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Quantum annealing (QA) is a way to solve combinational optimization problems. Kerr nonlinear parametric oscillators (KPOs) are promising
devices for implementing QA. When we solve the combinational optimization problems using KPOs, it is necessary to precisely control the photon
number of the KPOs. Here, we propose a feasible method to estimate the photon number of the KPO. We consider coupling an ancillary qubit to
the KPO and show that spectroscopic measurements on the ancillary qubit provide information on the photon number of the KPO.

© 2023 The Japan Society of Applied Physics

1. Introduction

Recently, much attention has been paid to Kerr nonlinear
parametric oscillators (KPOs).1–6) KPO is based on Kerr-
nonlinear resonators driven by two-photon excitation,7,8)

which can be realized by using superconducting
resonators.9–11) It is known that the KPO can be used as a
qubit for a gate-type quantum computer.12–15) Recently, it has
been shown that we can observe quantum phase transitions of
the KPOs, which is useful for quantum metrology.16–19)

Also, KPO is a promising candidate for realizing quantum
annealing (QA).1,20) QA is one of the techniques to solve
combinational optimization problems.21,22) The solution to
the problems can be embedded into a ground state of the
Ising Hamiltonian, and we can obtain the ground state of the
Ising Hamiltonian after performing QA as long as the
adiabatic condition is satisfied.23)

Importantly, the Hamiltonian of the KPOs can be mapped
into an Ising Hamiltonian.1,20) To implement QA with KPOs,
we start from vacuum states, and we gradually increase
parametric driving terms in an adiabatic way. Then, the
network of the KPOs finds a ground state of the Hamiltonian
via a bifurcation process. A feasible architecture for QA with
KPOs using nearest-neighbor interactions has also been
proposed.20,24) There are many applications of KPOs for
QA.25–27)

However, in order to accurately map the Ising Hamiltonian
to the KPO Hamiltonian, we need to precisely control the
average number of photons of each KPO. Although there is a
formula to calculate the number of photons of the KPO under
a semi-classical approximation, the calculated value can be
different from the actual value.28) So a reliable way to
estimate the number of the photons of the KPO is required
to solve practical combinational optimization problems.
In this paper, we propose a method to estimate the number

of photons of the KPO from spectroscopic measurement. We
consider a system, where the KPO is coupled with an
ancillary qubit such as a superconducting transmon qubit
with a frequency tunability29,30) or another KPO (without
parametric drive), as shown in Fig. 1. We couple a

transmission line with the ancillary qubit. Driving the qubit
through the transmission line, we can readout the information
of the qubit by measuring reflected fields.31,32) Alternatively,
to measure the population of the transmon qubit, we can
couple a resonator with the qubit for the dispersive
readout.33–35) We show that spectroscopic measurements on
the ancillary qubit provide an estimate of the number of
photons of the KPO. We evaluate the performance of our
method with numerical simulations by solving a master
equation and show that the proposed method is more accurate
than the conventional method. It is worth mentioning that, in
our previous study, by numerical methods, we investigate a
case only when the driving strength is weak and the rotating
wave approximation is valid.36) On the other hand, in this
paper, by using both numerical and analytical methods, we
analyze the case with strong driving where the rotating wave
approximation is violated. Moreover, in this paper, we study
how the performance of our scheme changes with the
detuning of the KPO. These results in this paper provide a
deep understanding of our scheme to estimate the number of
photons.
The paper is organized as follows. In Sect. 2, we introduce

a model of a KPO coupled with an ancillary qubit. In Sect. 3,
we describe our method to estimate the number of the
photons of the KPO by spectroscopic measurements. In
Sect. 4, we evaluate the performance of our method by using
numerical simulations. In Sect. 5, we conclude our discus-
sion. Throughout this paper, we set ℏ= 1.

2. Model Hamiltonian

In this section, we introduce a model of a KPO coupled with
an ancillary qubit. The Hamiltonian is given by

ˆ ˆ ˆ ( ˆ ˆ )
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where ˆ†a (â) is a creation (annihilation) operator of the
KPO, ωKPO is the frequency of the KPO, χ is the Kerr
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coefficient, β is the amplitude of a parametric drive, ωp is
the frequency of the parametric drive, ωg is the frequency
of the ancillary qubit, g is the coupling strength between
the KPO and the ancillary qubit, and λ(ωc) is the amplitude
(frequency) of the driving field for the qubit, respectively.
Here, ŝx and ŝz denote the Pauli operators. Moving into
a rotating frame at the frequency of ωp/2 and adapting
the rotating wave approximation, the Hamiltonian is
written as

ˆ ˆ ˆ ˆ ˆ ( )= + + +H H H H H , 2KPO G I D

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( )† † † †c
b= D - + +H a a a a aa a a

2
, 3KPO

2 2

ˆ ˆ ( )
w w

s=
-

H
2

2
, 4zG

g p

ˆ ( ˆ ˆ ˆ ˆ ) ( )†s s= ++ -H g a a , 5I

ˆ ( ˆ ˆ ) ( )( ) ( )l s s= +w w w w
+

- -
-

-H e e , 6i t i t
D p

2 2c cp p

whereΔ=ωKPO− χ−ωp/2 denotes the detuning of the KPO,
λp= λ/2 denotes the Rabi frequency of the ancillary qubit, and
ŝ denotes the ladder operator. Throughout our paper, we set
Δ< 0. The ground and the first excited states of ĤG are ∣g〉
and ∣e〉, respectively. With β= 0, the Fock states ∣ ñn (for
n= 0, 1, 2, 3) become eigenstates of the HKPO. For β? ∣χ∣, on
the other hand, the corresponding eigenstates are approxi-
mately given by (∣ ∣ )a añ + - ñ 2 , (∣ ∣ )a añ - - ñ 2 ,
( )∣+ ña a-D D 1 2 , and ( )∣- ña a-D D 1 2 , where

( ˆ ˆ )†a a= -a *D a aexp denotes a displacement operator.1)

When a linear resonator is coupled with a transmon qubit,
we can realize a dispersive interaction described as

ˆ ˆ ˆ†s¢ =H g a azI . In this case, we can measure the number of
photons of the resonator by using the transmon qubit.37–40)

However, to our best knowledge, there are no existing
methods to realize the dispersive interaction between the
transmon qubit and the KPO that is driven by the parametric
drive. Moreover, ˆ ˆ ˆ†s¢ =H g a azI does not commute with ĤKPO

, and it is known that such a non-commutable interaction is
not suitable to readout the information of the target system.41)

In principle, if we quickly turn off the parametric pump and
non-linearity (β= χ= 0), the KPO becomes the same as the
linear resonator and we can realize the dispersive interaction
when the frequency of the KPO is detuned from that of the
transomon qubit. However, in this case, we need fast

measurements, including pulse operations, which is much
more difficult than our proposed method to require only
continuous wave measurement.

3. Methods

In this section, we propose a method to estimate the number
of photons of the KPO from a spectroscopic measurement of
an ancillary qubit coupled with the KPO. As we explained,
for sufficiently large β, the ground state of the KPO is
approximately described by a superposition of two coherent
states, namely ∣α〉 and ∣− α〉 where ±α is the amplitude of
the coherent state. Without loss of generality, we can assume
that α is a real number. Then, the Hamiltonian of the
ancillary qubit is approximately written as

ˆ ˆ ˆ
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where Δq=ωc−ωp/2 denotes a detuning of the coherent
drive.1)

It is known that we can observe a Mollow triplet via a
spectroscopic measurement with this Hamiltonian, where
resonant transition frequencies are Δq= 0, ±2gα.42–47)

Since we can estimate the value of g from a separate
spectroscopic measurement by observing a vacuum Rabi
splitting,48,49) we can obtain the value of α from the peak
(dip) positions observed in the Mollow triplet. It is worth
mentioning that our method using the ancillary qubit may
affect the dynamics of the KPO due to the resonant
condition between the KPO and the ancillary qubit. This
means that we may be unable to use our method to estimate
the number of photons in the middle of computation.
However, for QA and gate-type quantum computation, we
can apply our method just before the readout at the end of
the calculation. Alternatively, we can use our method to
know the average number of photons before we start the
computation. In these cases, during the computation, we
can set the detuning between the KPO and the ancillary
qubit so that the ancillary qubit should not affect the
dynamics of the KPO. For this purpose, we could use a
frequency tunable transmon qubit as an ancillary
qubit.29,30) Therefore, our method is especially useful for
QA and gate-type quantum computation.
With a conventional method,14) an analytical formula

under semi-classical approximations such as
( )a b c= + D2ana is used to estimate the number of

photons of the KPO when β is much larger than the decay
rate γ1. Importantly, previous research shows that the value
of ( )a b c= + D2ana can provide a wrong estimate28)

due to the violation of the approximation. Therefore, it is
crucial to adopt more reliable method to estimate the number
of photons especially when the conventional method pro-
vides an inaccurate estimation.

4. Numerical simulations

In this section, we evaluate the performance of our method by
comparing with the conventional method using numerical
simulations of the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation. Here, we adopt the Hamiltonian in
Eq. (2). To take the effect of photon loss into account, we use
the following GKSL master equation

Fig. 1. (Color online) Schematic of a KPO coupled with a frequency-
tunable transmon qubit. The transmon qubit is coupled to a transmission line.
By driving the qubit through the transmission line and measuring the
reflected fields, we can readout the information of the transmon qubit.
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where γ1 denotes the one photon dissipation rate of the KPO,
γ2 denotes the spontaneous emission rate of the ancillary
qubit, and r̂ denotes the density matrix describing the
quantum state of the total system. We solve the GKSL
master equation Eq. (8) using QuTiP.50) We choose the initial
state as a steady state of Eq. (8) with λp= 0. Also, we set
ωg=ωp/2.
In Fig. 2(a), we plot a time-integrated spectra

( ) ( ˆ )ò t s= á ñ +I t d1 1 2
t

z0
as a function of Δq with a

step of 0.05 MHz, where ˆ [ ˆ ]s s rá ñ = Trz z , which is effectively
the same as a spectroscopy to detect the change in the
population of the qubit.
This spectra is upper (lower) bounded by 1 (0). The value

of this spectra depends on the Rabi frequency and decay rate
of the qubit. The observed peak and dips are at

( ) pD =2 1.35 MHzq
0 , ( ) pD = -2 16.80 MHzq

1 and
( ) pD =2 17.10 MHzq
2 , respectively.

Figure 2(b) shows the energy diagram composed of the
system of the KPO coupled with an ancillary qubit. We
calculate the energy eigenvalues of the Hamiltonian, and we
confirm that the energy difference between the eigenvalues is
almost the same as the peak frequency observed in our
numerical simulation. The dip at ( ) pD = -2 16.80 MHzq

1 (
( ) pD =2 17.10q
2 MHz) corresponds to the transition be-

tween the ground (first excited) state and the second (third)
excited state, which we describe by a red vertical arrow in
Fig. 2(b). Here, with our parameters, the ground state, first
excited state, second excited state, and third excited state are
approximately described as ∣ (∣ ∣ )a a-ñ ñ + - ñ ,
∣ (∣ ∣ )a a-ñ ñ - - ñ , ∣ (∣ ∣ )a a+ñ ñ + - ñ , and ∣ (∣ ∣ )a a+ñ ñ - - ñ ,
respectively. On the other hand, the peak at

( ) pD =2 1.35 MHzq
0 corresponds to a transition between

the fourth excited state and the fifth excited state, which we
describe by a green vertical arrow in Fig. 2(b), where the
fourth (fifth) excited state is approximately given as
∣ ( ˆ ˆ )∣-ñ + ña a-D D 2 (∣ ( ˆ ˆ )∣-ñ - ña a-D D 2 ). Actually, from the
numerical simulation, the population of the fourth (fifth)
excited state at t= 0 is 0.005 90 (0.0173) and becomes finally
0.007 72 (0.0155) at t= 3 μs. This means that the coherent
drive actually induces a transition between the fourth excited
state and the fifth excited state. By diagonalizing the
Hamiltonian, we recognized that we have a transition
between the second excited state and the third excited state
with an energy difference of 2π× 0.5 MHz. However, we
cannot resolve this peak in the numerical simulation possibly
due to the large width of the peak at ( )Dq

0 .
Now, let us discuss the estimation of the number of

photons. We consider a steady state r̂ss of Eq. (8) with
λp= 0 and g= 0, and we define [ ˆ ˆ] ∣ ∣†r a=a aTr ss

2. Let us
define a relative error of ∣α∣2 estimated by using our method
as ò1≡ ∣∣αest∣2− ∣α∣2∣/∣α∣2, where ∣α∣2(∣αest∣2) is the actual
(estimated) value of the photon number of the KPO. Also,
when we use the analytical formula, the relative error of the
estimated ∣α∣2 is defined as ò2≡ ∣∣αana∣2− ∣α∣2∣/∣α∣2.
From Fig. 2(a), we observe two dips at ( )Dq

1 and ( )Dq
2 and

the frequency difference is ( )( ) ( ) pD - D =2 33.90 MHzq
2

q
1 .

We can estimate the number of photons from this, as we
explained before. Since we set g/2π= 5MHz, we obtain an
estimated value of ∣αest∣2= 2.87, where we solve an equation
of ( )( ) ( )a p p= D - D =g4 2 2 33.90 MHzest q

2
q
1 . The rela-

tive error is calculated as ò1= 0.0280. On the other hand,
when we use the analytical formula, we obtain ò2= 0.0672.
This result indicates that our method provides a more
accurate estimate of α than the conventional method.
Also, to further quantify the performance of our method,

we calculate the relative error of our methods with other
parameters, and compare the error with that of the conven-
tional method. When the detuning is too large for the KPO to
bifurcate, the ground state of the KPO is not the superposition
of the coherent states anymore. Thus, when we plot Figs. 3
and 4, we choose a range of detuning for the KPO to
bifurcate in these numerical simulations.
In Fig. 3, we plot the relative error against the detuning of

the KPO Δ. In Fig. 4, we plot the relative error against Δ by
setting β to satisfy a condition of (2β+Δ)/2π= 50MHz.
The reason why we choose this condition is that the estimated
photon number ∣αana∣2 from the analytical formula is fixed in
these numerical simulations. From Figs. 3 and 4, our method

(a)

(b)

Fig. 2. (Color online) (a) The time-integrated spectra I against Δq/2π with
λp/2π = 0.5 MHz. We set the parameters as Δ/2π = −30.0 MHz, χ/
2π = 18.0 MHz, β/2π = 42.0 MHz, g/2π = 5.0 MHz,
γ1/2π = γ2/2π = 0.8 MHz, and ωg = ωp/2. (b) The energy diagram of the
states of a KPO coupled with a qubit. In the left (right) side, we show the
energy diagram with β/2π = 0 MHz (β? ∣χ∣). Here, ∣α〉 and ∣ ñn (for n = 0,
1, 2) denote a coherent state and Fock states, respectively, while

( ˆ ˆ )†a a= -a *D a aexp denotes the discplacement operator. Also, ∣g〉 (∣e〉)
and ∣ (∣ ∣ )ñ = ñ  ñg e1

2
denotes the ground (excited) state and the super-

position states of the qubit.
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provides a more accurate estimate of ∣α∣2 than the conven-
tional method when there is a detuning Δ. Figure 3 shows a
non-monotonic dependence of the relative error on the
detuning. Thus, we find that there is an optimal detuning to
minimize the relative error for our method. It is worth
mentioning that, in the original proposal of QA with
KPO,1) KPO has a finite detuning during QA. Therefore,
our scheme is useful for such circumstances.
Furthermore, we investigate how a stronger Rabi fre-

quency affects spectroscopic measurements. We perform
numerical simulations with a Rabi frequency of λ/
2π= 2MHz. It is worth mentioning that we observe not
only the prominent two dips but also small dips at

( ) pD = -2 8.40 MHzq
3 and ( ) pD =2 8.65 MHzq

4 , in
Fig. 5. We expect that these additional dips come from the
violation of the rotating wave approximation, which will be
discussed in the Appendix.

Let us remark that, although the ground state of the KPO is
a superposition of two coherent states, we have a classical
mixture of two coherent states in our numerical simulations
due to the photon loss. Similarly, if we perform QA with a
problem Hamiltonian whose ground states are degenerate, we
will obtain not the superposition of the ground states but the
classical mixture between them. Fortunately, this does not
affect the performance of QA for the following reason. When
we solve combinational optimization problems with QA, the
purpose is not to obtain all degenerate ground states but to
obtain one of the ground state. So, even if the state after QA
is a classical mixture of the degenerate ground states, single
shot measurements of KPOs project the states into one of the
ground states, and we obtain the answer.

5. Conclusion

In conclusion, we propose an experimentally feasible method
to estimate the number of photons of the KPO. We couple an
ancillary qubit with the KPO, and spectroscopic measure-
ments of the qubit let us know the number of photons of the
KPO. Our results are essential to realize QA with KPOs for
solving combinational optimization problems.
This work was supported by MEXTs Leading Initiative for

Excellent Young Researchers, JST PRESTO (Grant No.
JPMJPR1919), Japan. This paper is partly based on the
results obtained from a project, JPNP16007, commissioned
by the New Energy and Industrial Technology Development
Organization (NEDO), Japan.

Appendix. Calculation of the transition frequencies by
using the perturbation theory

In this appendix, to understand the violation of the rotating
wave approximation in Fig. 5, we calculate the second-order
of the transition probability with the effective qubit
Hamiltonian Eq. (7). We consider the following Hamiltonian

ˆ ˆ ( ˆ ˆ ) ( · )a s l s s= + ++
- D

-
DH g e e . A 1x

i t i t
p q q

Fig. 3. (Color online) Plot of the relative error ∣∣αest∣2 − ∣α∣2∣/∣α∣2 against
the detuning of the KPO where ∣α∣2 (∣αest∣2) is the true (estimated) value of
the photon number. We set the parameters as χ/2π = 18.0 MHz, β/
2π = 42.0 MHz, g/2π = 5.0 MHz, λp/2π = 0.5 MHz,
γ1/2π = γ2/2π = 0.8 MHz, and ωg = ωp/2.

Fig. 4. (Color online) Plot of the relative error ∣∣αest∣2 − ∣α∣2∣/∣α∣2 against
the detuning of the KPO where ∣α∣2 (∣αest∣2) is the true (estimated) value of
the photon number. We set β to satisfy a condition of (2β + Δ)/
2π = 50 MHz. Also, we set the parameters as χ/2π = 18.0 MHz, g/
2π = 5.0 MHz, λp/2π = 0.5 MHz, γ1/2π = γ2/2π = 0.8 MHz, and
ωg = ωp/2.

Fig. 5. (Color online) (a) The time-integrated spectra I against the detuning
Δq/2π with the Rabi frequency λp/2π = 2 MHz. We use the same parameters
as those in Fig. 2(a) except the Rabi frequency. We observe not only the
main two dips but also small dips at ( ) pD = -2 8.40 MHzq

3 and
( ) pD = -2 8.65 MHzq
4 .
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We can rewrite this Hamiltonian as

ˆ ˆ [( ˆ ˆ )
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We can rewrite the Hamiltonian as
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where we use ˆ ˆ ˆs s= ¢ + ¢+ -X , ˆ ( ˆ ˆ )s s= - ¢ - ¢+ -Y i . We move
to an interaction picture defined by a unitary operation of
ˆ ( ˆ)a=U i g Zexp . The Hamiltonian in this frame is written
as
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We solve a time-dependent Schrödinger equation in the
interaction picture as

∣ ( ) ˆ ( )∣ ( ) ( · )y l yñ = ñi
d

dt
t H t t . A 6p I

By performing a perturbative expansion up to the second
order, we obtain

∣ ( ) ∣ ( ) ∣ ( ) ∣ ( ) ( · )y y l y l yñ ñ + ñ + ñt D D0 0 0 , A 7p 1 p
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We calculate a transition probability from the initial state
∣ ( ) ∣y yñ = ñ0 0 to the final state ∣y ñf as follows.

( · )∣ ∣ ( ) ∣ ∣ ∣ ( ) ( )∣( ) ( )y y y yá ñ á ñ + + A 10t C t C t ,f f
2

0
1 2 2

( ) ∣ ∣ ( · )( ) l y y= á ñC t D , A 11f
1

p 1 0

( ) ∣ ∣ ( · )( ) l y y= á ñC t D . A 12f
2

p
2

2 0

In the limit of large (small) λp(t) by fixing a value of λpt, we
can calculate the first (second) order transition probability
∣C(1)∣2 (∣C(2)∣2), and obtain as the following

( · )
∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )

( ) ( )
y y y y d

d a d a

á ñ á ñ + D

+ + D + - D A 13

t A

A g A g2 2 ,
f f

2
0

2
1 q

2 q 3 q



( ) ( ) ( · )d a d a+ + D + - DA g A g , A 144 q 5 q

where Ai (Bi) (i= 1, 2, 3, 4, 5) denotes coefficient determined
by λp, g, α, and Δq. This result clarifies the origin of the dips
observed at ( )Dq

3 and ( )Dq
4 in Fig. 5.
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