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ABSTRACT

In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal
loops are often modeled as a collection of individual strands in order to explain their thermal behavior and
appearance. We perform three-dimensional (3D) ideal magnetohydrodynamics simulations to study the effect of a
continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of
strands. The output is also converted into synthetic images, corresponding to the AIA 171 and 193Å passbands,
using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the
plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin–Helmholtz instability acting as
the main mechanism. The final product of our simulation is a mixed loop with density structures on a large range of
scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this
raises strong doubts on the usability and applicability of coronal loop models consisting of independent strands.
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1. INTRODUCTION

The observations of our most recent imaging satellites show
plenty of evidence for complex and fine structure in the solar
corona. It is commonly believed that the highly structured
nature of the corona is due to the all-permeating magnetic
field. Coronal loops, the building blocks of active regions,
probably outline the magnetic field. Even with the advent of
imaging instruments with increasingly higher spatial resolu-
tion, the question still remains whether the coronal loops we
see are fully resolved, i.e., whether they have sub-resolution
thermal and spatial structure (Golub et al. 1990; Gomez
et al. 1993; Cargill 1994; Aschwanden et al. 2000; Klimchuk
2000; Reale et al. 2007; Antolin & Rouppe van der
Voort 2012; Peter et al. 2013; Scullion et al. 2014, to name
just a few). Studies with models of coronal loops including
this sub-structuring, i.e., consisting of a bundle of thin
strands, have had success in explaining some of their
observed properties, which cannot be explained by monolithic
loop models, e.g., a broad differential emission measure
(DEM) (Brooks et al. 2012), the uniform filter ratio
distribution along warm loops (Lenz et al. 1999; Reale &
Peres 2000), the delay between the appearance of the loop in
different filters (Warren et al. 2003; Viall & Klimchuk 2012),
the “fuzzy” appearance of loops in harder energy bands, i.e.,
in X-rays (Tripathi et al. 2009), and their apparent constant
cross-section (Peter & Bingert 2012). However, there are still
some discrepancies between what these models predict and
observed features (see Reale 2010, Section 4.2 for more
discussion). In a recent study analyzing Hi-C data (Cirtain
et al. 2013), it was concluded that the individual strands in the
observed loop should be smaller than 15 km in diameter if
they exist, without excluding the possibility that the loops are
monolithic structures after all (Peter et al. 2013). In the multi-
stranded loop models, the strands are assumed to have an
independent hydrodynamic evolution (e.g., Regnier &
Walsh 2014; Bradshaw & Klimchuk 2015), and on each of

these strands the thermal processes are modeled in great
detail. The assumption of independent evolution seems
reasonable since cross-field transport is greatly inhibited in
the corona (even though cross-field diffusion can be
enhanced, Galloway et al. 2006, explaining the typical widths
of loops or strands).
Recently, ubiquitous transverse waves were observed in the

chromosphere and corona (De Pontieu et al. 2007; Tomczyk
et al. 2007). These are interpreted as kink modes (Van
Doorsselaere et al. 2008a), with a largely Alfvénic character
(Goossens et al. 2009, 2012). These waves have relatively low
amplitudes (a few to few tens of km s−1) and low frequencies
(50–500 s), showing differences in these values whether they
are measured in coronal holes, the quiet Sun, or active regions,
the latter generally having shorter periods and lower amplitudes
(McIntosh et al. 2011; Morton & McLaughlin 2013; Thurgood
et al. 2014; Morton et al. 2015). These low-amplitude waves
are observed to have little-to-no damping (Wang et al. 2012;
Nisticò et al. 2013), and this probably means that there is a
steady-state in which the dissipated energy balances the energy
input of the driver. Although the waves in coronal loops have
been modeled as propagating waves (Terradas et al. 2010;
Verth et al. 2010), there are some observational indications that
they are actually standing waves (Anfinogentov et al. 2013).
It was suggested long before the discovery of ubiquitous

transverse waves in the corona that coronal loops must be in
a permanent state of Kelvin–Helmholtz instability (KHI)
(Heyvaerts & Priest 1983). Resonance layers in coronal loops
(Goossens et al. 1992, 2002; Ruderman & Roberts 2002)
present a shear flow velocity profile, which is potentially
susceptible to the instability (Uchimoto et al. 1991; Karpen
et al. 1994; Ofman et al. 1994; Poedts et al. 1997), leading to
turbulent broadening of shear layers, small-scale structures, and
enhanced dissipation, confirmed by recent full three-dimen-
sional (3D) magnetohydrodynamics (MHD) numerical simula-
tions (Terradas et al. 2008; Antolin et al. 2014, 2015; Magyar
et al. 2015), even for small amplitude transverse oscillations,
on the order of the ubiquitous transverse wave amplitudes.
Direct observational evidence of the KHI in coronal loops is
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missing. So far, the instability has been observed in coronal
mass ejections and quiescent prominences (Berger et al. 2010;
Ryutova et al. 2010; Foullon et al. 2011; Ofman &
Thompson 2011). However, Antolin et al. (2014) suggested
that the roll-ups and vortices of the KHI around coronal loops
could be seen as strands in extreme-UV, thus explaining their
apparent stranded nature. Another feature of the KHI is the
perpendicular mixing of material. The observational evidence
suggesting gradual interaction and mixing of plasma at
different temperatures in near the apex of coronal loops (Singh
et al. 2004, 2006; Krishna Prasad et al. 2013) could be related
to this mixing.

The recent observations of ubiquitous transverse waves and
the frequently used multi-strand interpretation of multithermal
loops raise the question of the effect of multi-stranded loops on
transverse waves and vice versa. This has been studied in two-
loop systems by Luna et al. (2008), Van Doorsselaere et al.
(2008b), Robertson & Ruderman (2011), Gijsen & Van
Doorsselaere (2014), and in more complex configurations
(Luna et al. 2009, 2010; Ofman 2009; Pascoe et al. 2011; De
Moortel & Pascoe 2012; Van Doorsselaere et al. 2014; Soler &
Luna 2015). In this paper we investigate the effects that a
continuously driven small amplitude transverse oscillation has
on the internal structure of a coronal loop composed of smaller
strands, allowing for nonlinear development of the perturba-
tions and strands.

2. NUMERICAL MODEL

Our model consists of a bundle of straight, hexagonally
closely packed thin strands (cylinders) of enhanced density
plasma, and a less dense background plasma (see Figure 1). It
is based on the honeycomb model, introduced in Peter et al.
(2013). The whole domain is permeated by a homogeneous and
straight magnetic field, parallel to the strands, in the z-direction.
We thus consider a “macro-loop” (with a radius R, and centered
on the axis = =x y 0). The space in this macro-loop (or loop
for short) is filled with strands in the honeycomb structure. The
center of each strand is denoted as = =x x y y,s s( ), and all
strands have a radius Rs. Then, the continuously varying

density in each strand is defined as
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where r r,e i are the background and peak densities, respec-
tively. Some of the strands, randomly chosen with a probability
p = 0.2, are nearly twice as dense. The thermal pressure is
constant throughout the domain (gravity is neglected), imply-
ing that less dense plasma is hotter. The distance between the
center of any two neighboring strands is R2 s, thus the strands
are tightly packed. The values of the principal physical
parameters used in the set-up are listed in Table 1.

2.1. Boundary Conditions

In order to model ubiquitous transverse waves, at z = 0 we
define a velocity driver:
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where A = 5 km s−1 is the peak velocity amplitude, =T 100 s
is the oscillation period, t is simulation time, = +r x y2 2 is
the radial distance from the center of the loop, and α = 2.5
defines the width of the Gaussian. The velocity amplitude of
the driver is somewhat larger than the average observed values
for ubiquitous transverse waves of the chosen period (see the
Appendix for the results of a simulation with half the
amplitude). The resulting total displacement of the loop
structure is ≈160 km. The other variables at the bottom
boundary obey a Neumann-type, zero-gradient condition. At
the top boundary, the propagating waves freely leave the
domain, by using the same zero-gradient or outflow boundary
conditions on all variables, resulting in an open loop structure.
At the four lateral boundaries, we apply the same outflow
conditions as for the top boundary: any waves can leave the
domain.

2.2. Numerical Method and Mesh

To solve the 3D ideal MHD problem, we use the FLASH
code (Fryxell et al. 2000; Lee et al. 2009), opting for the
second-order unsplit staggered mesh Godunov method (Lee &
Deane 2009; Lee 2013) with Roe solver and mc slope limiter.

Figure 1. The numerical box and the initial density by volume ray tracing.
Density is in 10−12 kg m−3, while axis units are in Mm. Note the high aspect
ratio of the axes. The gray/black bar next to the color bar indicates the
transparency of the plasma varying with density: black denotes transparent,
gray fully opaque.

Table 1
The Values of the Principal Physical Parameters Used in the Simulations

Parameter First set-up

Loop length (L) 50 Mm
Loop radius (R) 0.5 Mm
Strand radius (Rs) 0.1R
Magnetic field (B0) 7.5 G
Background density (re)

-0.5 10 12· kg m−3

Strand peak density (ri)
-1.25 10 12· kg m−3

Dense strand peak density -2.0 10 12· kg m−3

Background temperature 2.7 MK
Plasma β 0.1
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The code implements constrained transport to keep the
divergence of the magnetic field down to round-off errors.
An adaptively refined mesh is used, with three levels of
refinement, for ´ ´60 60 32 initial numerical cells on a
numerical domain of ´ ´2 2 50 Mm. This means that the x
−y plane is much more resolved (∼47:1) than the z-direction,
along which we expect the solution to be smooth. The
highest refinement cells are thus only 8.3 km in size in the x−y
plane, placing strong constraints on the timestep, through
the Courant–Friedrichs–Lewy (CFL) condition (Courant
et al. 1928). Simulations with one more level of refinement
show more small-scale phenomena, and result in a different
deformation of the loop cross-section, but do not alter our main
conclusions. In addition, to further strengthen our conclusions,
we ran zoomed-in simulations of our model (higher resolution
but smaller domain, a so-called “local box”), which will be
described and presented in the Section 3.

2.3. Limitations of the Model

The numerical resistivity and viscosity in our code is
expected to be orders of magnitude higher than in the solar
corona. However, it is not enough to suppress the development
of instabilities in our simulations. This is reassuring, since we
expect that if instabilities develop in the solar corona, they
ensure that large gradients and the energy distribution cascade
to smaller scales, where dissipation can be efficient.

In our model we neglect effects that do not directly influence
the cross-sectional evolution of the loop structure: gravity
(density stratification) and geometrical effects (loop curvature).
We neglect energy sources and losses (thermal conduction,
radiative losses, heating), assuming that our structure is in
thermal equilibrium for the duration of the simulation. Again,
these effects would have a first-order impact on the longitudinal
evolution of the loop structure, but here we will focus on the
perpendicular dynamics. A realistic solar atmosphere (such as
VAL-C) is also missing, as we focus only on the coronal part of
the dynamics. Thus, our model is not suitable for the study of
the longitudinal evolution of the loop close to its footpoints.

Another caveat of this study is the lack of a realistic
footpoint driver; we opt for a monoperiodic and linearly
polarized one in our simulations, for simplicity. This introduces
a preferred direction for small-scale formation, as we will see
later. The chosen internal structure of the loop, as tightly
packed, parallel, circular strands in a hexagonal arrangement, is
of course artificial. We chose this structure inspired by Peter
et al. (2013). Obviously, there are no physical reasons behind
this special structuring, and reality will certainly be more
complicated. Perhaps the most important question related to the
tight packing of the strands: we believe this to be a valid
assumption since the magnetic field in the corona is space-
filling due to low plasma β. Also, this is compatible with state-
of-the-art models for multi-stranded loops heated by nano-
flares on the individual strands: a small fraction have just been
heated, but most of the strands are in the quiescent, cooling
phase of their evolution.

Note also that the cell sizes in our simulations are
comparable to the mean free path of the electrons in the
corona, or even lower (for values and discussion, see
Peter 2015). However, this does not endanger the applicability
of the MHD approximation, thanks to the low plasma β.

3. RESULTS AND DISCUSSION

3.1. Whole-loop Simulations

We run the simulation until a final time = =t T900 s 9f .
The evolution of the loop cross-section at =z 40 Mm is shown
in Figure 2. It can be seen that the strands, and the overall loop
structure, are quickly deformed by the propagating transverse
waves. The deformation of strands was previously noted by
Ofman (2009) using a set-up with four strands, however, the
individual strands could still be clearly identified during their
whole simulation. In contrast, in our simulations the initially
regular honeycomb structure is completely destroyed and the
strands are intermixed to such a degree that we can no longer
treat them individually.
The cross-section of the loop structure is a continuously

changing and mixing plasma. Smaller structures, down to the
numerical resolution, are seen to appear and disappear, as well
as longer, highly irregular structures. These deformations and
the intermixing appear for two reasons. On the one hand,
denser strands, having smaller phase speeds, quickly get out of
phase with the neighboring, less dense strands, resulting in
“collisions” due to phase mixing. On the other hand, individual
strands are subject to the KHI at their boundaries, as previously
simulated by Terradas et al. (2008) and Antolin et al. (2014).
The instability criteria of the KHI for the case of an uniformly
rotating plasma cylinder (with discontinuous boundary) can be
written as (Zaqarashvili et al. 2015):
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where v0 is the velocity shear at the boundary, and kz is the
longitudinal wavenumber. Equation (3) suggests that thinner
strands are prone to a faster growth of the KHI. Substituting our
model parameters, we find that all modes with m 2 are
unstable. However, this should be taken only qualitatively,
given the large difference between the models, in the sense that
KHI is expected to occur for our strand parameters. A key
parameter for the development of the KHI and ultimately of the
mixing process is the velocity amplitude of the transverse
oscillation of the structure. Recently, the displacement
amplitudes of decayless kink oscillations were analyzed, and
our measured total displacement of the loop structure
(0.16Mm) is well within the range of observed displacements,
and very close to the average of 0.17Mm (Anfinogentov
et al. 2015). However, the observed periods are on average
longer, putting our chosen velocity amplitude at the high end of
observed velocities.
Synthetic images, corresponding to Atmospheric Imaging

Assembly (AIA) on board Solar Dynamics Observatory (SDO)
171 and 193Å filters were calculated for the data set using
FoMo2 (Van Doorsselaere et al. 2016), for two lines of sight
(LOSs): along the x-axis (Figure 5) and y-axis (Figure 6). The
synthetic images reveal the longitudinal evolution of the loop
structure. We can see that the conclusions based on Figure 2
hold also here: the regular, clearly stranded structure is
destroyed by the mixing: strands disappear and new strands
appear. The newly formed strands have a well-defined
longitudinal appearance, and can generally be clearly identified
along the whole length of the loop. This matches well with the

2 https://wiki.esat.kuleuven.be/FoMo/FrontPage
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observations. However, the newly formed, apparent strands in
the later stages of the simulation are not strands in the literal
sense of the word, because it is clearly seen in the right-hand
panel of Figure 2 that all plasma in the loop is mixed.

The emission in the 171Å line is dominated by the denser
strands of our loop, because they have a lower average
temperature of 0.8 MK. The maximum intensity in this channel
is decreasing in time (by a factor of four toward the end of the
simulation tf), indicating that the dense strands diffuse and mix
with hotter plasma. This also causes the intensity in the 193Å

channel to steadily rise, albeit slower. To be noted here also is
the fuzzier appearance of the loop in the 193Å channel. In the
images generated with a LOS along the y-axis (Figure 6) more
and finer small-scale structures are seen in both passbands. This
can be explained by the specific linear polarization of the
boundary driver: the strands tend to become elongated in the
direction of the displacement, and the KHI occurs at the
boundary of the strands perpendicular to the direction of
motion.

3.2. Column Emission Measure

We now calculate the column emission measure, which is
proportional to the volume filling factor of the plasma (Porter &
Klimchuk 1995; Gupta et al. 2015), at different heights of the
loop structure (Figure 3). It is defined as

ò= n dyEM 4
LOS

e
2 ( )

where ne is the electron number density of the optically thin
plasma, and the integral is over a LOS along the y-axis. As we
are interested only in the change of this quantity over time, we
replace ne by the density of the plasma. We consider volumes
(3D boxes) through the loop structure with LOS area
corresponding to AIA per pixel spatial scale (0 6), the surface
normal being parallel to the y-axis. Thus, we compute, at a
specific height z and x = 0
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where d = 0.43Mm.
The column emission measure initially decreases at all

heights by a small extent (6%–8%), but it ultimately oscillates
around a constant value. We can state that the column emission
measure, for practical purposes like observational determina-
tion of the filling factor, is only slightly changing in the process
of loop cross-section mixing. Thus, even though the later stages
of the simulation have very mixed plasma, still the observations
would yield a similar filling factor as in the classically multi-
stranded case.

3.3. Distribution of Structure Length Scales

In order to quantify the change in the distribution of spatial
scales over time, we Fourier analyze the density in the cross-
section of the loop structure over time. We expect relevant
spatial scales to appear as a peak in the power spectra, as it is
the case with the specific radius of the strands (see Figure 4).
To obtain this figure, we integrate the k-space of the power

Figure 2. Plots of the loop cross-section density, at different times as indicated at the top of each panel. The slices are made at z = 40 Mm. The color bar is common
for the plots, in units of 10−12 kg m−3.

Figure 3. The evolution of normalized column emission measure at four
different heights (z-axis).

Figure 4. Power spectra for the density cross-section of the loop structure at
z = 40 Mm at four different times. Also shown is the linear fit to the central
part of the power spectra at t = 800 s.
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spectra as a function of = +k k kx y
2 2 , where k is the

wavenumber (inverse of spatial scale, with a factor of p2 ).
This analysis demonstrates that, due to transverse oscilla-

tions the internal structure of the loop shows progressively less
discrete structuring (i.e., strands of well-defined radius),
replacing it with a power-law like distribution of scales. The
power-law index of the inertial range at t = 800 s in our

simulation is −1.966. In other words, the initially ordered
interior of the loop structure transitions into a turbulence-like
cross-section.

3.4. Local-box Simulations

In order to strengthen our conclusions, we explore how a
bundle of strands with even smaller radius evolve when driven

Figure 5. Synthetic observations of the numerical domain, perpendicular to the y−z plane, with the 171 Å (left) and 193 Å (right) filters, at different times,
corresponding to those in Figure 2 (the titles for each plot contain the snapshot number, with one snapshot every 5 s). The color bars have units of erg cm−2 s−1 sr−1.
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by a continuous transverse driver. We ran simulations with
strands covering the entire numerical domain, which can be
viewed as a subset of our loop structure in the previous section
(using different parameters, however). For these simulations we
use the MPI-AMRVAC code (Keppens et al. 2012; Porth
et al. 2014), with the three-step HLLC solver, in order to solve
the 3D ideal MHD problem. To make the computation less
demanding, we lower the background and peak densities to
r = -0.2 10e

12· kg m−3 and r = -0.6 10i
12· kg m−3, respec-

tively. The dense strand has a peak density of
r = -1.0 10i

12· kg m−3. We also adjust the boundary driver
in the following way:

⎜ ⎟⎛
⎝

⎞
⎠

p
=v A

T
tsin

2
6y ( )

where =A 2.5 km s−1 and T = 100 s. While previously the
driver had a localized shape, the new velocity profile does not
depend on spatial coordinates: the whole boundary is forced
equally, mimicking the smaller scale of the simulated domain
compared to the size of the driver.

We switch the lateral boundaries to periodic boundary
conditions in order to approximate a larger system. In the

boundary opposing the driving boundary, we impose the same
conditions as before: waves leave the domain freely. We also
reduce the size of the strands ( =R 15s km), to get closer to the
observational constraint on their radius (Peter et al. 2013). The
physical size of the numerical domain is

´ ´0.09 0.104 10 Mm, being slightly larger in the y-direction
in order for the strands to overlap perfectly at the (periodic)
boundaries of the honeycomb structure. The numerical
resolution is uniform throughout the x−y plane, 1 km per cell.
The resolution in the z-direction is 312 km per cell. Simulations
with double the resolution show even smaller scale structures
and a higher fragmentation of the strands.
Comparing Figure 7 with the cross-sectional evolution of the

previous model (Figure 2), we can spot similarities: the
individual strands initially deform, being affected by the KHI at
their edges, then fragment, break up, or unite, forming new,
both smaller and larger scale structures. In this specific
example, the evolution of the dense strand can be followed.
The dense strand is initially affected by the KHI and the
interaction with the other strands, and it becomes highly
fragmented in the process. In this violent shaking (having in
mind the size of the strands, even the low-amplitude ubiquitous
transverse waves can be considered as such), the strand

Figure 6. Synthetic observations of the numerical domain, perpendicular to the x−z plane, with the 171 Å (up) and 193 Å (down) filters, at different times (the titles
for each plot contain the snapshot number, with one snapshot every 5 s). Note that the t = 0 snapshot is not included, and the other snapshots correspond to those in
Figure 5. The color bars have units of erg cm−2 s−1 sr−1.

Figure 7. Plots showing the density in the x−y plane (cross-section of the strands), at times shown on the top of each plot. The slices are made at z = 10 Mm. The
color bar is common to the plots, in units of 10−12 kg m−3.
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eventually breaks up and blends into less dense strands,
forming new small-scale structures. Ultimately, the other
strands tend to intermix, the system displaying a tendency to
homogenize the cross-section, losing all identification of loop
strands.

These local-box simulations represent a sub-section of the
simulation in Section 3.1, and here as well the result of the
previous simulation is confirmed. Multi-stranded structures
cannot keep existing in a perpendicularly driven environment
and mix efficiently with their surrounding.

4. CONCLUSIONS

In the present paper, we aimed to study the dynamics of a
multi-stranded coronal loop when subjected to a continuously
driven transverse motion. The loop was initially composed of
closely packed thin strands in a honeycomb structure. The
strands had different densities and temperatures, representing a
small filling factor as observed in the corona. The driving
velocity amplitudes were close to the amplitude of the observed
ubiquitous transverse motions. Such a set-up was studied on a
large scale, but also in a local-box simulation.

We have shown that the internal multi-strand structure of the
coronal loop is quickly destroyed due to instabilities present in
individual strands and inter-strand collisions. The strands
intermix, forming new small-scale structures, both larger and
smaller than the size of the original strands. In this case, the
approximation that individual, neighboring strands have an
independent hydrodynamic evolution breaks down. This result
has direct implications on how coronal loops can be modeled. It
poses a strong question on the applicability of multi-strand loop
models, given that they are unstable for a transverse driving.

The later stages of our simulation show that, if loops are
multi-stranded by nature (e.g., by localized heating by nano-
flares), their cross-sectional internal structure should be
regarded as dynamic and continuously changing, with
substructures appearing and disappearing on a large range of
length scales. Even in the later stage, the simulations closely
match the observations, with apparent strands and a filling
factor which is more or less conserved during the entire
simulation run.

The results presented here indicate (and simulations not
presented here confirm), that in a large amplitude oscillation
event of a multi-stranded coronal loop, e.g., induced by a
neighboring flare, the dynamics and mixing in the cross-section
should be even more dramatic, due to larger velocities and
displacements.

This first study into the dynamics of the multi-stranded
coronal loops has used a rather simple model. Future models
should include a realistic atmosphere and footpoint driver, with

included hydrodynamic evolution parallel to the magnetic field
(thermal conduction, radiative losses, heating). With current
computational power, and the limit on the size of the strands,
this will be very challenging.
In conclusion, our simulations cast a strong doubt on the

applicability of multi-stranded loop models, because such
models are unstable when driven with transverse waves. We
propose a reinterpretation of how the interior structure of a
multi-stranded loop should be viewed. We should move away
from the classical picture of a bundle of independent strands,
because the perpendicular transport is much greater (due to
KHI) than what is assumed to motivate the use of such multi-
stranded models. Our models indicate that we should favor a
loop structure of an ever-interacting and mixing, dynamic and
inhomogeneous plasma, presenting structures in a power-law-
like, large range of scales.

N.M. acknowledges the Fund for Scientific Research-
Flanders (FWO-Vlaanderen). T.V.D. was supported by an
Odysseus grant, the Belspo IAP P7/08 CHARM network and
the GOA-2015-014 (KU Leuven).

APPENDIX

The growth rate of the KHI, presented in Section 3.1,
depends linearly on the amplitude of the transverse oscillation
of the multi-stranded loop structure. Thus, the rate of mixing
also depends on the amplitude. In this sense, even if this paper
is not intended as a parametric study, it is insightful to see how
a smaller amplitude driver than the one used in Section 2
affects the internal structure of the loop. Eventually, we expect
the smaller amplitude driver to cause the same degree of
mixing, albeit after a longer time. We use the same driver as in
Equation (2), but choosing A = 2.5 km s−1. The evolution of
the cross-section can be viewed in Figure 8. The smaller
amplitude of the driver leads to a slower mixing process in the
cross-section, as expected. After t = 800 s, the mixing has a
local appearance, i.e., affecting only the nearest neighbors of
each strand. Still, we can spot some strands merging or
breaking up, especially near the boundary of the loop structure,
which is deformed. The evolution of the distribution of length
scales can be followed in Figure 9. This can be compared to
Figure 4. The slope of the central part of the power spectra is
different, which can be explained by the less developed mixing,
but the disappearance of a dominant length-scale (correspond-
ing to the inter-strand distance) is present. Furthermore, we can
observe the tendency of the central part of the slope to become
steeper in time in both figures. Thus, we expect the slope in the

Figure 8. Plots of the loop cross-section density, at different times as indicated at the top of each panel. The slices are made at z = 40 Mm. The color bar is common to
the plots, in units of 10−12 kg m−3.
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small-scale to tend toward the same value as in Figure 4 at later
times, as the mixing progresses.
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