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We fabricated a non-contact identification system employing multiple-frequency air ultrasonic transducers and a microphone capable of broadband
measurement. This study aims to perform non-contact identification of the state of cloth using broadband acoustic analysis and machine learning.
We conducted experiments to obtain basic data on the relationship between the moisture content of cloth and the frequency–amplitude
characteristics. Using the proposed system, which combines high-resolution acoustic measurement and machine learning, we succeeded in
noncontact identification of the moisture content of fabric. In addition, we verified the feasibility of this system in identifying whether the fabric
material is cotton or polyester. © 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

In recent years, many types of pneumatic ultrasonic transdu-
cers have become readily available,1–4) and they have
been implemented in a variety of industrial product
applications.5–17) Engineering applications related to non-
contact operation,18–24) which utilize the characteristics of
ultrasonic waves such as high directivity and resonance, are
being actively studied.25–33)

Our group has been conducting continuous research
using ultrasonic transducers, including the development of
acoustic sensing and acoustic levitation using air ultrasonic
transducers.6,7,21–23) The practical application of non-contact
methods is one of the most critical areas of research today,
owing to the current social problems such as the spread
of infectious diseases. To date, several studies addressing
non-contact measurement using ultrasound have been
conducted.34,35) Further, ultrasound measurement studies of the
transmission characteristics of fabric materials have also been
carried out.36) However, although the acoustic properties of cloth
have been discussed in previous studies, there has not yet been
sufficient study of automatic identification using acoustic
properties.
Previously, we had reported a robust classification system

combining high-resolution acoustic measurement and machine
learning.37) This study demonstrates the high affinity between
broadband acoustic measurement and machine learning.
In our previous study,23) we fabricated a transmitting/

receiving system using multi-frequency ultrasonic transdu-
cers and then conducted experiments to obtain basic data. In
this study, we re-fabricated and improved a non-contact
identification system employing multiple-frequency air ultra-
sonic transducers and a microphone capable of broadband
measurement. Moreover, by combining the analysis of the
broadband acoustic data acquired by this system with
machine learning, object feature identification is performed.
In addition, we investigate the effect of moisture content of
cloth on the acoustic characteristics and show that the
proposed system enables non-contact identification of the
moisture content of cloth as well as the cloth material.
The novelty of this research is as follows: first, it

uses broadband acoustic characteristics attained using

multiple-frequency air ultrasonic transducers, and second, it
automates the identification process through the application
of machine learning. The goal of the system proposed in this
paper is the automatic determination of the moisture content
of a target object in a non-contact manner. For the future, we
are considering the possibility of the automatic non-contact
identification of objects; for example, we could check the
safety of objects containing hazardous materials through non-
contact means.
Figure 1(a) shows the prototype of the transmitting and

receiving system with multiple-frequency air ultrasonic
transducers, which was used in this experiment. This proto-
type system utilizes four transducers; two UT1612MPRs
(resonant frequency: 40 ± 1 kHz) and two 250ST160s (reso-
nant frequency: 25 ± 1 kHz) were placed crosswise to each
other. A chirp signal from 10 kHz to 70 kHz was used as the
sound source. Figure 1(b) shows the frequency–amplitude
characteristics when the transducers were driven by the chirp
signal. The red, blue, and black lines represent the results of
driving the 250ST160, UT1612MPR, and all transducers,
respectively. Combining the two types of transducers allowed
us to obtain a broadband incident signal.
Figure 1(c) shows the system flowchart used for identifica-

tion. The following are important aspects of this system:
1. Multiple-frequency air ultrasonic transducers are em-

ployed to obtain broadband incident acoustic signals.
2. A microphone (4939, BK) with a frequency response of

4 Hz–100 kHz and a 768 kHz/32 bit high-resolution
measurement system is used as the recording equipment
to receive broadband acoustic signals.

3. The acoustic features are obtained by calculating the
band-limited power in the frequency domain.

4. The support vector machine (SVM) algorithm is used to
perform machine learning for automatic identification.38–41)

Next, we present the results of our experiments. We
investigated the effect of moistening on the frequency–
amplitude characteristics. In this experiment, the targets
included two kinds of cloth: polyester and cotton.
The cloth used in this experiment was an easily obtained

mass-produced product. The materials used were as follows:
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cotton—dry weight of 21.65 g, measuring 45 cm× 45 cm
(=10.7 mg cm−2); polyester—dry weight of 31.48 g, mea-
suring 60 cm× 60 cm (=8.7 mg cm−2). Figure 1(d) shows
the high-magnification photographs of the cotton (d-1 and
d-2) and polyester (d-3 and d-4) cloth, where the ruler scale
in the photos is 0.5 mm.

Each piece of cloth was moistened without dripping by
controlling the amount of water, so that no water dripped
from it. This was defined as state A: A fine-meshed polyester
fabric can contain an average of 29.0 g (27.2–30.4 g) of water
without dripping, while a fine-meshed cotton fabric can
contain an average of 28.7 g (27.5–30.6 g) of water without

(a)

(b)

(c)

Fig. 1. (Color online) (a) Prototype of transmitting and receiving system. (b) Frequency–amplitude characteristics of transducers (c) system flow chart for
object identification. (d) High-magnification photographs of the cotton (d-1 and d-2) and polyester (d-3 and d-4) cloth.
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dripping. These correspond to a dry basis moisture content of
92.1% and 132.6%, respectively. In addition, approximately
half the water content is defined as state B: a fine-meshed
polyester fabric can contain an average of 14.9 g (12.7–
16.1 g), while a fine-meshed cotton fabric can contain an
average of 13.9 g (10.9–15.6 g). These correspond to a dry
basis moisture content of 47.2% and 64.24%, respectively.
The dry fabric is defined as state C.
A target was inserted between the microphone and the

transducers in the system, as shown in figure 1(a). The
position and orientation of the target cloth are randomly set.
The cloth is hung on a metal frame and fix the upper parts
without tension. Figure 2(a) shows the frequency–amplitude
response when a moistened fine-meshed cotton cloth was
used as the target. In this figure, the result for a dry object is
also depicted for comparison. Figure 2(a) shows that a large
decrease in amplitude occurs over a wide frequency range
due to the effect of moistening. From another viewpoint, this
moistened polyester cloth would have good sound insulation
performance over a wide ultrasonic frequency range.
Figure 2(b) shows the frequency–amplitude response when

a moistened fine-meshed polyester cloth was used as the
target. From the figure, it can be seen that the amplitude

decreases over a wide frequency range owing to the effect of
moistening. However, the effect of moistening was smaller in
the case of cotton cloth compared to that of polyester.
Next, we investigated object identification based on the

analysis of broadband acoustic signals using machine
learning. Figure 1(c) shows the flow chart from the transmit-
ting stage to the identification stage.
We calculated feature extraction based on band-limited

power after envelope calculation and used the SVM algo-
rithm for machine learning. Here, the dimension of
the attribute vector was assumed to be 200. We verified the
accuracy of identification by tuning parameters such as the
frequency band and bandwidth.
Figure 3 shows the accuracy of the identification using the

SVM model. The identification of the moisture content of
cotton using broadband acoustic characteristics was found to
be more accurate [Fig. 3(a)]. The accuracy with which the
moisture content of polyester could be identified was also
more accurate [Fig. 3(b)]. In contrast, for each cloth, the
accuracy of identification using the narrow-band acoustic
characteristics was sometimes approximately 60%–90%.
In addition, we evaluated the SVM model with regard to

the identification of cloth material. As shown in Fig. 3(c), the

(d)

Fig. 1. (Continued.)
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accuracy of identification of cotton or polyester was also
highly accurate. The results suggest that it is possible to
identify the moisture content or cloth type based on the
analysis of broadband acoustic signals using machine
learning. The results reveal the feasibility of a robust
classification system that combines multiple-frequency air
ultrasonic transducers and broadband acoustic measurements
with machine learning.
For the frequency–amplitude characteristics obtained in

this experiment, the moisture content was found to be
proportional to the amplitude attenuation. These trends also

can be clearly observed over a wide bandwidth. We believe
that these trends may contribute to the improvement of the
identification accuracy.
In this study, we fabricated a transmitting and receiving

system using multiple-frequency ultrasonic transducers and
conducted experiments to obtain basic data. We demon-
strated the feasibility of the proposed system for non-contact
identification of the moisture content of fabric and fabric
material. It was clarified that the multiple-frequency air
ultrasonic transducers are promising for the active measure-
ment of broadband acoustic signals for machine learning

(b)

(a)

Fig. 2. (Color online) Frequency–amplitude characteristics. (a) Frequency–amplitude characteristics of a fine-meshed cotton cloth. (b) Frequency–amplitude
characteristics of a fine-meshed polyester cloth.
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(a)

(b)

(c)

Fig. 3. (Color online) Accuracy of identifying the moisture content of cloth and cloth material. (a) Identification of moisture content of cotton (state A, B
or C) (b) identification of moisture content of polyester (state A, B or C) (c) identification of cloth material (cotton or polyester).
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analysis. In addition, it was found that the sound insulation
characteristics of a cloth material can be modified by
controlling the moisture content.
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