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Abstract

We present a full formalism for the calculation of the linear and second-order

optical response for semiconductors and insulators. The expressions for the

optical susceptibilities are derived within perturbation theory. As a starting

point a brief background of the single and many particle Hamiltonians and

operators is provided. As an example we report calculations of the linear and

nonlinear optical properties of the mono-layer InP/GaP (110) superlattice. The

features in the linear optical spectra are identified to be coming from various

band combinations. The main features in the second-order optical spectra are

analyzed in terms of resonances of peaks in linear optical spectra. With the help

of the strain corrected effective-medium-model the interface selectivity of the

second-order optical properties is highlighted.

1. Introduction

A material interacting with the intense light of a laser beam
responds in a ‘‘nonlinear fashion’’. Consequences of this
are a number of peculiar phenomena, including the
generation of optical frequencies that are initially absent.
This effect allows the production of laser light at wave
lengths normally unattainable by conventional laser
techniques. So the application of nonlinear optics (NLO)
range from basic research to spectroscopy, telecommunica-
tions and astronomy. Second harmonic generation (SHG),
in particular, corresponds to the appearance of a frequency
component in the laser beam that is exactly twice the input
one. SHG has great potential as a characterization tool for
materials, because of its sensitivity to symmetry. Today
SHG is widely applied for studying the surfaces and
interfaces because it requires an inversion asymmetric
material. For materials with bulk inversion symmetry SHG
is only allowed at surfaces and interfaces. This makes SHG
a powerful surface selective technique. SHG in conjunction
with Kerr and Faraday rotation [1] is used as an excellent
tool for studying magnetic surfaces. In case of embedded
interfaces this technique gains extra weight when an intense
laser is used which is capable of penetrating deep into the
material and no direct contact with the sample is needed.
In the case of linear optical transitions an electron

absorbs a photon from the incoming light and makes a
transition to the next higher unoccupied allowed state.
When this electron relaxes it emits a photon of frequency
less than or equal to the frequency of the incident light
(Fig. 1(a)). SHG on the other hand is a two photon process
where this excited electron absorbs another photon of same
frequency and makes a transition to yet another allowed
state at higher energy. This electron when falls back to its
original state emits a photon of a frequency which is two

times that of the incident light (Fig. 1(b)). This results in
the frequency doubling in the output.

In order to extend the use of NLO for understanding the
properties of surfaces and interfaces and for extracting

maximal information from such measurements for non
centero-symmetric materials, a more quantitative theor-
etical analysis is desirable. The calculation of the SHG
susceptibility from first principles is highly relevant but

difficult task. The major work is this direction for
semiconductors can be found in Refs. [2–5] and for metals
in Refs. [6–9] and references therein. In this work, we

present a formalism for calculating the second order
susceptibility �ð2Þð2!; !; !Þ for non magnetic semiconduc-
tors and insulators, within the independent particle

approximation. The expressions formulated are amenable
for numerical calculations using any band structure
method and are computationally more efficient [10] than

the previously presented expressions [2–5].
As an example, we present the linear and nonlinear

optical properties of a InP/GaP superlattice (SL). Semi-
conducting strained SLs are potential materials for
applications in optical communications involving switch-

ing, amplification and signal processing. In particular III–V
semiconductor hetero-structures and SLs have attracted a
great deal of interest mainly due to the possibility of

tailoring band gaps and band structures by variation of
simple parameters like superlattice period, growth direc-
tion and substrate material. Much of the theoretical work

done to understand the physical properties of SLs has been
largely concerned with the understanding of the electronic
band structure. For example, the effect of strain on the
band gap, the band offset problem and the possibilities of

engineering it as well as the interface energy and band
structure have been studied [11–22]. The major theoretical
work in the direction of NLO properties was done by

Ghahramani et al [23–26]. They employed the non-
self consistent linear combination of Gaussian orbitals
(LCGO) method to calculate the band structures and

optical properties of SLs. As an example, we present a fully
self-consistent calculation of the nonlinear optical proper-
ties of the mono-layer InP/GaP (110) superlattice (SL). The

structure in the linear optical spectra is identified from the
band structure of the material. The features in the second-
order optical response are further analyzed in terms of

resonances of the peaks in the linear optical spectra. With
use of the strain corrected effective medium model
(SCEMM) [10], and we identify the features in the optical
spectra of InP/GaP coming from the SL formation.

The paper is arranged in the following manner. In

Section 2 we present the detailed formalism for calculating� e-mail: sangeeta.sharma@uni-graz.at
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the SHG susceptibility. Section 3 deals with the linear and
second-order optical response of an InP/GaP SL.

2. Formalism

The aim of the present work is to obtain an expressions for
the optical response of a material. The effect of the electric
field vector Eð!Þ of the incoming light is to polarize the
material. This polarization can be calculated using the
following relation:

P að!Þ ¼ �ð1Þab
�Ebð!Þ þ �ð2Þabc

�Ebð!Þ �Ecð!Þ þ � � � ð1Þ
In this expression �ð1Þ is the linear optical susceptibility and
�ð2Þ is the second order optical susceptibility. The higher
order terms can also be calculated but in the present work
we are only interested up to the second-order optical
response. The formulae for calculating the SHG suscept-
ibility, �ð2Þð2!; !; !Þ; have been presented before [2–5] In
the present work we provide the detailed formalism. Before
deriving the expressions for calculating the SHG suscept-
ibility using perturbation theory, a brief background of the
single and many particle Hamiltonians and operators is
needed. This is presented in the following three sections.

2.1. The Hamiltonians

The optical response is treated within the independent
particle approximation and the Hamiltonian in a.u. (i.e.,
h� ¼ m ¼ e ¼ 1) is written as

HðtÞ ¼
X
i

ðpi � KðtÞÞ2
2

þ VðxiÞ: ð2Þ

The subscript i labels the electrons in the crystal at position
xi: p is the momentum operator given by pi ¼ �iri: VðxÞ is
the effective periodic crystal potential. KðtÞ ¼ AðtÞ=c where
AðtÞ is the vector potential of the external applied field. The
macroscopic electric field is given by EðtÞ ¼ � _AAðtÞ=c: In the
long wavelength limit the variation of this field over the
distance of the lattice spacing is neglected. Equation (2) can
be separated into a time independent (which may be
implicitly time dependent) and explicitly time dependent
parts as

H ¼ H0 þH1 þH2: ð3Þ
with

H0 ¼
X
i

H0i ¼ 1

2

X
i

p2i þ VðxiÞ; ð4Þ

H1ðtÞ ¼ �KðtÞ
X
i

pi; ð5Þ

H2ðtÞ ¼ 1

2
NK2ðtÞ: ð6Þ

N is the total number of electrons in the volume � of the
crystal. In the long wavelength limit H2 only introduces a
time dependent phase factor for the wave functions and
hence can be neglected. H1 can be treated as a perturba-
tion. The eigenstates of H0 are given by

H0 nðk; xÞ ¼ !nðkÞ nðk; xÞ;

 nðk; xÞ ¼ ��1=2unðk; xÞeik;x ð7Þ

Next we consider the time dependent single particle
Hamiltonian HðtÞ ¼ 1=2ðp� KðtÞÞ2 þ VðxÞ: The instan-
taneous eigenstates of this Hamiltonian are

�  nðk; xÞ ¼ ��1=2unðkþ KðtÞ; xÞeik;x ð8Þ
satisfying

HðtÞ �  nðk; xÞ ¼ !nðkþ KðtÞÞ �  nðk; xÞ: ð9Þ
�  nðk; xÞ is implicitly time dependent via KðtÞ: If an
orthonormal set �  nðk; xÞ satisfies Eq. (9) at time t; then
the same equation is satisfied at time tþ dt if

ih�
d

dt
�  nðk; xÞ ¼

X0

m

�  nðk; xÞ�mnðk; tÞEðtÞ ð10Þ

for each n. If !mðkþ KÞ ¼ !nðkþ KÞ then

EðtÞ �Vmnðk; tÞ ¼ 0: ð11Þ
As shown in Appendix I the above conditions require:

�mnðkþ K; tÞ ¼ Vmnðk; tÞ
i!mnðkþ KÞ ð12Þ

where

Vmnðk; tÞ ¼
ð
�  �
mðk; xÞe�iK � x½�ir�ð �  nðk � xÞÞeiK � xdx: ð13Þ

2.2. The operators in second quantization

We now introduce Fermionic raising and lowering
operators aþn and an satisfying the anti-commutation
relations faþn ; aþmg ¼ fan; amg ¼ 0 and faþn ; amg ¼ �nm: Simi-
lar commutation relations are satisfied by bþn and bn which
are Fermionic raising and lowering operators, implicitly
dependent on time via the wave function. The Hamil-
tonians in the second quantized representation are

H0 ¼
X
nk

!nðkÞaþnkank; ð14Þ

HðtÞ ¼
X
nk

!nðkþ KÞbþnkbnk: ð15Þ

A unitary transformation operator can be used for going
from the implicitly time dependent operators bn and bþn to

Fig. 1. Schematic representation of a (a) linear optical transition and (b)

second harmonic generation.
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time independent operators an and aþn as

an ¼ UbnU
þ; aþn ¼ Ubþn U

þ: ð16Þ

Here

U ¼
X
S

jSih �SSj; Uþ ¼
X
S

j �SSihSj ð17Þ

such that jSi are states given by Eq. (7), j �SSi are states given
by Eq. (8) and the sum runs over all the states. The
importance of such a transformation will become clear in
the next section (see e.g., Eq. (26) and the discussion after
it). Since our final aim is to calculate the linear and
nonlinear optical response of the material another useful
operator is the current density operator J which is given by

J ¼ 1

�

X
i

Pi � KðtÞ ð18Þ

¼ 1

�

X
nmk

bþnkbmkVnmðkþ KÞ;

J0 ¼
X
nmk

aþnkamkVnmðkþ KÞ: ð19Þ

As shown in the Appendix II the current density in dipole
approximation is related to the response of the materials
via the polarization as

J ¼ JA þ dP

dt
: ð20Þ

Here JA is the intraband current density given by Eq. (66)
and P the effective polarization of the material given by
Eq. (1). In second quantization P can be written as

P ¼ 1

�

X
nmk

bþnkbmk�nmðk; tÞ;

P0 ¼ 1

�

X
nmk

aþnkamk�nmðk; tÞ: ð21Þ

2.3. The perturbation approach

2.3.1. Schrödinger to interaction picture
With the above information now we are ready to study the
dynamics of a many-particle system described by the
density matrix �; which is specified by the following
equation of motion

i _�� ¼ ½H; ��: ð22Þ
Working with the transformed operators �0 ¼ U�U

þ the
equation of motion becomes

i�0 ¼ ½H0 þH0
d � �0 � ð23Þ

where

H0
d ¼ ��P0 �EðtÞ ¼ �

X
nmk

aþnkamk�nmðk; tÞEðtÞ; ð24Þ

H0 ¼ UHUþ ¼
X
nk

!nðkþ KÞaþnkank: ð25Þ

In this equation, aþn and an are time independent and hence
the commutators of H0 at two different times vanish. U is
the unitary operator given by Eq. (17).

Until now we have been working in the Schrödinger
picture. Now we change to the interaction picture, because
the equation of motion Eq. (22) involving the total
Hamiltoninan simplifies to the form given by Eq. (28)
where only the perturbation term of the Hamiltonian Hd; is
involved. This can be done by the use of the following
relations:

WðtÞ ¼ exp i

ðt
�1

H0ðt0Þ dt0
� �

;
dWðtÞ
dt

¼ iWðtÞH0ðtÞ; ð26Þ

~�� ¼ W�0Wþ; ~aamk ¼ WamkW
þ; ~aamkðtÞ ¼ amk e

�i�mðk;tÞ;

~HHd ¼ WH0
dW

þ ¼ �
X
nmk

~aaþnk ~aamk�nmðk; tÞEðtÞ: ð27Þ

Here �mðk; tÞ ¼
Ð t
�1!mðkþ Kðt0ÞÞdt0: As shown in Appen-

dix III, Eq. (22) now becomes

i _~��~�� ¼ ½ ~HHd; ~���: ð28Þ
Integrating this equation we get

~�� ¼�0 þ 1

i

ðt
�1

½ ~HHdðt0Þ; �0� dt0

þ 1

ðiÞ2
ðt
�1

ðt0
�1

~HHdðt0Þ; ~HH0
dðt00Þ; �0

� �� �
dt0 dt00 . . . ð29Þ

2.3.2. Expectation values of operators
Our main interest lies in the single particle operators like

� ¼
X
nmk

aþnkamk�nmðkÞ ¼
X
nmk

bþnkbmk
���nmðkÞ;

�0 ¼
X
nmk

aþnkamk
���nmðkÞ;

~�� ¼
X
nmk

~aaþnk ~aamk�nmðkþ KÞ: ð30Þ

The expectation value of any single particle operator � can
be calculated using the relation

h�i ¼ Trð��Þ ¼ Trð�0�0Þ ¼ Trð�0�̂�Þ ð31Þ
where �̂� is

�̂� ¼ ~��ðtÞ þ 1

i

ðt
�1

½ ~��ðtÞ; ~HHdðt0Þ� dt0

þ 1

ðiÞ2
ðt
�1

ðt0
�1

½½ ~��ðtÞ; ~HHdðt0Þ�; ~HHdðt00Þ�; dt0dt00: ð32Þ

Using the following properties of the trace

Trð�0aþnkamkÞ ¼ �nm fnðkÞ;
Trð�0½aþnkamka

þ
pk0aqk0 �Þ ¼ �k;k0�nq�mpfnmðkÞ ð33Þ

130 S. Sharma and C. Ambrosch-Draxl
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and combining Eqs. (29), (31) and (32) the first term
becomes

h�ið0Þ ¼
X
nk

�nnðkþ KÞfnðkÞ ð34Þ

and the second term is

h�ið1Þ ¼ i
X
nmk

fnmðkÞ�nmðk; tÞ ei�mnðk;tÞ

�
ðl
�1

ei�mnðk;t0Þ�mnðk; t0Þ �Eðt0Þ dt0: ð35Þ

The higher order terms can be written in a similar manner.
Taking EðtÞ ¼ ��Eð!�Þ e�i!�t; using the following identity

eSðtÞLðtÞ ¼ d

dt
eSðtÞ

LðtÞ
_SSðtÞ

� �
� eSðtÞ

d

dt

LðtÞ
_SSðtÞ

� �
ð36Þ

and substituting

SðtÞ ¼ ið�mn � !�tÞ; LðtÞ ¼ �b
mn;

_SSðtÞ ¼ ið!mn � !�Þ
ð37Þ

in Eq. (35) we get

h�ið1Þ ¼ i
X
nmk

fnmðkÞ�nmðk; tÞ ei�nmðk;tÞ

� eið�mnðk;tÞ�!�tÞ �b
mnðk; tÞ

ið!mnð�Þ � !�Þ
�

þ i

ðt
�1

eið�mnðk;t0Þ�!�t0Þ

� �

��0c

�b
mnðk; t0Þ

ð!mnð�0Þ � !�Þ
� �

Ecðt0Þ dt0
�
Ebð!�Þ: ð38Þ

Now expanding Eðt0Þ into frequency components Eð!Þ and
using Eq. (36) for integrating the right side of Eq. (38) one
can write h�ið1Þ ¼ h�ið1;0Þ þ h�ið1;1Þ þ � � � � � � where

h�ið1;0Þ ¼
X
nmk

fnmðkÞ�nmðk; tÞ �
b
mnðk; tÞ

ð!mn � !�Þ e
�i!�tEbð!�Þ; ð39Þ

h�ið1;1Þ ¼ i
X
nmk

fnmðkÞ�nmðk; tÞ 1

!mn � !� � !�

� �

��c
�b
mnðk; tÞ

!mn � !�

� �
e�ið!�þ!� ÞtEbð!�ÞEcð!�Þ ð40Þ

and

h�ið2;0Þ ¼
X
nmk

1

!mn � !� � !�

� fnl�nmðk; tÞ�b
ml�

c
ln

!ln � !�
fml	nm�

c
ml�

b
ln

!ml � !�

� �
e�ið!�þ!� Þt

� Ebð!�ÞEcð!�Þ: ð41Þ

2.4. Linear and second order susceptibility

Up to this point the formalism have been most general.
Now in order to find the linear and non linear suscept-

ibility, � is replaced by the polarization operator P.

Equation (1) can be written as

hPi ¼ hPiI þ hPiII þ � � � ð42Þ

where

hP aiI ¼ �ð1Þab ð�!�; !�Þ e�i!�tEbð!�Þ;

hP aiII ¼ �ðII Þabc ð�!�;�!�; !�; !�Þ

� e�ið!�þ!� ÞtEbð!�ÞEcð!�Þ: ð43Þ

Similarly, expanding the intraband current density in the
powers of the electric field we get

hJAi ¼ hJAiI þ hJAiII þ . . . ð44Þ

with

hJAiI ¼ 
ð1Þab ð�!�; !�Þ e�i!�tEbð!�Þ

hJAiII ¼ 
ðII Þabc ð�!�;�!�; !�; !�Þ

� e�ið!�þ!� ÞtEbð!�ÞEcð!�Þ: ð45Þ

For clean semiconductors with filled bands the conductiv-
ity 
ð1Þ is zero and only PI contributes to the linear term,
whereas to the second-order term both, PII and JII;
contribute. Now substituting � ¼ P a in Eq. (39) we get
the expression for the linear susceptibility

�ð1Þab ð�!;!Þ ¼
1

�

X
nmk

fnmðkÞ r
a
nmðkÞrbmnðkÞ
!mnðkÞ � !

¼ "abð!Þ � �ab
4�

: ð46Þ

Here "abð!Þ is the ab component of the dielectric tensor,
and rnm are the position matrix elements given by

rnm ¼ �nm ¼ Vnmðk; tÞ
i!nmðkþ KÞ if !n 6¼ !m;

rnm ¼ 0 if !n ¼ !m: ð47Þ

Similarly, substituting � ¼ P a in Eqs. (40) and (41) and
using the following identity

�ð2Þabcð�!�;�!�; !�; !�Þ ¼ �ðII Þabc ð�!�;�!�; !�; !�Þ

þ i
ðII Þabc ð�!�;�!�; !�; !�Þ
!� þ !� ð48Þ

we obtain after some rearrangement of the terms [3,10] the
interband transitions �interð2!; !; !Þ; the intraband transi-
tions �intrað2!; !; !Þ and the modulation of interband terms
by intraband terms �modð2!; !; !Þ as the contributions to
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the SHG susceptibility:

�abcinterð2!; !; !Þ ¼
1

�

X0

nmlk

Wk

� 2ranm rbmlr
c
ln

� �
ð!ln � !mlÞð!mn � 2!Þ
�

� 1

ð!mn � !Þ
rclm ramnr

b
nl

� �
ð!nl � !mnÞ
�

� rbnl r
c
lmr

a
mn

� �
ð!lm � !mnÞ

��
; ð49Þ

�abcintrað2!; !; !Þ ¼
1

�

X
k

Wk

X0

nml

!�2
mn

ð!mn � !Þ

(

� !lnr
b
nl r

c
lmr

a
mn

� �� !mlr
c
lm ramnr

b
nl

� �� �

� 8i
X0
nm

1

!2
mnð!mn � 2!Þ r

a
nm �b

mn�
c
ln

� �

þ 2
X0

nml

ranm rbmlr
c
ln

� �ð!ml � !lnÞ
!2
mnð!mn � 2!Þ

)
; ð50Þ

�abcmodð2!; !; !Þ ¼
1

2�

X
k

Wk

X
nml

1

!2
mnð!mn � !Þ

(

� !nlr
a
lm rbmnr

c
nl

� �� !lmr
a
nl r

b
lmr

c
mn

� �� �

�i
X
nm

ranm rbmn�
c
mn

� �
!2
mnð!mn � !Þ

)
: ð51Þ

The sum of the MEs is taken within the random-phase-
approximation (RPA), i.e., no excitonic effects are included
(for reasons and details see Ref. [27]). Wk is the weight of
the k point, n denotes the valence states, m the conduction
states and l denotes all states ðl 6¼ m; nÞ: We have used the
these expressions to calculate the total susceptibility in the
following example.

3. Example

As an example we present the linear and nonlinear optical
spectra of an InP/GaP (110) superlattice. This material is a
mono-layer SL in (110) direction with GaP grown on top
of an InP substrate. The zz component of the linear
frequency dependent dielectric function is given in Fig.
2(a). "zz2 ð!Þ has major peaks at 2.3 eV (B), 4 eV (D) and
5.5 eV (F) and minor peaks at 1 eV (A), 2.75 eV (C), 4.5 eV
(E) and 6.5 eV (G). These peaks in the linear optical spectra
can be identified from the band structure. The calculated
band structure along certain symmetry directions is given
in Fig. 3. It can be noted from the band structure plot that
InP/GaP is a direct band gap ðEG Þ material. The calculated
band gap using the local density approximation (LDA) is
EG ¼ 0:6 eV [28]. As can be seen from the Eq. (46), we need
to look at the optical matrix elements rnm for various pairs
of band n and m in order to identify of these peaks. We
mark the transitions, giving the major structure in "zz2 ð!Þ; in

the band structure plot. These transitions are labeled

according to the peak labels in Fig. 2(a).
We now go on to study the NLO properties. Different

contributions to the imaginary part of �ð2Þxyzð2!; !; !Þ are

presented in Fig. 2(b). As can be seen the total SHG

susceptibility is zero below half the band gap. The 2!
terms start contributing at energies �1=2EG and the !
terms for energy values above EG: In the low energy

regime ð�3 eVÞ the SHG optical spectra is dominated by

the 2! contributions. Beyond 3 eV the major contribution

comes from the ! terms. Unlike the linear optical spectra,

the features in the SHG susceptibility are very difficult to

identify from the band structure because of the compli-

cated resonance of the 2! and ! terms. But one can make

use of the linear optical spectra to identify the different

resonances leading to various features in the NLO

spectra. This analysis is performed in the present work.

The identified peaks are marked in Fig. 2, where the

nomenclature adopted is Mðx!Þ þNð y!Þ; which indicates

that the peak comes from an x! resonance of the peak M

with the y! resonance of peak N in the linear optical

spectra. For example, the hump just below 1 eV, labeled

Að2!Þ in the imaginary part of �ð2Þxyzð2!; !; !Þ comes from

the 2! resonance of the peak labeled A in the linear

optical spectra. The peak labeled Dð2!Þ þ Bð!Þ is coming

Fig. 2. (a) Imaginary part of the zz component of the linear dielectric

tensor. (b) Second-order susceptibility Im½�ð2Þxyzð2!;!; !Þ� (solid line) and

different contributions to it: the ‘‘2! interband term’’ (dashed line), the ‘‘!
interband term’’ (dotted line), the ‘‘2! intraband term’’ (dash dotted line)

and the ‘‘! intraband term’’ (circle thin line)

Fig. 3. Band structure for mono-layer InP/GaP SL.
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from the 2! resonance of the peak D with ! resonance of

the peak labeled B in the "2ð!Þ plot.
Compared to the linear optical, the NLO is a much more

surface/interface sensitive technique. This fact can be

demonstrated by identifying the features coming from the

interface formation. These features are referred to as SL

features. These features can be pin pointed by comparing

the spectra for the SL with features appearing from the

average of the two bulk materials. In order to provide a

simple model for predicting the averaged bulk features in

the optical properties on basis of its constituent materials,

the effective medium model (EMM) and the strain-

corrected effective medium model (SCEMM) [10] have

been proposed. Comparison of the SCEMM results with

the SL calculations are presented in Fig. 4. The SL features

coming from effects like symmetry lowering are not

accounted for by the SCEMM and are marked as SLX in

the figure, with X representing the feature label. The small

SL effects in the linear optical spectra are greatly enhanced

in the second-order optical response. This clearly indicates

the selective interface sensitivity of the NLO.
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Appendix I

To show Eq. (12) we need to show:

d

dt
½ðHðtÞ � !nðkþ KÞÞ �  nðk; xÞ� ¼ 0 ð52Þ

which can be written as

½HðtÞ � !nðkþ KÞ� d
�  nðk; xÞ
dt

¼ � d

dt
½HðtÞ � !nðkþ KÞ� �  nðk; xÞ

¼ eEðtÞ � �!nðkþ KÞ
�k

þ ðir � KÞ
� �

�  nðk; xÞ: ð53Þ

Substituting Eq. (10) into Eq. (53) yields

�i
X0

m

!mnðkþ KÞ�mn �EðtÞð �  mðk; xÞeiK � xÞ

¼ eEðtÞ � �!nðkþ KÞ
�k

þ ir
� �

ð �  nðk; xÞ eiK � xÞ: ð54Þ

The prime indicates that m 6¼ n: Note that here we have
used the fact irð �  n e

iK � xÞ ¼ eiK � xðir � KÞ �  n: The projec-

tion of left-hand side (LHS) of this Eq. on �  lðk; xÞ eiK � x

�
ð
�  �
l ðk; xÞ e�iK � xi

X0
m

!mnðkþ KÞ�mn

�EðtÞ �  mðk; xÞ eiK � x dx: ð55Þ

Which is zero in the case of l ¼ nðm 6¼ nÞ: The right-hand
side (RHS) of Eq. (54) vanishes because

i

ð
�  �
nðk; xÞ e�iK � xr �  nðk; xÞ eiK � x dx ¼ �Vnnðk; tÞ

¼ � �!nðkþ KÞ
�k

: ð56Þ

For the case l 6¼ n the LHS of Eq. (54) is

� i

ð
�  �
l ðk; xÞ e�iK �xX

m

!mn�mn �EðtÞð �  mðk; xÞ eiK � xÞ

¼ � i!lnðkþ KÞ�ln �EðtÞ: ð57Þ

The RHS of Eq. (54) in this case becomes �eVln �EðtÞ:
Thus the condition for, the two sides to be equal is

�mnðkþ K; tÞ ¼ Vmnðk; tÞ
i!mnðkþ KÞ : ð58Þ

Appendix II

In this section we confirm Eq. (66). We start with the
relation

hPi ¼ Trð�PÞ ¼ Trð�0P0Þ

¼ 1

�
Tr �0

X
nmk

aþnkamk�nm

" #
: ð59Þ

Fig. 4. Full SL calculation (solid line) along with the SCEMM results

(dashed line) for (a) the imaginary part of the linear dielectric tensor and

(b) the magnitude of the SHG susceptibility.
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Now taking the time derivative of the expectation value of
P we get

dhP ai
dt

¼ 1

�
Tr

d

dt
�0
X
nmk

aþnkamk�nm

" # !

¼ 1

�
Tr

d�0

dt

X
nmk

aþnkamk�nm

" # 

þ �0
X
nmk

aþnkamk
d�nm

dt

" #!
: ð60Þ

Using the equation of motion Eq. (28) this can be written
as:

dhP ai
dt

¼ 1

i�
Tr ½H0; �0�

X
nmk

aþnkamk�
a
nm

 !

þ 1

i�
Tr ½H0

d; �
0�
X
nmk

aþnkamk�
a
nm

 !

þ 1

�
Tr �0

X
nmk

aþnkamk
��a

nm

�Kb

 !
dKb

dt
: ð61Þ

Using the property of the trace and the operator relations

Trð½A;B �C Þ ¼ TrðB½C;A �Þ; ð62Þ

H0 ¼
X
nk

!nðkþ KÞaþnkamk; ð63Þ

½aþnkamk;H
0� ¼ �!nmðkþ KÞaþnkamk; ð64Þ

as well as

½aþnkamk; a
þ
pk0aqk0 � ¼ aþnkaqk�mp�kk0 � aþpkamk�nq�kk0 ð65Þ

the first term in Eq. (61) becomes

¼ 1

i�
Tr �0

X
nmk

aþnkamk�
a
nm;

X
nk

aþnkank!n

" # !

þ 1

�
�Tr �0

X
nk

Va
nnðkþ KÞaþnkank

 !(

þ Tr �0
X
nmk

aþnkamkð!n�nm � �a
nm

�EðtÞÞ
 !)

ð66Þ

where the last term in this expression is JA.

Appendix III

We need to prove

i _~��~�� ¼ ½ ~HHd; ~���: ð67Þ

The LHS can be written as

i _~��~�� ¼ i
d

dt
~�� ¼ i

d

dt
½W�0Wþ�

¼ i
dW

dt
�0Wþ þ iW

d�0

dt
Wþ þ iW�0

dWþ

dt
: ð68Þ

Now using Eqs. (23) and (26) this becomes

�WH0�0Wþ þW½H0 þH0
d; �

0�Wþ þW�0H0Wþ

¼ W½H0 þH0
d; �

0�Wþ �W½H0; �0�Wþ

¼ W½Hd; �
0�Wþ ¼ ½ ~HHd; ~���: ð69Þ
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