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As photovoltaic (PV) power generation systems become more widespread, the instability of electric power grids with PV connection is becoming an
issue. For appropriate management of the grids, probability prediction of solar irradiance is proposed. The lagged average forecasting method is
used for ensemble forecasting. The 72 h ahead forecasting of solar irradiance is operated in Thailand once a day, and it contains intraday, next-day,
and 2-day ahead forecasts. Ensemble forecasting has three ensemble members. The accuracy of intraday forecasting is higher than that of the
other members, and it is employed as the most probable value of the forecast. The relation between spreads and forecasting errors is analyzed.
From the result, the confidence intervals of the predictions are derived for an arbitrary confidence level. The probability prediction is performed with
the most probable value and the confidence intervals. The interval changes its width due to spread changes and captures the observation in it.
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1. Introduction

A huge amount of photovoltaic (PV) systems are widely used
and connected to electric power grids these days. PV systems
become one of the major sources for grids in some countries.
In Germany, PV systems provided 6.5% of electricity
consumption nationwide in 2013" and the rate increased to
8.6% in 2019.? PV penetration in national electricity supply
is more than 8.0% not only in Germany but also in five other
countries, e.g. Honduras (14.8%) and Israel (8.7%), in
2019.” Under the circumstances, the supply of electricity
by PVs of regularly covered about one-third of the noon peak
demand on sunny summer days in Germany in 2013."
However, their output is not stable due to changes in weather
and fluctuations in solar irradiance, causing the risk of
instability of the electric power supply from the grids.

One of the ways to reduce the risk and ensure the efficient
management of grids with PV systems is the prediction of
solar irradiance related to the PV output, which is employed
for the management of the grids. Diagne et al.” reviewed the
reliability of solar irradiance forecasting with statistical
models, cloud imagery, or numerical weather prediction
(NWP) models, and showed the advantage of NWPs.
Heinemann et al.* also investigated two kinds of forecasts;
image processing for cloud development for very short-term
forecasts and NWP for up to 2 days, and indicated the
validity of a combination of the NWP and post-processing for
solar irradiance forecasting. Lorentz et al.” employed
weather forecasting provided by the European Center for
Medium-Range Weather Forecasts (ECMWF) for solar
irradiance and PV power predictions, and used them for
electric grid management in Germany. Their forecasting
period is 3 days. They also discussed the effect of area size
for reducing the forecasting error. Lara-Fanego et al.”
forecasted solar irradiance by using NWP in southern
Spain. They evaluated not only global horizontal irradiance
but also direct normal irradiance by introducing physical
post-processing of the NWP. Shimada et al.” also performed
solar irradiance forecasting in Japan with the same NWP as
that used by Lara-Fanego et al.* and obtained results with
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lower accuracy than Lara-Fanego et al. As the reason for the
low accuracy, they pointed out that Japanese weather
conditions, which are less sunny and more cloudy compared
with southern Spain, change frequently, making it difficult to
conduct forecasting. Aryaputera et al.*) also used NWP to
forecast the irradiance in the Southeast Asia region,
Singapore, which is near the target area, Thailand, in this
study. They also proposed stochastic methods, and improved
the forecasting accuracy by combining the results from the
NWP and the methods.

We have constructed a weather and solar irradiance
forecasting system for the prediction of PV generation and
its fluctuations in Thailand.” The Thailand national govern-
ment promotes the installation of large-scale PV power plants
to make PVs a major electric power source in Thailand to
shift to renewable energy to create a sustainable society, and
EA Solar Phitsanulok plants with 133.92 MWp and EA Solar
Lampang plants with 128.39 MWp'? are now operating. The
weather and the solar irradiance forecasting system are
operated for the management of the electric power grid to
which the large PV power plants are connected. For its proper
management, highly accurate forecasting is required.

The weather in Thailand is divided into three seasons. First
is the rainy season from mid-May to October. Air is wet and
warm, and squalls occur frequently during this season.
Winter is from November to mid-March, and the weather is
dry with mild temperatures. Summer is from mid-March to
mid-May, and the weather is very hot. It is said that weather
forecasting in the tropics is relatively more difficult than in
the temperate (middle) latitude zone, like Japan.“’lz) Clouds
and rainfalls in temperate latitudes are due to the frontal
development of air masses, and their movement is gradual.
Therefore, forecasting in the latitudes is easy and very
reliable. On the other hand, in the tropic, convectional clouds
and rainfalls occur due to thermally induced low-pressure
systems. Their movement is vertical and fast, and they make
forecasting the weather phenomenon in the tropics difficult.
Cumulus and cumulonimbus are common in the tropics, and
their behavior, especially their generation, is complicated and
difficult to forecast. This causes difficulty in solar irradiance
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forecasting and the prediction of PV generations in the
tropics.

There are several ways to improve the accuracy of weather
and solar irradiance forecasting with NWPs, e.g. model
optimization and post-processing. Shenoy et al.'* optimized
an NWP to forecast tropical cyclones over the Bay of Bengal.
Yoon et al."® also optimized it for sea breeze prediction over
the northeastern coast of South Korea. They performed
sensitive analyses of the physical parameterization options
used in the NWP, and found the optimum combination of
schemes of the options for their purpose. Arasa et al.'” and
Verbois et al.'® also employed the same analysis and
improved the weather forecasting in southern Spain and
Singapore, respectively. The authors focused on solar irra-
diance forecasting in Thailand and found the optimal
schemes with the same analysis as them.'” The representa-
tion of the short-period fluctuation of the irradiance is
improved with optimization. However, the forecasting error
caused by the NWP itself remains due to imperfections in the
model.

Post-processing can be applied to adjust NWP outputs.
National meteorological centers worldwide commonly em-
ploy processing to correct NWP outputs and produce the
results for public distribution, which are referred to as

guidance. The Japanese Meteorological Agency employs
appropriate post-processing methods for each meteorological
parameter computed with NWP; multiple linear regression,
logistic regression, neural networks, Kalman filters, and
others.'® Yang et al.'” applied Bayesian and simple linear
regressions as post-processing of NWP forecasting and
improved the wind speed prediction of storms in the north-
eastern United States of America. Both Diagne et al.”*” and
Rincén et al.?"” employed Kalman filters for post-processing
for solar irradiance forecasting at Reunion in the Indian
Ocean and Catalonia in Spain, respectively. The authors
develop a nonlinear Kalman filter as a post-processing of
NWP to adjust the solar irradiance forecasted with the
NWP.?? Recently, machine-learning techniques have also
been employed for not only solar irradiance forecasting but
also for the prediction of PV output. Hossain and
Mahmood*® used a long short-term memory neural network
for the prediction of PV generation. Zhang and Zou® used
machine learning with historical PV power generation data
and meteorological forecasting.

Many researchers and operators are working to improve
the accuracy of forecasting. However, there is a limit to the
improvement of forecasting accuracy through model im-
provement, etc. due to the uncertainty in the representation of

Fig. 1.

at the center of Domain 3.
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Topography of computational domains for simulating solar irradiance with the meteorological model WRF. The observation site, NECTEC, is located
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Table I. Computational conditions of the meteorological model WRF for
forecasting solar irradiance in Thailand.

Period Start: 12:00 UTC (19:00 LST)
72 h forecasting in computation
Input data NCEP GFS-0.25 (1 hourly,
0.25° x 0.25°)
Nesting 2-way nesting

Domain 1 (18 km, 135 x 179
grids)

Domain 2 (6 km, 217 x 340 grids)

Domain 3 (2 km, 100 x 100 grids)

50 levels (from surface to 100 hPa)

SBU-Lin microphysics

Goddard longwave radiation
scheme

Dudhia shortwave radiation
scheme

KF cumulus parameterization

MMS surface layer scheme

YSU planetary boundary layer
scheme

Enable (Domain 1 only)

Domain (horizontal resolution,
number of grids)

Vertical layer
Physics parameterization options

FDDA option

the models and weather forecasting products. As an alter-
native method for improving the accuracy, probability pre-
diction of the irradiance with ensemble forecasting™ is
proposed. Today, several national meteorological centers,
e.g. the ECMWF,”® National Centers for Environmental
Prediction (NCEP)*?” in the USA, and the Japan
Meteorological Agency (JMA),*® use it in their daily
operations. Instead of single computation for forecasting,
several computations with different setups or model formula-
tions are performed in ensemble forecasting. Each computa-
tion is called an ensemble member. The forecasting and its
probability are evaluated from the set of members. This
ensemble forecasting has been used for weather forecasting
and is now also used for solar irradiance forecasting. Liu et
al.>” performed ensemble forecasting of the irradiance in
Japan. They predicted both the solar irradiance and its
reliability, and the confidence interval of the forecasting
captures the observed one. The method they used is a

traditional one in meteorology. On the other hand, Singla et
al*” employed a machine-learning technique for the en-
semble forecasting of solar irradiance.

This study uses ensemble forecasting to predict solar
irradiance in Thailand. The applicability of the ensemble
forecasting to large solar radiation fluctuations in Thailand
will be examined.

2. Experimental methods

2.1. Weather Research and Forecasting model

The Weather Research and Forecasting (WRF) model*" is
applied in this study for forecasting solar irradiance. This
model is a physical meteorological model with fully com-
pressible non-hydrostatic equations developed by the
National Centers for Atmospheric Research (NCAR) and
the NCEP, and is used not only for real-time numerical
weather forecasting (e.g. Salvacdo and Guedes Soares®>)) but
also for research under idealized conditions, data assimila-
tion, and others (e.g. Pryor et al.*). It contains many
physical parameterization options for meteorological micro-
processes, e.g. planetary boundary layer physics and cumulus
parameterization, and users select schemes of the options for
their specific purpose. It can simulate two-way nesting and be
applied across scales ranging from meters to thousands of
kilometers. It is an open-source software and is used widely
in the world.

2.2. Prediction of the solar irradiance forecasting
system in Thailand and its improvement

A series of our studies is for appropriate solar irradiance
forecasting in Thailand. First, a solar irradiance forecasting
system was constructed with WRF. Next, we improved the
WREF itself by optimization of the parameterization options.
Third, post-processing was installed for adjusting WRF
computational results. In the end, we try probability fore-
casting of the solar irradiance.

For the prediction of PV generation for strategic electric
power grid management in Thailand, the solar irradiance
forecasting system was constructed based on WRF and has
been operated.”

utc | 0 day | 1 day [ 2 day | 3day |
I T I T 1
12:00 00:00 00:00 00:00 12:00
19:00 07:00 07:00 07:00 19:00
LST 0 day | 1day | 2 day | 3 day
T I T T
19:00 23:15 06:00 00:00 00:00 19:00
GFS WRF
Standbv Computation
Forecasting ... [:l
Cycle
Initial Tlme Termmat:on 06:00(LST)
19:00(LST) Start Computation 23:55(LST)
Download Data 23:15(LST)
night night
Forecasted I ----- - - - - = - =
Dataset
Intra-Day Next-Day 2-Day ahead
Forecasting Forecasting Forecasting
00:! 00:00 19:00
(LST) (LsT) (LsT)

Fig. 2. Forecasting cycle of weather and solar irradiance with WRF and forecasted dataset period in the computed result.
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Fig. 3. Diagram of the LAF method. The vertical axis indicates the elapsed time of each forecasting computation from its initial time. The diagonal arrows

pointing up on the right indicate each forecasting computation.

In the tropics, Thailand, which is the target area in this
study, cumulus and cumulonimbus are common, and it is
difficult to simulate them with NWPs, including WREF, as
explained in the previous section. We performed a sensitivity
analysis for the physical parameterization options of WRF
and derived the optimal schemes for their options.'” In the
previous study, we employed the optimal schemes:
SBU-Lin,*” Goddard,””® Dudhia,”” KF,”® MMS5, and
YSU*” are employed for the options of microphysics,
longwave radiation, shortwave radiation, cumulus, surface
layer, and planetary boundary layer, respectively. The WRF
is sophisticated and by introducing the optimal schemes, the
forecasting accuracy is improved.

A complete simulation with WREF itself is not feasible
because of its imperfections. NWPs including WRF usually
have a specific tendency, including in their forecasting
results. We developed the post-processing technique with a
Kalman filter to remove the specific tendency of WRF and
adjusted the solar irradiance forecasted with it.*” In the
previous study with the Kalman filter, we found that the
WRF tended to overestimate the irradiance, especially at
moderate irradiance intensities, 200—600 W m~2. The filter
we used is a nonlinear Kalman filter, and it removed the
overestimation and adjusted the irradiance WRF computed.

In solar irradiance forecasting with the sophisticated WRF
and the Kalman filter, forecasting errors still remain due to
the insufficiency of our method developed in a series of our
studies. Then, we employed probability forecasting and
forecasted not only the irradiance but also its reliability.
The probability forecasting used in the series of our studies is
explained in this article.

2.3. Computational domain and target area

Figure 1 shows the topography of Thailand and the computa-
tional domains in this study. It is three-level nesting; the
coarse domain is Domain 1, and its child domain is Domain
2. The parent domain of Domain 3 is Domain 2. The
horizontal resolutions of Domains 1-3 are 18, 6, and 2 km,
respectively. Domain 2 covers all of Thailand. At the center
of Domain 3, the global horizontal solar irradiances and some
meteorological parameters are observed with a pyranometer
and a weather station as references of the WRF forecasting.
The observation point is the National Electronics and
Computer Technology Center (NECTEC).

2.4. Computational conditions

The computational settings of weather forecasting with WRF
are summarized in Table I. The analysis data and forecasted data
72h ahead of the NCEP operational Global Forecast System
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(GFS) 0.25° grids (horizontal resolution 0.25° x 0.25°, 1 h
interval)*” are used as the initial and boundary conditions for
model simulation. Figure 2 shows the solar irradiance fore-
casting cycle in daily operation in this study.” The computation
of forecasting is performed once a day. The initial time of the
forecasting is 19:00 LST (12:00 UTC). Here, Thailand Local
Standard Time (LST) is 7h ahead of Universal Coordinated
Time (UTC). The GFS data®® is downloaded about 4 h after the
initial time, and the forecasting computation of the weather and
the solar irradiance with WRF is initialized. Soon after the
initialization, WRF starts the computation of the forecasting.
Finally, the computation is terminated, and the results are
displayed in the morning, at 6:00 LST, of the next day in
LST. The forecasting period is from the initial time to 72h
ahead, the computational period consists of three time periods
during the day, i.e. intraday, next-day, and 2-day ahead from the
termination of computation.

The target period for the forecasting in this study is from
2019 October 1 to 2020 September 30, the entire 1 yr, and the
forecasted solar irradiance at the observation point is output
every 10 min.

2.5. Ensemble forecasting of solar irradiance

As explained in the previous sections, we improved WRF by
introducing the optimal schemes and employing a Kalman
filter as post-processing to evaluate solar irradiance with high
accuracy. However, forecasting errors still remained; then,
we introduce an ensemble forecasting of the solar irradiance
for its probabilistic prediction.

Ensemble forecasting is used for the probability prediction
of numerical weather forecasting. It consists of a set of
forecasts. The set aims to give the most probable forecast and
the range of possible states in the forecast. Several computa-
tions with different simulation setups or model formulations
are performed to prepare the set. Each computation is called
an ensemble member. The forecasting and its probability are
evaluated from the set of members. There are several ways to
obtain members in ensemble forecasting. In this study, the
lagged average forecasting (LAF) method*" is employed for
the ensemble forecasting. Weather forecasting is computa-
tionally expensive, and several forecasts are required to
prepare the set of members in ensemble forecasting. This is
the main reason for the difficulty in ensemble forecasting. In
daily weather forecasting, the days covered by the forecasting
overlap, for example, intraday forecasting operated on the
same day and next-day forecasting 1 day before. LAF uses
overlapped forecasting as the members of the ensemble
forecasting. With this method, the computational load of

© 2023 The Japan Society of Applied Physics
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ensemble forecasting is the same as the daily operation of
single forecasting. Between each daily weather forecast, there
are time lags in the computational starting time. This means
that the ensemble members of LAF have time lags at the start
of each other.

We constructed the solar irradiance forecasting system in
Thailand and are operating it.” It forecasts the irradiance
once a day, and its forecasting period is from the initial time
to 72 h ahead, the computational period consists of three time
periods during the day, i.e. intraday, next day, and 2-day
ahead, as explained in the previous section. Figure 3 shows a
diagram of the LAF used in this study. The horizontal axis
indicates the time, and the vertical axis indicates the elapsed
time of each forecasting computation from its initial time.
Each computation proceeds along the diagonal arrows from
the initial time on the horizontal axis as time elapses. There
are three ensemble members at the target time, intraday
forecasting operated on the same day (0 day), next-day
forecasting on 1 day before (—1 day), and 2-day ahead
forecasting on the 2 days before (—2 day) as shown in the
figure. The most probable value and its prediction interval in
solar irradiance forecasting are evaluated by the members.
2.6. Observation data
The global horizontal solar irradiance and meteorological
parameters, e.g. wind speed and ambient temperature, are
observed at the center of Domain 3 as shown in Fig. 1 as
references of the forecasting, as explained before. The
sampling interval of the observation is 1 min. As the WRF
output is a 10 min interval, 10 min average observational data
is used in this study.

2.7. Statistical error indices

There are several statistical indices, e.g. rms error (RMSE)

and mean absolute error (MAE). In this study, we employ

RMSE and MAE for the forecasting error to the observation.
The RMSE and MAE are defined as follows:

RMSE = /li(xi — )%, ()
ni—1

1 n
MAE = = |x; — y . )

i=1

where x; and y, are simulated and observed diurnal irra-
diances at the same time, respectively. Their time intervals
are 10 min in this study. Nighttime irradiances are zeros, and
they are excluded from the evaluation. n is the number of
data x; or y;.

3. Forecasting results and discussion

3.1. Forecasting accuracy of ensemble members
The forecasting period for the daily operation of the solar
irradiance forecasting is 72 h ahead, the computational period
consists of three time periods during the day, i.e. intraday,
next day, and 2-day ahead, as explained before. The LAF
method is used for the ensemble forecasting in this study, and
the forecasted irradiance for each day is an ensemble
member. Here the accuracy of each ensemble member is
discussed.

The statistical error indices, RMSE and MAE, of ensemble
members throughout the year and in each season are listed in
Table I. The RMSE and MAE are small in winter compared
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Table II.
member.

Forecasting accuracies, RMSE, and MAE of each ensemble

Ensemble member Period (season)

Year Winter Summer Rainy
(a) RMSE (W m?)
Intraday forecasting 174.9 118.7 193.0 206.8
Next-day forecasting 175.3 116.1 199.8 206.2
2-day ahead forecasting 183.3 118.0 213.8 215.3
(b) MAE (W m™?)
Intraday forecasting 112.2 69.8 1214 147.1
Next-day forecasting 114.5 70.2 128.4 149.0
2-day ahead forecasting 120.7 73.0 139.2 156.4

with the other seasons. The weather in winter is mild and dry,
and there are many fine days. Therefore, WRF represents the
weather and solar irradiance during the season with high
accuracy. On the other hand, there are many cloudy and rainy
days during the summer and rainy seasons, and the irradiance
fluctuates due to shading by clouds. This makes it difficult for
WREF to forecast the irradiance during the seasons. Both the
RMSE and MAE of the intraday forecasting are the smallest,
and that for the 2-day ahead forecasting is the largest
evidently in the summer and rainy seasons. This is caused
by the difficulty of forecasting during the season. The
differences in the RMSEs and MAEs between different
forecast time periods in winter are very small, thereby
keeping the differences in annual errors low. Usually most
of the time, earlier forecasting is considerably less efficient
than later forecasting. When the most probable irradiances
are evaluated, the different members cannot be treated fairly
because of different forecasting errors in LAF, as shown in
Table II. Ebisuzaki and Kalnay*? proposed the scaled lagged
average forecast (SLAF) method, which uses different
weights for different members when the most probable
irradiances are evaluated. In this study, the irradiance of the
intraday forecasting is used as the most probable one in the
ensemble forecasting because its accuracy throughout the
year is the highest, as shown in Table II.

Figure 4 shows the forecasted daily solar irradiances of the
ensemble members. Three members, intraday, next-day, and
2-day ahead forecasting are indicated with red, gray, and
yellow lines, respectively. The observation is also plotted
with blue lines in the figure. Since solar irradiance fluctuation
varies greatly with the seasons in Thailand, it is shown in the
figure for each season. In winter, from November to mid-
March, there are almost no clouds, and the solar irradiance
fluctuations due to clouds are not found in the observation
(blue line) shown in Fig. 4(a). The accuracy of the solar
irradiance forecasting is high during this season as indicated
in Table II, and the irradiance of each member traces well to
the observation as shown in this figure. In the summer, from
mid-March to mid-May, the observed solar irradiance (blue
line) fluctuates widely due to clouds as shown in Fig. 4(b).
From the characteristics of the fluctuation, cumulus and
cumulonimbus are major clouds during this season in
Thailand. The irradiances of ensemble members also fluc-
tuate but the intensities of the fluctuation are small evidently
compared with the observation as shown in Fig. 4(b).
Miyamoto et al.** performed weather forecasting with an

© 2023 The Japan Society of Applied Physics
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Fig. 4. Time series of forecasted daily solar irradiances of ensemble members.

NWP model and investigated the reproducibility of the
cumulus and cumulonimbus. They suggested that forecasting
with a horizontal resolution of 2 km is appropriate for the
reproduction of the clouds. However, they also reported that
the cloud reproducibility of the NWP model is about 5 times
higher than the horizontal resolution. The finest resolution
used in that study is 2 km, just the same as their numerical
experiment. According to their result, the smallest cloud that
the NWP model can reproduce is about 10 km in this study.
The scale of the clouds or nonuniformity of clouds that cause
the fluctuation of the observed irradiance shown in Fig. 4(b)
may be smaller than the representation limits of NWPs,

SK1057-6

10km and they are not represented well in the WRF
forecasting. During the rainy season, from mid-May to
October, the observed irradiance is smaller and fluctuates
less than that in the summer as shown in Figs. 4(b) and 4(c).
The characteristics of the irradiance shown in Fig. 4(c)
indicate that thick clouds cover the sky during this season
and shade the irradiance more than in the summer. On 15
June, the observed irradiance is shaded with thick clouds as
in shown Fig. 4(c); however, all the ensemble members do
not forecast the clouds and their shading. On 17 June, two
members, next-day and 2-day ahead forecasting, show
incorrect results, similar to those on 15 June, but the intraday

© 2023 The Japan Society of Applied Physics
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Fig. 5. Histograms of forecasting error in intraday forecasting. Their quantiles are indicated at the top of the figure.

forecasting improves the incorrect forecasting, as shown in
the figure.

Figure 5 shows histograms of forecasting errors in each
season. Their quantiles are also indicated at the top of the
figure. Intraday forecasting, which is the most probable one
in this study, is used in this figure. Negative values of the
errors mean the underestimation of the forecasting. The error
in winter is smaller than in the other seasons, and its
distribution concentrates around the origin. The absolute
error of the quantile 95% is larger than the one with 5%.
This means that the overestimation of forecasting is larger
than the underestimation. The distributions during the
summer and rainy seasons spread wider than the ones in
winter, and they indicate larger forecasting errors in the
seasons. The medium values of the seasons, whose quantiles
are 50%, are a slightly negative underestimation in the
forecasting. The positive side of the distributions spread
wider than the negative in the seasons, similar to in winter.
As shown in the figure, the distributions of forecasting errors
deform slightly from symmetric.

3.2. Relation between spread and forecasting error
and evaluation of confidence interval

As an index of forecasting confidence level, the spread is
used in ensemble forecasting. The standard deviation of
irradiances of the ensemble members in arbitrary time is
defined as spread. It is expressed as the following

equation:
1< 2
spread = [—> " (x; — X)?,
iz

where x; is simulated irradiance at an arbitrary time, and ¥ is
the average of x. n is the number of data x;. Since there are
three ensemble members in this study, n is 3. The spread
corresponds to the variation among ensemble members as the
equation indicates. When the spread is small, the confidence
level of the forecasting is high.

Figure 6 shows the relation between the spreads and
absolute forecasting errors. The lines in the figure indicate
linear regression lines. The spreads and the errors are
evaluated every time step (10 min interval) of WRF output

3
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and plotted on the figure. The absolute forecasting error is
calculated as the absolute difference between the most
probable irradiance which is of the intraday forecasting,
and the observation. There are three diagrams in the figure for
each season in Thailand. In each diagram, there is more
plotted data as the spread is lower. It is also found from the
regression lines in the figure that the forecasting error
becomes larger as the spread becomes bigger. In the winter,
the plotted data in Fig. 5(a) are concentrated at the bottom,
and indicate good forecasting accuracy during this season.
On the other hand, in the summer and rainy seasons shown in
Figs. 6(b) and 6(c), there are plotted data with large
forecasting errors, especially in areas with large spreads.
This indicates the difficulty of solar irradiance forecasting
during these seasons. Figure 7 shows the frequency of the
forecasting errors for the spreads between (a) 25 and
50Wm 2, (b) 100 and 125Wm 2, and (c) 200 and
225 W m 2 during the rainy season. Different from ordinal
frequency charts, the vertical axes indicate the forecasting
errors for the comparison with Fig. 6(c), and the frequencies
are denoted in the horizontal axes. Its distribution profiles are
rough due to the small number of data, but it is found from
the figure that there are many data with small errors and the
number of data reduces as the error becomes bigger. This
characteristic is also found in the data with a similar spread in
other seasons.

Confidence intervals of the solar irradiance forecasting are
evaluated as follows. First, the data plotted in Fig. 6 are
grouped separately for each 25 W m ™2 of the spread. The
groups are called bins. The frequency charts in Fig. 7
correspond to the forecasting error distributions in each bin.
Next, the absolute forecasting errors are determined to
contain a specified percentage of the plotted data in each
bin, starting with the lowest error. The determined values
correspond to the confidence intervals of the forecasting for
the specified probability of forecasting error. Figure 8 shows
the lines of confidence intervals plotted on the plots about the
relationship between the spreads and the absolute forecasting
error. The dot-plotted data in this figure are the same as the
ones in Fig. 6. The confidence intervals for each bin are
drawn with staircase lines in this figure. The yellow, orange,
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Fig. 6. Relationship between spreads and absolute forecasting error. The lines indicate linear regression lines. Correlation coefficients during the (a) winter,

(b) summer, and (c) rainy seasons are 0.47, 0.50, and 0.54, respectively.

and brown lines denote the intervals for confidence levels
50%, 80%, and 90%, respectively. The confidence intervals
increase as the spreads become large in each season as shown
in Fig. 8. In some cases, the intervals reduce when the
spreads are large because the bins with large spreads contain
a small number of plotted data and it makes the accuracy of
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the evaluated interval worse. As the probability of forecasting
errors becomes larger, the intervals also increase. The
intervals in winter, Fig. 8(a) are smaller than the ones in
the summer and rainy seasons, Figs. 8(b) and 8(c). This also
indicates the difficulty of solar irradiance forecasting during
these seasons.
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Fig. 7. Frequency of forecasting errors for the spreads between (a) 25 and 50 W m 2, (b) 100 and 125 W m ™2, and (c) 200 and 225 W m ™2 during the rainy

season.

3.3. Probability forecasting with ensemble performed with ensemble forecasting in this section. The
forecasting most probable values of forecasted daily solar irradiance are
The most probable values of solar irradiance forecasting and  plotted in light blue in Fig. 9. The width of the lines
their confidence intervals have been evaluated in the previous  corresponds to the confidence interval. The areas in yellow,
sections. The probability prediction of solar irradiance is  orange, and brown represent the intervals with confidence
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Fig. 8. Relationship between spreads and absolute forecasting error. The lines indicate the confidence intervals with confidence levels of 50%, 80%, and

90%.

levels of 50%, 80%, and 90% of the forecasting, respectively.
We put the limits on the forecasted irradiances and their
intervals; the irradiance under a clear sky is for the upper
limit, and irradiance zero is for the lower limit. The observed
irradiances are also plotted in black in the figure. The

SK1

confidence interval with a confidence level of 90% is wider
than the ones with levels 50% and 80%. The confidence
interval in winter, Fig. 9(a), is smaller than the ones in the
summer and rainy seasons, Figs. 9(b) and 9(c). In winter, the
most probable value of the forecasting traces well with the
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Fig. 9. Probability forecasting of daily solar irradiance. The most probable values of the forecasted irradiance and confidence intervals are plotted with thick
light blue and black lines, respectively. The confidence intervals correspond to the widths of the thick black lines. The upper limits of the confidence intervals
are 851, 1080, and 1141 W m 2 as shown by the graphs in panels (a)—(c), respectively.

observation and the confidence intervals cover the observa-
tion as shown in Fig. 9(a). On the other hand, in the summer
and rainy seasons, the most probable values do not represent
the observations, but the observation is in the range of the
confidence intervals as shown in Figs. 9(b) and (c).
Sometimes, like on 15 June as shown in Fig. 4(c), all
ensemble members were incorrect in their forecasting, and
the confidence interval cannot capture the observation as
shown in Fig. 9(c). The risk of the observation being outside
the confidence interval in the forecasting depends on the
specified confidence level for evaluating the interval. If the
level is low, the risk of an incorrect prediction is high. When
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the level is increased, the risk is reduced, but the confidence
interval becomes wider.

3.4. Verification of the accuracy of probability fore-
casting

The accuracy of the probability forecasting performed in the
previous section is verified. Figure 10 shows histograms of
forecasting errors normalized with the width of the con-
fidence interval in each season. The forecasting errors in the
horizontal axes are normalized, and the range from —0.5 to
+0.5 is in the interval. This means that the forecasting is
correct if the errors are in the range. As shown in Fig. 9, the
confidence intervals become wider as the confidence levels
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(Forecasting error)/

(width of CI) ~ —0.5 —05~+05  +05~
Outside Outside
(under- (over-

Confidence interval forecasting) Inside forecasting)

Season Specified Observed relative frequency
confidence of forecasting error (%)
level
Winter 50% 349 44.0 21.1
80% 21.7 58.2 20.1
90% 8.4 79.2 124
Summer 50% 27.8 48.8 234
80% 20.7 64.3 15.0
90% 8.5 82.7 8.8
Rainy season 50% 30.6 47.2 22.2
80% 22.7 60.0 17.3
90% 9.7 79.7 10.6
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Fig. 10. Histogram of forecasting error normalized with the width of the
confidence interval.

become higher, from 50% to 80% and 90%. The forecasting
errors are normalized as shown in Fig. 10, and their
distributions become sharper instead as the levels become
higher. In winter, the distributions of normalized errors are
almost symmetrical as shown in Fig. 10(a). In other seasons,
summer and rainy seasons, the normalized errors inside the
confidence intervals are slightly shifted to the negative

SK1057-12

direction as shown in Figs. 10(b) and 10(c). The shifting
means that the forecasted solar irradiances are slightly
smaller than the observation when the observations are in
the confidence interval. The medium values of the seasons,
whose quantiles are 50%, are negative as shown in Fig. 5.
The shifting shown in Figs. 10(b) and 10(c) corresponds to
the negative values.

Observed frequencies of the forecasting errors normalized
with the width of the confidence interval are listed and plotted
in Table III and Fig. 11. The green lines in the figure indicate
the ideal case in which observed frequencies of the forecasting
errors are the same as the specified confidences. The quantiles
inside the confidence interval correspond to the actual
confidence levels of the probability forecasts. The actual levels
are lower than the specified ones in any case as indicated in the
table and the figure. In this study, the confidence interval of the
forecasting is evaluated as a combination of the most probable
forecasted irradiance and the width of the interval. Each of
them is evaluated separately and also contains an error.
Therefore, the total error is expected to be larger when
combining them to evaluate the interval. To reduce the
decrease in the actual confidence level, higher accuracies of
the most probable irradiance and the width of the interval are
required. A series of studies by the authors, optimization of
parameterization options,'” and the introduction of the
Kalman filter as a post-processing,”? have improved the
forecasting accuracy of WREF. On the other hand, there is still
room for improvement in the evaluation of confidence inter-
vals. In this study, there are only three ensemble members, and
the accuracy of their spreads is not considered to be high.

4. Conclusions

The probability prediction of solar irradiance in Thailand is
performed with ensemble forecasting.

In solar irradiance forecasting with NWP, there is a limit to
the improvement of forecasting accuracy through model
improvement, etc. due to the uncertainty in the representation
of the models and weather forecasting products. It would be
beneficial to the users if the forecasting could provide its
reliability as well. The probability prediction with ensemble
forecasting provides both the forecasting value and its
reliability.
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Accumulated observed relative frequencies of forecasting errors in each season for the specified confidences. The data corresponds to that in

Table III. Green lines denote the case in which the observed relative frequencies of forecasting errors are the same as the specified confidences.

In this study, the numerical weather model WREF, is
employed for forecasting solar irradiance. The optimized
physical parameterization options in the WRF are used to
improve the accuracy of the forecasting in Thailand. The
nonlinear Kalman filter is also introduced as post-processing of
WRF and adjusts the irradiance computed with WREF. For
ensemble forecasting, the LAF method is employed. It is easy
to construct ensemble members with this method, and this
method is efficient, especially for short-period forecasting. The
validation of the accuracy of the forecasting was performed
with different scopes of forecasting, and the intraday fore-
casting is selected as the most probable value of the forecasted
irradiance. The relationship between spreads, which relate to
the variance of ensemble members, and forecasting errors is
investigated, and the confidence interval for each spread is
evaluated. Finally, the probability prediction of the solar
irradiance was performed with the most probable values and
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