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ABSTRACT

In this paper, we study the rainbow deformation of Friedmann-Robertson-Walker (FRW) cosmology in both
Einstein gravity and Gauss–Bonnet (GB) gravity. We demonstrate that the singularity in FRW cosmology can be
removed because of the rainbow deformation of the FRW metric. We obtain the general constraints required for
FRW cosmology to be free of singularities. We observe that the inclusion of GB gravity can significantly change
the constraints required to obtain nonsingular universes. We use rainbow functions motivated by the hard spectra
of gamma-ray bursts to deform FRW cosmology and explicitly demonstrate that such a deformation removes the
singularity in FRW cosmology.
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1. INTRODUCTION

Although it has not yet been possible to construct a quantum
theory of gravity, there are many proposals for quantum
gravity, and such proposals can have interesting physical
consequences (Amelino-Camelia 2001, 2002; Mogueijo &
Smolin 2003; Smolin 2006). In fact, many of these proposals
have predicted similar physical consequences. One such nearly
universal prediction of many of these different approaches to
quantum gravity is the deformation of the standard relativistic
dispersion relation (Kempf et al. 1995; Brau 1999). Such a
deformation of the standard relativistic dispersion relation
occurs in various different approaches to quantum gravity, such
as spacetime discreteness (’t Hooft 1996), spacetime foam
models (Amelino-Camelia et al. 1998), spontaneous symmetry
breaking of Lorentz invariance in string field theory (Kost-
elecky & Samuel 1989), and spin-network in Loop quantum
gravity (Cambini & Pullin 1999). The standard energy–
momentum dispersion relation is deformed to a modified
dispersion relation (MDR) near the Planck scale. It is possible
to use an MDR to explain certain astronomical and
cosmological observations, such as the threshold anomalies
of ultra-high-energy cosmic rays and TeV photons (Amelino-
Camelia et al. 1998; Colladay & Kostelecky 1998; Takeda
et al. 1999; Finkbeiner et al. 2000; Myers & Pospelov 2003;
Jacobson et al. 2004; Amelino-Camelia 2013).

The MDR is based on the existence of a maximum energy
scale, and so it is possible to construct a theory with such an
intrinsic maximum energy scale (Amelino-Camelia 2002;
Mogueijo & Smolin 2003). This theory is called doubly
special relativity. In this theory, the Planck energy (EP) and the
velocity of light (c) are two universally invariant quantities.
Just as it is not possible for a particle to attain a velocity greater
than the velocity of light in special relativity, it is not possible
for a particle to attain an energy larger than the Planck energy
in doubly special relativity. In doubly special relativity, the
Lorentz transformations are deformed to a set of nonlinear
Lorentz transformations in momentum space. In fact, this
deformation of the Lorentz transformations directly deforms
the standard energy–momentum relation. It is possible to
extend doubly special relativity to a curved spacetime and to
obtain doubly general relativity (Mogueijo & Smolin 2004). In

this theory, it is assumed that the geometry of spacetime
depends on the energy of the test particle. So, we do not have a
single metric describing the geometry of spacetime, but instead
a one-parameter family of energy-dependent metrics. These
metrics depend on the energy of the test particles. As we have a
family of energy-dependent metrics in thisa theory, it is
referred to as gravity’s rainbow (Amelino-Camelia et al. 1998;
Mogueijo & Smolin 2004).
Recently, gravity’s rainbow has been used to study the high-

energy behavior of various physical systems (Galan & Mena
Marugan 2004; Aloisio et al. 2006; Hackett 2006; Ling
et al. 2007; Garattini & Majumder 2014; Ali & Khalil 2015;
Chang & Wang 2015; Santos et al. 2015). Rainbow
deformation of various black hole solutions has been
performed, and their properties have been studied (Galan &
Mena Marugan 2006; Ali 2014; Gim & Kim 2015a, 2015b;
Hendi et al. 2015b, 2016; Mu et al. 2015). Hydrostatic
equilibrium for compact objects and the structure of neutron
stars have also been investigated using gravity’s rainbow
(Hendi et al. 2015a; Garattini & Mandanici 2016). Further-
more, the effects of gravity’s rainbow on wormholes have also
been investigated (Garattini & Lobo 2015). Gravity’s rainbow
has also been used to analyze the effects of rainbow functions
on gravitational force and the Starobinsky model of f (R)
gravity (Sefiedgar 2015; Chatrabhuti et al. 2016).
It should be noted that string theory can be regarded as a

two-dimensional theory, and the target space metric can be
regarded as a matrix of coupling constants for this two-
dimensional theory. These coupling constants flow due to the
renormalization group flow, and so the target space metric
will depend on the scale at which spacetime is probed, but this
scale would in turn depend on the energy of the test particle
used to probe this spacetime. Thus, the target space metric in
string theory would depend on the energy of the probe, and so
gravity’s rainbow is motivated by string theory (Mogueijo &
Smolin 2004). It may be noted that the low-energy effective
field theory approximation to heterotic string theory (Gross &
Witten 1986; Metsaev & Tseytlin 1987a) produces Gauss–
Bonnet (GB) gravity (Stelle 1978; Maluf 1987). It has been
demonstrated that the low-energy expansion of string theory
effective action contains the GB term and a scalar field
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(Metsaev & Tseytlin 1987b). It is possible to neglect the effect
of this scalar field as it can be regarded as a constant field. GB
gravity contains curvature-squared terms and is free of ghosts.
Furthermore, the corresponding field equations contain no
more than second derivatives of the metric (Boulware &
Deser 1985; Zumino 1986; Callan et al. 1989; Cai 2002).
Black object solutions have also been studied in GB gravity
(Myers & Simon 1988; Cho & Neupane 2002; Mignemi 2006;
Chen et al. 2008; Bogdanos et al. 2009; Brihaye et al. 2010;
Cai et al. 2010; Hendi & Eslam Panah 2010; Gaete &
Hassaine 2013; Ayzenberg & Yunes 2014). As both GB
gravity and gravity’s rainbow can be motivated by string
theory, there is a strong motivation to study the rainbow
deformation of GB gravity. In fact, the thermodynamics of
black holes has been studied using a combination of gravity’s
rainbow and GB gravity (Hendi & Faizal 2015). We also note
that GB gravity has been used to analyze various cosmolo-
gical models (Deruelle & Dolezel 2000; Kim & Myung 2004;
Amendola et al. 2006; Elizalde et al. 2007; Leith & Neupane
2007; Brihaye & Radu 2008; Chingangbam et al. 2008;
Bamba et al. 2014; Capozziello et al. 2014; Kanti et al. 2015).
Friedmann-Robertson-Walker (FRW) cosmology in Einstein
gravity’s rainbow has also been analyzed (Ling 2007; Awad
et al. 2013). It was observed that the universe is nonsingular
in this model, however, it is important to analyze other
cosmological models, so that we can know if this is a model-
dependent effect or a general feature of gravity’s rainbow.
Furthermore, no work has been done on cosmological
applications of GB gravity’s rainbow, even though there are
strong string theoretical motivations to perform such an
analysis. Therefore, in this paper, we analyze a cosmological
model using GB gravity’s rainbow. It is observed that this
model is also nonsingular, and so it seems that removal of the
Big Bang singularity because of the rainbow deformation is a
general feature of the rainbow deformation of any model of
gravity.

2. FRW RAINBOW COSMOLOGY
IN EINSTEIN GRAVITY

Here, we are going to modify the FRW universe in Einstein
gravity’s rainbow. We consider the Lagrangian of Einstein
gravity with a matter field as

( )  = + , 1mE

where is the Ricci scalar and m is the Lagrangian of matter.
Variation of action (1) with respect to the metric tensor mng
leads to

( )p=mn mnG GT8 , 2E

where = -mn mn mnG R RgE 1

2
is the Einstein tensor. The energy–

momentum tensor can be expressed as

( ) ( )r= + +mn m n mn m nT u u P g u u , 3

where ρ and P are the energy density and the pressure of a
perfect fluid, respectively. Here, mu is defined as

( ( ) ) ( )e=m
-u f , 0, 0, 0, 0 , 41

and is a unit vector,

( )= -mn
m ng u u 1. 5

Now, since we want to analyze this model using gravity’s
rainbow, we will first review gravity’s rainbow. Gravity’s
rainbow is based on the deformation of the standard energy–
momentum dispersion relation,

( ) ( ) ( )e e- =E f p g m , 62 2 2
1

2 2

where e = E Ep and the functions ( )ef and ( )eg1 are called
rainbow functions, and m is the mass of the test particle. In the
IR limit, we have ( ) ( )e e= =e e f glim lim 10 0 1 , and so the
standard energy–momentum dispersion relation is recovered in
the IR limit of this theory. Thus, gravity’s rainbow reduces to
standard general relativity in the IR limit. As the Planck energy
is the largest energy that a particle can attain, we can write

( )e 1. 7

The exact forms of the rainbow functions are constructed
using various theoretical and observational motivations. In fact,
the study of hard spectra from gamma-ray bursts has been used
as motivation to construct the following rainbow functions
(Amelino-Camelia et al. 1998):

( ) ( ) ( )e
e

e=
-

=
e

f
e

g
1

and 1. 8

Now, after substituting this into Equation (6), we can find the
corresponding MDR:

( )
e

=
-e

⎜ ⎟⎛
⎝

⎞
⎠p E

e 1
. 92 2

2

In order to compare the results of Einstein gravity with GB
theory, they should be eformulated with identical dimensions.
Since the GB term does not contribute in four dimensions, we
consider the following five-dimensional spacetime:

( )
( )
( )

( )
e e

= - + =ds
dt

f

R t

g
dx i, 1, 2, 3, 4, 10i

2
2

2

2
2

where R(t) is scale factor, ( ) ( )e e=g g1
2, and we consider a flat

universe with k=0. Using the above metric, field Equation (2),
and the energy–momentum tensor (3), the FRW equations in
Einstein gravity’s rainbow can be written as

˙ ( )
( )

˙ ( )
( )

˙ ( )
( ) ( )

( )e
e

e
e

e
e

p r
e

- + - =
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟H

g

g

g

g
H

g

g

G

f

3

4

4

3
, 11

2

2

( ) ˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

( )
( )

( )

e
e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

p r
e

- - -

+ + - - -

+ - = -
+

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

g H
g

g

g

g
H

g

g

H
f

f
H

g

g
H

g

g

g

g

g

g
H

G P

f

¨

2

2
2 2

3

2
2

8

3
, 12

2

2

for which ( )˙ ( )=H R t R t is the Hubble parameter. It may be

noted that we used the notations ˙ =A dA

dt
and =Ä d A

dt

2

2 . The
conservation of energy–momentum tensor can be written as

 = ¶ - G + G =m n
m

m n
m

mn
l

l
m

ml
m

n
lT T T T 0,

2
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and this equation reduces to

˙ ˙ ( )
( )

( ) ( )r
e
e

r+ - + =
⎛
⎝⎜

⎞
⎠⎟H

g

g
P2 2 0. 13

We can consider a large range of ultra relativistic particles,
which are in thermal equilibrium with an average energy
 ~ T . The continuity equation leads to the first law of
thermodynamics (as in standard cosmology),

( ) ( )r = -d V PdV , 14

where V is the volume and [ ( ) ( )]e=V R t g 4. Equation (14),

along with the integrability condition =¶
¶ ¶

¶
¶ ¶

S

V P

S

P V

2 2

(Kolb &
Turner 1990), leads to constant entropy:

( ) ( )r
=

+
=S

V P

T
const. 15

In this paper, we consider the following equation of state
(EoS):

( ) ( )g r= -P 1 . 16

FRW spacetime is singular at t=0 if this EoS is used in
standard cosmology. In the above equation, γ is the EoS
parameter. For this pressure, the average energy ò can be
written as

( ) gr~ =T c V , 17

where T is the temperature and c is a constant (which is equal to
S1 ). Using the EoS (16) in Equation (13), we obtain the

following equation:

[ ( ) ( )]
( )r

e
gr= -

d

d R t gln
2 , 18

2

which can be solved to give a density of [ ( ) ( )]r e= g-R t g2 2 .
This leads to an average energy of

( )
( ) g

r=
g
g
-c

R t
. 19

4

2

3. MODIFIED FRW RAINBOW COSMOLOGY
IN GB GRAVITY

Now, we analyze the FRW universe using gravity’s rainbow
with the GB term. We also study its effect on the early universe
using a semi-classical approximation. The Lagrangian of
Einstein-GB gravity can be written as

( )   a= + + , 20mtot GB

where the parameter α in the second term of Equation (20) is
the GB coefficient with dimension ( )length 2, and GB is the
Lagrangian of GB gravity,

( ) = - +mnts
mnts

mn
mnR R R R4 . 21GB

2

Variation of action (20) with respect to the metric mng leads
to

( )a p+ =mn mn mnG G GT8 , 22E GB

where (=mn mtslG R2GB -n
tsl

mtnsR R2 -ts
mlR R2 +n

lR

) -mn mnR g1

2 GB . Using metric (10), field Equation (22), and
the energy–momentum tensor (3), we can write the FRW

equations in gravity’s rainbow with the GB term as

˙ ( )
( )

˙ ( )
( )

˙ ( )
( )

( ) ˙ ( )
( ) ( )

( )

e
e

e
e

e
e

a
e e

e
p r
e

- + -

+ - =

⎛
⎝⎜

⎞
⎠⎟

⎛
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⎞
⎠⎟

H
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g

g

f
H

g

g

G

f

3

4

8
2

4

3
, 23

2

2 4

2
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˙ ( )
( )

˙ ( )
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˙ ( )
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˙ ( )
( )

˙ ( )
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˙ ( )
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( ) ( ) ˙ ( )
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( ˙ ) ˙ ( )
( ) ( )
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( )
( )

˙ ( )
( )

˙ ( )
( )

( )
( )

( )

e
e
e

e
e

e
e

e
e

e
e

e
e

e
e

e
e

a
e e

e
e

e
e e

e
e

e
e

e
e

e
e

p r
e

- - -

+ + - + -

- - + -

´ + + + -
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H
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g f H
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g

H H
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f
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g

G P

f

¨

2

2
2

3

2
2

2
2

2

2
2

1
1

2

2
¨

2

2
8

3
.

24

2
2

2

2
2

2

2

2

Here, for a = 0, Equations (23) and (24) reduce to
Equations (11) and (12), respectively. The conservation
equation for GB gravity’s rainbow can be written as

˙ ˙ ( )
( )

( ) ( )r
e
e

r+ - + =
⎛
⎝⎜

⎞
⎠⎟H

g

g
P2 2 0. 25

It may be noted that Equation (25) is the same as the
conservation equation obtained in Einstein gravity’s rainbow
(Equation (13)). Now, using the same procedure with
Equations (16) and (25), it can be demonstrated that the
average energy has the same form for GB gravity (19),

( )
( ) g

r=
g
g
-c

R t
. 26

4

2

4. WHEN IS A NONSINGULAR RAINBOW UNIVERSE
IN GB GRAVITY POSSIBLE?

Before analyzing how MDR (Equation (9)) leads to a
nonsingular cosmology, it is useful to discuss the general
conditions of the rainbow functions that lead to a nonsingular
universe. Substituting Equation (16) and the modified Fried-
mann equation of gravity’s rainbow (Equation (23)) into the
conservation equation (Equation (25)), we obtain

˙
( ) ( )

˙ ( )
( )

˙ ( )
( )

( )

r gr
a e

p r
e

e
e

e
e

=  - - -
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭f

G

f
H

g

g
H

g

g
2

8 4

3
.

27

2 2

2
1
4

A similar system has been studied in (Awad 2013), and this
analysis was performed using the Hubble rate. However, it is
also possible to study this model using density ρ instead of the
Hubble rate H (Awad et al. 2013). Our analysis will be based
on the approach used in Awad et al. (2013), and we will
demonstrate that this cosmological model is free from finite-

3
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time singularities. This is because an upper bound for the
density ρ is reached in an infinite time. Thus, there is a point at
which the density diverges; however, that point exists at an
infinite time.

To use this explanation, we need a differential equation for ρ
with respect to time. If we write ( )ef and ( )eg as functions of ρ
and R instead of ò according to Equation (26), then
Equation (27) will be too complicated and we will not be able
to solve it. So, to solve this problem, we choose the following
form of the solution (separation of variables):

( ) ( ) ( ) ( )e e=g t G R t, , 28

which has the following consequence:

˙ ( )
( )

˙ ( )
( )

( ) ( )˙
( ) ( )

( )˙
( )

( )e
e

e
e

e
e

= = = =
g

g

g t

g t

G R t

G R t

R t

R t
H

,

,
. 29

According to Equation (28), the first deformed FRW
Equation (23) reduces to

( )
( )

( )e a
p r
e

+ =H f H
G

f

1

2

16

3
. 302 2 4

2

In addition, considering Equation (28), one can show that
Equations (25) and (26) become

˙ ( ) ( )r r+ + =H P2 0, 31

( )
( ) g

e
r=
g
g
-c

g
. 32

4

2

Now, substituting Equations (16) and (30) into Equation (31),
we obtain

˙
( )

( )r gr
a r

p ra=   + -
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥f

G2
1

1
32

3
1 , 33

2

1
2

where we will choose the plus sign in parentheses to obtain a
consistent equation in Einstein gravity, i.e., in the limit

⟶a 0. We expressed f as a function of ρ instead of ò
according to Equation (32). Now, one can show that finite-time
singularities (including Big Bang singularity) are absent if f
grows asymptotically as r1 4, or faster. For example, if r~f s,
where s 1 4. In this case, one can calculate the time for
reaching a potential singularity by integrating Equation (33)
(starting from some initial finite density *r to an infinite one).
This integration leads to

( )
*

ò
a
g

r p ra r=  + -
r

¥
-

-⎛
⎝⎜

⎞
⎠⎟t G d

2
1

32

3
1 . 34s 1

1
2

After some calculations, we obtain

{ ( ) }
( )( )( )( )

( )
*




r
g

a
= 

- + +
- - - +

r

¥

t
s s

s s s

2 16 32 15

4 1 4 3 4 5 1 2
, 35

s

s

2
1

where

( ) [( ) ( ) ]   = - - - - -s s s4 1 4 5 4 3 ,2 3

and 1,  ,2 3 are the following hypergeometric functions

 = - - - -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F s s s,

1

2
2 ,

3

2
2 , ,1 2 1

 = - - - -
⎛
⎝⎜

⎡
⎣⎢

⎤
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⎡
⎣⎢

⎤
⎦⎥

⎞
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3

2
2 ,

5

2
2 , ,2 2 1

 = - + - - -
⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟F s s s1,

5

2
2 ,

7

2
2 , ,3 2 1

with


p ra

=
+ -G

6

9 96 3
.

Comparing various terms in Equation (35), one can show
that time is infinite for s 1 4. Thus, the time to reach the

Figure 1. GB case: time vs. density, for G=2, g = 4 3, a = 0.1, *r = 5,
=s 1 5 (continuous line), and =s 1 3 (dotted line): “up and down figures

indicate various ρ ranges.”
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potential singularity is infinite, and so it is not a finite-time
singularity, i.e., not physical. For more clarification, we
consider the term with ρ as the dominant term in Equation (34),
so that we have

( )
( ) ( )

*

*



ò
a
g

r p ra r

a
g

p a r

=

=
-

= ¥

r

r

¥
-

-

- -
¥

⎜ ⎟⎛
⎝

⎞
⎠t G d

s
G s

2

32

3

2 3

4 1
96 ,

1

4
36

s

s

1
1
4

1
4

1
4

and here obtain the same result for s. We conclude that the
rainbow function ( )ef plays an important role in possible
resolution of the Big Bang singularity, but it has to grow
asymptotically as r1 4, or faster.

Now, we can discuss Equation (36) and plot the r-t
diagram for <s 1 4 and >s 1 4 in Figure 1. Considering this
figure, one can find an initial finite density at t=0 (present
time), as expected. In addition, for <s 1 4, we obtain a finite
value for time (to backward) when the density of the universe
goes to infinity (Big Bang singularity). However, in the case of
>s 1 4, there is no finite (backward) time to obtain infinite

density, and therefore there is no Big Bang singularity at any
finite time in the past.

It is not necessary to perform similar analysis to investigate
the rainbow deformation of FRW cosmology in Einstein
gravity. To do so, it is sufficient to expand the function in
Equation (34) for a  0. So, using rainbow deformation of the
Einstein theory, we obtain

( )
( )
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, 37
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where it shows that the value of f for having a nonsingular
universe in Einstein gravity has to grow asymptotically as r1 2,
or faster.

Here, we plot the r-t diagram in the Einstein case
(Equation (37)) for both <s 1 2 and >s 1 2 in Figure 2.
Similar to the GB case, Figure 2 shows that there is an initial
finite density at t=0 (present time). There is no infinite
density (Big Bang singularity) in a finite (backward) time for
>s 1 2. However, for <s 1 2, there is a finite (backward)

time at which an infinite density (Big Bang singularity) exists.
Here, we have investigated the possibility of obtaining a

nonsingular rainbow universe in the Einstein and GB gravities.
In the coming section, we use MDR (Equation (9)) to analyze
such a nonsingular FRW-like cosmology.

5. NONSINGULAR RAINBOW UNIVERSES

Using Equations (8), (16), and (25), one can show that the
average energy (26) can be expressed as

( ) gr=
g
g
-

c . 38
1

Now, using Equations (8) and (38), the function ( )ef will be

( ) ( ) ( )
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e

g

g
=

-
g
g

g
g

-

-f
exp 1

, 39
1

1

where  r r= P and r=
g
g
-

E cP P

1

is the Planck energy versus
density rP. Using the above equation and the MDR relation,
one can show that the modified Friedmann Equation (23) will
be given by

[ ( ) ]
( )
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a g
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. 40

P
1 2

1
2

1

We choose the plus sign in the parentheses to obtain a
consistent equation in Einstein gravity, i.e., in the limit

⟶a 0. We can investigate a possible singular solution of

Figure 2. Einstein case: time vs. density, for G=2, g = 4 3, *r = 5,
=s 1 3 (continuous line), and =s 2 3 (dotted line): “up and down figures

indicate various ρ ranges.”
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the Big Bang singularity using the discussion of Section 4.
Substituting Equation (16) and the modified Friedmann
Equation (40) into (25) and using Equation (8), we can obtain
the following equation:

˙
[ ( ) ]
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where ˙ ˙ r r= P.
Now, we want to show that the time is infinite when we go

from an initial finite density * to an infinite one in the special
case g = 4 3, (i.e., radiation). This can be done by integrating
Equation (41),
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in which it is too hard to compute this integration analytically;
however, one can use numerical calculations to show that it
does not converge on [ )* ¥, , and so the time to reach infinite
density is infinite. For more clarification, we consider the term
with  to be the dominant term in the denominator, and so we
obtain
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where  is the exponential integration. This shows that the time
to reach this infinite density is infinite. Thus, there are no finite-
time singularities and this result confirms the consequence of
Equation (42).

In order to investigate the rainbow deformation of Einstein
gravity, one can follow the same procedure using Equations (8),
(11), (13), and (38), or just expand the function in integration
(42) for a  0. Here, we use the second method and obtain
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This result shows that there are no finite-time singularities.
We also plot the r-t diagram for both Einstein and GB

gravities (Equations (43) and (44)) in Figure 3. This figure
shows that for both Einstein and GB gravities, there is an initial
finite density at t=0, however (backward) time goes to
infinity as density goes to infinity, and therefore there is no Big
Bang singularity.
Finally, it is interesting to investigate the behavior of the

density of states at the Planck scale to analyze divergences
(Ling 2007; Ling & Wu 2010). Using the MDR, the density of
states can be written as

( ) ( ) ( )
( )

( )  e
e
e

+
¢⎛

⎝⎜
⎞
⎠⎟a E dE p dp f E

f

f
E dE1 . 453 4 3

Here, by substituting the MDR and using the fact that energy
cannot be larger than the Planck energy, the density of states
has a finite value ( )-e e 1 3 with regular behavior without any
divergences.

6. CONCLUSIONS

In this work, we investigated the effect of gravity’s rainbow
in Einstein and GB gravities for the early universe. We
analyzed the rainbow deformation of the five-dimensional
FRW solution in both Einstein and GB gravity. We observed
that although the GB term contributes to the field equations, it
does not change the conservation equation and average energy.
We also demonstrated that the rainbow functions modify both
the conservation equation and average energy. In addition, we

Figure 3. Time vs. density for * = 5 and r = 0.2P . Einstein gravity’s
rainbow (a = 0: continuous line) and Gauss-Bonnet gravity’s rainbow
(a = 0.1: dotted line).
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discussed the general conditions for nonsingular FRW
cosmologies using the rainbow deformation of both Einstein
and GB gravities.

We used the rainbow functions defined by Amelino-Camelia
et. al. (1998; Amelino-Camelia 2004) to investigate the effect
of the rainbow deformation of FRW-like cosmology. We have
demonstrated that it is possible to obtain nonsingular
cosmological solutions by using a rainbow deformation of
Einstein and GB gravities. The Friedmann equations were
modified using gravity’s rainbow by suitable rainbow func-
tions. We also identified the rainbow functions with the MDR
introduced by Amelino-Camelia et al. (1998; Amelino-Camelia
2004) and studied the rainbow-modified Friedmann equations
of a perfect fluid. We found nonsingular solutions for a wide
range of values for the EoS parameter g > 4 3 in both Einstein
and GB gravities. We also found that GB gravity has a
considerable effect on the constraint for having nonsingular
universes. Using the analysis in Awad et al. (2013), we found
that the universe takes infinite time to reach r  ¥ from a
finite value of ρ. We have also found that the density of states
do not diverge at the Planck scale. So, for both cases, we found
a possible resolution of the Big Bang singularity. Hence, it
seems that the removal of singularities by rainbow deformation
is not a model-dependent effect. It would be interesting to
perform this analysis in other models of Lovelock gravity.
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