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Peptoids are biomimetic materials in which the substituent groups are located on the nitrogen atom of the peptide bond, facilitating the formation of
nanosheet structures as reported by Mannige et al. [Nature, 526, 415 (2015)]. Dissipative particle dynamics (DPD) simulations were performed to
investigate the aggregation stability of peptoids with different unit lengths. The crucial effective interaction parameters were determined by
fragment MO (FMO) calculations, which allowed to evaluate different molecular interactions (electrostatic and dispersion) in a balanced way. The
experimental observation of the unit length dependence was finally reproduced by this FMO-DPD method.
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P eptoids, or poly-N-substituted glycines, are a class of
peptidomimetic polymers developed by Zuckermann1)

in which the side chains are attached to the nitrogen
atoms of the peptide backbone.2) This feature prevents the
formation of interchain and intrachain hydrogen bonds derived
from the N–H moiety and, compared to peptides, allows more
direct control of aggregation ability and chemical properties
through the choice of side chains and monomer structure,3,4)

with aromatic moieties (e.g. phenyl) often used as convenient
substituents.5,6) Therefore, peptoids have attracted consider-
able interest in the field of nano-biotechnology. In particular,
Zuckermann’s group7) reported an interesting peptoid that
yields nanosheet structures where the aggregation behavior
depends on the unit length of the chain. Shorter units could not
form stable aggregates. Calcium carbonate mineralization was
modeled by this nanosheet.8) Furthermore, the effect of
halogenation (typically fluorination9)) of the phenyl ring on
the aggregation was investigated.10)

Molecular simulations should be useful in understanding
the nature of the interactions that drive peptoid aggregation.
In fact, the (atomistic) molecular dynamics (MD) simulation
with an empirical atomistic force field (FF) was used in
Ref. 7. Recently, a special semi-empirical FF set for peptoids
has been reported.11) A coarse-grained (CG) FF has also been
proposed for peptoids by modifying the empirical MARTINI
set for peptides.12) In contrast, we have developed an original
procedure that performs the dissipative particle dynamics
(DPD)13) simulation of the CG type with non-empirical
interparticle interaction (χ) parameters derived from the
fragment MO (FMO) method.14,15) In this FMO-DPD pro-
cedure, the multi-step evaluation of χ parameters can be
performed with FCEWS (FMO-based Chi-parameter
Evaluation Workflow System).16,17) FMO-DPD has been
applied to a variety of systems (including electrolyte
polymer, lipid, and peptide18–22)), indicating broad applic-
ability. In this work, the FMO-DPD procedure was applied to
the peptoid nanosheet,7) where the aggregation stability as a
function of unit length was of primary interest.

The basic structure of a peptoid nanosheet7) and the
segmentation for DPD are shown in Fig. 1 (whose unit
length (L) is formally given as 2 × 7 + 2 × 7 = 28 due to
n = 7). As shown in this figure, the charged group (−NH3

and −COO−) should be hydrophilic and the phenyl group
should play a role of dispersion-driven stabilization with
hydrophobicity, leading to the bilayer structure like mem-
brane. The number of segments is five; they were [A] Gly
main chain, [B] phenyl linker C2H6, [C] benzene (or
phenyl) and side groups of [D] −NH3

+, and [E] −COO−.
To investigate the effect of fluorination of phenyl,10)

fluorobenzene was also considered. For these segmented
molecules, the geometry optimization was performed
by GAUSSIAN1623) at the B97D24)/6-31 G(d)25) level. A
series of second-order perturbation (MP2) calculations25)

with ABINIT-MP26,27) were done in parallel runs28–30) for
a list of segment moieties including environmental water
parts (refer to the previous studies18–22)), using the
cc-pVDZ basis set.31) ABINIT-MP job submissions were
controlled by FCEWS. The hydration effect was accounted
for by the Poisson–Boltzmann (PB) model.32,33) Then the
evaluation of χ parameters was done in a standard way with
FCEWS. How to handle electrostatic interactions between
charged particles (or segments) in CG simulations such as
DPD34) has often been a concern. For example, in Refs. 35
and 36 the part related to electrostatic interactions is
explicitly considered. However, since the present calcula-
tions include delocalization and anisotropy of the electron
distribution in a non-empirical MO scheme, and also
include partial shielding effects due to hydration in the
PB model, the usual DPD framework of parameter setting
was retained. The lists of χ parameters and aij parameters
for DPD are given in Table I. To understand the nature of
the interactions in the peptoid nanosheet, the MD snapshot
structure (L = 28) of Ref. 7 was subjected to the FMO
interaction energy analysis37,38) at the MP2/cc-pVDZ level,
where 12 chains were extracted from the central region; the
standard fragmentation protocol was adapted.14,15)
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The J-OCTA39) program suite was used to perform the
DPD simulations (with the COGNAC40) module) and to
analyze the results. The DPD conditions were set in a
standard manner, with the conservative force including the
FMO-based aij (or χ) parameters, as in previous studies.17–21)

Since the dependence of the aggregation stability on the L/n
of the peptoid unit7) was of primary interest, the initial
structures for DPD were carefully setup. Figure 2 illustrates
the case of L = 12 (n = 3), where the charged parts are
configured in a complementary manner. The initial setting for
other cases of L = 4, 8, 16, 20, 24, 28 was done similarly.
The total number of particles was about 1.5 × 105 in the
simulation cell, the base length of the cell was 36.8 Rc

(26.1 nm in real scale). The DPD time step was 0.01 and the
number step was 2.0 × 105 (at least 280 ns in real time). The
structure record was taken every 500 steps, resulting in a total
of 400 records. If the stability of a given unit length would
not be sufficient in mutual interactions, the aggregation of
sheets should collapse.
First, the nature of the interactions in the aggregated

nanosheet is investigated by the FMO interaction analysis.
Figure 3 shows the visualized interaction energies of the
reference chain. Both stabilized and destabilized fragments in
the surrounding chains are visible in part (a) of this figure,
indicating that the relatively long-range electrostatic interac-
tions due to −NH3

+ and −COO− groups are substantial. In
contrast, the dispersion-like attractions (π/π and CH/π)
between the phenyl groups are short-range and more internal,
as shown in part (b). Thus, the length-dependent balance

between stabilization and destabilization should govern the
behavior of the aggregation.7)

The results of the DPD simulations are now considered.
Figure 4 shows the side views of the 400th (or final) record
for the respective unit lengths for both the normal phenyl7)

and fluorinated phenyl10) cases, and the views of the
progressive records are available in the supplementary data
(SD). Reference 7 reported that the aggregation of the
nanosheet is experimentally visible for the length of
L = 12 (n = 3), but it is not as stable. Note that the stable
aggregations were observed for the lengths of L = 16 and
L = 28.7) Visually, the present simulation agrees with these
experimental observations for the normal phenyl case. It is
noteworthy that the structural collapse in the short lengths of
L = 4 and L = 8 is considerable; see also the corresponding
sequences in SD. The plots of the order parameter (OP) and
the radial distribution function (RDF) are shown in Fig. 5. In
particular, the decay of OP is sharp for L = 4 and slightly
moderate for L = 8, consistent with Figs. 4 and S1-1 and S1-
2. The OP plots of L = 12 and L = 16 decrease initially, but
do not decrease thereafter. The OP plots of longer L remain
stable near unity. The RDF is also consistent with the OP
results, indicating that the length at L = 28 provides the most
stable aggregation. Overall, the present FMO-DPD simula-
tion has nicely confirmed the experimental results of Ref. 7.
Next, the effect of fluorination on the phenyl ring9,10) is

examined. When compared to the case of normal phenyl in
Fig. 4, it is clear that the fluorinated phenyl provides better
aggregation stability, especially for the length of L = 8 (see
Figs. S2-2 if necessary). The OP plot and RDF of L = 8 in
Fig. 5 show a consistent behavior compared to the corre-
sponding results of normal phenyl. It is noteworthy that the
positions of the main peaks of RDF are shifted closer relative
to those of normal phenyl. As expected from inductive
electronic effects,9,10) the fluorinated phenyl ring should
provide a better aggregation capability.
In this work, we have reported a series of FMO-DPD

simulations for the peptoid nanosheets,7) and then reproduced
the experimental observations on the dependence of the

(a)

(b)

Fig. 1. Molecular structure of a peptoid nanosheet (L = 28/n = 7). (a)
Scheme of segmentation. (b) Segmented molecules.

Table I. Lists of χ parameters and aij parameters (aii is set to 105.0). Values
in brackets associated with segment [C] for the fluorinated phenyl.

χ pararameters
A B C D E Water

A 0.0 7.9 −4.9 (−4.2) −14.7 −6.8 2.5
B 0.0 0.4 (0.2) 2.9 −4.3 7.8
C 0.0 2.8 (2.6) −10.4 (−7.9) 5.9 (10.6)
D 0.0 −53.4 −20.8
E 0.0 −44.4
Water 0.0

aij parameters
A B C D E Water

A 105.0 130.8 89.1 (91.2) 57.0 82.8 113.0
B 105.0 106.4 (105.8) 114.3 91.0 130.5
C 105.0 114.2 (113.6) 71.1 (79.0) 124.3 (139.8)
D 105.0 0.0 37.1
E 105.0 0.0
Water 105.0
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aggregation stability on the unit length of the chain. It was
also shown that fluorination on the phenyl ring increases the
aggregation strength, in agreement with the experimental
observations.10) These facts indicate that a delicate balance
between stabilization and destabilization due to electrostatic
and dispersion interactions can be maintained by the eval-
uated set of χ parameters with FCEWS.16,17) One difficulty of

this non-empirical parameterization procedure is the high
computational cost for large amounts of FMO calculations,
but a machine learning based system called pre_fcews has
recently been developed to reduce the total cost of FMO
calculations by half to one third while maintaining
reliability.41) We hope that FMO-DPD will be widely used
for a variety of nano-bio systems.

Fig. 2. Example of initial structure setup (L = 12/n = 3) for DPD. In this case, the number of peptoid units is 440, and the distance between nanosheets is
0.84 Rc.

(a)

(b)

Fig. 3. Visualized interaction energies around the reference chain (yellow colored). The basic structure was obtained from the MD snapshot data (L = 28/
n = 7) of Ref. 7. (a) Red and blue colors correspond to stabilization and destabilization, respectively (from −30 to 30 kcal mol−1 in the range). (b) The green
color indicates dispersion-like stabilization evaluated at the MP2 level.
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