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This is a tutorial paper on the basics and applications of the finite-difference time-domain (FDTD) method. Two types of discretization of the linear
governing equations, the scalar-type FDTD method and the vector-type one, are first discussed. Then the basic concept of the compact explicit-
FDTD (CE-FDTD) method is described. By considering the relationship between the cutoff frequency and the computer resources, it is shown that
the interpolated wide band scheme requires the least computer resources among the derivative schemes of the CE-FDTD method. The
discretization of the arbitrary shaped sound field by voxels and its boundary conditions, and the implementation of the density variation are also
described. The sound field rendering and its real time renderer “Silicon concert hall” are introduced. © 2022 The Japan Society of Applied Physics

1. Introduction

Various numerical methods such as the finite-difference
method,1) the finite element method,2) and the boundary
element method3) have been proposed for the sound field
analysis. In recent years, the finite-difference time-domain
(FDTD) method4–19) has been widely used because of its
simple algorithm and easy programming.
This is a tutorial paper focusing on the FDTD method. The

explanation begins with the basic handling for the analysis of
the linear sound wave propagation by the standard FDTD
method.4) We first describe two types of discretization of the
governing equations: a scalar-type FDTD method and a
vector-type FDTD method. Then it is shown that the
scalar-type FDTD method is advantageous for the sound
field analysis from the viewpoint of the computer resources.
Next, the basic concept of the compact explicit-FDTD

(CE-FDTD) method is described. The CE-FDTD method is a
high-precision version of the FDTD method. It was first
proposed by Kowalczyk in the two-dimensional field15) and
was soon extended to the three-dimensional field.16) We first
implemented the CE-FDTD method on a graphics processing
unit (GPU) cluster system17) and evaluated its performance in
the large scale sound field analysis. By considering the
relationship between the cutoff frequency and the computer
resources, we also show that the interpolated wide band
(IWB) scheme requires the least computer resources among
the derivative schemes of the CE-FDTD method. The
discretization of the arbitrary shaped sound field by voxels
and its boundary conditions,18) and the implementation of the
density variation19) are also described in this paper.
We have been implementing various applications of the

FDTD simulation. Sound field rendering17,20) is the most
important application. It is a technology that the sound
pressure waveform at the listening position is numerically
calculated by the wave based 3D sound field analysis such as
the FDTD method, and then the calculated waveform is
auralized with the 3D audio. We have implemented various
rendering techniques such as the multi-channel rendering and
the binaural rendering.21) As applications other than the
sound field rendering, the CE-FDTD method has been
applied to the analysis of the Mach cutoff noise during the
supersonic flight22) and of the moving sources and receivers
to simulate bat echolocation.14,23) In this paper, the sound

field rendering and its real time renderer “Silicon concert
hall” are introduced.

2. Theory

2.1. Governing equations
For analysis of the linear sound wave propagation without
absorption, the following continuity equation and the equa-
tion of motion are used as the governing equations.

r
¶
¶

+  =· ( )u
p

t
c 0, 10

2

r
¶
¶

+  = ( )u
t

p
1

0, 2

where p is the sound pressure, u is the particle velocity
vector, ρ is the density, and c0 is the sound speed. Strictly
speaking, Eq. (1) must be expressed in terms of the density,
but it is expressed in terms of the sound pressure in this paper
since the linear sound wave propagation is assumed. In this
paper, the set of Eqs. (1) and (2) is called a vector-type
governing equations for convenience.
On the other hand, the wave equation for the sound

pressure p, which is obtained by eliminating the particle
velocity vector from Eqs. (1) and (2) can be also used as the
governing equation as
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This equation is called a scalar-type governing equation in
this paper. So, which governing equation should be used for
the sound field analysis? The answer depends on the problem
to be solved. In the most sound field analysis, the wave
Eq. (3) is sufficient for the governing equation since only the
sound pressure is required. Equations (1) and (2) should only
be used for the problems that the particle velocity must be
kept in the whole analysis domain, such as the analysis of the
sound intensity distribution.
2.2. Discretization by FDTD method
The FDTD method is based on a simple and clear algorithm
in which the governing equations are directly discretized
based on the central finite-difference. However, it is not well
known that there is an obvious difference between the
discretization of the vector- and scalar-type governing
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equations in the computer resources such as the memory
usage and the calculation time. Here, we consider a two-
dimensional sound field for the sake of simplicity. The
difference between the vector- and scalar-type discretizations
is described for the case that only the sound pressure is
required.
2.2.1. Vector-type FDTD method. First, we consider the
discretization of the vector-type governing equation, called
the vector-type FDTD method. Since the vector-type FDTD
method was first proposed in the analysis of the electro-
magnetic field4) and was applied as it is to the sound field
analysis,24,25) it generally refers to the standard FDTD
method in the field of acoustics.
We consider the discretization of the vector-type gov-

erning equation on the collocated grid as shown in Fig. 1(a),
where Δ is the grid interval. It is assumed in the subsequent
discretization that all grid interval in the x-, and y-directions
(and z-direction in the 3D case) is the same as Δ. In the case
of the discretization of the first derivative on the collocated
grid, the difference interval becomes 2Δ in space and 2Δt in
time using the central-difference because the sound pressure
and the particle velocity are defined at the same grid point.
This increased grid interval causes the reduction of the
numerical accuracy. In order to avoid the degradation in
accuracy, a staggered grid is generally used in the vector-type
FDTD method as shown in Fig. 1(b). Discretizing Eqs. (1)
and (2) on the staggered grid gives the following equations.
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where p u,i j
n

i j
n

, , represent the sound pressure and the particle
velocity on the grid point (x, y)= (iΔ, jΔ) at the time
t= nΔt, respectively, r=u c u0 is the normalized particle
velocity, and χ= c0Δt/Δ is the Courant number.1) The
difference intervals can be kept at Δ and Δt respectively
by using the staggered grid, and the accuracy degradation can
be avoided.
2.2.2. Scalar-type FDTD method. Next, we consider the
discretization of the scalar-type governing equation, called
the scalar-type FDTD method. The scalar-type governing

equation is discretized on the collcated grid as
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This discretization is sometimes called the wave equation
FDTD (WE-FDTD) method.26,27)

2.2.3. Comparison between vector-type and scalar-
type FDTD methods. So which discretization is better for
the sound field analysis, the vector-type or the scalar-type?
To answer this question, we first consider the numerical
accuracy. Equation (7) can be obtained eliminating the
particle velocity from Eq. (4) using Eqs. (5) and (6). So, it
is found that both discretizations have the same accuracy. In
the vector-type FDTD method, the particle velocity acts only
as an intermediate variable in the computer program.
Next, we consider the computer memory required for the

FDTD analysis. Suppose we need N memories for the entire
grid points for a certain physical quantity. The scalar-type
FDTD method requires N memories for the sound pressure
pn, and N for pn−1, so 2N memories are totally required
regardless the number of dimensions. Here, the memory for
pn+1 is not required since pn+1 can overwrite pn−1. On the
other hand, the vector-type FDTD method requires N
memories for the sound pressure and dN memories for the
particle velocity, where d is the number of dimensions, so
(d+ 1)N memories are totally required. The memory required
is tabulated in Table I. In the three-dimensional analysis, the
vector-type FDTD method requires twice as many memories
as the scalar-type one. The memory usage is also related to
the calculation time because most of the calculation time is
spent on data transfer. This is especially noticeable when
using the high-speed computing devices such as graphics
processing units (GPUs). It is shown that the scalar-type
FDTD method is superior to the vector-type one because it
requires less computer resources with the same numerical
accuracy.
2.3. CE-FDTD method
The scalar-type FDTD method has another advantage that the
numerical accuracy can be controlled by using the multi-
directional stencil in the case of two- or three-dimensional
field analysis. The compact explicit-FDTD (CE-FDTD)
method is one of methods based on the multidirectional
stencil.15–17) In this section, we will explain the basic concept
of the CE-FDTD method in a two-dimensional field, then
extend it to a three-dimensional field.
2.3.1. 2D CE-FDTD method. In the standard scalar-type
FDTD method that is also known as the standard leapfrog
(SLF) scheme, the second-order difference is evaluated by
the grid points along the axial directions as shown in
Fig. 2(a). It is also possible to evaluate along the diagonal
directions as shown in Fig. 2(b), which is called the rotated

(a) (b)

Fig. 1. Two types of grid for 2D FDTD method.

Table I. Comparison of memory required for the vector- and scalar-type
FDTD methods. N is the memory required for the entire grid points for one
physical quantity.

Dimension Vector-type Scalar-type

1D 2N 2N
2D 3N 2N
3D 4N 2N
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leapfrog (RFL). The discretized equation of the RLF scheme
is given by
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The accuracy of the RLF scheme is different from the SLF
scheme because the grid interval of the RLF scheme is D2 .
The numerical scheme of the CE-FDTD method is derived by
combining the SLF and RFL schemes as
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where a is a parameter for accuracy control. To confirm that
Eq. (9) is a discretized equation of the wave equation, the
Taylor series expansion is applied around pi j

n
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where ∣i j
n
, denotes the value of the derivative of p at a point

(i, j) and at a time n. The left hand side of Eq. (10)
corresponds to the wave equation and the right one corre-
sponds to the discretization error. It is found that the error
term with respect to the spatial differentiation can be
controlled by the parameter a. The greatest advantage of
the CE-FDTD method is that the numerical accuracy can be
improved by increasing the number of evaluation points
without increasing the computer memory.
2.3.2. 3D CE-FDTD method. In the 3D CE-FDTD
method, the second-order difference is evaluated by the

grid points along not only the axial and the face diagonal
directions, but also the space diagonal directions as shown in
Fig. 3. The face diagonal evaluation shown in Fig. 3(b) is
called cubic close packed (CCP), and the space diagonal
evaluation in Fig. 3(c) is called octahedral (OCTA).
Considering all directions, the wave Eq. (3) is discretized
in the CE-FDTD method as16,17)

d c d d d

d d d d d d d d d

= + +

+ + + +

{( )

( ) } ( )

p

a b p , 11

t i j k
n

x y z

x y y z z x x y z i j k
n

2
, ,

2 2 2 2

2 2 2 2 2 2 2 2 2
, ,

where a and b denote two independent numerical parameters,
pi j k

n
, , represents the sound pressure on the grid point (x, y,

z)= (iΔ, jΔ, kΔ) at time t= nΔt. δ2 is an operator on the
central finite difference. For example,
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rewritten as

= +

+ + + +

+ + +

+ + +

+ + +

+ + +

+ +

+ +

+ + +

+ + -

+
+ -

+ - + -

+ + + - + +

+ - + + + -

- + - - - +

- - - + - -

+ + + + - +

+ + - + - -

- + + - - + - + -

- - -
-

(

)

(

)

(

) ( )

p d p p

p p p p

d p p p

p p p

p p p

p p p

d p p

p p

p p p

p d p p , 14

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

i j k
n

, ,
1

1 1, , 1, ,

, 1, , 1, , , 1 , , 1

2 1, 1, 1, 1, 1, , 1

1, , 1 , 1, 1 , 1, 1

, 1, 1 , 1, 1 1, 1,

1, 1, 1, , 1 1, , 1

3 1, 1, 1 1, 1, 1

1, 1, 1 1, 1, 1

1, 1, 1 1, 1, 1 1, 1, 1

1, 1, 1 4 , , , ,
1

where d1–d4 are given by

c c c
c c c

= - + = - =
= - + -

( ) ( )
( ) ( )

d a b d a b d b

d a b

1 4 4 , 2 , ,

2 1 3 6 4 . 15
1

2
2

2
3

2

4
2 2 2

In Eq. (14), d1 corresponds to the SLF scheme, d2 corre-
sponds to CCP, and d3 corresponds to OCTA. Table II shows
the derivative schemes in the 3D CE-FDTD method and their
numerical parameters.16,17) Other schemes can be configured
by combining these stencils. In particular, the IWB scheme
with evaluation of all directions shown in Fig. 3(d) has
excellent characteristics as described later. The Courant
number that determines the stability condition of the scheme
has the maximum value χm shown in Table II.

3. Numerical characteristics of FDTD method

3.1. Numerical dispersion
Figure 4 shows the theoretical dispersion curves expressed in
the sound speed for the representative propagation directions:
(1, 0, 0), (1, 1, 0), and (1, 1, 1).17) In the figures, f denotes
the frequency normalized by the sampling frequency
fs= 1/Δt and c denotes the sound speed normarized by c0.
In each curve, the Courant number is set to the maximum
value χm of each scheme. As shown in the figures, the FDTD

(a) (b)

Fig. 2. Stencils for 2D CE-FDTD method.
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method generally has the numerical dispersion characteristics
in which the numerical sound speed becomes slow as
frequency increases.
The numerical dispersion causes the collapse of the sound

pressure waveform. Figure 5 shows the sound pressure
waveforms calculated by the SLF and IWB schemes. In the
calculation, a cubic domain is assumed and is divided into
256× 256× 256 FDTD cells. The boundary condition is
assumed to be the Mur’s 1st order absorbing boundary.28) A
differential Gaussian pulse is radiated from a point source
located at the center of the domain and is received at the point
(x, y, z)= (64Δ, 128Δ, 128Δ). Figure 5(a) shows the
waveforms with the one-point driving, which is normally
applied to the source driving in the FDTD method. The
waveform calculated by the SLF scheme begins to collapse
because of the numerical dispersion. However, the wave-
forms calculated by the IWB scheme show continuous high-
frequency ringing in the tail of the waveform at a frequency
corresponding to the cutoff frequency, as if it were diverging.

This is due to that the cutoff frequencies of the IWB scheme
in each direction are concentrated at the Nyquist frequency.
To suppress this continuous ringing, an eight-points

driving is devised in a FDTD cell.17) This driving method
acts as a spatial low-pass filter whose gain is zero at the
Nyquist frequency. The results are shown in Fig. 5(b). The
eight-point driving effectively suppresses the continuous
ringing in the IWB scheme while it has little effect in the
SLF scheme. It is found that the IWB scheme can perform
accurate calculations without the numerical dispersion error
by introducing the eight-points driving. For planar sources,
although the numerical dispersion error depends on the
source shape, this drive method is effective.
3.2. Cutoff frequency
Sound wave cannot propagate with frequency above the
cutoff frequency fc ,

16,29) which is the upper limit of the
normalized frequency of the dispersion curve as shown in
Fig. 4. The cutoff frequency depends on the propagation
direction and the lowest normalized cutoff frequency fc in
each direction restricts the bandwidth of the sound field
analysis. The lowest normalized cutoff frequency fc is also
shown in Table II for each scheme. The IWB scheme has the
comprehensively widest bandwidth in the CE-FDTD method,
where the cutoff frequency corresponds to the Nyquist
frequency.
Figure 6 shows the spectrograms of the impulse responses

at the receiving point calculated by each scheme. The
numerical model is the same with Fig. 5. In the case of

Table II. Derivative schemes in the 3D CE-FDTD method and numerical
parameters.

Method a b d1 d2 d3 d4 χm fc

SLF 0 0 1/3 0 0 0 1 3 0.196
CCP 1/4 0 0 1/4 0 −1 1 0.333
OCTA 1/2 1/4 0 0 1/4 0 1 0.25
IWB 1/4 1/16 1/4 1/8 1/16 − 3/2 1 0.5

(a) (b)

(c) (d)

Fig. 4. Numerical dispersion curves expressed by sound speed for the representative propagation directions.

(a) (b) (c) (d)

Fig. 3. Stencils for 3D CE-FDTD method.
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impulse radiation, the ringing cannot be completely sup-
pressed even by the eight-points driving, and some peaks are
observed in the spectrogram corresponding to the cutoff
frequency fc shown in Table II. The reason for the separation
of the peaks in the SLF and CCP schemes is that the cutoff
frequency depends on the direction, as shown in Fig. 4. It is
found that the IWB scheme has the widest bandwidth.
The cutoff frequency also depends on the Courant number.

Figure 7 shows the normalized cutoff frequency against the
Courant number for each scheme. The normalized cutoff
frequency becomes large as the Courant number increases for
all schemes. It is found that the Courant number should be set
as the upper limit of the scheme for accurate analysis.
As shown in Table II, the cutoff frequency and the

maximum Courant number depend on the scheme. This
means that the computer resources required for the calcula-
tion will be different for each scheme when the analysis is

performed at the same cutoff frequency. Table III shows the
minimum computer resources required to analyze the re-
sponse per unit volume and per unit time when the same
cutoff frequency Fc is achieved. In the table, ~ indicates the
ratio to the value of the SLF scheme, = ¯f F fs c c is the
sampling frequency to achieve the cutoff frequency Fc,
Δ= c0/(χmfs) is the grid interval, N= 1/Δ3 is the total
number of the grid points per unit volume, nf is the number
of the floating point operations per cell and per time step, and
Tc= fsNnf is the total floating point operations per unit
volume and per unit time. The amount of memory usage is
proportional to the total number of grid points N, and the
calculation time is proportional to the total floating point
operations Tc. It is found that the amount of memory usage of
the IWB scheme is less than the one-third of that of the SLF
scheme to achieve the same cutoff frequency. It is also found
that the calculation time of the IWB scheme is about 42%
that of the SLF scheme for the same accuracy.
This is especially obvious when using the GPUs since

most of the computation time is spent transferring data within
the GPU. Figure 8 shows the memory usage and the
calculation time for the impulse response of unit time
measured using a single GPU. In the figure, the measured
values are normalized by the results calculated by the SLF
scheme. It is found that the memory usage of the IWB
scheme is smallest and is about 31% of that of the SLF
scheme, which agrees with the theoretical results in Table III.
On the other hand, the measured calculation time does not
agree with Table III because the calculation time is deter-
mined by not only the total number of floating point
operations but also the data transfer time between GPU and
the memory. So, the calculation time is proportional to

~N Tc.
It is confirmed that the calculation time of the IWB scheme is
shortest and is about 14% of that of the SLF scheme. It is also
found that a method with a higher cutoff frequency is
advantageous even if the computation is more complex,
because it reduces the data transfer time due to the low
memory usage.

(a)

(b)

Fig. 5. Sound pressure waveforms calculated by the SLF and IWB schemes with one-point and eight-points driving.

(a)

(b)

(c)

(d)

Fig. 6. (Color online) Spectrograms of the impulse responses calculated by
each scheme.
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4. Techniques related to CE-FDTD method

4.1. Boundary conditions
In the CE-FDTD method, the object shape is represented by
voxels. The voxel is a cube composed of the adjacent eight
grid points. So, the entire interior of the analysis domain must
be filled with voxels. However, in most of the 3D CAD
systems, the object shape is represented only by the surface
data as shown in Fig. 9(a), and the inside of the surface model
is usually hollow. Therefore, it is necessary for the CE-FDTD
method to create voxel data [Fig. 9(c)] from the general
surface data such as the STL and OBJ formats [Fig. 9(b)]. For
the large sound field analysis, voxels of 109 or more may be
required. Since commercial voxelizers cannot handle a large

number of voxels, we have developed our own voxelizer
“SUF2VOX”30) that can genarate voxels from the STL data.
To calculate the sound pressure at the grid points on the

boundary of an arbitrary voxelized object, the sound pres-
sures at the grid points outside the domain are required, but
these are not defined in the computation. Therefore, it is
necessary to estimate the sound pressure at the grid points

(a)

(c) (d)

(b)

Fig. 7. Cutoff frequency against the Courant number for the representative propagation directions.

Table III. Minimum computer resources required to analyze the response
per unit volume and per unit time when the same cutoff frequency is
achieved. ~ indicates the ratio to the value of the SLF scheme, fs is the
sampling frequency to achieve the cutoff frequency Fc, Δ is the grid interval,
N is the total number of the grid points, nf is the number of the floating point
operations per cell, and Tc is the total floating point operations.

Method χm f̄c fs D
~ ~

N nf Tc

SLF 0.577 0.196 1 1 1 1 1
CCP 1 0.333 0.589 0.980 1.05 1.67 1.04
OCTA 1 0.250 0.784 0.736 2.51 1.22 2.40
IWB 1 0.500 0.392 1.47 0.314 3.44 0.423

Fig. 8. Computational performances with consideration of the cutoff
frequency in the case of a single GPU.

(a) (b) (c)

Fig. 9. (Color online) Surface model and voxel model.

Fig. 10. Grid point on the boundary. The black points are defined in the
domain or on the boundary and the white points are located outside the
domain. The circles indicate grid points in the axial direction, the triangles
indicate grid points in the face diagonal direction, and the squares indicate
grid points in the space diagonal direction.
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outside the domain by applying the boundary condition. For
an example, we here consider the calculation of the sound
pressure +pi j k

n
, ,

1 at the grid point located on the edge of the
domain indicated by the black circle as shown in Fig. 10. In
the figure, the black points are defined in the domain or on
the boundary, while the white points are located outside the
domain, and are not defined in the computation. To estimate
the sound pressure at the white grid points in the SLF
scheme, a simple impedance relation for the normal incidence
is applied in the axial direction. However in other schemes of
the CE-FDTD method, the different boundary condition is
applied to other white points depending on the position of the
grid point.18)

In many sound field analyses, the perfect matched layer
(PML)31) is used as the absorbing boundary condition. The

PML was considered inapplicable to the scalar-type FDTD
method because it requires the particle velocity for the
impedance matching between the region and the PML.
However, the PML can be adjoined with the computational
domain of the scalar-type FDTD method by using Eqs. (5)
and (6) to calculate the particle velocity locally on the
boundary.26) However, a PML for the CE-FDTD method
has not yet been developed because of the difficulty of the
multi-directional impedance matching.
4.2. Density variation
Since the density does not appear explicitly in the wave
equation, it was considered to be difficult to analyze the
sound propagation in a medium with density variation using
the CE-FDTD method. However, by considering the differ-
ence in density of each cell when eliminating the particle
velocity from the governing Eqs. (1) and (2), we can obtain a
second-order difference equation that includes the density.
For an example, the second-order difference equation with
respect to x-direction including the density is expressed as
follows.19)

⎛
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2
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1, , , ,
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, , 1, ,

, , 1, ,

where ρi,j,k represents the density in a cube with one side Δ

centered on the grid point (i, j, k). The other directions can be
obtained in the same manner. The discretized equation for the
CE-FDTD method with density variation is represented as19)

(a) (b)

Fig. 11. (Color online) A Yamaha hall model.

Fig. 12. Reverberation curve of the Yamaha hall model at 1 kHz.

Fig. 13. A compute unit of 3D FDTD method by FPGA.

Fig. 14. (Color online) A rendering block prototyped by ASIC.
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5. Application of FDTD method

5.1. Sound field rendering
Sound field rendering is a technology that the sound pressure
waveform at the listening position is numerically calculated
by the wave based 3D sound field analysis such as the FDTD
method, and then to make it audible in 3D audio. This is
based on the same concept as the image rendering in the 3D
computer graphics. The sound filed rendering for the large
scale sound field such as concert halls requires enormous
computer resources, but the application of the IWB scheme
and its implementation on a GPU cluster system have made it
almost practical.
As an example of the sound field rendering, the Yamaha

hall model is produced and calculated21) as shown in Fig. 11.
The hall size is 12× 21.5× 13 meters with 333 seats. For the
calculation condition of the IWB scheme, the sound speed is
340 m s−1, the CFL number is 0.95, the grid interval is
8.5 mm, the sound pressure reflection coefficient of the wall
is 0.93, and the number of calculation steps is 100 000 Δt.
Figure 12 shows the reverberation curve at 1 kHz calculated
from the normal incidence impulse response. In the figure,
the solid line is the measured curve and the dashed line is the
calculated one. They are in good agreement, indicating that
the rendering results are reasonable. The rendering results are
audible by a 24-channel hemispherical speaker array system
installed in the Doshisha University, and the appropriate
reverberation is reproduced, giving a sense of presence as if
one were in the hall.
5.2. Silicon concert hall
Sound field rendering requires the pre-rendering, in which the
impulse responses are calculated in advance for a consider-
able time. Therefore, a real-time renderer is essential to
realize the rendering that can freely change the listening
point. The silicon concert hall is such a real-time sound field
renderer that can simulate the hall acoustics on silicon
chips.32) For the realization of the silicon concert hall, the
parallelization of the compute units and the faster memory
transfers are required. The memory transfer is a bottleneck
for the GPU-based computation because current GPUs have
their memories outside the compute unit, and the data transfer
from the memory to the unit is very costly. Therefore, if the
memory can be directly connected to the compute unit, the
cost problem of data transfer can be solved.
Figure 13 shows a block diagram of a 3D SLF-based

sound pressure compute unit designed on a field program-
mable gate array (FPGA) device.33) The sound pressure can
be calculated and memorized for a single FDTD cell. The
compute units are arranged three-dimensionally, and ex-
change data with each other. Figure 14 shows a rendering
block prototyped on an application specific integrated circuit
(ASIC).34) The rendering block can calculate 4× 4× 4 grid
points. This prototype still works only as a stand-alone
renderer, but in the future it may be possible to connect

multiple blocks to calculate the sound field corresponding to
the physical shape of the blocks in real time.

6. Conclusions

A tutorial on the basics and applications of the FDTD method
was described. For the analysis of the linear sound wave
propagation by the standard FDTD method, two types of
discretization of the governing equations, the scalar-type
FDTD method and the vector-type one were discussed. It was
shown that the scalar-type FDTD method is advantageous
from the viewpoint of the computer resources. Then the basic
concept of the compact explicit-FDTD (CE-FDTD) method
was described. By considering the relationship between the
cutoff frequency and the computer resources, it was shown
that the IWB scheme requires the least computer resources
among the derivative schemes of the CE-FDTD method. The
discretization of the arbitrary shaped sound field by voxels
and its boundary conditions, and the density variation were
also described. The sound field rendering and its real time
renderer “Silicon concert hall” were introduced. We hope this
paper will be useful for beginners in the numerical simula-
tions of the sound fields.
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