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ABSTRACT

Stars born from the same molecular cloud should be nearly homogeneous in their element abundances. The
concept of chemical tagging is to identify members of disrupted clusters by their clustering in element abundance
space. Chemical tagging requires large samples of stars with precise abundances for many individual elements.
With uncertainties of X Fe[ ]s and 0.05Fe H[ ]s  for 10 elements measured for 104> stars, the APOGEE DR12
spectra may be the first well-suited data set to put this idea into practice. We find that even APOGEE data offer
only ∼500 independent volume elements in the 10-dimensional abundance space, when we focus on the
α-enhanced Galactic disk. We develop and apply a new algorithm to search for chemically homogeneous sets of
stars against a dominant background. By injecting star clusters into the APOGEE data set, we show that chemically
homogeneous clusters with masses M3 107 ´  would be easily detectable and yet no such signal is seen in the
data. By generalizing this approach, we put a first abundance-based constraint on the cluster mass function for the
old disk stars in the Milky Way.

Key words: Galaxy: abundances – Galaxy: disk – Galaxy: evolution – Galaxy: formation – ISM: abundances –
stars: abundances

1. INTRODUCTION

The Milky Way offers a unique opportunity to understand
how disk galaxies form, particularly when and where, and in
which types of aggregates, or clusters, they formed their stars.
As star cluster masses depend on gravitational instabilities
(e.g., Escala & Larson 2008), the cluster mass function (CMF)
indirectly probes the dynamical state of the Milky Way disk
over cosmic time.

At least during the intensely star-forming, early phases of the
Milky Way, the majority of stars are believed to form in
clusters (Kruijssen 2012; Adamo et al. 2015). Most of these are
rapidly disrupted and dispersed throughout the Galaxy (e.g.,
Odenkirchen et al. 2003; Koposov et al. 2010; Dalessandro
et al. 2015), for a brief while appearing as moving groups (e.g.,
De Silva et al. 2007b, 2013; Bubar & King 2010). Once the
phase space information as a common birth marker is lost,
chemical tagging, first proposed by Freeman & Bland-
Hawthorn (2002), may still betray the common birth origin
of stars through their exceptional similarity in element
abundances. Stars originating from the same star cluster are
believed to be homogeneous in their chemistry (e.g., De Silva
et al. 2007a, 2009; Koposov et al. 2008; Ting et al. 2012a;
Feng & Krumholz 2014; Friel et al. 2014). Since the
photospheric element abundances, at least for elements heavier
than sodium, are invariant throughout their lifetime, they are
permanent tags of the stellar birth origins.

A broad goal of chemical tagging is to reconstruct the stellar
CMF, i.e., the relative distribution of (chemically homoge-
neous) stellar cluster masses when they formed. Although we
can investigate the present-day CMF through young star
clusters and massive surviving clusters (e.g., Bica et al. 2003;
Lada & Lada 2003; Porras et al. 2003; Brandner et al. 2008;
Borissova et al. 2011; Bragaglia et al. 2012), the Milky Way’s
CMF in the past is unknown. The key idea in chemical tagging
is that massive chemically homogeneous clusters show up as

discernible clumps in the multi-dimensional abundance space
(e.g., Bland-Hawthorn et al. 2010a; Ting et al. 2015).
Besides understanding the CMF, chemical tagging is deemed

an essential tool to understand the effect of radial migration in
Galactic evolution (e.g., Schönrich & Binney 2009; Gould &
Rix 2015). Sellwood & Binney (2002) first proposed that stars
could migrate significantly from their radial position when
resonate with spiral/bar structures (see observational evidence
from Haywood 2008; Loebman et al. 2011; Kordopatis
et al. 2015). Although simulations concur to the analytic
calculations (Roškar et al. 2008, 2012; Bland-Hawthorn
et al. 2010b; Minchev & Famaey 2010; Di Matteo
et al. 2013; Halle et al. 2015), direct observational evidence
of radial migration remains controversial. The ability to recover
dispersed star clusters would be fundamental in quantitatively
constraining radial migration models.
In recent years, the idea of chemical tagging has garnered

more attention. Large spectroscopic surveys, including RAVE
(Steinmetz et al. 2006), APOGEE (Zasowski et al. 2013),
GALAH (De Silva et al. 2015), and Gaia-ESO (Randich
et al. 2013), are being carried out. Results from these surveys
have demonstrated the power of using elemental abundance
patterns to identify distinct stellar populations in the Milky
Way. Martig et al. (2015) found young α-enhanced stars that
are difficult to explain within current models of the evolution of
the Milky Way. Masseron & Gilmore (2015) and Hayden et al.
(2015) showed that the C/N ratio and the α-elements are good
indicators to separate the thin and thick components of the
Galactic disk. R. Schiavon et al. (2016, in preparation) found
bulge stars that show abundance patterns similar to globular
clusters. These studies focus on finding populations of stars via
their abundance patterns, which is a “weak” form of chemical
tagging. The goal of the “strong” form of chemical tagging is to
identify stars that were born from the same molecular cloud.
When we refer to chemical tagging in this paper, we only refer
to this “strong” form. In this context, due to these exciting new
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opportunities, many preparatory works started to explore the
capabilities of these surveys and the idea of chemical tagging.
For example, Tabernero et al. (2012, 2014), Mitschang et al.
(2013, 2014), Blanco-Cuaresma et al. (2015), Macfarlane et al.
(2015) proposed various schemes and performed numerical
experiments on separating open clusters/moving groups in
abundance space.

Ting et al. (2015) explored the feasibility of chemical
tagging by exploring a grid of Galactic evolution parameters.
They found that identifying individual clusters through
chemical tagging is generally challenging with on-going
surveys. Clumps that show overdensities in abundance space
are usually made up of many smaller clusters, i.e., the
background contaminants are non-negligible in clump
searches. One might be able to associate a detected clump as
a single disrupted cluster only when the background density in
abundance space is low. They showed that a low background
can be achieved by either studying a subpopulation that
occupies a large volume in abundance space, small abundance
uncertainties, or a large number of independent elements.
Despite all these complications to reconstruct individual
clusters, they argued that we can still statistically reconstruct
the CMF through the clumpiness in abundance space. The main
goal of this paper is to apply that idea to the APOGEE data
(Holtzman et al. 2015).

In Section 2, we characterize the APOGEE sample that we
explore in this study. In Section 3, we introduce our clump
search method. The key is to define a robust search sphere that
has the highest signal-to-background ratio possible. In
Section 4, we apply this method to the APOGEE DR12 data.
We discuss how this result can be applied to obtain a tentative
constraint on CMF. We conclude in Section 5. By comparing
the signal-to-background contrast observed in the data to the
simulated contrast from injected clusters, we will argue that no
chemically homogeneous clusters more massive than

M3 107´  have formed in the α-enhanced disk.

2. APOGEE SAMPLE PROPERTIES

We adopt the APOGEE DR12 publicly available sample
(Holtzman et al. 2015). Similar to Hayden et al. (2015), we
consider stars with all elements measured and with reliable
abundances, i.e., 4000< Teff< 5500, g1 log 3.8< < and
signal to noise ratio 80> . Stars from APOGEE that satisfy
these criteria are plotted in Figure 1. In this study, we only
focus on the α-enhanced disk as defined via the cut shown in
Figure 1. We focus on this subsample as their chemical/spatial
modeling is likely to be more straightforward (see Section 4.2
and also see Bland-Hawthorn et al. 2014; Ting et al. 2015).
Furthermore, the Milky Way was likely kinematically hotter
and more turbulent in the first few billion years (e.g., Bournaud
et al. 2009; Krumholz et al. 2012; Bird et al. 2013). High-
redshift (z 2~ ) extragalactic studies have revealed the
existence of massive star-forming clumps in star-forming
galaxies (e.g., Livermore et al. 2012; Genzel et al. 2013). As
a result, star clusters within the α-enhanced disk could be more
massive and if so would provide a strong signal in abundance
space. The α-enhanced disk also occupies a larger volume in
abundance space, i.e., lower background density of stars, which
guarantees clumps a better contrast to the background in
abundance space.

We checked that our main result presented in this study,
namely, there is no cluster more massive than M3 107´ 

formed in the Milky Way, still holds at least to the1s level (see
Section 4.3.2), if we choose a selection cut within the shaded
region as shown in Figure 1. The result only changes more
dramatically if we choose a much steeper cut such as the blue
dashed line. In this case, we discard too many low density
regions where most chemical tagging signals reside (see
Sections 3.1 and 4.3), and we can only rule out clusters

M108 . Using the fiducial selection cut, in total, the
α-enhanced sample has 14,002 stars, as shown in the red and
black symbols in Figure 1. For reasons and selection
criteria that will become clear in Section 3.2, we further
discard the 7% of most outlying stars, shown as red
symbols in Figure 1, and end up with a final sample of
13,000 stars.
Without further kinematic modeling, it is hard to disentangle

the halo stars from the disk stars. But the elimination of outliers
as shown in Figure 1 culls most of the metal-poor stars with
[Fe/H]<−1 and therefore, the bulk population in this study
should not be contaminated much by the halo stars. We also
performed the same analysis only considering stars with [Fe/
H]<−1 and found that the results remain qualitatively the
same. For the potential bulge contamination, we find that
among the 13,000 stars, only 3% of them satisfy the bulge stars
criteria with l 22< , b 15∣ ∣ < and R 3 kpcgc < , where Rgc is
the isochrone Galactic radius derived in Hayden et al. (2015).
Therefore, we will assume throughout this study that the
sample only consists of disk stars.
To perform the chemical tagging experiment, we should

consider as many elements as possible in order to maximize the
volume in abundance space. In this case, the background
becomes more diluted and the signals will therefore have a
better chance of standing out from the background. In total,

Figure 1. Black symbols show 13,000 APOGEE stars selected for this study.
We only consider α-enhanced stars, as the volume they occupy in 10-
dimensional abundance space is larger than the low-α sequence, so the
background will be lower, and therefore detection is more likely. The red
symbols show the 7%~ of outliers in the 10-dimensional abundance space that
we do not include in the sample. After we discard these outliers, the 10-
dimensional empirical distribution in abundance space is better modeled by an
ellipsoid and is easier to deconvolve (see Section 3.2). The solid black line
shows the fiducial selection cut. We also examine that the results in this paper
are not sensitive to our data selection. If we choose a selection cut within the
shaded region, the results in this paper still hold. The results only change more
dramatically if we choose a much steeper cut such as the blue dashed line (see
text for details).
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APOGEE measures 15 elements. However, as discussed in
Holtzman et al. (2015), Na, Ti, and V abundances might not be
reliable yet in the current release. Furthermore, C and N are
expected and seen to evolve through stellar evolution due to
post-main-sequence dredge up (e.g., Karakas & Lattanzio 2014;
Masseron & Gilmore 2015; Ventura et al. 2015). Therefore, it
is complicated to relate C and N to their primitive abundances
when the stars formed. Discarding these five elements,
we consider 10 elements in this study, namely, Al, K, O, S,
Mg, Si, Ca, Mn, Ni, and Fe. Next, we want to define an
abundance space out of these 10 elements. As discussed
in Ting et al. (2012b), chemical tagging is better performed in
[X/Fe] instead of [X/H]. [X/H] strongly correlate with
each other. It is harder to observe the subtle variants
among clusters in an abundance space spanned by [X/H].
Therefore, in this study, we consider an abundance space
spanned by [Fe/H] and 9 [X/Fe] from elements beside iron.
We denote a vector in this 10-dimensional space to be X in
this study.

As we will discuss in more detail in Section 3, to find a
chemically homogeneous cluster in abundance space we first
need to understand the typical volume that such a cluster
occupies, after accounting for the measurement uncertainties
that will dominate over the intrinsic scatter. Therefore, to
estimate the typical volume, we will evaluate differential
uncertainties, or measurement precision (not accuracy), Xs and
their correlations, i.e., the empirical point-spread function of a
chemically homogeneous cluster in abundance space. We
estimate this co-variance matrix from known clusters in the
APOGEE data and refer to the resulting matrix as the “cluster
kernel” below.

We consider the DR10 clusters classification (Mészáros
et al. 2013) since the DR12 classification is yet to be released.
We cross-match the DR10 cluster member identities with
DR12 and adopt the element abundances from the DR12
release. We only consider clusters with more than 10 cluster
members. Three open clusters (NGC6819, NGC2158, and
M67) satisfy this criterion. Noting that all these clusters are
metal-rich with [Fe/H]−0.1 and the possibility that
abundance determination could be worse at lower metallicity,
we also adopt one of the more metal-rich globular clusters,
M107 ([Fe/H];−1). We fit M107 members with two
Gaussians distributions in the 10-dimensional abundance space
to eliminate any possible secondary population from this
globular cluster. Including M107, we have a total of 77 cluster
members. The primary population of M107 shows measure-
ment uncertainties consistent with other open clusters.
Restricting ourselves to the three metal-rich open clusters
results in a slightly smaller Xs . Therefore, including M107 only
makes our results more conservative (see Section 4.3.1). We
subtract the element abundances of each cluster by their means
to center clusters at the zero origin. The co-variance matrix of
these 77 stars is estimated. This matrix defines an ellipsoid that
a typical chemically homogeneous cluster occupies. For each
element, we find that 0.05 0.06 dex;X –s ~ this multivariate
Gaussian sets the effective volume that homogeneous clusters
occupy in the observed abundance space. This estimate is
consistent with Holtzman et al. (2015; see Table 6 in the paper,
but note that they show measurement uncertainties in [X/H],
but here we evaluate uncertainties in [X/Fe] + [Fe/H]). Due to
the small sample size of cluster members, we bootstrap the
cluster sample and find that the uncertainty on this Xs estimate

is about 20%. A larger sample of cluster calibrators would be
very helpful as a precise estimate of the cluster kernel is a key
ingredient in any chemical tagging analysis.

3. METHOD

In this section, we will describe the challenges in abundance
clump searches and our clump search method. Although
various schemes have been proposed to separate open clusters/
moving groups (e.g., Sharma & Johnston 2009; Blanco-
Cuaresma et al. 2015; Macfarlane et al. 2015) in abundance
space, a question often not discussed is the estimation and
inclusion of background contaminants. Simulations from Ting
et al. (2015) showed that the background contaminants can be a
critical limiting factor in chemical tagging experiments. After
extensive experimentation we found that most proposed
techniques, such as K-means, Gaussian mixture models, and
minimal spanning tree, are only effective in separating clumps
in the limit of a small background or when the background can
be easily estimated.
Due to this limitation, we have developed a simple new

method3 geared toward regimes where the background is
dominant and has a complex topology in abundance space
(read also Everitt et al. 2010). The key to our method consists
of two parts that we will explain in Sections 3.1 and 3.3. First,
we need to estimate the local density. As we will discuss in
more detail in Section 3.3, we define the local density to be the
number of stars within a search sphere. The search sphere that
we use to distinguish signals from the background should be
sufficiently large. It should include a large fraction of a
chemically homogeneous cluster but avoid being too wide and
should not include too many background contaminants.
Second, the abundance space distribution is not uniformly
distributed. To estimate the detection significance, we have to
estimate the expected background at each location.

3.1. Abundance Space Search Sphere

In Section 2, we derived the empirical multivariate Gaussian
distribution that a typical cluster occupies in abundance space.
This distribution defines an ellipsoidal distribution in the 10-
dimensional abundance space. Since an optimal search sphere
should include a high ratio of cluster objects compared to the
background contaminants, the optimal search volume, or search
sphere, should follow the same uncertainty ellipsoid. However,
it is not convenient to operate with a tilted ellipsoid because a
simple Euclidean distance from the center alone is not
sufficient to determine whether a star is included in the
ellipsoid. Therefore, we linearly transform the abundance space
such that the cluster kernel becomes a unit Gaussian
distribution. We emphasize that the transformation is only to
make calculations more straightforward, leaving all astrophy-
sical implications invariant.
We can now determine an appropriate radius for the search

sphere in these coordinates. A unit radius is not a good choice
for the search sphere even though clusters follow a unit
Gaussian distribution in the transformed coordinates: a box
with 2 dex in width in each dimension only captures
68% 2%10( ) = of the clump. Since a unit n-sphere is strictly
included in this box, one can show that a unit n-sphere
encapsulates an even smaller fraction, 0.02%, of the data. This

3 Our method can be regarded as a variation of density-based nonparametric
clustering techniques.
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curse of dimensionality4 implies that to capture, for example,
68% or 1s of the cluster members, we require a search sphere
with a radius larger than 1 dex in the transformed abundance
space. In fact, mathematically, the inclusion fraction of a unit
Gaussian within an n-sphere follows the 2c distribution. The
analytic formula of a 2c distribution shows that an n-sphere of
3.4 dex in radius is needed.

One important parameter that will determine the difficulty of
chemical tagging detections is the number of separate
“chemical cells” in the abundance space (Freeman & Bland-
Hawthorn 2002; Ting et al. 2015). The number of chemical
cells is the ratio between the abundance space volume spanned
by the data and the typical volume of a search sphere. We will
evaluate this number later. But for now, one way to visualize
the number of chemical cells is to compare the effective
diameter of the search sphere to the spread in each element
abundance. We illustrate this comparison in Figure 2. We find
that an n-sphere with a radius of 3.4 dex in the transformed
abundance space corresponds to an ellipsoid with an effective
radius of 0.05 dex in the original abundance space. The
effective radius is defined such that an n-sphere with this radius
contains the same volume as the ellipsoid. Due to the large
dimensionality, we find that if we do not take into account the
covariances of the cluster kernel, i.e., if we were to use an n-
sphere in the original abundance space, instead of a tilted
ellipsoid defined from the cluster members, we estimate that the
search volume would be 10,000 times larger and the search
sphere would include too many background contaminants.

Even with this optimized search ellipsoid in the original
abundance space, as shown in Figure 2, the distribution of each
element is typically only 1–3 times the effective search sphere
diameter. As a result, it is not possible to search for clusters in
the core region of the chemical distribution. In this region, the
search sphere would include too many background

contaminants. The chemical tagging signals are most likely to
come from the peripheral regions of the chemical distribution
where the background contaminants are not dominant (also see
Bland-Hawthorn et al. 2010a, 2014; Karlsson et al. 2012).
Nonetheless, in a 10-dimensional space, the “surface-to-core”
ratio is very large. Therefore, there is a reasonable chance of
finding clumps in the peripheral regions. As we will show in
Section 4, all chemical tagging signals indeed come from the
peripheral regions.

3.2. The Intrinsic Abundance Distribution of the α-Enhanced
Sample

We now proceed to deconvolve the observed abundance
distribution. The intrinsic abundance distribution is required in
order to inject mock clusters into the observed APOGEE
data set.
In the previous section, we transformed abundance space

such that clusters follow a 10-dimensional unit Gaussian
distribution. However, in such coordinates, the overall
chemical distribution of the α-enhanced disk will still
presumably show co-variances among the different coordinate
directions because the transformation is only to normalize the
cluster point-spread function and makes no assumption on the
global distribution. Deconvolving such a co-variant distribution
directly in ten-dimensions is computationally prohibitive.
Therefore, we further rotate the transformed abundance
coordinate system to eliminate the co-variances such that the
joint 10-dimensional abundance distribution of the α-enhanced
disk can be approximated by a product of 10 marginal
distributions. Since the cluster kernel, reflecting the measure-
ment uncertainties, is already isotropic in the transformed
abundance space, it remains unaffected by further rotation.
Upon this rotation, the deconvolution task simplifies to 10
independent, one-dimensional (1D) deconvolutions on the
marginal distributions.
However, this approach only works if the actual ensemble

abundance distribution can be well approximated by its
marginal distributions after rotation, i.e., if it does not show
significant curvature in abundance space. If we consider all
14,002 α-enhanced stars in the sample, we find that this is not a
good approximation: the 10-dimensional abundance space has
a less regular topology, dominated by a small fraction of
outliers in abundance space, as shown in red symbols in
Figure 1. To look for these outliers, we perform a 10-
dimensional kernel density estimation, using a unit Gaussian
distribution as the smoothing kernel. We rank the data points
according to their local density in the kernel density estimation
and discard the most outlying 1002 stars. We check that upon
discarding these outliers (7%), injecting clusters according to
the joint distribution gives similar statistics to injecting clusters
according to product of marginal distributions. We emphasize
that discarding outliers shrinks the peripheral regions and
makes detection more unlikely. The main purpose of this study
is to put an upper limit on the maximum cluster mass (see
Section 4.3.2), discarding outliers only makes our estimate
more conservative. We also check that these outliers are not
particularly clumped in abundance space and hence are
unlikely to be chemical tagging detections.
After breaking down the joint distribution to its marginal

distributions, P iconvolved, , we model each marginal distribution
with the sum of two Gaussians (see also McLachlan &

Figure 2. Distributions of all 10 elements in this study. By comparing these
distributions to the effective search sphere diameter (see Section 3.1 for
details), we find the abundance distributions in each dimension to have
standard deviation widths that are typically ∼1–3 times the effective search
sphere radius. The relatively small volume in abundance space compared to the
search sphere volume highlights the main challenge in chemical tagging.

4 Techniques to compactify of dimensions, such as PCA (e.g., Ting et al.
2012b), do not mitigate this problem because the density of background
contaminants also increases accordingly in the compactified space.
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Peel 2000; Everitt et al. 2010),

P x f
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where μ and σ are the means and standard deviations of the
Gaussian distributions, and f shows the relative contribution
from each distribution. We require a two-component Gaussian
because the marginal distributions often show a core region and
a broad wing region. Fitting a single Gaussian will under-
estimate the total area of low-density wings. As discussed in
Section 3.1, the wing regions are the most valuable parts of a
chemical distribution as they have the highest chance to detect
clumps. In the model, we allow centers of the two Gaussian
distributions, 1m and 2m , to be different to account for an
asymmetric distribution. We found that this model provides an
excellent fit to each 1D marginalized distribution (although the
joint distribution fits are slightly less satisfactory as we will
explain below) and the deconvolution can be done analytically.
We model the intrinsic chemical distribution Pintrinsic to be

XP P x , 2i iintrinsic
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=
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( )
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Figure 3 shows the intrinsic chemical distribution derived
according to the method above. We will use this model to draw
mock data of hypothetical clusters, whose abundance prob-
ability is drawn from the ensemble distribution. We caution
that the 10-dimensional ellipsoidal model does not give a
perfect fit to the data, despite the fact that we have eliminated
7% of the outliers. For instance the [Ca/Fe] versus [Fe/H]
distribution, as illustrated in Figure 3, shows a more complex
morphology than an ellipsoidal model. In the ideal case, we
would draw hypothetical clusters from a deconvolved distribu-
tion that displays similar intricate morphology. However,
deconvolving such intricate distribution is computationally
intractable in 10-dimensional. Nonetheless, we checked that
injecting clusters according to the convolved ellipsoidal model
shows similar statistics to the empirical convolved distribution.
Therefore, in this study, we make the assumption that injecting
cluster according to the deconvolved ellipsoidal model gives
similar statistics if we were to inject according to the real
deconvolved distribution.

3.3. Detection Significance

So far, we have defined an operative search sphere with
radius r 3.4 dex= to look for overdensities in the transformed
abundance space. We know that the overall abundance
distribution, i.e., the background, is not uniform (e.g.,
Edvardsson et al. 1993; Barklem et al. 2005; Reddy
et al. 2006; Bensby et al. 2014). The absolute number of stars
within the search sphere is therefore not particularly informa-
tive. We want to find regions where the local density within a
search volume is significantly higher than its vicinity regions.
Therefore, to define the detection significance, we need two

ingredients: a local density estimation at each location and the
corresponding local background estimation at this location.
Figure 4 shows a schematic illustration of our clump search

method. For each star s, we define the local density of this star,
ns, to be the total number of stars located within r distance from
this star, where r is the radius of the search sphere. Throughout
this study, we only consider stars with n 10s > to avoid the
large Poisson fluctuation at small ns. We estimate the vicinity
background, nsá ñ to be the average of ns¢ where s¢ are all stars
located within a distance of r r2- from star s. We define the
detection significance to be s n n ns s sdetect ( ) ( )s = - á ñ á ñ ,
which measures the deviation of the local density from the
vicinity background in units of the Poisson uncertainty of the
background.
Although this is a sensible definition of detection signifi-

cance, there is a complication. If we have a uniform
background, provided there is no signal, detects should center
around zero. Unfortunately, this is not the case for an uneven
background, especially for high dimensions. At a fixed point in
an uneven background, there are always more vicinity regions
that have lower densities (toward the valley) than regions that
have higher densities (toward the core). As a result, we have
n ns s> á ñ in general. This disproportion gets more severe
toward the core as the background gradient gets steeper. This
disproportion causes nsdense ( )s to be an increasing function of
ns. To overcome this shortcoming and to have detects centered
around zero, we calibrate detects by the median of nsdetect ( )s at
each ns. We denote the calibrated detection significance to be

detects and use it to be our operative measure of detection
significance in the following and apply this method to the
APOGEE data.

4. RESULTS

We now explore what we can learn about the number of
chemical cells in the APOGEE survey, and about the presence
of any clumps in abundance space that may reflect chemically
tagged remnants of disrupted clusters.

4.1. The Number of Chemical Cells in the APOGEE
Observations of the α-enhanced Galactic Disk

The number of chemical cells is best estimated in the
transformed (and rotated) coordinates where the global
chemical distribution has no co-variances between different
coordinates and a chemically homogeneous cluster can be
represented by a unit Gaussian distribution. To calculate the
number of chemical cells, let us estimate the global distribution
to be a multivariate Gaussian with no co-variances and with
standard deviations , , ,1 2 10s s s¼ in the 10 transformed
coordinates. The number of chemical cells, by definition, is
the volume ratio between the global distribution over the
cluster kernel. Since the cluster kernel has a unit width in all
directions, the number of chemical cells in APOGEE can be
estimated to be 1 dex 5001 2 10

10( · ) ( )s s s  .
This estimate agrees with the prediction in Ting et al.

(2012b) using principle components analysis. The lack of
chemical cells despite having ten-dimensions is due the strong
correlations among abundances, especially for the α-capture
elements and Fe peak elements. The small number of chemical
cells emphasizes the challenges in performing chemical tagging
with strongly correlated element abundances. Nonetheless, as
we have discussed in Section 3.2, the APOGEE abundance
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space has broad wings that are not captured in a single
multivariate Gaussian. Therefore, in the analysis presented
below, the signals drawn from a composite multivariate
Gaussian, as described in Equation (1), are stronger than a
simple multivariate Gaussian with 500 chemical cells.

4.2. Relation between Ninject and Mcluster

To understand whether a cluster will be detected or not, we
first need to investigate the number of stars that we would

sample in APOGEE from a cluster, given its zero age cluster
mass Mcluster. We denote the number of stars sampled to be
Ninject and will use the one-to-one relation between Ninject and
Mcluster in the following discussion. But this conversion is based
on some critical assumptions that we will now explain. The
relation between Ninject and Mcluster is one-to-one up to a
Poisson uncertainty—more massive clusters have more stars to
begin with, and therefore will have more stars sampled in the
survey.

Figure 3. Deconvolved (intrinsic) model of the 10 elements in this study, projected onto [X/Fe]–[Fe/H] planes. The black symbols show the APOGEE sample
adopted, illustrating the empirical distribution. The red contours show the 50 and 90 percentiles of the projected intrinsic distributions. When injecting mock clusters,
we draw their center locations from the intrinsic distribution model instead of the empirical APOGEE distribution. Note that although an ellipsoid model provides an
acceptable fit to the data, in some cases the abundance distribution is influenced by non-ellipsoidal structures.
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In the limit where there is no radial migration, the relation
between Ninject and Mcluster is simple and can be derived
analytically. Assuming stars are azimuthally mixed in the
annulus, the number of stars sampled from a cluster, Ninject, can
be approximated (see Bland-Hawthorn et al. 2014; De Silva
et al. 2015; Ting et al. 2015) to be

N
M

M
N , 4inject

cluster

annulus
APOGEE ( )=

where Mannulus is the total stellar mass (including stellar mass
loss) in the annulus and NAPOGEE = 13,000 is the APOGEE
sample size in this study. This formula can be easily understood
as the following. Assuming stars in the sample have an average
stellar mass M M1á ñ  , the ratio N MAPOGEE annulus gives the
stellar mass fraction within the annulus that we would sample
in the survey. We denote this ratio to be the sampling rate.
When multiplying the sampling rate by a cluster mass, the
product gives the stellar mass, and thus the number of stars
with M M1á ñ = , that we would sample from this cluster.

However, radial migration modifies Mannulus in a complex
way (see details in Ting et al. 2015). Stars born outside the
annulus could migrate into the annulus, and stars from the
annulus could now appear to be outside the annulus. Due to
this complication, to estimate Mannulus, the APOGEE’s selection
function, as well as a robust Galactic chemical evolution model
(e.g., Kobayashi et al. 2006, 2011; Minchev et al. 2013), is
needed. This is clearly beyond the scope of this paper.

To simplify the problem and to only derive a conservative
limit on the CMF in Section 4.3.2, we assume that the α-
enhanced disk is completely radially mixed. In other words, the
current spatial location of a star is completely random and is
independent of their birth radii. In this limit, a star in the sample
can be any star from the α-enhanced disk. Therefore, we have

M Mannulus total= , where Mtotal is the total stellar mass of the α-
enhanced disk. Although complete mixing is a crude assump-
tion, it is likely to be reasonable for the α-enhanced disk. For
example, Hayden et al. (2015) showed that there is a universal
α-trend irrespective of the Galactocentric radii. A natural
explanation of this result is that the stars in the α-enhanced disk
are well-mixed. Moreover, the APOGEE sample covers a wide
range of Galactocentric radius, with R 3 15 kpcgc – (Bovy
et al. 2014; Nidever et al. 2014; Hayden et al. 2015). It should
have sampled the α-enhanced disk from a large fraction of the
Milky Way.
We emphasize that the complete mixing assumption gives a

conservative limit on the CMF. In the case where the mixing is
not complete, we would have sampled more stars from the
same cluster, and hence, it would be easier to exceed the
APOGEE baseline. On top of the complete mixing assumption,
we also assume that the CMF is independent of element
abundances, and hence the Equation (4) applies universally to
the whole abundance space.
With these assumptions, we only need to properly estimate

Mtotal and apply Equation (4) to obtain a one-to-one relation
between Ninject and Mcluster. We assume that the α-enhanced
disk has an exponential scale length of 3 kpc (e.g., Bovy et al.
2012) and consists of 10% stellar mass observed in the solar
neighborhood (e.g., Cheng et al. 2012). We adopt the stellar
density in the solar neighborhood to be M38 pc 2-

 (e.g., Flynn
et al. 2006; Bovy & Rix 2013; Zhang et al. 2013), and the solar
Galactocentric radius R 8 kpc0 = (e.g., Ghez et al. 2008;
Gillessen et al. 2009; Reid et al. 2014). These assumptions
yield a present-day α-enhanced disk stellar mass of

M3 109~ ´ . Since the α-enhanced disk is old, massive stars
have long since evolved and died. To account for this, we
consider a total stellar mass loss of 40% (Conroy et al. 2009,
assuming a Kroupa IMF). Putting all these together, we have
M M6 10total

9´ . We also derive the sampling rate of the
current APOGEE sample as N MAPOGEE total

1

5 105=
´

. On

average, we would collect one star from a M5 105´  cluster.
We will defer the discussion on what this low sampling rate
implies until Section 4.3.2.

4.3. Chemical Tagging in APOGEE

We apply the clump search method described in Section 3 to
the APOGEE sample. The left panel of Figure 5 shows detects as
a function of ns of all 13,000 stars. At face value, it is
tantalizing to observe deviations 5s> . But we emphasize that
the detection significance depends on the various assumptions
made, such as the choice of search sphere radius, the minimum
number of neighbors requirement, the detection significance
calibration and the definition of vicinity region at each data
point. Without further information such as stellar ages, it is
difficult to confirm the origin of these clumps. Furthermore, as
shown in Ting et al. (2015), most clumps are comprised of
many clusters sharing similar element abundances.
Due to these uncertainties, instead of interpreting these

clumps as detections, we proceed by assuming the APOGEE
data set (left panel of Figure 5) to be the detection baseline. We
inject mock clusters of different sizes into the data and estimate
the detection significance of these injected objects. By forward
modeling, we rule out cases that are not consistent with the
observation baseline. The middle and right panels show detects
of the injected objects. In the right panel, we combine results of
100 trials, where in each case we inject a M108

 (N 250inject 

Figure 4. Schematic illustration of our clump search method. At each star s
(white symbol), we evaluate the number of stars (orange symbols) within the
search sphere (red shaded region) that we denote as ns. The vicinity
background, nsá ñ¢ is calculated by averaging other ns¢, as shown in the blue
shaded regions, where s¢ are all stars (yellow symbols) that are in the vicinity
region (green shaded region). The vicinity region is defined to be the region
outside the search sphere but inside two times the search sphere. The detection
significance is then defined as s n n ns s sdetect ( ) ( )s = - á ñ á ñ¢ ¢ .
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stars) clump into the data. In the middle panel, we show the
results of 1000 trials with M107

 clusters (N 25inject  stars)
injected. These two panels show that if M10 107 8–  clusters
have formed in the past, there is a reasonable chance that we
would have detected larger deviations than the value observed.
A cluster with M107

 lies above the detection boundary about
7%~ of the time, and a cluster with M108

 is detected about
30%~ of the time.
Not all high mass clusters will exceed the detection baseline.

As shown in the middle and right panels, most clusters,
especially at high ns, blend into the background. To make
robust statements, we now proceed to quantify the probability
of a cluster exceeding the observation baseline.

4.3.1. Detection Probability of Individual Clusters

In this section, we will quantify the probability of an injected
clump exceeding the observation baseline. There are two key
parameters that determine this probability: (a) the number of
stars injected as a clump, Ninject, and (b) the cluster location in
abundance space. As for the latter, the clump centers are drawn
from the intrinsic distribution model described in Section 3.2.
As for the former, we consider a grid of Ninject, ranging from 3
to 1000 stars with a step-size of 0.2 in log scale. When injecting
a mock cluster with Ninject stars, we allow a Poisson fluctuation
of Ninject . The Ninject range in this study roughly corresponds
to cluster masses of M M10 5 106 8– ´ . We run 104 trials for
each Ninject and find that the Monte Carlo uncertainty is
negligible with this many trials.

We model the cluster location by ranking all 104 trials by
their XPintrinsic center( ) value. Xcenter is the clump center location
in abundance space. We put the ranking into a linear scale,
which we will denote as X 0, 100center( ) [ ]r Î , where

X
XPtrials

trials
. 5center

intrinsic center( )( ) ( )
( )

( )r º
# <

#

If the cluster is located near the background dominated core, it
has a higher value in Pintrinsic because the background density is
very large, and we assign a high Xcenter( )r . Whereas, if the
cluster is located at the peripheral regions, it has a lower Pintrinsic

value since the background density is low, and we assign a
low Xcenter( )r .
For each trial, we inject a clump and estimate the local

density and vicinity background for all objects from the
injected clump the same way in Section 3.3. We define a clump
to have exceeded the observational baseline if the maximum
detection significance of this clump exceeds the baseline as
demarcated by the dashed lines in Figure 5. We take the
maximum significance of the whole clump because not all
injected objects will have high deviations, as shown in the solid
gray lines in Figure 5. Objects located near the surface of a
clump will blend into the background. Only the objects near the
clump center will have high deviations because the search
sphere includes a large fraction of the clump.
The top panel of Figure 6 shows the probability of exceeding

the APOGEE baseline. Among all trials that have a similar
cluster location and a similar number of stars, we evaluate the
fraction of them exceeding the baseline. The x-axis shows
Ninject and the y-axis shows the cluster location quantified by

Xcenter( )r . This panel illustrates that as the number of injected
objects increases or the cluster location is increasingly toward
the peripheral regions, the chance of exceeding the baseline
improves, consistent with our intuition from Figure 5.
The solid line in the bottom panel of Figure 6 shows the

probability marginalized over the cluster location, i.e., the
probability of a cluster exceeding the APOGEE baseline as a
function of its cluster mass if the cluster location is randomly
drawn from the intrinsic abundance distribution. The margin-
alized probability shows that clusters less massive than M107


have negligible chances of exceeding the baseline, but clusters
more massive than M107~  begin to show tension with the
deviations observed in APOGEE. The bottom panel also
illustrates that even for a cluster as massive as M5 108~ ´ 
(N 1000inject  ), only about half of the time will a cluster
exceed the baseline. The lack of significant detection from the
other half is not unexpected. As illustrated in the right panel of
Figure 5, if a cluster is located in the core region (i.e., high ns),
the background becomes dominant. In this regime, most
objects within the search sphere come from background
contaminants. Therefore, in the core region, the signal tends

Figure 5. Calibrated detection significance as a function of local density in abundance space. The left panel shows the sample observed values. The dashed lines show
the observation detection baseline. The overlaid orange symbols in the middle and right panels show results from the injected M107

 and M108
 clusters, respectively.

Since we calculate the local density centered at each star, there are numerous points for each cluster. We highlight the maximum deviation of each cluster with a bold
red symbol. We compile results from 1000 and 100 trials for the middle and right panels. To demonstrate a typical detection significance distribution within a cluster,
we link with solid gray lines all stars from the cluster containing the star with the highest detection significance. The middle and right panels show that if a M10 107 8– 
cluster formed in the past, some cluster members might show more deviations than the detection baseline.
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to be overwhelmed by the background, regardless of the
cluster size.

Recall that our estimate of the cluster kernel Xs has an
uncertainty of 20% due to the small number of cluster stars.
Therefore, the concentration of our injected clusters could be
off by the same amount. We also explore how this uncertainty
might change our results. The dashed and dotted lines show the
results in those cases where our cluster concentration estimate
is off by 20%. The dashed line shows the result assuming

chemically homogeneous clusters are intrinsically tighter in
abundance space by 20%. With a more concentrated signal, the
signal will have a better contrast over the background.
Therefore, clumps are easier to detect and the probability in
Figure 6 increases. However, if clusters are more widely
spread, they are more likely to blend into the background.
Therefore, the chance of detection decreases, as shown in the
dotted line. We defer more detail discussions on how this
uncertainty changes our conclusion to Section 4.3.2.

4.3.2. Limits on the CMF

So far we have only studied the detection probability of an
individual cluster injected into the APOGEE data. For example,
in the bottom panel of Figure 6, we derived the probability of
detecting a cluster as a function of its cluster mass, which we
will denote as P Mdetect cluster( ). In this section, we will propagate
this individual cluster statistic to constrain the CMF. We derive
the total number of clusters of different masses from Mtotal and
the parameters of the CMF. Using this information, we can
then evaluate the probability of all these predicted clusters
being consistent with the APOGEE observation, which will
then place a limit on the CMF. We assume a power-law CMF
with a low-end cutoff of M30  and then constrain the power-
law slope, α, and the high-end cutoff, Mcutoff from the
comparison with APOGEE data.
Let us formulate this idea more rigorously. Given a CMF, we

know that, on average, there are a total of n M Mtotal=
clusters spawned where M is the mean cluster mass from
the CMF. By definition, the cluster masses of n clusters
follow the CMF, which we will denote as M ,icluster, 1=
M M, ,i i ncluster, 2 cluster,¼= = . The probability CMF( ) that all
these clusters are consistent with the data is

M P MCMF , 1 , 6
i

n

icutoff
1

detect cluster,( ) ( )( ) ( ) ( ) a = -
=

i.e., none of these clusters exceeds the observation baseline. In
practice, to save computational time and to ensure a well-
converged solution, we evaluate the CMF( ) analytically.
The left panel of Figure 7 shows the resulting CMF( ) . The

figure demonstrates that if the CMF slope is shallower than
α=−2, the APOGEE sample is mostly consistent with a high-
end cutoff M3 107 ´  ( Mlog 7.5cutoff = ). Qualitatively, this
result should be expected. As shown in the bottom panel of
Figure 6, there is a 10%~ chance that a cluster with M107~ 
will exceed the observation baseline. Recall that if the CMF
slope α=−2, we have equal contributions from all logarithmic
mass bins. This implies that the number of clusters with mass

M107~  is of the order M M10 100total
7~ ~ . Let say there

are 50 such clusters, and each cluster only exceeds the baseline
10%~ of the time. The probability that all of them would be

consistent with the APOGEE observation is still extremely
unlikely because 90% 1%50( ) < .
This simple illustration also demonstrates two important

features. First, the detection probability is very low for
individual clusters with masses M107< . If the CMF slope is
steeper than −2, most clusters are not massive. In this case, the
APOGEE observation provides a very weak constraint on the
high mass cutoff. As shown in the left panel of Figure 7, if
α−2, we cannot constrain the CMF cutoff. Even though a
cluster with mass M108~  would easily exceed the baseline,

Figure 6. Probability of an injected cluster showing more significant detection
than the APOGEE data. This probability depends on two parameters: the
number of injected stars per cluster and the cluster location in abundance space.
The top panel shows the probability as a function of these two parameters. As
the number of injected stars increases or the cluster is injected in a more
peripheral region of abundance space, the chance to exceed the observation
baseline increases. The bottom panel shows the probability marginalized over
the cluster location, i.e., the probability of detecting a cluster of a certain cluster
mass if the cluster location is randomly drawn from the intrinsic abundance
distribution. The solid line shows result assuming the best cluster kernel
estimation, Xs , as also applied to the top panel. The dashed and dotted lines
show the marginal probability assuming ±20% statistical uncertainties of the

Xs estimate due to the small sample of cluster members (see Section 2 for
details).
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these clusters are extremely rare if the CMF slope is steeper
than −2.

Second, since the CMF constraint is derived from the
product of each detection probability, it is sensitive to Pdetect. As
shown in the bottom panel of Figure 6, if our estimate of Xs is
off by 20%, it will affect Pdetect, which in turn could
dramatically modify our CMF constraint. If clusters are more
concentrated in abundance space than we have assumed here,
then that will provide a stronger constraint on each detection
(dashed line in Figure 6). Therefore, our constraint on the CMF
would be conservative. On the other hand, if we have
underestimated Xs by 20%, then the clusters would be more
widely spread out in abundance space than we have assumed.
In this case, most clusters would be harder to detect (dotted line
in Figure 6). Although not shown, we have checked that, in this
case, we can only rule out CMF with M M10cutoff

8 
and α−1.9.

Nonetheless, independent evidence seems to support our Xs
estimate. Mathematically, the rotation that we performed in
Section 3.2 is exactly the same as the principal components
analysis (see appendix in Ting et al. 2012b). After the rotation,
each coordinate becomes a principal component of the
APOGEE abundance space. The APOGEE abundance space
has fewer independent dimensions than the observed dimen-
sions (Andrews et al. 2012; Ting et al. 2012b). Some of these
10 principal components should have very little intrinsic
scatter. Therefore, some minor axes of the 10-dimensional
ellipsoid are only due to the measurement scatter. Thus, their
spreads should be a robust estimate of the measurement
uncertainty Xs . We find that the widths of these minor axes are
consistent with our Xs estimate, showing our estimation of Xs is
robust. Therefore, our conservative CMF constraint is likely
to hold.

Although not all M M3 10cutoff
7 ´  is ruled out, Figure 7

shows that a very high Mcutoff is only consistent with the data
when the CMF slope is steeper than α=−2. When the CMF is
steep, the number of massive clusters also decreases pre-
cipitously. Therefore, the cutoff could be very massive, yet on

average there might be less than one such massive cluster in the
Milky Way. A high cutoff does not naturally imply the
existence of these clusters. Instead of Mcutoff , perhaps a more
useful constraint is the maximum cluster mass such that we
expect to have at least one cluster larger than this mass. We
denote this maximum mass to be Mmax. Assuming
M M6 10total

9= ´ , we show Mmax as a function of the
CMF parameters in the right panel of Figure 7. As expected,
this panels shows that when the slope is steep, we have
M Mmax cutoff , i.e., the cluster mass cutoff is never achieved.
When overplotted with the constraints obtained in the left
panel, the right panel shows that in most cases, only clusters
with masses 3 107 ´ could have formed. As the α-enhanced
disk is believed to form in the first five billion years (e.g.,
Haywood et al. 2013), our constraints refer to the portion of the
disk that formed at z 1> .
We have made numerous assumptions in this study, but we

emphasize that we have always made the conservative choices.
Therefore, our CMF limit should be robust as long as we did
not underestimate Xs by 20% and the ellipsoidal intrinsic
distribution is a fair representation of the deconvolved
distribution. A question remains to be answered: could we
obtain a significantly stronger constraint on the CMF using the
current APOGEE data? We would argue that the answer is
likely no. The bottleneck is intrinsically due to the relatively
small number of volume elements in abundance space and the
low sampling rate. The former is set by the precision of the
abundance measurements and the number of independent
dimensions in abundance space sampled by the APOGEE
spectra. The APOGEE sampling rate is of the order of
N M 10APOGEE total

5( )= - , which implies that we would only
sample one star from a M105~  cluster. The threshold n 10s >
implies that the minimum cluster mass needed is M106~ .
Therefore, in the most optimistic case, we might be able to put
a stronger limit by at most an order of magnitude.
How does our stellar CMF limit compare to high-redshift

observations of star-forming galaxies? Recent observations
have reported the existence of giant star-forming clumps within

Figure 7. Constraint on the α-enhanced disk CMF. The left panel shows the probability of a CMF being consistent with the APOGEE DR12 data as a function of the
two CMF parameters, the power-law slope and the upper mass cutoff. The dotted, dashed, and solid lines show the 1–3σ limits, respectively. Unless the CMF power-
law slope is steeper than −2, a cluster mass cutoff M3 107 ´  is largely ruled out. The right panel shows the maximum cluster mass, Mmax, for different CMFs, such
that the expected number of clusters N M 1cluster max( )> > (see Section 4.3.2 for details). We overplot the 1–3σ limits calculated from the left panel. The right panel
shows that, in most cases, there is on average less than one cluster with 3 107 ´ formed in the Milky Way.
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the disks of star-forming galaxies at z 2~ (Genzel et al. 2006,
2013; Förster Schreiber et al. 2009; Jones et al. 2010;
Livermore et al. 2012). Gas clumps as high as M109~  have
been observed. There has been much speculation regarding the
properties and fate of these giant clumps. Some have argued
that they are progenitors of globular clusters (Shapiro
et al. 2010). They may migrate by dynamical friction to the
centers of galaxies (Wuyts et al. 2012). It is also unclear if the
stars forming within these giant clumps contain stars that are
coeval or share a common metallicity. What is clear from the
results presented in this work is that these giant star-forming
clumps cannot both be mono-abundance and remain in the α-
enhanced disk, at least in the portion of the Milky Way
observed by APOGEE (i.e., with a Galactocentric radius of
3–15 kpc). Even assuming a total star formation efficiency of
1% (simulations and observations usually show higher values,
e.g., Kennicutt 1998; Elmegreen 2002; Krumholz &
McKee 2005; Evans et al. 2009; Kruijssen 2012), these gas
clumps would have formed clusters that are at least M107

 and
would have stood out in the chemical tagging experiment
presented here if they are chemically homogeneous and that
they remain in the Milky Way disk, which APOGEE is
probing.

4.4. Comparison with Previous Studies

The first chemical tagging experiment on dispersed disk stars
was performed by Mitschang et al. (2014), and the tagged
groups were subsequently studied in Quillen et al. (2015). They
studied 714 stars in the solar neighborhood from Bensby et al.
(2014). Our results agree with their assessments that the
identified groups in these studies are probably not co-natal
stars. Each group is unlikely coming from a single disrupted
cluster, even though the clump members might be coeval stars
as they share similar abundances. In these studies, the sample
includes both α-enhanced stars and low-α stars, but the sample
size is about ten times smaller than the APOGEE α-enhanced
sample. The sampling rate in Bensby et al. (2014) is therefore
much smaller than the APOGEE α-enhanced sample. Recall
that the sampling rate in this study is 10 5( )~ - , and thus, we
deduce that the sampling rate in these early studies is

10 10 105 6( ) ( ) =- - . If groups detected in these studies
were to come from individually disrupted clusters, the parent
cluster would have a mass M106 , consistent with the
estimates in Quillen et al. (2015).

Simulations from Ting et al. (2015) also disfavor a co-natal
interpretation of the groups identified in these earlier studies.
Ting et al. (2015) found that even if such large clusters exist, a
detected clump in abundance space will still have a sizable
background component. More importantly, in the case with a
dominant background, the applicability of previous clump
search techniques that separate the abundance space into a few
distinct regions, such as the one proposed in Mitschang et al.
(2014), or other tree-based methods (e.g., Macfarlane
et al. 2015) is questionable. For those techniques to perform
well, the background in abundance space has to be negligible
or first be subtracted. As we have explored in this study, the
background estimation can be challenging given its complex
topology in high-dimensional space and the fact that the signal
is usually overwhelmed by the background contaminants.

5. SUMMARY AND CONCLUSION

In this study we have exploited the superb APOGEE DR12
data, with typical uncertainties of X Fe[ ]s and 0.05Fe H[ ]s  for
10 elements measured for 104> stars, to put in practice a first
large-scale chemical tagging analysis of the α-enhanced disk.
Because the number of stars per 10-dimensional abundance
volume is lower in the α-enhanced disk, we focused on that
portion of abundance space.
This analysis required the development of a new, simple

algorithm for identifying clumps in abundance space, and it
brought some of the “real life” difficulties of chemical tagging
to the fore. Nonetheless, we succeeded in providing the first
abundance-based constraints on the masses and mass functions
of chemically homogeneous star clusters in the old Galac-
tic disk.
The methodological steps and results can be summarized as

follows.

1. We determined and applied a coordinate transformation
that makes the cluster kernel in abundance space
spherical (in 10 dimensions) and have unit variance in
each dimension. This kernel enables fast error deconvo-
lutions in this transformed abundance space.

2. We generated a model for the intrinsic abundance
distribution of the α-enhanced disk, presuming it to be
a highly anisotropic and co-variant ellipsoidal distribution
in the above 10-dimensional transformed abundance
space. After rotating this coordinate system to eliminate
the co-variances in this distribution, we modeled each
dimension independently as the sum of two Gaussians.
Fitting this to the APOGEE data provides a first estimate
of the shape and volume of the error-deconvolved
abundance space of the α-enhanced Galactic disk.

3. We found that despite the unprecedented quality of the
APOGEE data, the volume occupied by the stars of the α-
enhanced Galactic disk is only ∼500 times the volume of
the cluster kernel. Even with abundance uncertainties of

X Fe[ ]s and 0.05 dexFe H[ ]s  , the cluster kernel spans
30%> of the abundance width in each element abundance

dimension. In addition, many of the 10 element
abundances measured by APOGEE and used herein are
highly co-variant.

4. We developed an algorithm to detect groups of
chemically homogeneous stars, geared toward the back-
ground-dominated regime. We found that searching for
chemically homogeneous clumps is challenging with
high backgrounds. The chemical tagging signals will
most likely come from the peripheral regions in
abundance space where the background density is
relatively low.

5. Using APOGEE data as a detection baseline, we were
able to constrain the CMF in the Galactic α-enhanced
disk. We show that this population is unlikely to have
formed clusters more massive than M3 107´  at any
point in its history.

Although the current constraints presented in this work are
limited to very large cluster masses, the results in this paper
vividly demonstrate the potential of chemical tagging in
understanding the Milky Way properties in the past. With
more data currently being collected by on-going surveys, we
should be able to provide much stronger constraints on the
CMF in the near future.
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