog , , 671( [ ∣ ( )]) ( )

22 In practice, this assumption can be relaxed.

23 The noise in the Fourier transform of an image with white noise, is white
except for the obvious symmetry  = - - f f f f, ,n n1 2 1 2( ) ( ), where theover line
denotes complex conjugation. This symmetry is due to the fact that the input
images are real.
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å a d
s s

= -
- -

+

 

 


 F P N F P R F F P P q

F P F P

1

2
. 68

f

r r n n n r n r

n r r r n n

2

2 2 2 2 2 2

∣ ( )∣
∣ ∣ ∣ ∣

( )

Because the hypothesis1 has the free parameter α, we cannot
use the Neyman–Pearson lemma directly. In order to preserve
the optimality proof of the test, we will have to construct a test
that is uniformly most powerful with respect to α. The
procedure for doing this is as follows.Identify a scalar
sufficient statistic of the data S(q) with respect to  aq,1( )
for every α. Then, show that this statistic satisfies the
requirement for the Karlin–Rubin theorem Karlin & Rubin
(1956), that for any a a>1 0, and for any value of =S q x( ) ,
the likelihood ratio




a
a

=
=
=

l x
S q x

S q x
, 691

0
( ) ( ( ) ∣ )

( ( ) ∣ )
( )

is a non-decreasing function of x. Then, we are guaranteed that
the test h>S q( ) for some threshold η that determines the false
positive rate of the test, is uniformly most powerful for the
decision problem between 0 and  aq,1( ) for any α. To
construct the statistic S(q), we open the parentheses of
Equation (68) using R+ = + +a b a b ab22 2 2∣ ∣ ∣ ∣ ∣ ∣ [ ], where
R is the real number operator, and removing the a 2∣ ∣ and b 2∣ ∣
terms because they do not depend on both α and the data (this
is allowed by the Fisher–Neyman factorization criteria for
constructing a sufficient statistic, that is presented in full form
in Appendix E)

 aqlog , 70( ( )) ( )

Rå a d
s s

=
-

+

 


 


 F P N F P R F F P P q

F P F P
. 71

f

r r n n r n n r

n r r r n n
2 2 2 2 2 2

[( ) ( )]
∣ ∣ ∣ ∣

( )

Noticing that α enters only as a scalar multiplier to the
remaining expression, we can identify the sufficient statistic S
(q):

 a
a

ºS q
qlog ,

, 72( ) ( ( )) ( )

Trivially, the expression on Equation (70) satisfies the
monotonicity requirement for the Karlin–Rubin theorem, and
therefore S(q) is uniformly most powerful with respect to
testing  aq,1( ) for any α, and therefore is the optimal
transient detection statistic for detecting transients at position q.

In order to express the same score in term of intuitive
quantities, we define the proper subtraction image:

s s
=

-

+









 
D

F P N F P R

F P F P
. 73r r n n

n r r r n n
2 2 2 2 2 2

( )

∣ ∣ ∣ ∣
( )

The PSF for transient detection:

s s
=

+








P F F P P

F F P F P
, 74D

r n r n

D n r r r n n
2 2 2 2 2 2∣ ∣ ∣ ∣

( )

and the normalization:

s s
=

+
F

F F

F F
. 75D

n r

n r r n
2 2

( )

We note that FD can be derived by substituting 1 into Pn and Pr

in the expression for PD .
In the background-noise dominated limit, D has white noise

(see Section 4.5). The score S(q) can now be expressed by

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥R å d= S q F DP q . 76D

f
D( ) ( ) ( )

Expressing this in real space using the convolution theorem we
get

R d= Ä
¬¾

Ä
¬¾

S q F D P q 0 . 77D D( ) [ ( ) ]( ) ( )

Noticing that both D and PD contain only real numbers, the real
operator can be removed. Convolution with a delta function is
just the shift operator;therefore, the expression for S(q) can be
simplified even further to be

= Ä
¬¾

S q F D P q . 78D D( ) [ ]( ) ( )
The expression for its Fourier transform is then expressed by

s s
= =

-

+

 


 


  
S DP

F F P P N F F P P R

F P F P
. 79D

n r n r r n r n

r n n n r r

2 2 2 2

2 2 2 2 2 2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )

This is the final form of the optimal transient detection statistic.
An alternative form for this expression can be written as

=
-

+

s s s s

s s


 



 

S
F F N F F R

F F
. 80

n r
P P

r n
P P

n
P

r
P

2 2

2 2

n

n

r

r

r

r

n

n

n

n

r

r

2

2

2 2

2

2

2

2

2

2

( )
∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

APPENDIX B
CONSTRUCTION OF THE REFERENCE IMAGE

Extending the statistical framework to the situations in which
we are given a set of references, we seek to find the optimal
transient detection statistic given all of the references. Each
reference image out of a total of J images is given by

= Ä +R F P T . 81j j j j ( )

A certain new image N is measured, and we want to determine
which of the following is true, 0:

= Ä +N F P T , 82n n n ( )

or  q1( ):
d= Ä + +N F P T q . 83n n n( ( )) ( )

As in the previous section, we are trying to test between two
simple hypotheses. Therefore, the optimal test statistic is the
log-likelihood ratio test (Neyman & Pearson 1933)


 

 
a

a
=

¼
¼

q
N R R

N R R q
,

, , ,

, , , ,
. 84J

J

1 0

1 1
( ) ( ∣ )

( ∣ ( ))
( )

As before, we can use the law of conditional probabilities, and
the fact that 0 and 1 predict the same likelihood to all
references:


 

 
a

a
=

¼
¼

q
N R R

N R R q
,

, , ,

, , , ,
. 85J

J

1 0

1 1
( ) ( ∣ )

( ∣ ( ))
( )

In order to calculate the conditional probabilities, we need a
probabilistic model for N that does not contain T. This could be
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achieved by using all references to get the best statistical model
for T.

As in the previous section, this can be more easily
formulated by stating the hypotheses for the images in the
Fourier plane:

 = + N TP , 86n n0 ( )∣

 ad= + +a  N T q P , 87q n n,1 ( ( )) ( )∣ ( )

 = = +a
   R R TP . 88j j q j j,0 1

( )∣ ∣ ( )

Following Appendix A, we can continue to develop this in
the long way into the correct difference image and the correct
transient detection statistic. However, we can take a shortcut.
The key observation we make, is that we can cast all the
information in the reference images into a statistical model for
T . Using the result from the appendix of Zackay & Ofek
(2015a; paper I in the series on coaddition), the choice that
maximizes the S/N is the weighted addition of all the sources
of information on T f( ):


å

å
= +

s

s








T
R

. 89
j

F P
j

j

F P
T

j j

j

j j

j

2

2 2

2

( )
∣ ∣

Where we have denoted the noise contribution from all the
reference images by T . Calculating its variance we get


å

= º

s

 V
F P

1 1
, 90T

j

F P
r r
2 2j j

j

2 2

2

[ ]
∣ ∣

( )
∣ ∣

where we have defined

å å
s s
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P
F

F
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1
. 91r

j

j

j
r
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j

j
j

2

2

2

2
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Given these choices and the template of Equation (63), we find
the formula for the coaddition of the reference images:

å

å
=

s

s







R

F R

F

. 92
j j

P
j

j j
P2

j

j

j

j

2

2

2

( )
∣ ∣

Here s = 1R . Since R, Pr,and T satisfyEquation (52), we have
a single reference image that complies with the requirements of
the statistical model. Interestingly, Equation (92) is identical to
the proper coaddition image presented in Zackay & Ofek
(2015b; paper II in the series of coaddition).

Substituting Equation (92) into D , we get

⎜ ⎟
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⎜⎜⎜
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Writing the source detection statistic in explicit form we get

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

å å

å
=

-

+

s s s s

s s


 



  


S

N
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Thus, we arrive at an optimal solution with a closed formula
for optimal transient detection given a set of references. We
note that there are other choices that can be used instead of R.
However, we prefer the proper coaddition image due to its
uncorrelated noise (see Zackay & Ofek 2015b). Finally, N can
alsobe composed of multiple images. In this case, the optimal
solution for the subtraction is to perform the optimal transient
detection with both N and R being the proper coaddition of all
the images in their corresponding sets.

APPENDIX C
CORRECTION FOR SOURCE NOISE

OF BRIGHT OBJECTS

The assumption that the noise distribution is independent of
position, and of the true image itself, is of course not true.
Specifically, fornear bright stars the dominant source of noise
is the Poisson fluctuations of the source itself, which is
obviously position dependent. Therefore, in the vicinity of
bright sources the variance is underestimated, and random
fluctuations in the noise can cause false transient detections in
these positions. Since only a negligible part of the sky behaves
in such a way, we do not wish to change the statistic S in places
away from bright sources.
Therefore, the approach we currently recommend is the

following.Calculate separately the two parts of Equation (94):
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Next, apply inverse Fourier transform to get to the image
domain:

å= -S S S . 97N
j

Rj ( )

Then calculate the corrected score for the existence of transient
sources:

å
å

=
-

+
S

S S

V S V S
, 98

N j R

N j R

corr
j

j( ) ( )
( )

where V SN( ) and V SRj( ) are the variance maps of SN and SRj.
Essentially, these can be computed analytically by following all
the operations done on Rj and N, and applying the corresp-
onding corrections to V SRj( ) and V SN( ) respectively.
Using the fact that for a zero expectancy noise source ò,

 Ä = ÄP V PV . 992( ) ( ) ( ) ( )
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we can derive a closed formula solution for V SN( ) and V SRj( ):

= ÄV S V k , 100N n n
2( ) ( ) ( ) ( )

= ÄV S V k , 101R j j
2

j( ) ( ) ( ) ( )

where kn and kj are defined in Equations (95) and (96),
respectively. We note that the squaring of the convolution
kernel happens in the image domain.

In the presence of bright stars, the noise is correlated, this
means that we need to store, or sum up the individual V SRj( ).
Using the proper coaddition image and its effective kr will not
recover all the information. However, using R and kr may serve
as an approximation to this process.

The proposed correction (Equation (98)) does not change the
score image away from bright sources (other than movingthe
detection statistic to units of standard deviations). The reason
for this is that the variance map is spatially uniform in places
away from strong sources. We note that this correction is
suboptimal near bright sources, but at least it is a score with
known statistical properties, that we can use to prevent false
positives and to retain some sensitivity.

This method of correcting S by the variance can be extended
to any additional sources of noise for which we can construct a
model. For example, in Section 3.3,we present also the
variance due to astrometric errors.

APPENDIX D
OPTIMAL PSF PHOTOMETRY OF
TRANSIENT POINT SOURCES

In general, in the statistical community, there is no consensus
on how to derive the best measurement. Therefore, in this
section, we will search for a measurement statistic that is
unbiased and has maximal S/N, and is a linear function of the
input images. Not surprisingly, the resulting statistics is simply
S (Equation (12)) normalized by some factor. This analysis also
presents another formalism in which our transient detection
statistic is optimal—it is the maximum S/N linear statistic
composed out of R and N that cancels the constant in time
image T. As a side, we note that the same solution arises when
calculating the maximum likelihood estimator by maximizing
Equation (68) with respect to α.

We start by stating again the statistical model we use:

= Ä +R P T , 102r r ( )

ad= Ä + +N P T q , 103n n( ( )) ( )

where α is the flux of the new source at position q, and d q( ) is
an image with 0 everywhere except position q where it is value
is 1. We continue to work under the assumption that the
background noise is the most significant source of noise, which
allows us to write

 s s= =V V, . 104r r n n
2 2[ ] [ ] ( )

We write the statistic that we are looking for in its most
general linear form:

= Ä + ÄC k N k R, 105n r ( )

where kn and kr are some kernels, and we require that

Ä = - ÄF k P F k P . 106n n n r r r ( )

Writing C in Fourier space we get

ad= + = +     C k N k R q F P k , 107n r n n n c( ) ( )

where c absorbs all noise sources in both images.
Here, we will use a well known result (also given in

Appendix B of Zackay & Ofek 2015a) that the maximal S/N
measurement of a parameter θ given a set of statistics Xj such
that

m q= +X , 108j j j ( )

where mj are scaling factors and  j has variance  s=V j j[ ] , is
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In our case m d= q F P kn n n( ) . Applying this to C , we get the
maximum S/N statistic for α:
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substituting = +   C k N k Rn r , and

= - 
 k k

F P

F P
, 111r n

n n

r r

( )

and simplifying (notice the cancellation of kn in the ratio, and
the use of d =q 1∣ ( )∣ ) we get
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Last, we see that we can calculate all the fluxes for all the
transient sources simultaneously by noticing that the numerator
in the expression for a is the q’th position in the previously
defined transient detection image S (Equation (79)). That is,
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This means that the same statistic can be computed both for
detection and measurement. Therefore, in order to get a flux
measurement from S, all we need is to normalize it by FS—the
denominator of Equation (114):

å
s s

=
+





F

F F P P

F P F P
. 115S

f

n r n r

r n n n r r

2 2 2 2

2 2 2 2 2 2

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣

( )

Via the same process as for the detection, the standard
deviation of the flux measurement S at position q can be
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estimated via inspection of SN and SR. We find that the standard
deviation of F can be calculated by

s =
+

a
V S V S

F
. 116N R

S

( ) ( )
( )

If the reference image is constructed from many reference
images, then

å=V S V S . 117R
j

Rj( ) ( ) ( )

Note that Equation (116) is valid for both faint (i.e., in
background-dominated-noise areas) and bright transients
(source-dominated-noise areas). We further note that
Equation (114) is equivalent to PSF photometry as each pixel
is weighted by the appropriate value of the PSF.

APPENDIX E
D P F, ,D D ARE SUFFICIENT FOR ANY STATISTICAL

MEASUREMENT OR DECISION ON THE DIFFERENCE
BETWEEN THE IMAGES

In order to show that D P F, ,D D are sufficient statistics, we
will use the Fisher–Neyman factorization theorem. This
theorem states thatif the probability density function is
q X( ), then T is sufficient for the parameter θ if and only if
nonnegative functions g and h can be found,such that

 =q qX h X g T X . 118( ) ( ) ( ( )) ( )
In our case, we would like to show that for any generative

model qAn ( ) for the difference between the images, with
parameter θ, the probability of observing the data (R and N)
factorizes into

 q q=R N A D A g R N, , . 119n n( ∣ ( )) ( ∣ ( )) ( ) ( )

This will prove that D is a sufficient statistic.
We note that the meaning of sufficient statistics is profound

—it means that any measurement or decision performed on D
will return the same numerical value as if it was performed
using all the data. Examples for such measurements or
decisions arearbitrary shape measurementsor identifying
particle hits.

In this appendix, we show that D, along with P P P, ,D D DN R,
are together sufficient for any likelihood calculation (up to
some multiplicative, model independent factor, as allowed
from the Fisher–Neyman criterion) for any instance of a
generative model for qAn ( ), regardless of the constant-in-time
image T. We state the family of statistical models qA q,n ( ) for
which we want D to be sufficient to

= Ä +R F T P , 120r r r ( )
q d= Ä + Ä +N F T P A q , 121n n n n( ) ( ) ( )

where qAn ( ) is the change made in the new image, located in
position q, and T is the constant-in-time (unknown) image.
Note that we didnot convolved qAn ( ) with the PSF of the
images, as this will allow us to deal with the signal that was not
convolved by the PSF (e.g., bad pixels, small astrometric
shifts). However, such a PSF can be included in qAn ( ).

Using the law of conditional probability, the probability we
would like to calculate is

  q q q=R N A N R A R A, , 122n n n( ∣ ( )) ( ∣ ( )) ( ∣ ( )) ( )
 q= N R A R, . 123n( ∣ ( )) ( ) ( )

Since the probability of R is independent of the model
parameter θ (as it only influences the model for N), it suffices
for us to calculate  qN R Alog , n( ( ∣ ( ))). As we did in previous
sections, we can project our knowledge of R to a statistical
model for T:

 = - º +     
T

R

F P F P

R

F P
. 124

r r

r

r r r r
T ( )

We can then use it to calculate the probability of observing N
given qAn ( ):

 
 åq

q d
- =

- -
+




  
log N R A

N F P T A q

V F P
,

2
.

125

n
f

n n n

n n n T

2
( ( ∣ ( ))) ∣∣ ( ) ( )∣∣

[ ]
( )

Opening the absolute value, we get the summation of three

terms. The first term,
 

å -
+





f

N F P T

V F P2
n n

n n n T

2∣∣ ∣∣
[ ]

, does not depend on

qAn ( ) and therefore can be removed (can be absorbed in the
Fisher–Neyman h). The second term is

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥R

 
å q d-

+
= =






  N F P T A q

V F P
2

2
... 126

f

n n n

n n n T

( ) ( ) ( )
[ ]

( )

q
s s

=
-

+

 




 F P N F F P P R A

F P F P
. 127r r n r n r n

n r r r n n

2 2

2 2 2 2 2 2

( ∣ ∣ ) ( )
∣ ∣ ∣ ∣

( )

In the last expression, we can identify a matched filter
operation between the proper subtraction image D

s s
=

-

+









 
D

F P N F P R

F P F P
, 128r r n n

n r r r n n
2 2 2 2 2 2

( )

∣ ∣ ∣ ∣
( )

and the PSF for delta function in N (the PSF of An)

s s
=

+



 
P F P

F F P F P
, 129D

r r

D n r r r n n
2 2 2 2 2 2

N

N ∣ ∣ ∣ ∣
( )

with thezero point

s s
=

+
F

F

F F
. 130D

r

n r r n
2 2 2 2

N ( )

Finally, we need to show that the third term in Equation (125)
can be calculated only using D and its set of PSFs and zero
points.

 
å q q

s s+
=

+


 

 A

V F P

F P A

F P F P
131

f

n

n n n T

r r n

n r r r n n

2 2 2 2

2 2 2 2 2 2

∣ ( )∣
[ ]

∣ ∣ ∣ ( )∣
∣ ∣ ∣ ∣

( )

q= F A P . 132D n D
2 2 2

N N∣ ( )∣ ∣ ∣ ( )

Symmetrically, every statistical change in R can be
calculated in the same fashion using D and PDR

.

s s
=

+




P F P

F F P F P
, 133D

n n

D n r r r n n
2 2 2 2 2 2

R

R ∣ ∣ ∣ ∣
( )

with thezero point

s s
=

+
F

F

F F
. 134D

n

n r r n
2 2 2 2

R ( )
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As expected, a change in either N or R, that experiences the
same PSF (and transparency) as the true image (e.g., a
supernovae, variable star or small solar system body) will have
the effective PSF PD, and zero point FD.

This analysis means that the subtraction product D, is the
optimal statisticfor any, even yet unspecified, measurement or
hypothesis testing we wish to perform on the data.
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